System.Data.SQLite

Check-in [cf6d124b7d]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update SQLite core library to the latest trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: cf6d124b7d67751d6152357fd6e0b58853b28764
User & Date: mistachkin 2013-02-16 00:09:02.165
Context
2013-02-18
21:31
Merge custom connection pool support to trunk. Pursuant to [393d954be0]. check-in: 90142c95cc user: mistachkin tags: trunk
2013-02-16
00:09
Update SQLite core library to the latest trunk. check-in: cf6d124b7d user: mistachkin tags: trunk
2013-02-15
21:43
Merge support for the INTEROP_LEGACY_CLOSE compile-time option to trunk. check-in: ec6819f0bf user: mistachkin tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to SQLite.Interop/props/sqlite3.props.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<?xml version="1.0" encoding="utf-8"?>
<!--
 *
 * sqlite3.props -
 *
 * Written by Joe Mistachkin.
 * Released to the public domain, use at your own risk!
 *
-->
<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
  <PropertyGroup Label="UserMacros">
    <SQLITE_MANIFEST_VERSION>3.7.15.2</SQLITE_MANIFEST_VERSION>
    <SQLITE_RC_VERSION>3,7,15,2</SQLITE_RC_VERSION>
    <SQLITE_COMMON_DEFINES>_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT3=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1</SQLITE_COMMON_DEFINES>
    <SQLITE_EXTRA_DEFINES>SQLITE_HAS_CODEC=1</SQLITE_EXTRA_DEFINES>
    <SQLITE_WINCE_DEFINES>SQLITE_OMIT_WAL=1</SQLITE_WINCE_DEFINES>
    <SQLITE_DEBUG_DEFINES>SQLITE_DEBUG=1;SQLITE_MEMDEBUG=1;SQLITE_ENABLE_EXPENSIVE_ASSERT=1</SQLITE_DEBUG_DEFINES>
    <SQLITE_RELEASE_DEFINES>SQLITE_WIN32_MALLOC=1</SQLITE_RELEASE_DEFINES>
    <SQLITE_DISABLE_WARNINGS>4055;4100;4127;4146;4210;4232;4244;4245;4267;4306;4389;4701;4703;4706</SQLITE_DISABLE_WARNINGS>
    <SQLITE_DISABLE_X64_WARNINGS></SQLITE_DISABLE_X64_WARNINGS>











|
|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<?xml version="1.0" encoding="utf-8"?>
<!--
 *
 * sqlite3.props -
 *
 * Written by Joe Mistachkin.
 * Released to the public domain, use at your own risk!
 *
-->
<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
  <PropertyGroup Label="UserMacros">
    <SQLITE_MANIFEST_VERSION>3.7.16</SQLITE_MANIFEST_VERSION>
    <SQLITE_RC_VERSION>3,7,16</SQLITE_RC_VERSION>
    <SQLITE_COMMON_DEFINES>_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT3=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1</SQLITE_COMMON_DEFINES>
    <SQLITE_EXTRA_DEFINES>SQLITE_HAS_CODEC=1</SQLITE_EXTRA_DEFINES>
    <SQLITE_WINCE_DEFINES>SQLITE_OMIT_WAL=1</SQLITE_WINCE_DEFINES>
    <SQLITE_DEBUG_DEFINES>SQLITE_DEBUG=1;SQLITE_MEMDEBUG=1;SQLITE_ENABLE_EXPENSIVE_ASSERT=1</SQLITE_DEBUG_DEFINES>
    <SQLITE_RELEASE_DEFINES>SQLITE_WIN32_MALLOC=1</SQLITE_RELEASE_DEFINES>
    <SQLITE_DISABLE_WARNINGS>4055;4100;4127;4146;4210;4232;4244;4245;4267;4306;4389;4701;4703;4706</SQLITE_DISABLE_WARNINGS>
    <SQLITE_DISABLE_X64_WARNINGS></SQLITE_DISABLE_X64_WARNINGS>
Changes to SQLite.Interop/props/sqlite3.vsprops.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<VisualStudioPropertySheet
	ProjectType="Visual C++"
	Version="8.00"
	Name="sqlite3"
	>
	<UserMacro
		Name="SQLITE_MANIFEST_VERSION"
		Value="3.7.15.2"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_RC_VERSION"
		Value="3,7,15,2"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_COMMON_DEFINES"
		Value="_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT3=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1"
		PerformEnvironmentSet="true"
	/>







|




|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<VisualStudioPropertySheet
	ProjectType="Visual C++"
	Version="8.00"
	Name="sqlite3"
	>
	<UserMacro
		Name="SQLITE_MANIFEST_VERSION"
		Value="3.7.16"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_RC_VERSION"
		Value="3,7,16"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_COMMON_DEFINES"
		Value="_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT3=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1"
		PerformEnvironmentSet="true"
	/>
Changes to SQLite.Interop/src/core/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.7.15.2.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.7.16.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.15.2"
#define SQLITE_VERSION_NUMBER 3007015
#define SQLITE_SOURCE_ID      "2013-01-09 11:53:05 c0e09560d26f0a6456be9dd3447f5311eb4f238f"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.16"
#define SQLITE_VERSION_NUMBER 3007016
#define SQLITE_SOURCE_ID      "2013-02-15 04:21:01 843e1c543aabab8cd62f28742d5818887d36bcb7"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
1046
1047
1048
1049
1050
1051
1052









1053
1054
1055
1056
1057
1058
1059
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))










/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>
>
>
>
>
>
>
>
>







1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
#define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
#define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
#define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
#define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
#define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
#define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
8236
8237
8238
8239
8240
8241
8242





8243
8244
8245
8246
8247
8248
8249

/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))






/*
** The following value as a destructor means to use sqlite3DbFree().
** The sqlite3DbFree() routine requires two parameters instead of the 
** one parameter that destructors normally want.  So we have to introduce 
** this magic value that the code knows to handle differently.  Any 
** pointer will work here as long as it is distinct from SQLITE_STATIC
** and SQLITE_TRANSIENT.







>
>
>
>
>







8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263

/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))

/*
** Determine if the argument is a power of two
*/
#define IsPowerOfTwo(X) (((X)&((X)-1))==0)

/*
** The following value as a destructor means to use sqlite3DbFree().
** The sqlite3DbFree() routine requires two parameters instead of the 
** one parameter that destructors normally want.  So we have to introduce 
** this magic value that the code knows to handle differently.  Any 
** pointer will work here as long as it is distinct from SQLITE_STATIC
** and SQLITE_TRANSIENT.
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000020  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000040  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000080  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000100  /* OK to update SQLITE_MASTER */
                         /*   0x00000200  Unused */
#define SQLITE_IgnoreChecks   0x00000400  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0000800  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00001000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00002000  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00004000  /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode   0x00008000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00010000  /* Reverse unordered SELECTs */







|







10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000020  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000040  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000080  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000100  /* OK to update SQLITE_MASTER */
#define SQLITE_VdbeAddopTrace 0x00000200  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_IgnoreChecks   0x00000400  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0000800  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00001000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00002000  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00004000  /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode   0x00008000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00010000  /* Reverse unordered SELECTs */
10040
10041
10042
10043
10044
10045
10046

10047
10048
10049
10050
10051
10052
10053
#define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
#define SQLITE_IdxRealAsInt   0x0010   /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */

#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)







>







10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
#define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
#define SQLITE_IdxRealAsInt   0x0010   /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568

10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
** must be unique and what to do if they are not.  When Index.onError=OE_None,
** it means this is not a unique index.  Otherwise it is a unique index
** and the value of Index.onError indicate the which conflict resolution 
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
  char *zName;     /* Name of this index */
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  Table *pTable;   /* The SQL table being indexed */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */
  int nColumn;     /* Number of columns in the table used by this index */
  int tnum;        /* Page containing root of this index in database file */

  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 bUnordered;   /* Use this index for == or IN queries only */
#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};








|
|
|
|
|
|
|
|
|
<
|
>
|
|
|







10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581

10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
** must be unique and what to do if they are not.  When Index.onError=OE_None,
** it means this is not a unique index.  Otherwise it is a unique index
** and the value of Index.onError indicate the which conflict resolution 
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
  char *zName;             /* Name of this index */
  int *aiColumn;           /* Which columns are used by this index.  1st is 0 */
  tRowcnt *aiRowEst;       /* From ANALYZE: Est. rows selected by each column */
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */

  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

10838
10839
10840
10841
10842
10843
10844








10845
10846
10847
10848
10849
10850
10851
10852
10853
10854

10855
10856
10857
10858
10859
10860
10861
10862
10863
/*
** A list of expressions.  Each expression may optionally have a
** name.  An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE.  A list of expressions can
** also be used as the argument to a function, in which case the a.zName
** field is not used.








*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;           /* The list of expressions */
    char *zName;           /* Token associated with this expression */
    char *zSpan;           /* Original text of the expression */
    u8 sortOrder;          /* 1 for DESC or 0 for ASC */
    u8 done;               /* A flag to indicate when processing is finished */

    u16 iOrderByCol;       /* For ORDER BY, column number in result set */
    u16 iAlias;            /* Index into Parse.aAlias[] for zName */
  } *a;                  /* Alloc a power of two greater or equal to nExpr */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.







>
>
>
>
>
>
>
>





|
|
|
|
|
>
|
|







10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
/*
** A list of expressions.  Each expression may optionally have a
** name.  An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE.  A list of expressions can
** also be used as the argument to a function, in which case the a.zName
** field is not used.
**
** By default the Expr.zSpan field holds a human-readable description of
** the expression that is used in the generation of error messages and
** column labels.  In this case, Expr.zSpan is typically the text of a
** column expression as it exists in a SELECT statement.  However, if
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
** form is used for name resolution with nested FROM clauses.
*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;            /* The list of expressions */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
    u16 iOrderByCol;        /* For ORDER BY, column number in result set */
    u16 iAlias;             /* Index into Parse.aAlias[] for zName */
  } *a;                  /* Alloc a power of two greater or equal to nExpr */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.
11017
11018
11019
11020
11021
11022
11023

11024
11025
11026
11027
11028
11029
11030
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on plan.wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */

      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  double rOptCost;      /* "Optimal" cost for this level */

  /* The following field is really not part of the current level.  But







>







11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on plan.wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  double rOptCost;      /* "Optimal" cost for this level */

  /* The following field is really not part of the current level.  But
11169
11170
11171
11172
11173
11174
11175

11176
11177
11178
11179
11180
11181
11182
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */



/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */







>







11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_Materialize     0x0100  /* Force materialization of views */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */


/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,int,Expr*,Expr*);
SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif







|







11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,u16,Expr*,Expr*);
SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);







|







11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, int);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
12138
12139
12140
12141
12142
12143
12144

12145
12146
12147
12148
12149
12150
12151
SQLITE_PRIVATE void sqlite3AlterFunctions(void);
SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int);
SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);

SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);







>







12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
SQLITE_PRIVATE void sqlite3AlterFunctions(void);
SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int);
SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
12276
12277
12278
12279
12280
12281
12282

12283
12284

12285
12286
12287
12288
12289
12290
12291
  #define sqlite3FkCheck(a,b,c,d)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)      0
  #define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);

#else
  #define sqlite3FkDelete(a,b)

#endif


/*
** Available fault injectors.  Should be numbered beginning with 0.
*/
#define SQLITE_FAULTINJECTOR_MALLOC     0







>


>







12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
  #define sqlite3FkCheck(a,b,c,d)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)      0
  #define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);
SQLITE_PRIVATE   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)
#endif


/*
** Available fault injectors.  Should be numbered beginning with 0.
*/
#define SQLITE_FAULTINJECTOR_MALLOC     0
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */
  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  u16 nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
  int nOp;                /* Size of aOp array */
  int nMem;               /* Number of entries in aMem */
  int nOnceFlag;          /* Number of entries in aOnceFlag */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  int nChange;            /* Statement changes (Vdbe.nChanges)     */







|







13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */
  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
  int nOp;                /* Size of aOp array */
  int nMem;               /* Number of entries in aMem */
  int nOnceFlag;          /* Number of entries in aOnceFlag */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  int nChange;            /* Statement changes (Vdbe.nChanges)     */
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
  Mem *pResultSet;        /* Pointer to an array of results */
  int nMem;               /* Number of memory locations currently allocated */
  int nOp;                /* Number of instructions in the program */
  int nOpAlloc;           /* Number of slots allocated for aOp[] */
  int nLabel;             /* Number of labels used */
  int *aLabel;            /* Space to hold the labels */
  u16 nResColumn;         /* Number of columns in one row of the result set */
  u16 nCursor;            /* Number of slots in apCsr[] */
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */







|







13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
  Mem *pResultSet;        /* Pointer to an array of results */
  int nMem;               /* Number of memory locations currently allocated */
  int nOp;                /* Number of instructions in the program */
  int nOpAlloc;           /* Number of slots allocated for aOp[] */
  int nLabel;             /* Number of labels used */
  int *aLabel;            /* Space to hold the labels */
  u16 nResColumn;         /* Number of columns in one row of the result set */
  int nCursor;            /* Number of slots in apCsr[] */
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
#else
  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[13].pCurrent)

#if SQLITE_ENABLE_LOCKING_STYLE
  { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
#else
  { "fchmod",       (sqlite3_syscall_ptr)0,          0  },
#endif
#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
#else
  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
#endif







<

<
<
<







23313
23314
23315
23316
23317
23318
23319

23320



23321
23322
23323
23324
23325
23326
23327
  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
#else
  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[13].pCurrent)


  { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },



#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
#else
  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
#endif
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "umask",        (sqlite3_syscall_ptr)umask,           0 },
#define osUmask     ((mode_t(*)(mode_t))aSyscall[21].pCurrent)

}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.







<
<
<







23338
23339
23340
23341
23342
23343
23344



23345
23346
23347
23348
23349
23350
23351

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)




}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441

23442


23443
23444

23445
23446
23447

23448
23449
23450
23451
23452
23453
23454
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;
  mode_t m2;
  mode_t origM = 0;
  if( m==0 ){
    m2 = SQLITE_DEFAULT_FILE_PERMISSIONS;
  }else{
    m2 = m;
    origM = osUmask(0);
  }
  do{
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
  }while( fd<0 && errno==EINTR );

  if( m ){


    osUmask(origM);
  }

#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
  if( fd>=0 ) osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  return fd;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 







<
<
<
|
<
<
<
<







>
|
>
>
|
|
>

|

>







23442
23443
23444
23445
23446
23447
23448



23449




23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;



  mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;




  do{
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
  }while( fd<0 && errno==EINTR );
  if( fd>=0 ){
    if( m!=0 ){
      struct stat statbuf;
      if( osFstat(fd, &statbuf)==0 && (statbuf.st_mode&0777)!=m ){
        osFchmod(fd, m);
      }
    }
#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
    osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
  }
  return fd;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==22 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}







|







29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==21 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
}

/*
** This function outputs the specified (ANSI) string to the Win32 debugger
** (if available).
*/

SQLITE_API void sqlite3_win32_write_debug(char *zBuf, int nBuf){
  char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
  int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
  if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
  assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
#if defined(SQLITE_WIN32_HAS_ANSI)
  if( nMin>0 ){
    memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);







|







31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
}

/*
** This function outputs the specified (ANSI) string to the Win32 debugger
** (if available).
*/

SQLITE_API void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
  char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
  int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
  if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
  assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
#if defined(SQLITE_WIN32_HAS_ANSI)
  if( nMin>0 ){
    memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
31720
31721
31722
31723
31724
31725
31726

31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/

/*
** Windows CE does not have a localtime() function.  So create a
** substitute.
*/
/* #include <time.h> */
struct tm *__cdecl localtime(const time_t *t)
{
  static struct tm y;
  FILETIME uTm, lTm;
  SYSTEMTIME pTm;







>

|
|







31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
#if !defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API
/*
** The MSVC CRT on Windows CE may not have a localtime() function.  So
** create a substitute.
*/
/* #include <time.h> */
struct tm *__cdecl localtime(const time_t *t)
{
  static struct tm y;
  FILETIME uTm, lTm;
  SYSTEMTIME pTm;
31746
31747
31748
31749
31750
31751
31752

31753
31754
31755
31756
31757
31758
31759
  y.tm_wday = pTm.wDayOfWeek;
  y.tm_mday = pTm.wDay;
  y.tm_hour = pTm.wHour;
  y.tm_min = pTm.wMinute;
  y.tm_sec = pTm.wSecond;
  return &y;
}


#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]

/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){







>







31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
  y.tm_wday = pTm.wDayOfWeek;
  y.tm_mday = pTm.wDay;
  y.tm_hour = pTm.wHour;
  y.tm_min = pTm.wMinute;
  y.tm_sec = pTm.wSecond;
  return &y;
}
#endif

#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]

/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776


31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798

31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817

31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832

31833
31834
31835
31836
31837
31838
31839






31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
*/
#define winceMutexRelease(h) ReleaseMutex(h)

/*
** Create the mutex and shared memory used for locking in the file
** descriptor pFile
*/
static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
  LPWSTR zTok;
  LPWSTR zName;


  BOOL bInit = TRUE;

  zName = utf8ToUnicode(zFilename);
  if( zName==0 ){
    /* out of memory */
    return FALSE;
  }

  /* Initialize the local lockdata */
  memset(&pFile->local, 0, sizeof(pFile->local));

  /* Replace the backslashes from the filename and lowercase it
  ** to derive a mutex name. */
  zTok = osCharLowerW(zName);
  for (;*zTok;zTok++){
    if (*zTok == '\\') *zTok = '_';
  }

  /* Create/open the named mutex */
  pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
  if (!pFile->hMutex){
    pFile->lastErrno = osGetLastError();

    winLogError(SQLITE_ERROR, pFile->lastErrno, "winceCreateLock1", zFilename);
    sqlite3_free(zName);
    return FALSE;
  }

  /* Acquire the mutex before continuing */
  winceMutexAcquire(pFile->hMutex);
  
  /* Since the names of named mutexes, semaphores, file mappings etc are 
  ** case-sensitive, take advantage of that by uppercasing the mutex name
  ** and using that as the shared filemapping name.
  */
  osCharUpperW(zName);
  pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
                                        PAGE_READWRITE, 0, sizeof(winceLock),
                                        zName);  

  /* Set a flag that indicates we're the first to create the memory so it 
  ** must be zero-initialized */

  if (osGetLastError() == ERROR_ALREADY_EXISTS){
    bInit = FALSE;
  }

  sqlite3_free(zName);

  /* If we succeeded in making the shared memory handle, map it. */
  if (pFile->hShared){
    pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, 
             FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
    /* If mapping failed, close the shared memory handle and erase it */
    if (!pFile->shared){
      pFile->lastErrno = osGetLastError();
      winLogError(SQLITE_ERROR, pFile->lastErrno,
               "winceCreateLock2", zFilename);

      osCloseHandle(pFile->hShared);
      pFile->hShared = NULL;
    }
  }

  /* If shared memory could not be created, then close the mutex and fail */
  if (pFile->hShared == NULL){






    winceMutexRelease(pFile->hMutex);
    osCloseHandle(pFile->hMutex);
    pFile->hMutex = NULL;
    return FALSE;
  }
  
  /* Initialize the shared memory if we're supposed to */
  if (bInit) {
    memset(pFile->shared, 0, sizeof(winceLock));
  }

  winceMutexRelease(pFile->hMutex);
  return TRUE;
}

/*
** Destroy the part of winFile that deals with wince locks
*/
static void winceDestroyLock(winFile *pFile){
  if (pFile->hMutex){







|


>
>





|
















>
|

|
















>
|






|



|

|
|
>






|
>
>
>
>
>
>



|



|




|







31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
*/
#define winceMutexRelease(h) ReleaseMutex(h)

/*
** Create the mutex and shared memory used for locking in the file
** descriptor pFile
*/
static int winceCreateLock(const char *zFilename, winFile *pFile){
  LPWSTR zTok;
  LPWSTR zName;
  DWORD lastErrno;
  BOOL bLogged = FALSE;
  BOOL bInit = TRUE;

  zName = utf8ToUnicode(zFilename);
  if( zName==0 ){
    /* out of memory */
    return SQLITE_IOERR_NOMEM;
  }

  /* Initialize the local lockdata */
  memset(&pFile->local, 0, sizeof(pFile->local));

  /* Replace the backslashes from the filename and lowercase it
  ** to derive a mutex name. */
  zTok = osCharLowerW(zName);
  for (;*zTok;zTok++){
    if (*zTok == '\\') *zTok = '_';
  }

  /* Create/open the named mutex */
  pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
  if (!pFile->hMutex){
    pFile->lastErrno = osGetLastError();
    winLogError(SQLITE_IOERR, pFile->lastErrno,
                "winceCreateLock1", zFilename);
    sqlite3_free(zName);
    return SQLITE_IOERR;
  }

  /* Acquire the mutex before continuing */
  winceMutexAcquire(pFile->hMutex);
  
  /* Since the names of named mutexes, semaphores, file mappings etc are 
  ** case-sensitive, take advantage of that by uppercasing the mutex name
  ** and using that as the shared filemapping name.
  */
  osCharUpperW(zName);
  pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
                                        PAGE_READWRITE, 0, sizeof(winceLock),
                                        zName);  

  /* Set a flag that indicates we're the first to create the memory so it 
  ** must be zero-initialized */
  lastErrno = osGetLastError();
  if (lastErrno == ERROR_ALREADY_EXISTS){
    bInit = FALSE;
  }

  sqlite3_free(zName);

  /* If we succeeded in making the shared memory handle, map it. */
  if( pFile->hShared ){
    pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, 
             FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
    /* If mapping failed, close the shared memory handle and erase it */
    if( !pFile->shared ){
      pFile->lastErrno = osGetLastError();
      winLogError(SQLITE_IOERR, pFile->lastErrno,
                  "winceCreateLock2", zFilename);
      bLogged = TRUE;
      osCloseHandle(pFile->hShared);
      pFile->hShared = NULL;
    }
  }

  /* If shared memory could not be created, then close the mutex and fail */
  if( pFile->hShared==NULL ){
    if( !bLogged ){
      pFile->lastErrno = lastErrno;
      winLogError(SQLITE_IOERR, pFile->lastErrno,
                  "winceCreateLock3", zFilename);
      bLogged = TRUE;
    }
    winceMutexRelease(pFile->hMutex);
    osCloseHandle(pFile->hMutex);
    pFile->hMutex = NULL;
    return SQLITE_IOERR;
  }
  
  /* Initialize the shared memory if we're supposed to */
  if( bInit ){
    memset(pFile->shared, 0, sizeof(winceLock));
  }

  winceMutexRelease(pFile->hMutex);
  return SQLITE_OK;
}

/*
** Destroy the part of winFile that deals with wince locks
*/
static void winceDestroyLock(winFile *pFile){
  if (pFile->hMutex){
32162
32163
32164
32165
32166
32167
32168

32169
32170
32171
32172
32173
32174
32175
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  OSTRACE(("CLOSE %d\n", pFile->h));

  do{
    rc = osCloseHandle(pFile->h);
    /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
  }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
  winceDestroyLock(pFile);







>







32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  OSTRACE(("CLOSE %d\n", pFile->h));
  assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
  do{
    rc = osCloseHandle(pFile->h);
    /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
  }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
  winceDestroyLock(pFile);
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
        win32IoerrRetryDelay = a[1];
      }else{
        a[1] = win32IoerrRetryDelay;
      }
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_TEMPFILENAME: {
      char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname );
      if( zTFile ){
        getTempname(pFile->pVfs->mxPathname, zTFile);
        *(char**)pArg = zTFile;
      }
      return SQLITE_OK;
    }
  }







|







32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
        win32IoerrRetryDelay = a[1];
      }else{
        a[1] = win32IoerrRetryDelay;
      }
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_TEMPFILENAME: {
      char *zTFile = sqlite3MallocZero( pFile->pVfs->mxPathname );
      if( zTFile ){
        getTempname(pFile->pVfs->mxPathname, zTFile);
        *(char**)pArg = zTFile;
      }
      return SQLITE_OK;
    }
  }
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
        bRc = osCloseHandle(p->aRegion[i].hMap);
        OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
      }
      if( p->hFile.h != INVALID_HANDLE_VALUE ){
        SimulateIOErrorBenign(1);
        winClose((sqlite3_file *)&p->hFile);
        SimulateIOErrorBenign(0);
      }
      if( deleteFlag ){
        SimulateIOErrorBenign(1);
        sqlite3BeginBenignMalloc();







|







33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
        bRc = osCloseHandle(p->aRegion[i].hMap);
        OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
                 (int)osGetCurrentProcessId(), i,
                 bRc ? "ok" : "failed"));
      }
      if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){
        SimulateIOErrorBenign(1);
        winClose((sqlite3_file *)&p->hFile);
        SimulateIOErrorBenign(0);
      }
      if( deleteFlag ){
        SimulateIOErrorBenign(1);
        sqlite3BeginBenignMalloc();
33773
33774
33775
33776
33777
33778
33779
33780
33781

33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796

33797
33798
33799
33800
33801
33802
33803
  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  assert( id!=0 );
  UNUSED_PARAMETER(pVfs);


#if SQLITE_OS_WINRT
  if( !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif

  pFile->h = INVALID_HANDLE_VALUE;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert(isDelete && !isOpenJournal);

    rc = getTempname(MAX_PATH+2, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zUtf8Name = zTmpname;
  }








|
|
>








<
<





>







33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824


33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  assert( pFile!=0 );
  memset(pFile, 0, sizeof(winFile));
  pFile->h = INVALID_HANDLE_VALUE;

#if SQLITE_OS_WINRT
  if( !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif



  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert(isDelete && !isOpenJournal);
    memset(zTmpname, 0, MAX_PATH+2);
    rc = getTempname(MAX_PATH+2, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zUtf8Name = zTmpname;
  }

33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960









33961
33962
33963
33964
33965
33966
33967
    if( isReadWrite ){
      *pOutFlags = SQLITE_OPEN_READWRITE;
    }else{
      *pOutFlags = SQLITE_OPEN_READONLY;
    }
  }

  memset(pFile, 0, sizeof(*pFile));
  pFile->pMethod = &winIoMethod;
  pFile->h = h;
  pFile->lastErrno = NO_ERROR;
  pFile->pVfs = pVfs;
#ifndef SQLITE_OMIT_WAL
  pFile->pShm = 0;
#endif
  pFile->zPath = zName;
  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }

#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
       && !winceCreateLock(zName, pFile)
  ){
    osCloseHandle(h);
    sqlite3_free(zConverted);
    return SQLITE_CANTOPEN_BKPT;
  }
  if( isTemp ){
    pFile->zDeleteOnClose = zConverted;
  }else
#endif
  {
    sqlite3_free(zConverted);
  }










  OpenCounter(+1);
  return rc;
}

/*
** Delete the named file.







<
<
<
<
<
<
<
<
<
<
<
<
<


|



|








>
>
>
>
>
>
>
>
>







33960
33961
33962
33963
33964
33965
33966













33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
    if( isReadWrite ){
      *pOutFlags = SQLITE_OPEN_READWRITE;
    }else{
      *pOutFlags = SQLITE_OPEN_READONLY;
    }
  }














#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
       && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
  ){
    osCloseHandle(h);
    sqlite3_free(zConverted);
    return rc;
  }
  if( isTemp ){
    pFile->zDeleteOnClose = zConverted;
  }else
#endif
  {
    sqlite3_free(zConverted);
  }

  pFile->pMethod = &winIoMethod;
  pFile->pVfs = pVfs;
  pFile->h = h;
  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }
  pFile->lastErrno = NO_ERROR;
  pFile->zPath = zName;

  OpenCounter(+1);
  return rc;
}

/*
** Delete the named file.
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
  if( !sCheck.aPgRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");








|







56362
56363
56364
56365
56366
56367
56368
56369
56370
56371
56372
56373
56374
56375
56376
  if( !sCheck.aPgRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");

56867
56868
56869
56870
56871
56872
56873
56874





56875
56876
56877
56878
56879
56880
56881
}

/*
** Parameter zSrcData points to a buffer containing the data for 
** page iSrcPg from the source database. Copy this data into the 
** destination database.
*/
static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){





  Pager * const pDestPager = sqlite3BtreePager(p->pDest);
  const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
  int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is







|
>
>
>
>
>







56897
56898
56899
56900
56901
56902
56903
56904
56905
56906
56907
56908
56909
56910
56911
56912
56913
56914
56915
56916
}

/*
** Parameter zSrcData points to a buffer containing the data for 
** page iSrcPg from the source database. Copy this data into the 
** destination database.
*/
static int backupOnePage(
  sqlite3_backup *p,              /* Backup handle */
  Pgno iSrcPg,                    /* Source database page to backup */
  const u8 *zSrcData,             /* Source database page data */
  int bUpdate                     /* True for an update, false otherwise */
){
  Pager * const pDestPager = sqlite3BtreePager(p->pDest);
  const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
  int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is
56940
56941
56942
56943
56944
56945
56946



56947
56948
56949
56950
56951
56952
56953
      ** and the pager code use this trick (clearing the first byte
      ** of the page 'extra' space to invalidate the Btree layers
      ** cached parse of the page). MemPage.isInit is marked 
      ** "MUST BE FIRST" for this purpose.
      */
      memcpy(zOut, zIn, nCopy);
      ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;



    }
    sqlite3PagerUnref(pDestPg);
  }

  return rc;
}








>
>
>







56975
56976
56977
56978
56979
56980
56981
56982
56983
56984
56985
56986
56987
56988
56989
56990
56991
      ** and the pager code use this trick (clearing the first byte
      ** of the page 'extra' space to invalidate the Btree layers
      ** cached parse of the page). MemPage.isInit is marked 
      ** "MUST BE FIRST" for this purpose.
      */
      memcpy(zOut, zIn, nCopy);
      ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
      if( iOff==0 && bUpdate==0 ){
        sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc));
      }
    }
    sqlite3PagerUnref(pDestPg);
  }

  return rc;
}

57046
57047
57048
57049
57050
57051
57052
57053
57054
57055
57056
57057
57058
57059
57060
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg));
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
    if( rc==SQLITE_OK ){
      p->nPagecount = nSrcPage;







|







57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
    if( rc==SQLITE_OK ){
      p->nPagecount = nSrcPage;
57294
57295
57296
57297
57298
57299
57300
57301
57302
57303
57304
57305
57306
57307
57308
      /* The backup process p has already copied page iPage. But now it
      ** has been modified by a transaction on the source pager. Copy
      ** the new data into the backup.
      */
      int rc;
      assert( p->pDestDb );
      sqlite3_mutex_enter(p->pDestDb->mutex);
      rc = backupOnePage(p, iPage, aData);
      sqlite3_mutex_leave(p->pDestDb->mutex);
      assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
      if( rc!=SQLITE_OK ){
        p->rc = rc;
      }
    }
  }







|







57332
57333
57334
57335
57336
57337
57338
57339
57340
57341
57342
57343
57344
57345
57346
      /* The backup process p has already copied page iPage. But now it
      ** has been modified by a transaction on the source pager. Copy
      ** the new data into the backup.
      */
      int rc;
      assert( p->pDestDb );
      sqlite3_mutex_enter(p->pDestDb->mutex);
      rc = backupOnePage(p, iPage, aData, 1);
      sqlite3_mutex_leave(p->pDestDb->mutex);
      assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
      if( rc!=SQLITE_OK ){
        p->rc = rc;
      }
    }
  }
58562
58563
58564
58565
58566
58567
58568
58569
58570
58571
58572
58573
58574
58575
58576
58577
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/



/*
** When debugging the code generator in a symbolic debugger, one can
** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
** as they are added to the instruction stream.
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
#endif


/*
** Create a new virtual database engine.
*/
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
  Vdbe *p;
  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
  if( p==0 ) return 0;







<
<
<
<
<
<
<
<
<
<
<
<







58600
58601
58602
58603
58604
58605
58606












58607
58608
58609
58610
58611
58612
58613
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/













/*
** Create a new virtual database engine.
*/
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
  Vdbe *p;
  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
  if( p==0 ) return 0;
58703
58704
58705
58706
58707
58708
58709

58710

58711
58712
58713
58714
58715
58716
58717
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
#ifdef SQLITE_DEBUG
  pOp->zComment = 0;

  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);

#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;
#endif
  return i;
}







>
|
>







58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
#ifdef SQLITE_DEBUG
  pOp->zComment = 0;
  if( p->db->flags & SQLITE_VdbeAddopTrace ){
    sqlite3VdbePrintOp(0, i, &p->aOp[i]);
  }
#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;
#endif
  return i;
}
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
#ifndef SQLITE_OMIT_FOREIGN_KEY
     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
#endif
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
  }
  sqlite3DbFree(v->db, sIter.apSub);








|







58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
#ifndef SQLITE_OMIT_FOREIGN_KEY
     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
#endif
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
  }
  sqlite3DbFree(v->db, sIter.apSub);

59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
      }
      pOut->p3 = pIn->p3;
      pOut->p4type = P4_NOTUSED;
      pOut->p4.p = 0;
      pOut->p5 = 0;
#ifdef SQLITE_DEBUG
      pOut->zComment = 0;
      if( sqlite3VdbeAddopTrace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;







|







59085
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
      }
      pOut->p3 = pIn->p3;
      pOut->p4type = P4_NOTUSED;
      pOut->p4.p = 0;
      pOut->p5 = 0;
#ifdef SQLITE_DEBUG
      pOut->zComment = 0;
      if( p->db->flags & SQLITE_VdbeAddopTrace ){
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = (u16)nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }







|







60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123
60124
60125
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
60325
60326
60327
60328
60329
60330
60331
60332
60333
60334
60335
60336
60337
60338
60339
    return rc;
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
    rc = db->xCommitCallback(db->pCommitArg);
    if( rc ){
      return SQLITE_CONSTRAINT;
    }
  }

  /* The simple case - no more than one database file (not counting the
  ** TEMP database) has a transaction active.   There is no need for the
  ** master-journal.
  **







|







60353
60354
60355
60356
60357
60358
60359
60360
60361
60362
60363
60364
60365
60366
60367
    return rc;
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
    rc = db->xCommitCallback(db->pCommitArg);
    if( rc ){
      return SQLITE_CONSTRAINT_COMMITHOOK;
    }
  }

  /* The simple case - no more than one database file (not counting the
  ** TEMP database) has a transaction active.   There is no need for the
  ** master-journal.
  **
60617
60618
60619
60620
60621
60622
60623
60624
60625
60626
60627
60628
60629
60630
60631
60632
60633
60634
60635
60636
60637
60638
/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns 
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
** an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
  sqlite3 *db = p->db;
  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
    p->rc = SQLITE_CONSTRAINT;
    p->errorAction = OE_Abort;
    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}
#endif







|
|





|







60645
60646
60647
60648
60649
60650
60651
60652
60653
60654
60655
60656
60657
60658
60659
60660
60661
60662
60663
60664
60665
60666
/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns 
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
** and write an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
  sqlite3 *db = p->db;
  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
    p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
    p->errorAction = OE_Abort;
    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}
#endif
60739
60740
60741
60742
60743
60744
60745
60746
60747
60748
60749
60750
60751
60752
60753
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite3VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite3VdbeLeave(p);
            return SQLITE_ERROR;
          }
          rc = SQLITE_CONSTRAINT;
        }else{ 
          /* The auto-commit flag is true, the vdbe program was successful 
          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
          ** key constraints to hold up the transaction. This means a commit 
          ** is required. */
          rc = vdbeCommit(db, p);
        }







|







60767
60768
60769
60770
60771
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite3VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite3VdbeLeave(p);
            return SQLITE_ERROR;
          }
          rc = SQLITE_CONSTRAINT_FOREIGNKEY;
        }else{ 
          /* The auto-commit flag is true, the vdbe program was successful 
          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
          ** key constraints to hold up the transaction. This means a commit 
          ** is required. */
          rc = vdbeCommit(db, p);
        }
60782
60783
60784
60785
60786
60787
60788
60789
60790
60791
60792
60793
60794
60795
60796
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
    ** current statement error code.
    */
    if( eStatementOp ){
      rc = sqlite3VdbeCloseStatement(p, eStatementOp);
      if( rc ){
        if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
          p->rc = rc;
          sqlite3DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;







|







60810
60811
60812
60813
60814
60815
60816
60817
60818
60819
60820
60821
60822
60823
60824
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
    ** current statement error code.
    */
    if( eStatementOp ){
      rc = sqlite3VdbeCloseStatement(p, eStatementOp);
      if( rc ){
        if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
          p->rc = rc;
          sqlite3DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;
61023
61024
61025
61026
61027
61028
61029
61030
61031
61032
61033
61034
61035
61036
61037
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
  sqlite3_free(p->zExplain);
  sqlite3DbFree(db, p->pExplain);
#endif
}

/*
** Delete an entire VDBE.
*/







|







61051
61052
61053
61054
61055
61056
61057
61058
61059
61060
61061
61062
61063
61064
61065
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
  sqlite3DbFree(db, p->zExplain);
  sqlite3DbFree(db, p->pExplain);
#endif
}

/*
** Delete an entire VDBE.
*/
64779
64780
64781
64782
64783
64784
64785
64786
64787
64788
64789
64790
64791
64792
64793
    sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *







|







64807
64808
64809
64810
64811
64812
64813
64814
64815
64816
64817
64818
64819
64820
64821
    sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
    rc = u.cr.pModule->xUpdate(u.cr.pVtab, u.cr.nArg, u.cr.apArg, &u.cr.rowid);
    db->vtabOnConflict = vtabOnConflict;
    importVtabErrMsg(p, u.cr.pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( u.cr.nArg>1 && u.cr.apArg[0] && (u.cr.apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = u.cr.rowid;
    }
    if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
      }else{
        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
      }
    }else{
      p->nChange++;







|







70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
    rc = u.cr.pModule->xUpdate(u.cr.pVtab, u.cr.nArg, u.cr.apArg, &u.cr.rowid);
    db->vtabOnConflict = vtabOnConflict;
    importVtabErrMsg(p, u.cr.pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( u.cr.nArg>1 && u.cr.apArg[0] && (u.cr.apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = u.cr.rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
      }else{
        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
      }
    }else{
      p->nChange++;
71888
71889
71890
71891
71892
71893
71894








71895
71896
71897
71898
71899
71900
71901
    rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
    if( rc==SQLITE_OK ){
      p->pReal = pReal;
      if( p->iSize>0 ){
        assert(p->iSize<=p->nBuf);
        rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
      }








    }
  }
  return rc;
}

/*
** Close the file.







>
>
>
>
>
>
>
>







71916
71917
71918
71919
71920
71921
71922
71923
71924
71925
71926
71927
71928
71929
71930
71931
71932
71933
71934
71935
71936
71937
    rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
    if( rc==SQLITE_OK ){
      p->pReal = pReal;
      if( p->iSize>0 ){
        assert(p->iSize<=p->nBuf);
        rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
      }
      if( rc!=SQLITE_OK ){
        /* If an error occurred while writing to the file, close it before
        ** returning. This way, SQLite uses the in-memory journal data to 
        ** roll back changes made to the internal page-cache before this
        ** function was called.  */
        sqlite3OsClose(pReal);
        p->pReal = 0;
      }
    }
  }
  return rc;
}

/*
** Close the file.
72634
72635
72636
72637
72638
72639
72640





























72641
72642
72643
72644
72645
72646
72647
    for(k=0; k<pUsing->nId; k++){
      if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1;
    }
  }
  return 0;
}































/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







72670
72671
72672
72673
72674
72675
72676
72677
72678
72679
72680
72681
72682
72683
72684
72685
72686
72687
72688
72689
72690
72691
72692
72693
72694
72695
72696
72697
72698
72699
72700
72701
72702
72703
72704
72705
72706
72707
72708
72709
72710
72711
72712
    for(k=0; k<pUsing->nId; k++){
      if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1;
    }
  }
  return 0;
}

/*
** Subqueries stores the original database, table and column names for their
** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN".
** Check to see if the zSpan given to this routine matches the zDb, zTab,
** and zCol.  If any of zDb, zTab, and zCol are NULL then those fields will
** match anything.
*/
SQLITE_PRIVATE int sqlite3MatchSpanName(
  const char *zSpan,
  const char *zCol,
  const char *zTab,
  const char *zDb
){
  int n;
  for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
  if( zDb && sqlite3StrNICmp(zSpan, zDb, n)!=0 ){
    return 0;
  }
  zSpan += n+1;
  for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
  if( zTab && sqlite3StrNICmp(zSpan, zTab, n)!=0 ){
    return 0;
  }
  zSpan += n+1;
  if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){
    return 0;
  }
  return 1;
}

/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
72689
72690
72691
72692
72693
72694
72695














72696
72697
72698
72699
72700
72701
72702
72703
72704
72705
72706
72707
72708
72709
72710
72711
72712
72713

72714

72715


72716

72717
72718


72719
72720
72721
72722
72723





72724
72725
72726
72727
72728
72729
72730
72731
72732
72733
72734
72735
72736
72737
72738
72739
72740
72741
72742
72743
72744
72745
72746
72747
72748
72749
72750
72751
72752




72753

72754
72755
72756
72757
72758
72759
72760
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetIrreducible(pExpr);















  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;
        int iDb;
        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 && pTab->zName!=0 );
        iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){

            char *zTabName = pItem->zAlias;

            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;


          }else{

            char *zTabName = pTab->zName;
            if( NEVER(zTabName==0) || sqlite3StrICmp(zTabName, zTab)!=0 ){


              continue;
            }
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
              continue;
            }





          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pExpr->pTab = pTab;
          pSchema = pTab->pSchema;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            /* If there has been exactly one prior match and this match
            ** is for the right-hand table of a NATURAL JOIN or is in a 
            ** USING clause, then skip this match.
            */
            if( cnt==1 ){
              if( pItem->jointype & JT_NATURAL ) continue;
              if( nameInUsingClause(pItem->pUsing, zCol) ) continue;
            }
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pExpr->pTab = pTab;
            pMatch = pItem;
            pSchema = pTab->pSchema;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }




    }


#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;







>
>
>
>
>
>
>
>
>
>
>
>
>
>









<




<

<
|
>
|
>
|
>
>
|
>
|
<
>
>
|
|
|
|
|
>
>
>
>
>



<
<
<













<
<

<






>
>
>
>
|
>







72754
72755
72756
72757
72758
72759
72760
72761
72762
72763
72764
72765
72766
72767
72768
72769
72770
72771
72772
72773
72774
72775
72776
72777
72778
72779
72780
72781
72782
72783

72784
72785
72786
72787

72788

72789
72790
72791
72792
72793
72794
72795
72796
72797
72798

72799
72800
72801
72802
72803
72804
72805
72806
72807
72808
72809
72810
72811
72812
72813



72814
72815
72816
72817
72818
72819
72820
72821
72822
72823
72824
72825
72826


72827

72828
72829
72830
72831
72832
72833
72834
72835
72836
72837
72838
72839
72840
72841
72842
72843
72844
72845
72846
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetIrreducible(pExpr);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
    for(i=0; i<db->nDb; i++){
      assert( db->aDb[i].zName );
      if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
        pSchema = db->aDb[i].pSchema;
        break;
      }
    }
  }

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;

        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 && pTab->zName!=0 );

        assert( pTab->nCol>0 );

        if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){
          int hit = 0;
          pEList = pItem->pSelect->pEList;
          for(j=0; j<pEList->nExpr; j++){
            if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){
              cnt++;
              cntTab = 2;
              pMatch = pItem;
              pExpr->iColumn = j;
              hit = 1;

            }
          }
          if( hit || zTab==0 ) continue;
        }
        if( zDb && pTab->pSchema!=pSchema ){
          continue;
        }
        if( zTab ){
          const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
          assert( zTabName!=0 );
          if( sqlite3StrICmp(zTabName, zTab)!=0 ){
            continue;
          }
        }
        if( 0==(cntTab++) ){



          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            /* If there has been exactly one prior match and this match
            ** is for the right-hand table of a NATURAL JOIN or is in a 
            ** USING clause, then skip this match.
            */
            if( cnt==1 ){
              if( pItem->jointype & JT_NATURAL ) continue;
              if( nameInUsingClause(pItem->pUsing, zCol) ) continue;
            }
            cnt++;


            pMatch = pItem;

            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;
73081
73082
73083
73084
73085
73086
73087
73088
73089
73090
73091
73092
73093
73094
73095
        }
      }
#endif
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }







|







73167
73168
73169
73170
73171
73172
73173
73174
73175
73176
73177
73178
73179
73180
73181
        }
      }
#endif
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
73517
73518
73519
73520
73521
73522
73523
73524
73525
73526
73527
73528
73529
73530
73531
73532
73533
73534
73535
73536
73537
73538
73539
73540
73541
73542
73543
73544
73545
73546
73547
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }
  
    /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
    ** resolve the result-set expression list.
    */
    sNC.ncFlags = NC_AllowAgg;
    sNC.pSrcList = p->pSrc;
    sNC.pNext = pOuterNC;
  
    /* Resolve names in the result set. */
    pEList = p->pEList;
    assert( pEList!=0 );
    for(i=0; i<pEList->nExpr; i++){
      Expr *pX = pEList->a[i].pExpr;
      if( sqlite3ResolveExprNames(&sNC, pX) ){
        return WRC_Abort;
      }
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */
        int nRef = 0;             /* Refcount for pOuterNC and outer contexts */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







73603
73604
73605
73606
73607
73608
73609

















73610
73611
73612
73613
73614
73615
73616
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }
  

















    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */
        int nRef = 0;             /* Refcount for pOuterNC and outer contexts */
73560
73561
73562
73563
73564
73565
73566

















73567
73568
73569
73570
73571
73572
73573
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;

        for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef;
        assert( pItem->isCorrelated==0 && nRef<=0 );
        pItem->isCorrelated = (nRef!=0);
      }
    }

















  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







73629
73630
73631
73632
73633
73634
73635
73636
73637
73638
73639
73640
73641
73642
73643
73644
73645
73646
73647
73648
73649
73650
73651
73652
73653
73654
73655
73656
73657
73658
73659
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;

        for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef;
        assert( pItem->isCorrelated==0 && nRef<=0 );
        pItem->isCorrelated = (nRef!=0);
      }
    }
  
    /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
    ** resolve the result-set expression list.
    */
    sNC.ncFlags = NC_AllowAgg;
    sNC.pSrcList = p->pSrc;
    sNC.pNext = pOuterNC;
  
    /* Resolve names in the result set. */
    pEList = p->pEList;
    assert( pEList!=0 );
    for(i=0; i<pEList->nExpr; i++){
      Expr *pX = pEList->a[i].pExpr;
      if( sqlite3ResolveExprNames(&sNC, pX) ){
        return WRC_Abort;
      }
    }
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){
76698
76699
76700
76701
76702
76703
76704
76705

76706
76707
76708
76709
76710
76711
76712
        sqlite3MayAbort(pParse);
      }
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      if( pExpr->affinity==OE_Ignore ){
        sqlite3VdbeAddOp4(
            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
      }else{
        sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);

      }

      break;
    }
#endif
  }
  sqlite3ReleaseTempReg(pParse, regFree1);







|
>







76784
76785
76786
76787
76788
76789
76790
76791
76792
76793
76794
76795
76796
76797
76798
76799
        sqlite3MayAbort(pParse);
      }
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      if( pExpr->affinity==OE_Ignore ){
        sqlite3VdbeAddOp4(
            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
      }else{
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
                              pExpr->affinity, pExpr->u.zToken, 0);
      }

      break;
    }
#endif
  }
  sqlite3ReleaseTempReg(pParse, regFree1);
77044
77045
77046
77047
77048
77049
77050






77051
77052
77053
77054
77055
77056
77057
  }else{
    sqlite3ExplainPush(pOut);
    for(i=0; i<pList->nExpr; i++){
      sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
      sqlite3ExplainPush(pOut);
      sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
      sqlite3ExplainPop(pOut);






      if( i<pList->nExpr-1 ){
        sqlite3ExplainNL(pOut);
      }
    }
    sqlite3ExplainPop(pOut);
  }
}







>
>
>
>
>
>







77131
77132
77133
77134
77135
77136
77137
77138
77139
77140
77141
77142
77143
77144
77145
77146
77147
77148
77149
77150
  }else{
    sqlite3ExplainPush(pOut);
    for(i=0; i<pList->nExpr; i++){
      sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
      sqlite3ExplainPush(pOut);
      sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
      sqlite3ExplainPop(pOut);
      if( pList->a[i].zName ){
        sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
      }
      if( pList->a[i].bSpanIsTab ){
        sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
      }
      if( i<pList->nExpr-1 ){
        sqlite3ExplainNL(pOut);
      }
    }
    sqlite3ExplainPop(pOut);
  }
}
83163
83164
83165
83166
83167
83168
83169
83170
83171
83172
83173
83174
83175
83176
83177
83178
  sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
    );
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);







|
|







83256
83257
83258
83259
83260
83261
83262
83263
83264
83265
83266
83267
83268
83269
83270
83271
  sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE,
        OE_Abort, "indexed columns are not unique", P4_STATIC
    );
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
83190
83191
83192
83193
83194
83195
83196
83197
83198
83199
83200
83201
83202
83203
83204
83205
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
#endif
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
  sqlite3VdbeJumpHere(v, addr1);







|
|







83283
83284
83285
83286
83287
83288
83289
83290
83291
83292
83293
83294
83295
83296
83297
83298
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE,
        "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
#endif
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
  sqlite3VdbeJumpHere(v, addr1);
84408
84409
84410
84411
84412
84413
84414
84415






84416

84417
84418
84419
84420
84421
84422
84423
84424
84425
84426
84427
}

/*
** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
** error. The onError parameter determines which (if any) of the statement
** and/or current transaction is rolled back.
*/
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){






  Vdbe *v = sqlite3GetVdbe(pParse);

  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
}

/*
** Check to see if pIndex uses the collating sequence pColl.  Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX







|
>
>
>
>
>
>

>



|







84501
84502
84503
84504
84505
84506
84507
84508
84509
84510
84511
84512
84513
84514
84515
84516
84517
84518
84519
84520
84521
84522
84523
84524
84525
84526
84527
}

/*
** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
** error. The onError parameter determines which (if any) of the statement
** and/or current transaction is rolled back.
*/
SQLITE_PRIVATE void sqlite3HaltConstraint(
  Parse *pParse,    /* Parsing context */
  int errCode,      /* extended error code */
  int onError,      /* Constraint type */
  char *p4,         /* Error message */
  int p4type        /* P4_STATIC or P4_TRANSIENT */
){
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( (errCode&0xff)==SQLITE_CONSTRAINT );
  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
}

/*
** Check to see if pIndex uses the collating sequence pColl.  Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX
87400
87401
87402
87403
87404
87405
87406
87407

87408
87409
87410
87411
87412
87413
87414
87415
#ifndef SQLITE_OMIT_TRIGGER

/*
** Deferred and Immediate FKs
** --------------------------
**
** Foreign keys in SQLite come in two flavours: deferred and immediate.
** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT

** is returned and the current statement transaction rolled back. If a 
** deferred foreign key constraint is violated, no action is taken 
** immediately. However if the application attempts to commit the 
** transaction before fixing the constraint violation, the attempt fails.
**
** Deferred constraints are implemented using a simple counter associated
** with the database handle. The counter is set to zero each time a 
** database transaction is opened. Each time a statement is executed 







|
>
|







87500
87501
87502
87503
87504
87505
87506
87507
87508
87509
87510
87511
87512
87513
87514
87515
87516
#ifndef SQLITE_OMIT_TRIGGER

/*
** Deferred and Immediate FKs
** --------------------------
**
** Foreign keys in SQLite come in two flavours: deferred and immediate.
** If an immediate foreign key constraint is violated,
** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
** statement transaction rolled back. If a 
** deferred foreign key constraint is violated, no action is taken 
** immediately. However if the application attempts to commit the 
** transaction before fixing the constraint violation, the attempt fails.
**
** Deferred constraints are implemented using a simple counter associated
** with the database handle. The counter is set to zero each time a 
** database transaction is opened. Each time a statement is executed 
87465
87466
87467
87468
87469
87470
87471
87472

87473
87474
87475
87476
87477
87478
87479
** If a delete caused by OR REPLACE violates an FK constraint, an exception
** is thrown, even if the FK constraint would be satisfied after the new 
** row is inserted.
**
** Immediate constraints are usually handled similarly. The only difference 
** is that the counter used is stored as part of each individual statement
** object (struct Vdbe). If, after the statement has run, its immediate
** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT

** and the statement transaction is rolled back. An exception is an INSERT
** statement that inserts a single row only (no triggers). In this case,
** instead of using a counter, an exception is thrown immediately if the
** INSERT violates a foreign key constraint. This is necessary as such
** an INSERT does not open a statement transaction.
**
** TODO: How should dropping a table be handled? How should renaming a 







|
>







87566
87567
87568
87569
87570
87571
87572
87573
87574
87575
87576
87577
87578
87579
87580
87581
** If a delete caused by OR REPLACE violates an FK constraint, an exception
** is thrown, even if the FK constraint would be satisfied after the new 
** row is inserted.
**
** Immediate constraints are usually handled similarly. The only difference 
** is that the counter used is stored as part of each individual statement
** object (struct Vdbe). If, after the statement has run, its immediate
** constraint counter is greater than zero,
** it returns SQLITE_CONSTRAINT_FOREIGNKEY
** and the statement transaction is rolled back. An exception is an INSERT
** statement that inserts a single row only (no triggers). In this case,
** instead of using a counter, an exception is thrown immediately if the
** INSERT violates a foreign key constraint. This is necessary as such
** an INSERT does not open a statement transaction.
**
** TODO: How should dropping a table be handled? How should renaming a 
87521
87522
87523
87524
87525
87526
87527
87528
87529
87530
87531
87532
87533
87534
87535
**   Register (x+3):      3.1  (type real)
*/

/*
** A foreign key constraint requires that the key columns in the parent
** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
** Given that pParent is the parent table for foreign key constraint pFKey, 
** search the schema a unique index on the parent key columns. 
**
** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 
** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 
** is set to point to the unique index. 
** 
** If the parent key consists of a single column (the foreign key constraint
** is not a composite foreign key), output variable *paiCol is set to NULL.







|







87623
87624
87625
87626
87627
87628
87629
87630
87631
87632
87633
87634
87635
87636
87637
**   Register (x+3):      3.1  (type real)
*/

/*
** A foreign key constraint requires that the key columns in the parent
** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
** Given that pParent is the parent table for foreign key constraint pFKey, 
** search the schema for a unique index on the parent key columns. 
**
** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 
** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 
** is set to point to the unique index. 
** 
** If the parent key consists of a single column (the foreign key constraint
** is not a composite foreign key), output variable *paiCol is set to NULL.
87557
87558
87559
87560
87561
87562
87563
87564
87565
87566
87567
87568
87569
87570
87571
**      consists of a a different number of columns to the child key in 
**      the child table.
**
** then non-zero is returned, and a "foreign key mismatch" error loaded
** into pParse. If an OOM error occurs, non-zero is returned and the
** pParse->db->mallocFailed flag is set.
*/
static int locateFkeyIndex(
  Parse *pParse,                  /* Parse context to store any error in */
  Table *pParent,                 /* Parent table of FK constraint pFKey */
  FKey *pFKey,                    /* Foreign key to find index for */
  Index **ppIdx,                  /* OUT: Unique index on parent table */
  int **paiCol                    /* OUT: Map of index columns in pFKey */
){
  Index *pIdx = 0;                    /* Value to return via *ppIdx */







|







87659
87660
87661
87662
87663
87664
87665
87666
87667
87668
87669
87670
87671
87672
87673
**      consists of a a different number of columns to the child key in 
**      the child table.
**
** then non-zero is returned, and a "foreign key mismatch" error loaded
** into pParse. If an OOM error occurs, non-zero is returned and the
** pParse->db->mallocFailed flag is set.
*/
SQLITE_PRIVATE int sqlite3FkLocateIndex(
  Parse *pParse,                  /* Parse context to store any error in */
  Table *pParent,                 /* Parent table of FK constraint pFKey */
  FKey *pFKey,                    /* Foreign key to find index for */
  Index **ppIdx,                  /* OUT: Unique index on parent table */
  int **paiCol                    /* OUT: Map of index columns in pFKey */
){
  Index *pIdx = 0;                    /* Value to return via *ppIdx */
87654
87655
87656
87657
87658
87659
87660
87661


87662
87663
87664
87665
87666
87667
87668
        if( i==nCol ) break;      /* pIdx is usable */
      }
    }
  }

  if( !pIdx ){
    if( !pParse->disableTriggers ){
      sqlite3ErrorMsg(pParse, "foreign key mismatch");


    }
    sqlite3DbFree(pParse->db, aiCol);
    return 1;
  }

  *ppIdx = pIdx;
  return 0;







|
>
>







87756
87757
87758
87759
87760
87761
87762
87763
87764
87765
87766
87767
87768
87769
87770
87771
87772
        if( i==nCol ) break;      /* pIdx is usable */
      }
    }
  }

  if( !pIdx ){
    if( !pParse->disableTriggers ){
      sqlite3ErrorMsg(pParse,
           "foreign key mismatch - \"%w\" referencing \"%w\"",
           pFKey->pFrom->zName, pFKey->zTo);
    }
    sqlite3DbFree(pParse->db, aiCol);
    return 1;
  }

  *ppIdx = pIdx;
  return 0;
87803
87804
87805
87806
87807
87808
87809
87810
87811
87812
87813
87814
87815
87816
87817
87818

  if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
    /* Special case: If this is an INSERT statement that will insert exactly
    ** one row into the table, raise a constraint immediately instead of
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(
        pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
    );
  }else{
    if( nIncr>0 && pFKey->isDeferred==0 ){
      sqlite3ParseToplevel(pParse)->mayAbort = 1;
    }
    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  }







|
|







87907
87908
87909
87910
87911
87912
87913
87914
87915
87916
87917
87918
87919
87920
87921
87922

  if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
    /* Special case: If this is an INSERT statement that will insert exactly
    ** one row into the table, raise a constraint immediately instead of
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, "foreign key constraint failed", P4_STATIC
    );
  }else{
    if( nIncr>0 && pFKey->isDeferred==0 ){
      sqlite3ParseToplevel(pParse)->mayAbort = 1;
    }
    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  }
88044
88045
88046
88047
88048
88049
88050
88051
88052
88053
88054
88055
88056
88057
88058
88059
    pParse->disableTriggers = 0;

    /* If the DELETE has generated immediate foreign key constraint 
    ** violations, halt the VDBE and return an error at this point, before
    ** any modifications to the schema are made. This is because statement
    ** transactions are not able to rollback schema changes.  */
    sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
    );

    if( iSkip ){
      sqlite3VdbeResolveLabel(v, iSkip);
    }
  }
}







|
|







88148
88149
88150
88151
88152
88153
88154
88155
88156
88157
88158
88159
88160
88161
88162
88163
    pParse->disableTriggers = 0;

    /* If the DELETE has generated immediate foreign key constraint 
    ** violations, halt the VDBE and return an error at this point, before
    ** any modifications to the schema are made. This is because statement
    ** transactions are not able to rollback schema changes.  */
    sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, "foreign key constraint failed", P4_STATIC
    );

    if( iSkip ){
      sqlite3VdbeResolveLabel(v, iSkip);
    }
  }
}
88115
88116
88117
88118
88119
88120
88121
88122
88123
88124
88125
88126
88127
88128
88129
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
    }else{
      pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
    }
    if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
      assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
      if( !isIgnoreErrors || db->mallocFailed ) return;
      if( pTo==0 ){
        /* If isIgnoreErrors is true, then a table is being dropped. In this
        ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
        ** before actually dropping it in order to check FK constraints.
        ** If the parent table of an FK constraint on the current table is







|







88219
88220
88221
88222
88223
88224
88225
88226
88227
88228
88229
88230
88231
88232
88233
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
    }else{
      pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
    }
    if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
      assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
      if( !isIgnoreErrors || db->mallocFailed ) return;
      if( pTo==0 ){
        /* If isIgnoreErrors is true, then a table is being dropped. In this
        ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
        ** before actually dropping it in order to check FK constraints.
        ** If the parent table of an FK constraint on the current table is
88195
88196
88197
88198
88199
88200
88201
88202
88203
88204
88205
88206
88207
88208
88209
    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
    assert( aiCol || pFKey->nCol==1 );

    /* Create a SrcList structure containing a single table (the table 
    ** the foreign key that refers to this table is attached to). This







|







88299
88300
88301
88302
88303
88304
88305
88306
88307
88308
88309
88310
88311
88312
88313
    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
    assert( aiCol || pFKey->nCol==1 );

    /* Create a SrcList structure containing a single table (the table 
    ** the foreign key that refers to this table is attached to). This
88250
88251
88252
88253
88254
88255
88256
88257
88258
88259
88260
88261
88262
88263
88264
    FKey *p;
    int i;
    for(p=pTab->pFKey; p; p=p->pNextFrom){
      for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
    }
    for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
      Index *pIdx = 0;
      locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
      if( pIdx ){
        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
      }
    }
  }
  return mask;
}







|







88354
88355
88356
88357
88358
88359
88360
88361
88362
88363
88364
88365
88366
88367
88368
    FKey *p;
    int i;
    for(p=pTab->pFKey; p; p=p->pNextFrom){
      for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
    }
    for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
      Index *pIdx = 0;
      sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
      if( pIdx ){
        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
      }
    }
  }
  return mask;
}
88376
88377
88378
88379
88380
88381
88382
88383
88384
88385
88386
88387
88388
88389
88390
    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
    Expr *pWhere = 0;             /* WHERE clause of trigger step */
    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
    Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
    int i;                        /* Iterator variable */
    Expr *pWhen = 0;              /* WHEN clause for the trigger */

    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
    assert( aiCol || pFKey->nCol==1 );

    for(i=0; i<pFKey->nCol; i++){
      Token tOld = { "old", 3 };  /* Literal "old" token */
      Token tNew = { "new", 3 };  /* Literal "new" token */
      Token tFromCol;             /* Name of column in child table */
      Token tToCol;               /* Name of column in parent table */







|







88480
88481
88482
88483
88484
88485
88486
88487
88488
88489
88490
88491
88492
88493
88494
    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
    Expr *pWhere = 0;             /* WHERE clause of trigger step */
    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
    Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
    int i;                        /* Iterator variable */
    Expr *pWhen = 0;              /* WHEN clause for the trigger */

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
    assert( aiCol || pFKey->nCol==1 );

    for(i=0; i<pFKey->nCol; i++){
      Token tOld = { "old", 3 };  /* Literal "old" token */
      Token tNew = { "new", 3 };  /* Literal "new" token */
      Token tFromCol;             /* Name of column in child table */
      Token tToCol;               /* Name of column in parent table */
89849
89850
89851
89852
89853
89854
89855
89856
89857
89858
89859
89860
89861
89862
89863
    switch( onError ){
      case OE_Abort:
        sqlite3MayAbort(pParse);
      case OE_Rollback:
      case OE_Fail: {
        char *zMsg;
        sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                                  SQLITE_CONSTRAINT, onError, regData+i);
        zMsg = sqlite3MPrintf(db, "%s.%s may not be NULL",
                              pTab->zName, pTab->aCol[i].zName);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);







|







89953
89954
89955
89956
89957
89958
89959
89960
89961
89962
89963
89964
89965
89966
89967
    switch( onError ){
      case OE_Abort:
        sqlite3MayAbort(pParse);
      case OE_Rollback:
      case OE_Fail: {
        char *zMsg;
        sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                          SQLITE_CONSTRAINT_NOTNULL, onError, regData+i);
        zMsg = sqlite3MPrintf(db, "%s.%s may not be NULL",
                              pTab->zName, pTab->aCol[i].zName);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
89889
89890
89891
89892
89893
89894
89895
89896

89897
89898
89899
89900
89901
89902
89903
        char *zConsName = pCheck->a[i].zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
        if( zConsName ){
          zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName);
        }else{
          zConsName = 0;
        }
        sqlite3HaltConstraint(pParse, onError, zConsName, P4_DYNAMIC);

      }
      sqlite3VdbeResolveLabel(v, allOk);
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key







|
>







89993
89994
89995
89996
89997
89998
89999
90000
90001
90002
90003
90004
90005
90006
90007
90008
        char *zConsName = pCheck->a[i].zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
        if( zConsName ){
          zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName);
        }else{
          zConsName = 0;
        }
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
                              onError, zConsName, P4_DYNAMIC);
      }
      sqlite3VdbeResolveLabel(v, allOk);
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
89920
89921
89922
89923
89924
89925
89926
89927
89928
89929
89930
89931
89932
89933
89934
89935
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3HaltConstraint(
          pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire
        ** the triggers and remove both the table and index b-tree entries.







|
|







90025
90026
90027
90028
90029
90030
90031
90032
90033
90034
90035
90036
90037
90038
90039
90040
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY,
           onError, "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire
        ** the triggers and remove both the table and index b-tree entries.
90048
90049
90050
90051
90052
90053
90054
90055

90056
90057
90058
90059
90060
90061
90062
          sqlite3StrAccumAppend(&errMsg, zSep, -1);
          zSep = ", ";
          sqlite3StrAccumAppend(&errMsg, zCol, -1);
        }
        sqlite3StrAccumAppend(&errMsg,
            pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
        zErr = sqlite3StrAccumFinish(&errMsg);
        sqlite3HaltConstraint(pParse, onError, zErr, 0);

        sqlite3DbFree(errMsg.db, zErr);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;







|
>







90153
90154
90155
90156
90157
90158
90159
90160
90161
90162
90163
90164
90165
90166
90167
90168
          sqlite3StrAccumAppend(&errMsg, zSep, -1);
          zSep = ", ";
          sqlite3StrAccumAppend(&errMsg, zCol, -1);
        }
        sqlite3StrAccumAppend(&errMsg,
            pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
        zErr = sqlite3StrAccumFinish(&errMsg);
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE,
                              onError, zErr, 0);
        sqlite3DbFree(errMsg.db, zErr);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
90456
90457
90458
90459
90460
90461
90462
90463
90464
90465
90466
90467
90468
90469
90470
90471
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  regData = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
    sqlite3HaltConstraint(
        pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );







|
|







90562
90563
90564
90565
90566
90567
90568
90569
90570
90571
90572
90573
90574
90575
90576
90577
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  regData = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY,
        onError, "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );
90914
90915
90916
90917
90918
90919
90920














90921
90922
90923
90924
90925
90926
90927
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);














};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file







>
>
>
>
>
>
>
>
>
>
>
>
>
>







91020
91021
91022
91023
91024
91025
91026
91027
91028
91029
91030
91031
91032
91033
91034
91035
91036
91037
91038
91039
91040
91041
91042
91043
91044
91045
91046
91047
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);
  /* Version 3.7.16 and later */
  int (*close_v2)(sqlite3*);
  const char *(*db_filename)(sqlite3*,const char*);
  int (*db_readonly)(sqlite3*,const char*);
  int (*db_release_memory)(sqlite3*);
  const char *(*errstr)(int);
  int (*stmt_busy)(sqlite3_stmt*);
  int (*stmt_readonly)(sqlite3_stmt*);
  int (*stricmp)(const char*,const char*);
  int (*uri_boolean)(const char*,const char*,int);
  sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
  const char *(*uri_parameter)(const char*,const char*);
  char *(*vsnprintf)(int,char*,const char*,va_list);
  int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
91117
91118
91119
91120
91121
91122
91123














91124
91125
91126
91127
91128
91129
91130
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict














#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */








>
>
>
>
>
>
>
>
>
>
>
>
>
>







91237
91238
91239
91240
91241
91242
91243
91244
91245
91246
91247
91248
91249
91250
91251
91252
91253
91254
91255
91256
91257
91258
91259
91260
91261
91262
91263
91264
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict
/* Version 3.7.16 and later */
#define sqlite3_close_v2               sqlite3_api->close_v2
#define sqlite3_db_filename            sqlite3_api->db_filename
#define sqlite3_db_readonly            sqlite3_api->db_readonly
#define sqlite3_db_release_memory      sqlite3_api->db_release_memory
#define sqlite3_errstr                 sqlite3_api->errstr
#define sqlite3_stmt_busy              sqlite3_api->stmt_busy
#define sqlite3_stmt_readonly          sqlite3_api->stmt_readonly
#define sqlite3_stricmp                sqlite3_api->stricmp
#define sqlite3_uri_boolean            sqlite3_api->uri_boolean
#define sqlite3_uri_int64              sqlite3_api->uri_int64
#define sqlite3_uri_parameter          sqlite3_api->uri_parameter
#define sqlite3_uri_vsnprintf          sqlite3_api->vsnprintf
#define sqlite3_wal_checkpoint_v2      sqlite3_api->wal_checkpoint_v2
#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */

91952
91953
91954
91955
91956
91957
91958



91959
91960
91961
91962
91963
91964
91965
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },



#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },








>
>
>







92086
92087
92088
92089
92090
92091
92092
92093
92094
92095
92096
92097
92098
92099
92100
92101
92102
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },
    { "vdbe_addoptrace",          SQLITE_VdbeAddopTrace},
    { "vdbe_debug",    SQLITE_SqlTrace | SQLITE_VdbeListing
                               | SQLITE_VdbeTrace      },
#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },

92716
92717
92718
92719
92720
92721
92722
92723
92724
92725


92726
92727

92728
92729
92730
92731
92732
92733
92734
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      int nHidden = 0;
      Column *pCol;


      sqlite3VdbeSetNumCols(v, 6);
      pParse->nMem = 6;

      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);







|


>
>


>







92853
92854
92855
92856
92857
92858
92859
92860
92861
92862
92863
92864
92865
92866
92867
92868
92869
92870
92871
92872
92873
92874
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i, k;
      int nHidden = 0;
      Column *pCol;
      Index *pPk;
      for(pPk=pTab->pIndex; pPk && pPk->autoIndex!=2; pPk=pPk->pNext){}
      sqlite3VdbeSetNumCols(v, 6);
      pParse->nMem = 6;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
92743
92744
92745
92746
92747
92748
92749







92750
92751
92752
92753
92754
92755
92756
92757
92758
92759
92760
92761
92762
92763
92764
92765
92766

92767
92768
92769
92770
92771
92772
92773
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
        if( pCol->zDflt ){
          sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
        }







        sqlite3VdbeAddOp2(v, OP_Integer,
                            (pCol->colFlags&COLFLAG_PRIMKEY)!=0, 6);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;

      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);







>
>
>
>
>
>
>
|
<















>







92883
92884
92885
92886
92887
92888
92889
92890
92891
92892
92893
92894
92895
92896
92897

92898
92899
92900
92901
92902
92903
92904
92905
92906
92907
92908
92909
92910
92911
92912
92913
92914
92915
92916
92917
92918
92919
92920
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
        if( pCol->zDflt ){
          sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
        }
        if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
          k = 0;
        }else if( pPk==0 ){
          k = 1;
        }else{
          for(k=1; ALWAYS(k<=pTab->nCol) && pPk->aiColumn[k-1]!=i; k++){}
        }
        sqlite3VdbeAddOp2(v, OP_Integer, k, 6);

        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
92786
92787
92788
92789
92790
92791
92792

92793
92794
92795
92796
92797
92798
92799
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        pParse->nMem = 3;

        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);







>







92933
92934
92935
92936
92937
92938
92939
92940
92941
92942
92943
92944
92945
92946
92947
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        pParse->nMem = 3;
        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
92849
92850
92851
92852
92853
92854
92855

92856
92857
92858
92859
92860
92861
92862
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 8);
        pParse->nMem = 8;

        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);







>







92997
92998
92999
93000
93001
93002
93003
93004
93005
93006
93007
93008
93009
93010
93011
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 8);
        pParse->nMem = 8;
        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);
92879
92880
92881
92882
92883
92884
92885


















































































































92886
92887
92888
92889
92890
92891
92892
            sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }


















































































































  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    if( zRight ){
      if( sqlite3GetBoolean(zRight, 0) ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







93028
93029
93030
93031
93032
93033
93034
93035
93036
93037
93038
93039
93040
93041
93042
93043
93044
93045
93046
93047
93048
93049
93050
93051
93052
93053
93054
93055
93056
93057
93058
93059
93060
93061
93062
93063
93064
93065
93066
93067
93068
93069
93070
93071
93072
93073
93074
93075
93076
93077
93078
93079
93080
93081
93082
93083
93084
93085
93086
93087
93088
93089
93090
93091
93092
93093
93094
93095
93096
93097
93098
93099
93100
93101
93102
93103
93104
93105
93106
93107
93108
93109
93110
93111
93112
93113
93114
93115
93116
93117
93118
93119
93120
93121
93122
93123
93124
93125
93126
93127
93128
93129
93130
93131
93132
93133
93134
93135
93136
93137
93138
93139
93140
93141
93142
93143
93144
93145
93146
93147
93148
93149
93150
93151
93152
93153
93154
93155
            sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef SQLITE_OMIT_FOREIGN_KEY
  if( sqlite3StrICmp(zLeft, "foreign_key_check")==0 ){
    FKey *pFK;             /* A foreign key constraint */
    Table *pTab;           /* Child table contain "REFERENCES" keyword */
    Table *pParent;        /* Parent table that child points to */
    Index *pIdx;           /* Index in the parent table */
    int i;                 /* Loop counter:  Foreign key number for pTab */
    int j;                 /* Loop counter:  Field of the foreign key */
    HashElem *k;           /* Loop counter:  Next table in schema */
    int x;                 /* result variable */
    int regResult;         /* 3 registers to hold a result row */
    int regKey;            /* Register to hold key for checking the FK */
    int regRow;            /* Registers to hold a row from pTab */
    int addrTop;           /* Top of a loop checking foreign keys */
    int addrOk;            /* Jump here if the key is OK */
    int *aiCols;           /* child to parent column mapping */

    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    regResult = pParse->nMem+1;
    pParse->nMem += 4;
    regKey = ++pParse->nMem;
    regRow = ++pParse->nMem;
    v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 4);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "table", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "rowid", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "parent", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "fkid", SQLITE_STATIC);
    sqlite3CodeVerifySchema(pParse, iDb);
    k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
    while( k ){
      if( zRight ){
        pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
        k = 0;
      }else{
        pTab = (Table*)sqliteHashData(k);
        k = sqliteHashNext(k);
      }
      if( pTab==0 || pTab->pFKey==0 ) continue;
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
      if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
      sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
      sqlite3VdbeAddOp4(v, OP_String8, 0, regResult, 0, pTab->zName,
                        P4_TRANSIENT);
      for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
        pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb);
        if( pParent==0 ) break;
        pIdx = 0;
        sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
        x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
        if( x==0 ){
          if( pIdx==0 ){
            sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
          }else{
            KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
            sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
            sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
          }
        }else{
          k = 0;
          break;
        }
      }
      if( pFK ) break;
      if( pParse->nTab<i ) pParse->nTab = i;
      addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0);
      for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
        pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb);
        assert( pParent!=0 );
        pIdx = 0;
        aiCols = 0;
        x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
        assert( x==0 );
        addrOk = sqlite3VdbeMakeLabel(v);
        if( pIdx==0 ){
          int iKey = pFK->aCol[0].iFrom;
          assert( iKey>=0 && iKey<pTab->nCol );
          if( iKey!=pTab->iPKey ){
            sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
            sqlite3ColumnDefault(v, pTab, iKey, regRow);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk);
            sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow,
               sqlite3VdbeCurrentAddr(v)+3);
          }else{
            sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
          }
          sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow);
          sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk);
          sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
        }else{
          for(j=0; j<pFK->nCol; j++){
            sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
                            aiCols ? aiCols[j] : pFK->aCol[0].iFrom, regRow+j);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk);
          }
          sqlite3VdbeAddOp3(v, OP_MakeRecord, regRow, pFK->nCol, regKey);
          sqlite3VdbeChangeP4(v, -1,
                   sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
          sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
        }
        sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0, 
                          pFK->zTo, P4_TRANSIENT);
        sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3);
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
        sqlite3VdbeResolveLabel(v, addrOk);
        sqlite3DbFree(db, aiCols);
      }
      sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1);
      sqlite3VdbeJumpHere(v, addrTop);
    }
  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    if( zRight ){
      if( sqlite3GetBoolean(zRight, 0) ){
93379
93380
93381
93382
93383
93384
93385
93386
93387
93388
93389
93390
93391
93392
93393
      sqlite3_key(db, zKey, i/2);
    }else{
      sqlite3_rekey(db, zKey, i/2);
    }
  }else
#endif
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
  if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
#ifdef SQLITE_HAS_CODEC
    if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
      sqlite3_activate_see(&zRight[4]);
    }
#endif
#ifdef SQLITE_ENABLE_CEROD
    if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){







|







93642
93643
93644
93645
93646
93647
93648
93649
93650
93651
93652
93653
93654
93655
93656
      sqlite3_key(db, zKey, i/2);
    }else{
      sqlite3_rekey(db, zKey, i/2);
    }
  }else
#endif
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
  if( sqlite3StrICmp(zLeft, "activate_extensions")==0 && zRight ){
#ifdef SQLITE_HAS_CODEC
    if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
      sqlite3_activate_see(&zRight[4]);
    }
#endif
#ifdef SQLITE_ENABLE_CEROD
    if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
94338
94339
94340
94341
94342
94343
94344
94345
94346
94347
94348
94349
94350
94351
94352
  Parse *pParse,        /* Parsing context */
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct,       /* true if the DISTINCT keyword is present */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );







|







94601
94602
94603
94604
94605
94606
94607
94608
94609
94610
94611
94612
94613
94614
94615
  Parse *pParse,        /* Parsing context */
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u16 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
94362
94363
94364
94365
94366
94367
94368
94369
94370
94371
94372
94373
94374
94375
94376
  pNew->pEList = pEList;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = isDistinct ? SF_Distinct : 0;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;







|







94625
94626
94627
94628
94629
94630
94631
94632
94633
94634
94635
94636
94637
94638
94639
  pNew->pEList = pEList;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = selFlags;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
95619
95620
95621
95622
95623
95624
95625
95626
95627
95628
95629
95630
95631
95632
95633
95634
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
    assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
               || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){







<
<







95882
95883
95884
95885
95886
95887
95888


95889
95890
95891
95892
95893
95894
95895
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);


    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
95658
95659
95660
95661
95662
95663
95664



95665
95666
95667
95668
95669
95670
95671
    /* Make sure the column name is unique.  If the name is not unique,
    ** append a integer to the name so that it becomes unique.
    */
    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;



        zName[nName] = 0;
        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }







>
>
>







95919
95920
95921
95922
95923
95924
95925
95926
95927
95928
95929
95930
95931
95932
95933
95934
95935
    /* Make sure the column name is unique.  If the name is not unique,
    ** append a integer to the name so that it becomes unique.
    */
    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;
        int k;
        for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
        if( zName[k]==':' ) nName = k;
        zName[nName] = 0;
        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }
95989
95990
95991
95992
95993
95994
95995


95996
95997
95998
95999
96000
96001
96002
  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      int nLimit;
      assert( !pPrior->pLimit );


      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){







>
>







96253
96254
96255
96256
96257
96258
96259
96260
96261
96262
96263
96264
96265
96266
96267
96268
  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      int nLimit;
      assert( !pPrior->pLimit );
      pPrior->iLimit = p->iLimit;
      pPrior->iOffset = p->iOffset;
      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      explainSetInteger(iSub1, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){
97245
97246
97247
97248
97249
97250
97251

97252
97253
97254
97255
97256

97257

97258
97259
97260
97261
97262
97263
97264
  **
  ** We call this the "compound-subquery flattening".
  */
  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
    Select *pNew;
    ExprList *pOrderBy = p->pOrderBy;
    Expr *pLimit = p->pLimit;

    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;

    pNew = sqlite3SelectDup(db, p, 0);

    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    p->pRightmost = 0;
    if( pNew==0 ){
      pNew = pPrior;







>





>

>







97511
97512
97513
97514
97515
97516
97517
97518
97519
97520
97521
97522
97523
97524
97525
97526
97527
97528
97529
97530
97531
97532
97533
  **
  ** We call this the "compound-subquery flattening".
  */
  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
    Select *pNew;
    ExprList *pOrderBy = p->pOrderBy;
    Expr *pLimit = p->pLimit;
    Expr *pOffset = p->pOffset;
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    p->pOffset = 0;
    pNew = sqlite3SelectDup(db, p, 0);
    p->pOffset = pOffset;
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    p->pRightmost = 0;
    if( pNew==0 ){
      pNew = pPrior;
97443
97444
97445
97446
97447
97448
97449

97450
97451
97452
97453
97454


97455
97456
97457
97458




97459
97460




97461
97462
97463
97464
97465
97466
97467
97468
97469
97470
97471
97472
97473

97474
97475

97476




97477
97478
97479
97480
97481
97482
97483
97484
  sqlite3SelectDelete(db, pSub1);

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*

** Analyze the SELECT statement passed as an argument to see if it
** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
** it is, or 0 otherwise. At present, a query is considered to be
** a min()/max() query if:
**


**   1. There is a single object in the FROM clause.
**
**   2. There is a single expression in the result set, and it is
**      either min(x) or max(x), where x is a column reference.




*/
static u8 minMaxQuery(Select *p){




  Expr *pExpr;
  ExprList *pEList = p->pEList;

  if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
  pExpr = pEList->a[0].pExpr;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
  pEList = pExpr->x.pList;
  if( pEList==0 || pEList->nExpr!=1 ) return 0;
  if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
  assert( !ExprHasProperty(pExpr, EP_IntValue) );
  if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
    return WHERE_ORDERBY_MIN;

  }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
    return WHERE_ORDERBY_MAX;

  }




  return WHERE_ORDERBY_NORMAL;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argment is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**







>
|
<
<
<

>
>
|

|
|
>
>
>
>

|
>
>
>
>
|
|

<
<
|
<
<
<
|
|
|
|
>
|
|
>
|
>
>
>
>
|







97712
97713
97714
97715
97716
97717
97718
97719
97720



97721
97722
97723
97724
97725
97726
97727
97728
97729
97730
97731
97732
97733
97734
97735
97736
97737
97738
97739
97740


97741



97742
97743
97744
97745
97746
97747
97748
97749
97750
97751
97752
97753
97754
97755
97756
97757
97758
97759
97760
97761
97762
  sqlite3SelectDelete(db, pSub1);

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** Based on the contents of the AggInfo structure indicated by the first
** argument, this function checks if the following are true:



**
**    * the query contains just a single aggregate function,
**    * the aggregate function is either min() or max(), and
**    * the argument to the aggregate function is a column value.
**
** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
** is returned as appropriate. Also, *ppMinMax is set to point to the 
** list of arguments passed to the aggregate before returning.
**
** Or, if the conditions above are not met, *ppMinMax is set to 0 and
** WHERE_ORDERBY_NORMAL is returned.
*/
static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
  int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */

  *ppMinMax = 0;
  if( pAggInfo->nFunc==1 ){
    Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
    ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */



    assert( pExpr->op==TK_AGG_FUNCTION );



    if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
      const char *zFunc = pExpr->u.zToken;
      if( sqlite3StrICmp(zFunc, "min")==0 ){
        eRet = WHERE_ORDERBY_MIN;
        *ppMinMax = pEList;
      }else if( sqlite3StrICmp(zFunc, "max")==0 ){
        eRet = WHERE_ORDERBY_MAX;
        *ppMinMax = pEList;
      }
    }
  }

  assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
  return eRet;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argment is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**
97565
97566
97567
97568
97569
97570
97571


97572

97573
97574
97575
97576
97577
97578
97579
97580
97581
97582
97583
97584
97585
97586
static int selectExpander(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  int i, j, k;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;




  if( db->mallocFailed  ){
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  p->selFlags |= SF_Expanded;
  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);







>
>

>



|


<







97843
97844
97845
97846
97847
97848
97849
97850
97851
97852
97853
97854
97855
97856
97857
97858
97859

97860
97861
97862
97863
97864
97865
97866
static int selectExpander(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  int i, j, k;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;
  Expr *pE, *pRight, *pExpr;
  u16 selFlags = p->selFlags;

  p->selFlags |= SF_Expanded;
  if( db->mallocFailed  ){
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }

  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);
97615
97616
97617
97618
97619
97620
97621






97622
97623
97624
97625
97626
97627
97628
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;






      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);







>
>
>
>
>
>







97895
97896
97897
97898
97899
97900
97901
97902
97903
97904
97905
97906
97907
97908
97909
97910
97911
97912
97913
97914
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;
      if( pTab->nRef==0xffff ){
        sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
           pTab->zName);
        pFrom->pTab = 0;
        return WRC_Abort;
      }
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
97650
97651
97652
97653
97654
97655
97656
97657
97658
97659
97660
97661
97662
97663
97664
97665
97666
97667
97668
97669
97670
97671
97672
97673
97674







97675
97676

97677
97678
97679
97680
97681
97682
97683
97684
97685
97686
97687
97688
97689
97690
97691
97692
97693
97694
97695
97696
97697
97698
97699
97700
97701
97702

97703


97704
97705
97706
97707


97708
97709
97710
97711


97712
97713
97714
97715
97716
97717







97718
97719
97720
97721
97722
97723
97724
97725
97726

97727
97728
97729
97730
97731
97732
97733
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    Expr *pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;








    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;

      assert( pE->op!=TK_DOT || pE->pRight!=0 );
      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
          pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
          a[k].zName = 0;
          a[k].zSpan = 0;
        }
        a[k].pExpr = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName;            /* text of name of TABLE */
        if( pE->op==TK_DOT ){
          assert( pE->pLeft!=0 );
          assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
          zTName = pE->pLeft->u.zToken;
        }else{
          zTName = 0;
        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;

          char *zTabName = pFrom->zAlias;


          if( zTabName==0 ){
            zTabName = pTab->zName;
          }
          if( db->mallocFailed ) break;


          if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
            continue;
          }
          tableSeen = 1;


          for(j=0; j<pTab->nCol; j++){
            Expr *pExpr, *pRight;
            char *zName = pTab->aCol[j].zName;
            char *zColname;  /* The computed column name */
            char *zToFree;   /* Malloced string that needs to be freed */
            Token sColname;  /* Computed column name as a token */








            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }


            if( i>0 && zTName==0 ){
              if( (pFrom->jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)
              ){
                /* In a NATURAL join, omit the join columns from the 
                ** table to the right of the join */







|

















>
>
>
>
>
>
>

|
>
|
|














|




<
<



>

>
>




>
>
|
|
|
|
>
>

<




>
>
>
>
>
>
>









>







97936
97937
97938
97939
97940
97941
97942
97943
97944
97945
97946
97947
97948
97949
97950
97951
97952
97953
97954
97955
97956
97957
97958
97959
97960
97961
97962
97963
97964
97965
97966
97967
97968
97969
97970
97971
97972
97973
97974
97975
97976
97977
97978
97979
97980
97981
97982
97983
97984
97985
97986
97987
97988
97989
97990
97991


97992
97993
97994
97995
97996
97997
97998
97999
98000
98001
98002
98003
98004
98005
98006
98007
98008
98009
98010
98011

98012
98013
98014
98015
98016
98017
98018
98019
98020
98021
98022
98023
98024
98025
98026
98027
98028
98029
98030
98031
98032
98033
98034
98035
98036
98037
98038
98039
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    /* When processing FROM-clause subqueries, it is always the case
    ** that full_column_names=OFF and short_column_names=ON.  The
    ** sqlite3ResultSetOfSelect() routine makes it so. */
    assert( (p->selFlags & SF_NestedFrom)==0
          || ((flags & SQLITE_FullColNames)==0 &&
              (flags & SQLITE_ShortColNames)!=0) );

    for(k=0; k<pEList->nExpr; k++){
      pE = a[k].pExpr;
      pRight = pE->pRight;
      assert( pE->op!=TK_DOT || pRight!=0 );
      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
          pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
          a[k].zName = 0;
          a[k].zSpan = 0;
        }
        a[k].pExpr = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName = 0;       /* text of name of TABLE */
        if( pE->op==TK_DOT ){
          assert( pE->pLeft!=0 );
          assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
          zTName = pE->pLeft->u.zToken;


        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;
          Select *pSub = pFrom->pSelect;
          char *zTabName = pFrom->zAlias;
          const char *zSchemaName = 0;
          int iDb;
          if( zTabName==0 ){
            zTabName = pTab->zName;
          }
          if( db->mallocFailed ) break;
          if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
            pSub = 0;
            if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
              continue;
            }
            iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
            zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
          }
          for(j=0; j<pTab->nCol; j++){

            char *zName = pTab->aCol[j].zName;
            char *zColname;  /* The computed column name */
            char *zToFree;   /* Malloced string that needs to be freed */
            Token sColname;  /* Computed column name as a token */

            assert( zName );
            if( zTName && pSub
             && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
            ){
              continue;
            }

            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }
            tableSeen = 1;

            if( i>0 && zTName==0 ){
              if( (pFrom->jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)
              ){
                /* In a NATURAL join, omit the join columns from the 
                ** table to the right of the join */
97742
97743
97744
97745
97746
97747
97748




97749
97750
97751
97752
97753
97754
97755
97756
97757
97758
97759












97760
97761
97762
97763
97764
97765
97766
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite3Expr(db, TK_ID, zTabName);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);




              if( longNames ){
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite3Strlen30(zColname);
            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);












            sqlite3DbFree(db, zToFree);
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{







>
>
>
>











>
>
>
>
>
>
>
>
>
>
>
>







98048
98049
98050
98051
98052
98053
98054
98055
98056
98057
98058
98059
98060
98061
98062
98063
98064
98065
98066
98067
98068
98069
98070
98071
98072
98073
98074
98075
98076
98077
98078
98079
98080
98081
98082
98083
98084
98085
98086
98087
98088
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite3Expr(db, TK_ID, zTabName);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
              if( zSchemaName ){
                pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
                pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
              }
              if( longNames ){
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite3Strlen30(zColname);
            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
            if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
              struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
              if( pSub ){
                pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
                testcase( pX->zSpan==0 );
              }else{
                pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
                                           zSchemaName, zTabName, zColname);
                testcase( pX->zSpan==0 );
              }
              pX->bSpanIsTab = 1;
            }
            sqlite3DbFree(db, zToFree);
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{
97891
97892
97893
97894
97895
97896
97897

97898
97899
97900
97901
97902
97903
97904
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for container */
){
  sqlite3 *db;
  if( NEVER(p==0) ) return;
  db = pParse->db;

  if( p->selFlags & SF_HasTypeInfo ) return;
  sqlite3SelectExpand(pParse, p);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3SelectAddTypeInfo(pParse, p);
}







>







98213
98214
98215
98216
98217
98218
98219
98220
98221
98222
98223
98224
98225
98226
98227
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for container */
){
  sqlite3 *db;
  if( NEVER(p==0) ) return;
  db = pParse->db;
  if( db->mallocFailed ) return;
  if( p->selFlags & SF_HasTypeInfo ) return;
  sqlite3SelectExpand(pParse, p);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  if( pParse->nErr || db->mallocFailed ) return;
  sqlite3SelectAddTypeInfo(pParse, p);
}
98810
98811
98812
98813
98814
98815
98816





98817



98818
98819
98820
98821
98822
98823
98824
98825
98826
98827
98828
        **
        **   + The optimizer code in where.c (the thing that decides which
        **     index or indices to use) should place a different priority on 
        **     satisfying the 'ORDER BY' clause than it does in other cases.
        **     Refer to code and comments in where.c for details.
        */
        ExprList *pMinMax = 0;





        u8 flag = minMaxQuery(p);



        if( flag ){
          assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
          assert( p->pEList->a[0].pExpr->x.pList->nExpr==1 );
          pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
          pDel = pMinMax;
          if( pMinMax && !db->mallocFailed ){
            pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
            pMinMax->a[0].pExpr->op = TK_COLUMN;
          }
        }
  







>
>
>
>
>
|
>
>
>

<
<
|







99133
99134
99135
99136
99137
99138
99139
99140
99141
99142
99143
99144
99145
99146
99147
99148
99149


99150
99151
99152
99153
99154
99155
99156
99157
        **
        **   + The optimizer code in where.c (the thing that decides which
        **     index or indices to use) should place a different priority on 
        **     satisfying the 'ORDER BY' clause than it does in other cases.
        **     Refer to code and comments in where.c for details.
        */
        ExprList *pMinMax = 0;
        u8 flag = WHERE_ORDERBY_NORMAL;
        
        assert( p->pGroupBy==0 );
        assert( flag==0 );
        if( p->pHaving==0 ){
          flag = minMaxQuery(&sAggInfo, &pMinMax);
        }
        assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );

        if( flag ){


          pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
          pDel = pMinMax;
          if( pMinMax && !db->mallocFailed ){
            pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
            pMinMax->a[0].pExpr->op = TK_COLUMN;
          }
        }
  
98970
98971
98972
98973
98974
98975
98976
98977



98978
98979
98980
98981
98982
98983
98984
  }
}
SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
  if( p==0 ){
    sqlite3ExplainPrintf(pVdbe, "(null-select)");
    return;
  }
  while( p->pPrior ) p = p->pPrior;



  sqlite3ExplainPush(pVdbe);
  while( p ){
    explainOneSelect(pVdbe, p);
    p = p->pNext;
    if( p==0 ) break;
    sqlite3ExplainNL(pVdbe);
    sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));







|
>
>
>







99299
99300
99301
99302
99303
99304
99305
99306
99307
99308
99309
99310
99311
99312
99313
99314
99315
99316
  }
}
SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
  if( p==0 ){
    sqlite3ExplainPrintf(pVdbe, "(null-select)");
    return;
  }
  while( p->pPrior ){
    p->pPrior->pNext = p;
    p = p->pPrior;
  }
  sqlite3ExplainPush(pVdbe);
  while( p ){
    explainOneSelect(pVdbe, p);
    p = p->pNext;
    if( p==0 ) break;
    sqlite3ExplainNL(pVdbe);
    sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
102547
102548
102549
102550
102551
102552
102553
102554
102555
102556
102557
102558
102559
102560
102561
102562
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
    WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
  } u;
  u16 eOperator;          /* A WO_xx value describing <op> */
  u8 wtFlags;             /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */







|
|







102879
102880
102881
102882
102883
102884
102885
102886
102887
102888
102889
102890
102891
102892
102893
102894
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  u16 eOperator;          /* A WO_xx value describing <op> */
  u8 wtFlags;             /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
102589
102590
102591
102592
102593
102594
102595
102596
102597
102598
102599
102600
102601
102602
102603
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
  Bitmask vmask;           /* Bitmask identifying virtual table cursors */
  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */
  u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)







<







102921
102922
102923
102924
102925
102926
102927

102928
102929
102930
102931
102932
102933
102934
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */

  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */
  u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)
102676
102677
102678
102679
102680
102681
102682

102683
102684
102685
102686
102687
102688
102689
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH  0x040
#define WO_ISNULL 0x080
#define WO_OR     0x100       /* Two or more OR-connected terms */
#define WO_AND    0x200       /* Two or more AND-connected terms */

#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** Value for wsFlags returned by bestIndex() and stored in







>







103007
103008
103009
103010
103011
103012
103013
103014
103015
103016
103017
103018
103019
103020
103021
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH  0x040
#define WO_ISNULL 0x080
#define WO_OR     0x100       /* Two or more OR-connected terms */
#define WO_AND    0x200       /* Two or more AND-connected terms */
#define WO_EQUIV  0x400       /* Of the form A==B, both columns */
#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** Value for wsFlags returned by bestIndex() and stored in
102702
102703
102704
102705
102706
102707
102708
102709
102710
102711
102712
102713
102714
102715
102716
#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
#define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00400000  /* Use index only - omit table */
#define WHERE_ORDERED      0x00800000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x01000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x02000000  /* Selects no more than one row */







|







103034
103035
103036
103037
103038
103039
103040
103041
103042
103043
103044
103045
103046
103047
103048
#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
#define WHERE_IN_ABLE      0x080f1000  /* Able to support an IN operator */
#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00400000  /* Use index only - omit table */
#define WHERE_ORDERED      0x00800000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x01000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x02000000  /* Selects no more than one row */
102765
102766
102767
102768
102769
102770
102771
102772
102773
102774
102775
102776
102777
102778
102779
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;
  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;
  pWC->vmask = 0;
  pWC->wctrlFlags = wctrlFlags;
}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*







<







103097
103098
103099
103100
103101
103102
103103

103104
103105
103106
103107
103108
103109
103110
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;
  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;

  pWC->wctrlFlags = wctrlFlags;
}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*
103078
103079
103080
103081
103082
103083
103084


















103085
103086
103087
103088
103089
103090
103091
103092
103093
103094









103095
103096
103097


103098
103099
103100
103101
103102


103103
103104
103105
103106
103107
103108
103109

103110
103111
103112
103113


103114
103115
103116
103117
103118
103119
103120
103121
103122
103123
103124
103125
103126

103127

103128

103129







103130




103131









103132
103133
103134
103135
103136
103137
103138
103139
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.


















*/
static WhereTerm *findTerm(
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;









  int k;
  assert( iCur>=0 );
  op &= WO_ALL;


  for(; pWC; pWC=pWC->pOuter){
    for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
      if( pTerm->leftCursor==iCur
         && (pTerm->prereqRight & notReady)==0
         && pTerm->u.leftColumn==iColumn


         && (pTerm->eOperator & op)!=0
      ){
        if( iColumn>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
          Expr *pX = pTerm->pExpr;
          CollSeq *pColl;
          char idxaff;
          int j;

          Parse *pParse = pWC->pParse;
  
          idxaff = pIdx->pTable->aCol[iColumn].affinity;
          if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;


  
          /* Figure out the collation sequence required from an index for
          ** it to be useful for optimising expression pX. Store this
          ** value in variable pColl.
          */
          assert(pX->pLeft);
          pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
          if( pColl==0 ) pColl = pParse->db->pDfltColl;
  
          for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
            if( NEVER(j>=pIdx->nColumn) ) return 0;
          }
          if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;

        }

        return pTerm;

      }







    }




  }









  return 0;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|
>
>
>
>
>
>
>
>
>
|

|
>
>
|
|
|
<
|
>
>
|
|
|
<
|
|
|
>
|
<
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
|
>
|
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|







103409
103410
103411
103412
103413
103414
103415
103416
103417
103418
103419
103420
103421
103422
103423
103424
103425
103426
103427
103428
103429
103430
103431
103432
103433
103434
103435
103436
103437
103438
103439
103440
103441
103442
103443
103444
103445
103446
103447
103448
103449
103450
103451
103452
103453
103454
103455
103456
103457
103458
103459
103460

103461
103462
103463
103464
103465
103466

103467
103468
103469
103470
103471

103472
103473
103474
103475
103476
103477
103478
103479
103480
103481
103482
103483
103484
103485
103486
103487
103488
103489
103490
103491
103492
103493
103494
103495
103496
103497
103498
103499
103500
103501
103502
103503
103504
103505
103506
103507
103508
103509
103510
103511
103512
103513
103514
103515
103516
103517
103518
103519
103520
103521
103522
103523
103524
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
**
** The term returned might by Y=<expr> if there is another constraint in
** the WHERE clause that specifies that X=Y.  Any such constraints will be
** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
** aEquiv[] array holds X and all its equivalents, with each SQL variable
** taking up two slots in aEquiv[].  The first slot is for the cursor number
** and the second is for the column number.  There are 22 slots in aEquiv[]
** so that means we can look for X plus up to 10 other equivalent values.
** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
** and ... and A9=A10 and A10=<expr>.
**
** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
** then try for the one with no dependencies on <expr> - in other words where
** <expr> is a constant expression of some kind.  Only return entries of
** the form "X <op> Y" where Y is a column in another table if no terms of
** the form "X <op> <const-expr>" exist.  Other than this priority, if there
** are two or more terms that match, then the choice of which term to return
** is arbitrary.
*/
static WhereTerm *findTerm(
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;            /* Term being examined as possible result */
  WhereTerm *pResult = 0;      /* The answer to return */
  WhereClause *pWCOrig = pWC;  /* Original pWC value */
  int j, k;                    /* Loop counters */
  Expr *pX;                /* Pointer to an expression */
  Parse *pParse;           /* Parsing context */
  int iOrigCol = iColumn;  /* Original value of iColumn */
  int nEquiv = 2;          /* Number of entires in aEquiv[] */
  int iEquiv = 2;          /* Number of entries of aEquiv[] processed so far */
  int aEquiv[22];          /* iCur,iColumn and up to 10 other equivalents */

  assert( iCur>=0 );
  aEquiv[0] = iCur;
  aEquiv[1] = iColumn;
  for(;;){
    for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){
      for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
        if( pTerm->leftCursor==iCur

          && pTerm->u.leftColumn==iColumn
        ){
          if( (pTerm->prereqRight & notReady)==0
           && (pTerm->eOperator & op & WO_ALL)!=0
          ){
            if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){

              CollSeq *pColl;
              char idxaff;
      
              pX = pTerm->pExpr;
              pParse = pWC->pParse;

              idxaff = pIdx->pTable->aCol[iOrigCol].affinity;
              if( !sqlite3IndexAffinityOk(pX, idxaff) ){
                continue;
              }
      
              /* Figure out the collation sequence required from an index for
              ** it to be useful for optimising expression pX. Store this
              ** value in variable pColl.
              */
              assert(pX->pLeft);
              pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight);
              if( pColl==0 ) pColl = pParse->db->pDfltColl;
      
              for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){
                if( NEVER(j>=pIdx->nColumn) ) return 0;
              }
              if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){
                continue;
              }
            }
            pResult = pTerm;
            if( pTerm->prereqRight==0 ) goto findTerm_success;
          }
          if( (pTerm->eOperator & WO_EQUIV)!=0
           && nEquiv<ArraySize(aEquiv)
          ){
            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
            assert( pX->op==TK_COLUMN );
            for(j=0; j<nEquiv; j+=2){
              if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break;
            }
            if( j==nEquiv ){
              aEquiv[j] = pX->iTable;
              aEquiv[j+1] = pX->iColumn;
              nEquiv += 2;
            }
          }
        }
      }
    }
    if( iEquiv>=nEquiv ) break;
    iCur = aEquiv[iEquiv++];
    iColumn = aEquiv[iEquiv++];
  }
findTerm_success:
  return pResult;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
103311
103312
103313
103314
103315
103316
103317
103318
103319
103320
103321
103322
103323
103324
103325
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:







|







103696
103697
103698
103699
103700
103701
103702
103703
103704
103705
103706
103707
103708
103709
103710
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C and
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:
103399
103400
103401
103402
103403
103404
103405
103406
103407
103408
103409
103410
103411
103412
103413
103414
103415
103416
103417
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
  */
  indexable = ~(Bitmask)0;
  chngToIN = ~(pWC->vmask);
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;
      assert( pOrTerm->eOperator==0 );
      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;







|



<







103784
103785
103786
103787
103788
103789
103790
103791
103792
103793
103794

103795
103796
103797
103798
103799
103800
103801
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
  */
  indexable = ~(Bitmask)0;
  chngToIN = ~(Bitmask)0;
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;

      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;
103442
103443
103444
103445
103446
103447
103448
103449
103450
103451
103452
103453
103454
103455
103456
      Bitmask b;
      b = getMask(pMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(pMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( pOrTerm->eOperator!=WO_EQ ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
    }
  }








|







103826
103827
103828
103829
103830
103831
103832
103833
103834
103835
103836
103837
103838
103839
103840
      Bitmask b;
      b = getMask(pMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(pMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
    }
  }

103493
103494
103495
103496
103497
103498
103499
103500
103501
103502
103503
103504
103505
103506
103507
    ** will be recorded in iCursor and iColumn.  There might not be any
    ** such table and column.  Set okToChngToIN if an appropriate table
    ** and column is found but leave okToChngToIN false if not found.
    */
    for(j=0; j<2 && !okToChngToIN; j++){
      pOrTerm = pOrWc->a;
      for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
        assert( pOrTerm->eOperator==WO_EQ );
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }







|







103877
103878
103879
103880
103881
103882
103883
103884
103885
103886
103887
103888
103889
103890
103891
    ** will be recorded in iCursor and iColumn.  There might not be any
    ** such table and column.  Set okToChngToIN if an appropriate table
    ** and column is found but leave okToChngToIN false if not found.
    */
    for(j=0; j<2 && !okToChngToIN; j++){
      pOrTerm = pOrWc->a;
      for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
        assert( pOrTerm->eOperator & WO_EQ );
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
103519
103520
103521
103522
103523
103524
103525
103526
103527
103528
103529
103530
103531
103532
103533
103534
103535
103536
103537
103538
103539
103540
103541
103542
103543
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( (chngToIN&(chngToIN-1))==0 );
        assert( chngToIN==getMask(pMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
      for(; i>=0 && okToChngToIN; i--, pOrTerm++){
        assert( pOrTerm->eOperator==WO_EQ );
        if( pOrTerm->leftCursor!=iCursor ){
          pOrTerm->wtFlags &= ~TERM_OR_OK;
        }else if( pOrTerm->u.leftColumn!=iColumn ){
          okToChngToIN = 0;
        }else{
          int affLeft, affRight;
          /* If the right-hand side is also a column, then the affinities







|









|







103903
103904
103905
103906
103907
103908
103909
103910
103911
103912
103913
103914
103915
103916
103917
103918
103919
103920
103921
103922
103923
103924
103925
103926
103927
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==getMask(pMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
      for(; i>=0 && okToChngToIN; i--, pOrTerm++){
        assert( pOrTerm->eOperator & WO_EQ );
        if( pOrTerm->leftCursor!=iCursor ){
          pOrTerm->wtFlags &= ~TERM_OR_OK;
        }else if( pOrTerm->u.leftColumn!=iColumn ){
          okToChngToIN = 0;
        }else{
          int affLeft, affRight;
          /* If the right-hand side is also a column, then the affinities
103565
103566
103567
103568
103569
103570
103571
103572
103573
103574
103575
103576
103577
103578
103579
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator==WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );







|







103949
103950
103951
103952
103953
103954
103955
103956
103957
103958
103959
103960
103961
103962
103963
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
103594
103595
103596
103597
103598
103599
103600
103601
103602
103603
103604
103605
103606
103607
103608
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */


/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**







<







103978
103979
103980
103981
103982
103983
103984

103985
103986
103987
103988
103989
103990
103991
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */


/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**
103664
103665
103666
103667
103668
103669
103670
103671
103672
103673

103674
103675
103676
103677
103678
103679
103680
103681

103682
103683
103684
103685
103686
103687
103688
103689
103690
103691
103692
103693
103694
103695







103696
103697
103698
103699
103700
103701
103702
103703
103704
103705
103706
103707
103708
103709
103710
103711
103712
103713
103714
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);

    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->u.leftColumn = pLeft->iColumn;
      pTerm->eOperator = operatorMask(op);
    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;

      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        pNew->iParent = idxTerm;
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->wtFlags |= TERM_COPIED;







      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
      pNew->leftCursor = pLeft->iTable;
      pNew->u.leftColumn = pLeft->iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = operatorMask(pDup->op);
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.  For example:
  **







|


>



|




>














>
>
>
>
>
>
>











|







104047
104048
104049
104050
104051
104052
104053
104054
104055
104056
104057
104058
104059
104060
104061
104062
104063
104064
104065
104066
104067
104068
104069
104070
104071
104072
104073
104074
104075
104076
104077
104078
104079
104080
104081
104082
104083
104084
104085
104086
104087
104088
104089
104090
104091
104092
104093
104094
104095
104096
104097
104098
104099
104100
104101
104102
104103
104104
104105
104106
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->u.leftColumn = pLeft->iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        pNew->iParent = idxTerm;
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->wtFlags |= TERM_COPIED;
        if( pExpr->op==TK_EQ
         && !ExprHasProperty(pExpr, EP_FromJoin)
         && OptimizationEnabled(db, SQLITE_Transitive)
        ){
          pTerm->eOperator |= WO_EQUIV;
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
      pNew->leftCursor = pLeft->iTable;
      pNew->u.leftColumn = pLeft->iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.  For example:
  **
104159
104160
104161
104162
104163
104164
104165
104166
104167
104168
104169
104170
104171
104172
104173
104174
104175
104176
104177
104178
104179
104180
104181
104182
104183
104184
104185
104186
104187
104188
104189
104190
104191
104192
104193
104194
  }
  if( pWC->wctrlFlags & WHERE_AND_ONLY ){
    return;
  }

  /* Search the WHERE clause terms for a usable WO_OR term. */
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( pTerm->eOperator==WO_OR 
     && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;
      WhereBestIdx sBOI;

      sBOI = *p;
      sBOI.pOrderBy = 0;
      sBOI.pDistinct = 0;
      sBOI.ppIdxInfo = 0;
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( pOrTerm->eOperator==WO_AND ){
          sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
          bestIndex(&sBOI);
        }else if( pOrTerm->leftCursor==iCur ){
          WhereClause tempWC;
          tempWC.pParse = pWC->pParse;
          tempWC.pMaskSet = pWC->pMaskSet;
          tempWC.pOuter = pWC;







|




















|







104551
104552
104553
104554
104555
104556
104557
104558
104559
104560
104561
104562
104563
104564
104565
104566
104567
104568
104569
104570
104571
104572
104573
104574
104575
104576
104577
104578
104579
104580
104581
104582
104583
104584
104585
104586
  }
  if( pWC->wctrlFlags & WHERE_AND_ONLY ){
    return;
  }

  /* Search the WHERE clause terms for a usable WO_OR term. */
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;
      WhereBestIdx sBOI;

      sBOI = *p;
      sBOI.pOrderBy = 0;
      sBOI.pDistinct = 0;
      sBOI.ppIdxInfo = 0;
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( (pOrTerm->eOperator& WO_AND)!=0 ){
          sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
          bestIndex(&sBOI);
        }else if( pOrTerm->leftCursor==iCur ){
          WhereClause tempWC;
          tempWC.pParse = pWC->pParse;
          tempWC.pMaskSet = pWC->pMaskSet;
          tempWC.pOuter = pWC;
104241
104242
104243
104244
104245
104246
104247
104248
104249
104250
104251
104252
104253
104254
104255
static int termCanDriveIndex(
  WhereTerm *pTerm,              /* WHERE clause term to check */
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( pTerm->eOperator!=WO_EQ ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif








|







104633
104634
104635
104636
104637
104638
104639
104640
104641
104642
104643
104644
104645
104646
104647
static int termCanDriveIndex(
  WhereTerm *pTerm,              /* WHERE clause term to check */
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif

104503
104504
104505
104506
104507
104508
104509
104510
104511
104512
104513
104514
104515
104516
104517
104518
104519
104520

  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
    testcase( pTerm->eOperator==WO_IN );
    testcase( pTerm->eOperator==WO_ISNULL );
    if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    nTerm++;
  }

  /* If the ORDER BY clause contains only columns in the current 
  ** virtual table then allocate space for the aOrderBy part of
  ** the sqlite3_index_info structure.







|
|
|
|







104895
104896
104897
104898
104899
104900
104901
104902
104903
104904
104905
104906
104907
104908
104909
104910
104911
104912

  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
    if( pTerm->eOperator & (WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    nTerm++;
  }

  /* If the ORDER BY clause contains only columns in the current 
  ** virtual table then allocate space for the aOrderBy part of
  ** the sqlite3_index_info structure.
104554
104555
104556
104557
104558
104559
104560

104561
104562
104563
104564
104565
104566
104567
104568


104569
104570
104571
104572
104573
104574
104575
104576
104577
104578
104579
104580
104581
104582
104583
104584
104585
104586
  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                                                                   pUsage;

  for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){

    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
    testcase( pTerm->eOperator==WO_IN );
    testcase( pTerm->eOperator==WO_ISNULL );
    if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    pIdxCons[j].iColumn = pTerm->u.leftColumn;
    pIdxCons[j].iTermOffset = i;


    pIdxCons[j].op = (u8)pTerm->eOperator;
    /* The direct assignment in the previous line is possible only because
    ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
    ** following asserts verify this fact. */
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
    assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
    assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
    assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
    assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
    j++;
  }
  for(i=0; i<nOrderBy; i++){
    Expr *pExpr = pOrderBy->a[i].pExpr;
    pIdxOrderBy[i].iColumn = pExpr->iColumn;
    pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  }







>

|
|
|
|



>
>
|









|







104946
104947
104948
104949
104950
104951
104952
104953
104954
104955
104956
104957
104958
104959
104960
104961
104962
104963
104964
104965
104966
104967
104968
104969
104970
104971
104972
104973
104974
104975
104976
104977
104978
104979
104980
104981
  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                                                                   pUsage;

  for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    u8 op;
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
    if( pTerm->eOperator & (WO_ISNULL) ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    pIdxCons[j].iColumn = pTerm->u.leftColumn;
    pIdxCons[j].iTermOffset = i;
    op = (u8)pTerm->eOperator & WO_ALL;
    if( op==WO_IN ) op = WO_EQ;
    pIdxCons[j].op = op;
    /* The direct assignment in the previous line is possible only because
    ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
    ** following asserts verify this fact. */
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
    assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
    assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
    assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
    assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
    j++;
  }
  for(i=0; i<nOrderBy; i++){
    Expr *pExpr = pOrderBy->a[i].pExpr;
    pIdxOrderBy[i].iColumn = pExpr->iColumn;
    pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  }
104656
104657
104658
104659
104660
104661
104662
104663
104664


104665
104666
104667
104668
104669
104670
104671
  WhereClause *pWC = p->pWC;      /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  Table *pTab = pSrc->pTab;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j;
  int nOrderBy;


  double rCost;

  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
  ** malloc in allocateIndexInfo() fails and this function returns leaving
  ** wsFlags in an uninitialized state, the caller may behave unpredictably.
  */
  memset(&p->cost, 0, sizeof(p->cost));







|

>
>







105051
105052
105053
105054
105055
105056
105057
105058
105059
105060
105061
105062
105063
105064
105065
105066
105067
105068
  WhereClause *pWC = p->pWC;      /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  Table *pTab = pSrc->pTab;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j, k;
  int nOrderBy;
  int sortOrder;                  /* Sort order for IN clauses */
  int bAllowIN;                   /* Allow IN optimizations */
  double rCost;

  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
  ** malloc in allocateIndexInfo() fails and this function returns leaving
  ** wsFlags in an uninitialized state, the caller may behave unpredictably.
  */
  memset(&p->cost, 0, sizeof(p->cost));
104692
104693
104694
104695
104696
104697
104698











104699
104700
104701
104702
104703
104704
104705
104706
104707
104708
104709
104710
104711
104712
104713
104714
104715
104716
104717
104718
104719
104720
104721
104722
104723



104724



104725
104726
104727
104728
104729
104730
104731
104732
104733
104734
104735
104736
104737
104738
104739
104740
104741
104742
104743
104744

104745
104746
104747


104748







104749




104750
104751






104752
104753
104754
104755
104756
104757
104758
  /* The module name must be defined. Also, by this point there must
  ** be a pointer to an sqlite3_vtab structure. Otherwise
  ** sqlite3ViewGetColumnNames() would have picked up the error. 
  */
  assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  assert( sqlite3GetVTable(pParse->db, pTab) );












  /* Set the aConstraint[].usable fields and initialize all 
  ** output variables to zero.
  **
  ** aConstraint[].usable is true for constraints where the right-hand
  ** side contains only references to tables to the left of the current
  ** table.  In other words, if the constraint is of the form:
  **
  **           column = expr
  **
  ** and we are evaluating a join, then the constraint on column is 
  ** only valid if all tables referenced in expr occur to the left
  ** of the table containing column.
  **
  ** The aConstraints[] array contains entries for all constraints
  ** on the current table.  That way we only have to compute it once
  ** even though we might try to pick the best index multiple times.
  ** For each attempt at picking an index, the order of tables in the
  ** join might be different so we have to recompute the usable flag
  ** each time.
  */
  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  pUsage = pIdxInfo->aConstraintUsage;
  for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
    j = pIdxCons->iTermOffset;
    pTerm = &pWC->a[j];



    pIdxCons->usable = (pTerm->prereqRight&p->notReady) ? 0 : 1;



  }
  memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
  if( pIdxInfo->needToFreeIdxStr ){
    sqlite3_free(pIdxInfo->idxStr);
  }
  pIdxInfo->idxStr = 0;
  pIdxInfo->idxNum = 0;
  pIdxInfo->needToFreeIdxStr = 0;
  pIdxInfo->orderByConsumed = 0;
  /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
  nOrderBy = pIdxInfo->nOrderBy;
  if( !p->pOrderBy ){
    pIdxInfo->nOrderBy = 0;
  }

  if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
    return;
  }


  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pUsage[i].argvIndex>0 ){


      p->cost.used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;







    }




  }







  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;







>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
|
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
>
>
|
>
>
>
>
>
>
>
|
>
>
>
>
|
|
>
>
>
>
>
>







105089
105090
105091
105092
105093
105094
105095
105096
105097
105098
105099
105100
105101
105102
105103
105104
105105
105106
105107
105108
105109
105110
105111
105112
105113
105114
105115
105116
105117
105118
105119
105120
105121
105122
105123
105124
105125
105126
105127
105128
105129
105130
105131
105132
105133
105134
105135
105136
105137
105138
105139
105140
105141
105142
105143
105144
105145
105146
105147
105148
105149
105150
105151
105152
105153
105154
105155
105156
105157
105158
105159
105160
105161
105162
105163
105164
105165
105166
105167
105168
105169
105170
105171
105172
105173
105174
105175
105176
105177
105178
105179
105180
105181
105182
105183
105184
105185
105186
105187
105188
105189
105190
105191
105192
  /* The module name must be defined. Also, by this point there must
  ** be a pointer to an sqlite3_vtab structure. Otherwise
  ** sqlite3ViewGetColumnNames() would have picked up the error. 
  */
  assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  assert( sqlite3GetVTable(pParse->db, pTab) );

  /* Try once or twice.  On the first attempt, allow IN optimizations.
  ** If an IN optimization is accepted by the virtual table xBestIndex
  ** method, but the  pInfo->aConstrainUsage.omit flag is not set, then
  ** the query will not work because it might allow duplicate rows in
  ** output.  In that case, run the xBestIndex method a second time
  ** without the IN constraints.  Usually this loop only runs once.
  ** The loop will exit using a "break" statement.
  */
  for(bAllowIN=1; 1; bAllowIN--){
    assert( bAllowIN==0 || bAllowIN==1 );

    /* Set the aConstraint[].usable fields and initialize all 
    ** output variables to zero.
    **
    ** aConstraint[].usable is true for constraints where the right-hand
    ** side contains only references to tables to the left of the current
    ** table.  In other words, if the constraint is of the form:
    **
    **           column = expr
    **
    ** and we are evaluating a join, then the constraint on column is 
    ** only valid if all tables referenced in expr occur to the left
    ** of the table containing column.
    **
    ** The aConstraints[] array contains entries for all constraints
    ** on the current table.  That way we only have to compute it once
    ** even though we might try to pick the best index multiple times.
    ** For each attempt at picking an index, the order of tables in the
    ** join might be different so we have to recompute the usable flag
    ** each time.
    */
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pUsage = pIdxInfo->aConstraintUsage;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      j = pIdxCons->iTermOffset;
      pTerm = &pWC->a[j];
      if( (pTerm->prereqRight&p->notReady)==0
       && (bAllowIN || (pTerm->eOperator & WO_IN)==0)
      ){
        pIdxCons->usable = 1;
      }else{
        pIdxCons->usable = 0;
      }
    }
    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
    if( pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
    nOrderBy = pIdxInfo->nOrderBy;
    if( !p->pOrderBy ){
      pIdxInfo->nOrderBy = 0;
    }
  
    if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
      return;
    }
  
    sortOrder = SQLITE_SO_ASC;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      if( pUsage[i].argvIndex>0 ){
        j = pIdxCons->iTermOffset;
        pTerm = &pWC->a[j];
        p->cost.used |= pTerm->prereqRight;
        if( (pTerm->eOperator & WO_IN)!=0 ){
          if( pUsage[i].omit==0 ){
            /* Do not attempt to use an IN constraint if the virtual table
            ** says that the equivalent EQ constraint cannot be safely omitted.
            ** If we do attempt to use such a constraint, some rows might be
            ** repeated in the output. */
            break;
          }
          for(k=0; k<pIdxInfo->nOrderBy; k++){
            if( pIdxInfo->aOrderBy[k].iColumn==pIdxCons->iColumn ){
              sortOrder = pIdxInfo->aOrderBy[k].desc;
              break;
            }
          }
        }
      }
    }
    if( i>=pIdxInfo->nConstraint ) break;
  }
  
  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;
104768
104769
104770
104771
104772
104773
104774

104775
104776
104777
104778
104779
104780
104781
104782
  if( (SQLITE_BIG_DBL/((double)2))<rCost ){
    p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
  }else{
    p->cost.rCost = rCost;
  }
  p->cost.plan.u.pVtabIdx = pIdxInfo;
  if( pIdxInfo->orderByConsumed ){

    p->cost.plan.wsFlags |= WHERE_ORDERED;
    p->cost.plan.nOBSat = nOrderBy;
  }else{
    p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
  }
  p->cost.plan.nEq = 0;
  pIdxInfo->nOrderBy = nOrderBy;








>
|







105202
105203
105204
105205
105206
105207
105208
105209
105210
105211
105212
105213
105214
105215
105216
105217
  if( (SQLITE_BIG_DBL/((double)2))<rCost ){
    p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
  }else{
    p->cost.rCost = rCost;
  }
  p->cost.plan.u.pVtabIdx = pIdxInfo;
  if( pIdxInfo->orderByConsumed ){
    assert( sortOrder==0 || sortOrder==1 );
    p->cost.plan.wsFlags |= WHERE_ORDERED + sortOrder*WHERE_REVERSE;
    p->cost.plan.nOBSat = nOrderBy;
  }else{
    p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
  }
  p->cost.plan.nEq = 0;
  pIdxInfo->nOrderBy = nOrderBy;

105039
105040
105041
105042
105043
105044
105045
105046
105047
105048
105049
105050
105051
105052
105053
105054
105055
105056
105057
105058
105059
105060
105061
105062
105063
105064
105065
105066
105067
105068
105069
105070
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( pLower->eOperator==WO_GT ) iLower += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( pUpper->eOperator==WO_LE ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{







|




|






|




|







105474
105475
105476
105477
105478
105479
105480
105481
105482
105483
105484
105485
105486
105487
105488
105489
105490
105491
105492
105493
105494
105495
105496
105497
105498
105499
105500
105501
105502
105503
105504
105505
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( (pLower->eOperator & WO_GT)!=0 ) iLower += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      if( rc==SQLITE_OK
       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{
105364
105365
105366
105367
105368
105369
105370
105371
105372
105373
105374
105375
105376
105377
105378
105379
105380
105381
105382
105383

    /* If X is the column in the index and ORDER BY clause, check to see
    ** if there are any X= or X IS NULL constraints in the WHERE clause. */
    pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
                           WO_EQ|WO_ISNULL|WO_IN, pIdx);
    if( pConstraint==0 ){
      isEq = 0;
    }else if( pConstraint->eOperator==WO_IN ){
      /* Constraints of the form: "X IN ..." cannot be used with an ORDER BY
      ** because we do not know in what order the values on the RHS of the IN
      ** operator will occur. */
      break;
    }else if( pConstraint->eOperator==WO_ISNULL ){
      uniqueNotNull = 0;
      isEq = 1;  /* "X IS NULL" means X has only a single value */
    }else if( pConstraint->prereqRight==0 ){
      isEq = 1;  /* Constraint "X=constant" means X has only a single value */
    }else{
      Expr *pRight = pConstraint->pExpr->pRight;
      if( pRight->op==TK_COLUMN ){







|
|
<
<
<
|







105799
105800
105801
105802
105803
105804
105805
105806
105807



105808
105809
105810
105811
105812
105813
105814
105815

    /* If X is the column in the index and ORDER BY clause, check to see
    ** if there are any X= or X IS NULL constraints in the WHERE clause. */
    pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
                           WO_EQ|WO_ISNULL|WO_IN, pIdx);
    if( pConstraint==0 ){
      isEq = 0;
    }else if( (pConstraint->eOperator & WO_IN)!=0 ){
      isEq = 0;



    }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){
      uniqueNotNull = 0;
      isEq = 1;  /* "X IS NULL" means X has only a single value */
    }else if( pConstraint->prereqRight==0 ){
      isEq = 1;  /* Constraint "X=constant" means X has only a single value */
    }else{
      Expr *pRight = pConstraint->pExpr->pRight;
      if( pRight->op==TK_COLUMN ){
105672
105673
105674
105675
105676
105677
105678
105679
105680
105681
105682
105683
105684
105685
105686
105687
 
    /* If the index being considered is UNIQUE, and there is an equality 
    ** constraint for all columns in the index, then this search will find
    ** at most a single row. In this case set the WHERE_UNIQUE flag to 
    ** indicate this to the caller.
    **
    ** Otherwise, if the search may find more than one row, test to see if
    ** there is a range constraint on indexed column (pc.plan.nEq+1) that can be 
    ** optimized using the index. 
    */
    if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
      testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
      testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
      if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        pc.plan.wsFlags |= WHERE_UNIQUE;
        if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){







|
|







106104
106105
106106
106107
106108
106109
106110
106111
106112
106113
106114
106115
106116
106117
106118
106119
 
    /* If the index being considered is UNIQUE, and there is an equality 
    ** constraint for all columns in the index, then this search will find
    ** at most a single row. In this case set the WHERE_UNIQUE flag to 
    ** indicate this to the caller.
    **
    ** Otherwise, if the search may find more than one row, test to see if
    ** there is a range constraint on indexed column (pc.plan.nEq+1) that
    ** can be optimized using the index. 
    */
    if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
      testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
      testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
      if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        pc.plan.wsFlags |= WHERE_UNIQUE;
        if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
105782
105783
105784
105785
105786
105787
105788
105789
105790

105791
105792
105793
105794
105795
105796
105797
105798
105799
105800
105801
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
     && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );

        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
                          &pc.plan.nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator==WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
                       &pc.plan.nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows







|
|
>



|







106214
106215
106216
106217
106218
106219
106220
106221
106222
106223
106224
106225
106226
106227
106228
106229
106230
106231
106232
106233
106234
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
     && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator & WO_EQ );
        testcase( pFirstTerm->eOperator & WO_EQUIV );
        testcase( pFirstTerm->eOperator & WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
                          &pc.plan.nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator & WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
                       &pc.plan.nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
105934
105935
105936
105937
105938
105939
105940
105941
105942
105943
105944
105945
105946
105947
105948
            ** set size by a factor of 3.  Indexed range constraints reduce
            ** the search space by a larger factor: 4.  We make indexed range
            ** more selective intentionally because of the subjective 
            ** observation that indexed range constraints really are more
            ** selective in practice, on average. */
            pc.plan.nRow /= 3;
          }
        }else if( pTerm->eOperator!=WO_NOOP ){
          /* Any other expression lowers the output row count by half */
          pc.plan.nRow /= 2;
        }
      }
      if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
    }








|







106367
106368
106369
106370
106371
106372
106373
106374
106375
106376
106377
106378
106379
106380
106381
            ** set size by a factor of 3.  Indexed range constraints reduce
            ** the search space by a larger factor: 4.  We make indexed range
            ** more selective intentionally because of the subjective 
            ** observation that indexed range constraints really are more
            ** selective in practice, on average. */
            pc.plan.nRow /= 3;
          }
        }else if( (pTerm->eOperator & WO_NOOP)==0 ){
          /* Any other expression lowers the output row count by half */
          pc.plan.nRow /= 2;
        }
      }
      if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
    }

105986
105987
105988
105989
105990
105991
105992
105993
105994

105995
105996
105997
105998
105999
106000
106001
  assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
  assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || p->cost.plan.u.pIdx==0 
       || p->cost.plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("   best index is: %s\n",
         p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk"));

  
  bestOrClauseIndex(p);
  bestAutomaticIndex(p);
  p->cost.plan.wsFlags |= eqTermMask;
}

/*







|
|
>







106419
106420
106421
106422
106423
106424
106425
106426
106427
106428
106429
106430
106431
106432
106433
106434
106435
  assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
  assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || p->cost.plan.u.pIdx==0 
       || p->cost.plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("   best index is %s cost=%.1f\n",
         p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk",
         p->cost.rCost));
  
  bestOrClauseIndex(p);
  bestAutomaticIndex(p);
  p->cost.plan.wsFlags |= eqTermMask;
}

/*
106012
106013
106014
106015
106016
106017
106018

106019
106020
106021
106022
106023
106024
106025
106026
*/
static void bestIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(p->pSrc->pTab) ){
    sqlite3_index_info *pIdxInfo = 0;
    p->ppIdxInfo = &pIdxInfo;
    bestVirtualIndex(p);

    if( pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    sqlite3DbFree(p->pParse->db, pIdxInfo);
  }else
#endif
  {
    bestBtreeIndex(p);







>
|







106446
106447
106448
106449
106450
106451
106452
106453
106454
106455
106456
106457
106458
106459
106460
106461
*/
static void bestIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(p->pSrc->pTab) ){
    sqlite3_index_info *pIdxInfo = 0;
    p->ppIdxInfo = &pIdxInfo;
    bestVirtualIndex(p);
    assert( pIdxInfo!=0 || p->pParse->db->mallocFailed );
    if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    sqlite3DbFree(p->pParse->db, pIdxInfo);
  }else
#endif
  {
    bestBtreeIndex(p);
106136
106137
106138
106139
106140
106141
106142

106143
106144
106145
106146
106147
106148
106149
106150
106151
106152
106153
106154
106155
106156
106157
106158
106159
106160
106161
106162
106163
106164
106165

106166
106167
106168
106169
106170
106171
106172
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;


    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
    pIn = pLevel->u.in.aInLoop;
    if( pIn ){
      pIn += pLevel->u.in.nIn - 1;
      pIn->iCur = iTab;
      if( eType==IN_INDEX_ROWID ){
        pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
      }else{
        pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
      }

      sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
    }else{
      pLevel->u.in.nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);







>





|

















>







106571
106572
106573
106574
106575
106576
106577
106578
106579
106580
106581
106582
106583
106584
106585
106586
106587
106588
106589
106590
106591
106592
106593
106594
106595
106596
106597
106598
106599
106600
106601
106602
106603
106604
106605
106606
106607
106608
106609
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;

    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
    pIn = pLevel->u.in.aInLoop;
    if( pIn ){
      pIn += pLevel->u.in.nIn - 1;
      pIn->iCur = iTab;
      if( eType==IN_INDEX_ROWID ){
        pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
      }else{
        pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
      }
      pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
      sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
    }else{
      pLevel->u.in.nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
106513
106514
106515
106516
106517
106518
106519

106520
106521
106522
106523
106524
106525
106526
106527
106528

106529
106530
106531

106532




106533

106534
106535
106536
106537
106538
106539
106540
106541
106542
106543
106544
106545
106546
106547
106548

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */

    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
    int nConstraint = pVtabIdx->nConstraint;
    struct sqlite3_index_constraint_usage *aUsage =
                                                pVtabIdx->aConstraintUsage;
    const struct sqlite3_index_constraint *aConstraint =
                                                pVtabIdx->aConstraint;

    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);

    for(j=1; j<=nConstraint; j++){
      for(k=0; k<nConstraint; k++){
        if( aUsage[k].argvIndex==j ){

          int iTerm = aConstraint[k].iTermOffset;




          sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);

          break;
        }
      }
      if( k==nConstraint ) break;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
    pVtabIdx->needToFreeIdxStr = 0;
    for(j=0; j<nConstraint; j++){
      if( aUsage[j].omit ){
        int iTerm = aConstraint[j].iTermOffset;
        disableTerm(pLevel, &pWC->a[iTerm]);
      }







>









>



>
|
>
>
>
>
|
>







|







106950
106951
106952
106953
106954
106955
106956
106957
106958
106959
106960
106961
106962
106963
106964
106965
106966
106967
106968
106969
106970
106971
106972
106973
106974
106975
106976
106977
106978
106979
106980
106981
106982
106983
106984
106985
106986
106987
106988
106989
106990
106991
106992
106993

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */
    int addrNotFound;
    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
    int nConstraint = pVtabIdx->nConstraint;
    struct sqlite3_index_constraint_usage *aUsage =
                                                pVtabIdx->aConstraintUsage;
    const struct sqlite3_index_constraint *aConstraint =
                                                pVtabIdx->aConstraint;

    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);
    addrNotFound = pLevel->addrBrk;
    for(j=1; j<=nConstraint; j++){
      for(k=0; k<nConstraint; k++){
        if( aUsage[k].argvIndex==j ){
          int iTarget = iReg+j+1;
          pTerm = &pWC->a[aConstraint[k].iTermOffset];
          if( pTerm->eOperator & WO_IN ){
            codeEqualityTerm(pParse, pTerm, pLevel, iTarget);
            addrNotFound = pLevel->addrNxt;
          }else{
            sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
          }
          break;
        }
      }
      if( k==nConstraint ) break;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr,
                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
    pVtabIdx->needToFreeIdxStr = 0;
    for(j=0; j<nConstraint; j++){
      if( aUsage[j].omit ){
        int iTerm = aConstraint[j].iTermOffset;
        disableTerm(pLevel, &pWC->a[iTerm]);
      }
106561
106562
106563
106564
106565
106566
106567
106568
106569
106570
106571
106572
106573
106574
106575
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */
    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );
    assert( pTerm->leftCursor==iCur );
    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);







<







107006
107007
107008
107009
107010
107011
107012

107013
107014
107015
107016
107017
107018
107019
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */
    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );

    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
106952
106953
106954
106955
106956
106957
106958
106959
106960
106961
106962
106963
106964
106965
106966
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator==WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.







|







107396
107397
107398
107399
107400
107401
107402
107403
107404
107405
107406
107407
107408
107409
107410
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
107025
107026
107027
107028
107029
107030
107031
107032
107033
107034
107035
107036
107037
107038
107039
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */







|







107469
107470
107471
107472
107473
107474
107475
107476
107477
107478
107479
107480
107481
107482
107483
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
107403
107404
107405
107406
107407
107408
107409
107410
107411
107412
107413
107414
107415
107416
107417
107418
107419
107420
107421
107422
107423
107424
107425
107426
107427
107428
107429
107430
107431
107432
107433
107434
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
  ** its Expr.iRightJoinTable value to find the bitmask of the right table
  ** of the join.  Subtracting one from the right table bitmask gives a
  ** bitmask for all tables to the left of the join.  Knowing the bitmask
  ** for all tables to the left of a left join is important.  Ticket #3015.
  **
  ** Configure the WhereClause.vmask variable so that bits that correspond
  ** to virtual table cursors are set. This is used to selectively disable 
  ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
  ** with virtual tables.
  **
  ** Note that bitmasks are created for all pTabList->nSrc tables in
  ** pTabList, not just the first nTabList tables.  nTabList is normally
  ** equal to pTabList->nSrc but might be shortened to 1 if the
  ** WHERE_ONETABLE_ONLY flag is set.
  */
  assert( sWBI.pWC->vmask==0 && pMaskSet->n==0 );
  for(ii=0; ii<pTabList->nSrc; ii++){
    createMask(pMaskSet, pTabList->a[ii].iCursor);
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( ALWAYS(pTabList->a[ii].pTab) && IsVirtual(pTabList->a[ii].pTab) ){
      sWBI.pWC->vmask |= ((Bitmask)1 << ii);
    }
#endif
  }
#ifndef NDEBUG
  {
    Bitmask toTheLeft = 0;
    for(ii=0; ii<pTabList->nSrc; ii++){
      Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
      assert( (m-1)==toTheLeft );







<
<
<
<
<





<


<
<
<
<
<







107847
107848
107849
107850
107851
107852
107853





107854
107855
107856
107857
107858

107859
107860





107861
107862
107863
107864
107865
107866
107867
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
  ** its Expr.iRightJoinTable value to find the bitmask of the right table
  ** of the join.  Subtracting one from the right table bitmask gives a
  ** bitmask for all tables to the left of the join.  Knowing the bitmask
  ** for all tables to the left of a left join is important.  Ticket #3015.
  **





  ** Note that bitmasks are created for all pTabList->nSrc tables in
  ** pTabList, not just the first nTabList tables.  nTabList is normally
  ** equal to pTabList->nSrc but might be shortened to 1 if the
  ** WHERE_ONETABLE_ONLY flag is set.
  */

  for(ii=0; ii<pTabList->nSrc; ii++){
    createMask(pMaskSet, pTabList->a[ii].iCursor);





  }
#ifndef NDEBUG
  {
    Bitmask toTheLeft = 0;
    for(ii=0; ii<pTabList->nSrc; ii++){
      Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
      assert( (m-1)==toTheLeft );
107480
107481
107482
107483
107484
107485
107486

107487
107488
107489
107490
107491
107492
107493
  for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */

    int nUnconstrained;         /* Number tables without INDEXED BY */
    Bitmask notIndexed;         /* Mask of tables that cannot use an index */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;
    WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));








>







107913
107914
107915
107916
107917
107918
107919
107920
107921
107922
107923
107924
107925
107926
107927
  for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */
    int ckOptimal;              /* Do the optimal scan check */
    int nUnconstrained;         /* Number tables without INDEXED BY */
    Bitmask notIndexed;         /* Mask of tables that cannot use an index */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;
    WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));

107514
107515
107516
107517
107518
107519
107520
107521
107522
107523
107524
107525
107526
107527
107528
107529
107530
107531
107532
107533
107534
107535
107536
107537
107538
107539






107540
107541
107542
107543
107544
107545
107546
107547
107548






















107549
107550
107551
107552
107553
107554
107555
    ** that do not use indices.  But this nRow reduction only happens if the
    ** table really is the innermost join.  
    **
    ** The second loop iteration is only performed if no optimal scan
    ** strategies were found by the first iteration. This second iteration
    ** is used to search for the lowest cost scan overall.
    **
    ** Previous versions of SQLite performed only the second iteration -
    ** the next outermost loop was always that with the lowest overall
    ** cost. However, this meant that SQLite could select the wrong plan
    ** for scripts such as the following:
    **   
    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);
    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** Since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    nUnconstrained = 0;
    notIndexed = 0;
    for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){






      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        int doNotReorder;    /* True if this table should not be reordered */
  
        doNotReorder =  (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          if( j==iFrom ) iFrom++;
          continue;






















        }
        sWBI.notReady = (isOptimal ? m : sWBI.notValid);
        if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("   === trying table %d (%s) with isOptimal=%d ===\n",
                    j, sWBI.pSrc->pTab->zName, isOptimal));
        assert( sWBI.pSrc->pTab );







|
<
<
|














|
>
>
>
>
>
>

<
<
<
<




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







107948
107949
107950
107951
107952
107953
107954
107955


107956
107957
107958
107959
107960
107961
107962
107963
107964
107965
107966
107967
107968
107969
107970
107971
107972
107973
107974
107975
107976
107977
107978




107979
107980
107981
107982
107983
107984
107985
107986
107987
107988
107989
107990
107991
107992
107993
107994
107995
107996
107997
107998
107999
108000
108001
108002
108003
108004
108005
108006
108007
108008
108009
108010
108011
    ** that do not use indices.  But this nRow reduction only happens if the
    ** table really is the innermost join.  
    **
    ** The second loop iteration is only performed if no optimal scan
    ** strategies were found by the first iteration. This second iteration
    ** is used to search for the lowest cost scan overall.
    **
    ** Without the optimal scan step (the first iteration) a suboptimal


    ** plan might be chosen for queries like this:
    **   
    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);
    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** Since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    nUnconstrained = 0;
    notIndexed = 0;

    /* The optimal scan check only occurs if there are two or more tables
    ** available to be reordered */
    if( iFrom==nTabList-1 ){
      ckOptimal = 0;  /* Common case of just one table in the FROM clause */
    }else{
      ckOptimal = -1;
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){




        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          if( j==iFrom ) iFrom++;
          continue;
        }
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break;
        if( ++ckOptimal ) break;
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
      }
    }
    assert( ckOptimal==0 || ckOptimal==1 );

    for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){
          /* This break and one like it in the ckOptimal computation loop
          ** above prevent table reordering across LEFT and CROSS JOINs.
          ** The LEFT JOIN case is necessary for correctness.  The prohibition
          ** against reordering across a CROSS JOIN is an SQLite feature that
          ** allows the developer to control table reordering */
          break;
        }
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          assert( j>iFrom );
          continue;
        }
        sWBI.notReady = (isOptimal ? m : sWBI.notValid);
        if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("   === trying table %d (%s) with isOptimal=%d ===\n",
                    j, sWBI.pSrc->pTab->zName, isOptimal));
        assert( sWBI.pSrc->pTab );
107571
107572
107573
107574
107575
107576
107577
107578
107579
107580
107581
107582
107583
107584
107585
107586
                  || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );

        if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
          notIndexed |= m;
        }
        if( isOptimal ){
          pWInfo->a[j].rOptCost = sWBI.cost.rCost;
        }else if( iFrom<nTabList-1 ){
          /* If two or more tables have nearly the same outer loop cost,
          ** very different inner loop (optimal) cost, we want to choose
          ** for the outer loop that table which benefits the least from
          ** being in the inner loop.  The following code scales the 
          ** outer loop cost estimate to accomplish that. */
          WHERETRACE(("   scaling cost from %.1f to %.1f\n",
                      sWBI.cost.rCost,
                      sWBI.cost.rCost/pWInfo->a[j].rOptCost));







|
|







108027
108028
108029
108030
108031
108032
108033
108034
108035
108036
108037
108038
108039
108040
108041
108042
                  || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );

        if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
          notIndexed |= m;
        }
        if( isOptimal ){
          pWInfo->a[j].rOptCost = sWBI.cost.rCost;
        }else if( ckOptimal ){
          /* If two or more tables have nearly the same outer loop cost, but
          ** very different inner loop (optimal) cost, we want to choose
          ** for the outer loop that table which benefits the least from
          ** being in the inner loop.  The following code scales the 
          ** outer loop cost estimate to accomplish that. */
          WHERETRACE(("   scaling cost from %.1f to %.1f\n",
                      sWBI.cost.rCost,
                      sWBI.cost.rCost/pWInfo->a[j].rOptCost));
107617
107618
107619
107620
107621
107622
107623
107624




107625
107626
107627
107628




107629
107630
107631
107632
107633
107634
107635
                      "       cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
                      j, sWBI.pSrc->pTab->zName,
                      sWBI.cost.rCost, sWBI.cost.plan.nRow,
                      sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));
          bestPlan = sWBI.cost;
          bestJ = j;
        }
        if( doNotReorder ) break;




      }
    }
    assert( bestJ>=0 );
    assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );




    WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
                "    cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
                bestJ, pTabList->a[bestJ].pTab->zName,
                pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
                bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );







|
>
>
>
>




>
>
>
>







108073
108074
108075
108076
108077
108078
108079
108080
108081
108082
108083
108084
108085
108086
108087
108088
108089
108090
108091
108092
108093
108094
108095
108096
108097
108098
108099
                      "       cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
                      j, sWBI.pSrc->pTab->zName,
                      sWBI.cost.rCost, sWBI.cost.plan.nRow,
                      sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));
          bestPlan = sWBI.cost;
          bestJ = j;
        }

        /* In a join like "w JOIN x LEFT JOIN y JOIN z"  make sure that
        ** table y (and not table z) is always the next inner loop inside
        ** of table x. */
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
      }
    }
    assert( bestJ>=0 );
    assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 );
    testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 );
    testcase( bestJ>iFrom && bestJ<nTabList-1
                          && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 );
    WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
                "    cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
                bestJ, pTabList->a[bestJ].pTab->zName,
                pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
                bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );
107873
107874
107875
107876
107877
107878
107879
107880
107881
107882
107883
107884
107885
107886
107887
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;







|







108337
108338
108339
108340
108341
108342
108343
108344
108345
108346
108347
108348
108349
108350
108351
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;
108181
108182
108183
108184
108185
108186
108187

108188
108189
108190
108191
108192
108193
108194
  sqlite3ParserTOKENTYPE yy0;
  struct LimitVal yy64;
  Expr* yy122;
  Select* yy159;
  IdList* yy180;
  struct {int value; int mask;} yy207;
  u8 yy258;

  struct LikeOp yy318;
  TriggerStep* yy327;
  ExprSpan yy342;
  SrcList* yy347;
  int yy392;
  struct TrigEvent yy410;
  ExprList* yy442;







>







108645
108646
108647
108648
108649
108650
108651
108652
108653
108654
108655
108656
108657
108658
108659
  sqlite3ParserTOKENTYPE yy0;
  struct LimitVal yy64;
  Expr* yy122;
  Select* yy159;
  IdList* yy180;
  struct {int value; int mask;} yy207;
  u8 yy258;
  u16 yy305;
  struct LikeOp yy318;
  TriggerStep* yy327;
  ExprSpan yy342;
  SrcList* yy347;
  int yy392;
  struct TrigEvent yy410;
  ExprList* yy442;
110131
110132
110133
110134
110135
110136
110137
110138
110139
110140
110141
110142
110143
110144
110145
110146
110147
110148
110149
110150
110151
110152
110153
110154
110155
110156
      case 31: /* temp ::= */ yytestcase(yyruleno==31);
      case 69: /* autoinc ::= */ yytestcase(yyruleno==69);
      case 82: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==82);
      case 84: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==84);
      case 86: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==86);
      case 98: /* defer_subclause_opt ::= */ yytestcase(yyruleno==98);
      case 109: /* ifexists ::= */ yytestcase(yyruleno==109);
      case 120: /* distinct ::= ALL */ yytestcase(yyruleno==120);
      case 121: /* distinct ::= */ yytestcase(yyruleno==121);
      case 221: /* between_op ::= BETWEEN */ yytestcase(yyruleno==221);
      case 224: /* in_op ::= IN */ yytestcase(yyruleno==224);
{yygotominor.yy392 = 0;}
        break;
      case 29: /* ifnotexists ::= IF NOT EXISTS */
      case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
      case 70: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==70);
      case 85: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==85);
      case 108: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==108);
      case 119: /* distinct ::= DISTINCT */ yytestcase(yyruleno==119);
      case 222: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==222);
      case 225: /* in_op ::= NOT IN */ yytestcase(yyruleno==225);
{yygotominor.yy392 = 1;}
        break;
      case 32: /* create_table_args ::= LP columnlist conslist_opt RP */
{
  sqlite3EndTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0);







<
<









<







110596
110597
110598
110599
110600
110601
110602


110603
110604
110605
110606
110607
110608
110609
110610
110611

110612
110613
110614
110615
110616
110617
110618
      case 31: /* temp ::= */ yytestcase(yyruleno==31);
      case 69: /* autoinc ::= */ yytestcase(yyruleno==69);
      case 82: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==82);
      case 84: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==84);
      case 86: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==86);
      case 98: /* defer_subclause_opt ::= */ yytestcase(yyruleno==98);
      case 109: /* ifexists ::= */ yytestcase(yyruleno==109);


      case 221: /* between_op ::= BETWEEN */ yytestcase(yyruleno==221);
      case 224: /* in_op ::= IN */ yytestcase(yyruleno==224);
{yygotominor.yy392 = 0;}
        break;
      case 29: /* ifnotexists ::= IF NOT EXISTS */
      case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
      case 70: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==70);
      case 85: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==85);
      case 108: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==108);

      case 222: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==222);
      case 225: /* in_op ::= NOT IN */ yytestcase(yyruleno==225);
{yygotominor.yy392 = 1;}
        break;
      case 32: /* create_table_args ::= LP columnlist conslist_opt RP */
{
  sqlite3EndTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0);
110382
110383
110384
110385
110386
110387
110388
110389
110390







110391
110392
110393
110394
110395
110396
110397
}
        break;
      case 116: /* multiselect_op ::= UNION ALL */
{yygotominor.yy392 = TK_ALL;}
        break;
      case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
  yygotominor.yy159 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy442,yymsp[-5].minor.yy347,yymsp[-4].minor.yy122,yymsp[-3].minor.yy442,yymsp[-2].minor.yy122,yymsp[-1].minor.yy442,yymsp[-7].minor.yy392,yymsp[0].minor.yy64.pLimit,yymsp[0].minor.yy64.pOffset);
}







        break;
      case 122: /* sclp ::= selcollist COMMA */
      case 246: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==246);
{yygotominor.yy442 = yymsp[-1].minor.yy442;}
        break;
      case 123: /* sclp ::= */
      case 151: /* orderby_opt ::= */ yytestcase(yyruleno==151);







|

>
>
>
>
>
>
>







110844
110845
110846
110847
110848
110849
110850
110851
110852
110853
110854
110855
110856
110857
110858
110859
110860
110861
110862
110863
110864
110865
110866
}
        break;
      case 116: /* multiselect_op ::= UNION ALL */
{yygotominor.yy392 = TK_ALL;}
        break;
      case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
  yygotominor.yy159 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy442,yymsp[-5].minor.yy347,yymsp[-4].minor.yy122,yymsp[-3].minor.yy442,yymsp[-2].minor.yy122,yymsp[-1].minor.yy442,yymsp[-7].minor.yy305,yymsp[0].minor.yy64.pLimit,yymsp[0].minor.yy64.pOffset);
}
        break;
      case 119: /* distinct ::= DISTINCT */
{yygotominor.yy305 = SF_Distinct;}
        break;
      case 120: /* distinct ::= ALL */
      case 121: /* distinct ::= */ yytestcase(yyruleno==121);
{yygotominor.yy305 = 0;}
        break;
      case 122: /* sclp ::= selcollist COMMA */
      case 246: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==246);
{yygotominor.yy442 = yymsp[-1].minor.yy442;}
        break;
      case 123: /* sclp ::= */
      case 151: /* orderby_opt ::= */ yytestcase(yyruleno==151);
110453
110454
110455
110456
110457
110458
110459










110460
110461
110462
110463
110464
110465
110466
110467
110468
110469
110470
    yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy159,yymsp[-1].minor.yy122,yymsp[0].minor.yy180);
  }
        break;
      case 136: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
{
    if( yymsp[-6].minor.yy347==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy122==0 && yymsp[0].minor.yy180==0 ){
      yygotominor.yy347 = yymsp[-4].minor.yy347;










    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy347);
      pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy347,0,0,0,0,0,0,0);
      yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy122,yymsp[0].minor.yy180);
    }
  }
        break;
      case 137: /* dbnm ::= */
      case 146: /* indexed_opt ::= */ yytestcase(yyruleno==146);
{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}







>
>
>
>
>
>
>
>
>
>



|







110922
110923
110924
110925
110926
110927
110928
110929
110930
110931
110932
110933
110934
110935
110936
110937
110938
110939
110940
110941
110942
110943
110944
110945
110946
110947
110948
110949
    yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy159,yymsp[-1].minor.yy122,yymsp[0].minor.yy180);
  }
        break;
      case 136: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
{
    if( yymsp[-6].minor.yy347==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy122==0 && yymsp[0].minor.yy180==0 ){
      yygotominor.yy347 = yymsp[-4].minor.yy347;
    }else if( yymsp[-4].minor.yy347->nSrc==1 ){
      yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy122,yymsp[0].minor.yy180);
      if( yygotominor.yy347 ){
        struct SrcList_item *pNew = &yygotominor.yy347->a[yygotominor.yy347->nSrc-1];
        struct SrcList_item *pOld = yymsp[-4].minor.yy347->a;
        pNew->zName = pOld->zName;
        pNew->zDatabase = pOld->zDatabase;
        pOld->zName = pOld->zDatabase = 0;
      }
      sqlite3SrcListDelete(pParse->db, yymsp[-4].minor.yy347);
    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy347);
      pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy347,0,0,0,0,SF_NestedFrom,0,0);
      yygotominor.yy347 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy347,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy122,yymsp[0].minor.yy180);
    }
  }
        break;
      case 137: /* dbnm ::= */
      case 146: /* indexed_opt ::= */ yytestcase(yyruleno==146);
{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
110689
110690
110691
110692
110693
110694
110695
110696
110697
110698
110699
110700
110701
110702
110703
      case 196: /* expr ::= ID LP distinct exprlist RP */
{
  if( yymsp[-1].minor.yy442 && yymsp[-1].minor.yy442->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
  }
  yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy442, &yymsp[-4].minor.yy0);
  spanSet(&yygotominor.yy342,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
  if( yymsp[-2].minor.yy392 && yygotominor.yy342.pExpr ){
    yygotominor.yy342.pExpr->flags |= EP_Distinct;
  }
}
        break;
      case 197: /* expr ::= ID LP STAR RP */
{
  yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);







|







111168
111169
111170
111171
111172
111173
111174
111175
111176
111177
111178
111179
111180
111181
111182
      case 196: /* expr ::= ID LP distinct exprlist RP */
{
  if( yymsp[-1].minor.yy442 && yymsp[-1].minor.yy442->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
  }
  yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy442, &yymsp[-4].minor.yy0);
  spanSet(&yygotominor.yy342,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
  if( yymsp[-2].minor.yy305 && yygotominor.yy342.pExpr ){
    yygotominor.yy342.pExpr->flags |= EP_Distinct;
  }
}
        break;
      case 197: /* expr ::= ID LP STAR RP */
{
  yygotominor.yy342.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
136336
136337
136338
136339
136340
136341
136342
136343

136344
136345
136346
136347
136348
136349
136350
136351
136352
136353
136354
136355


136356
136357
136358
136359
136360
136361
136362



136363
136364
136365
136366
136367
136368
136369
** This ensures that each node is stored on a single database page. If the 
** database page-size is so large that more than RTREE_MAXCELLS entries 
** would fit in a single node, use a smaller node-size.
*/
static int getNodeSize(
  sqlite3 *db,                    /* Database handle */
  Rtree *pRtree,                  /* Rtree handle */
  int isCreate                    /* True for xCreate, false for xConnect */

){
  int rc;
  char *zSql;
  if( isCreate ){
    int iPageSize = 0;
    zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
    rc = getIntFromStmt(db, zSql, &iPageSize);
    if( rc==SQLITE_OK ){
      pRtree->iNodeSize = iPageSize-64;
      if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
        pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
      }


    }
  }else{
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);



  }

  sqlite3_free(zSql);
  return rc;
}

/* 







|
>












>
>







>
>
>







136815
136816
136817
136818
136819
136820
136821
136822
136823
136824
136825
136826
136827
136828
136829
136830
136831
136832
136833
136834
136835
136836
136837
136838
136839
136840
136841
136842
136843
136844
136845
136846
136847
136848
136849
136850
136851
136852
136853
136854
** This ensures that each node is stored on a single database page. If the 
** database page-size is so large that more than RTREE_MAXCELLS entries 
** would fit in a single node, use a smaller node-size.
*/
static int getNodeSize(
  sqlite3 *db,                    /* Database handle */
  Rtree *pRtree,                  /* Rtree handle */
  int isCreate,                   /* True for xCreate, false for xConnect */
  char **pzErr                    /* OUT: Error message, if any */
){
  int rc;
  char *zSql;
  if( isCreate ){
    int iPageSize = 0;
    zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
    rc = getIntFromStmt(db, zSql, &iPageSize);
    if( rc==SQLITE_OK ){
      pRtree->iNodeSize = iPageSize-64;
      if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
        pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
      }
    }else{
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }
  }else{
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
    if( rc!=SQLITE_OK ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }
  }

  sqlite3_free(zSql);
  return rc;
}

/* 
136419
136420
136421
136422
136423
136424
136425
136426
136427
136428
136429
136430
136431
136432
136433
  pRtree->nDim = (argc-4)/2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
  pRtree->eCoordType = eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate);

  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){







|







136904
136905
136906
136907
136908
136909
136910
136911
136912
136913
136914
136915
136916
136917
136918
  pRtree->nDim = (argc-4)/2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
  pRtree->eCoordType = eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);

  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
Changes to SQLite.Interop/src/core/sqlite3.h.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.15.2"
#define SQLITE_VERSION_NUMBER 3007015
#define SQLITE_SOURCE_ID      "2013-01-09 11:53:05 c0e09560d26f0a6456be9dd3447f5311eb4f238f"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.16"
#define SQLITE_VERSION_NUMBER 3007016
#define SQLITE_SOURCE_ID      "2013-02-15 04:21:01 843e1c543aabab8cd62f28742d5818887d36bcb7"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
480
481
482
483
484
485
486









487
488
489
490
491
492
493
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))










/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>
>
>
>
>
>
>
>
>







480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
#define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
#define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
#define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
#define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
#define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
#define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
Changes to SQLite.Interop/src/core/sqlite3ext.h.
232
233
234
235
236
237
238














239
240
241
242
243
244
245
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);














};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file







>
>
>
>
>
>
>
>
>
>
>
>
>
>







232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);
  /* Version 3.7.16 and later */
  int (*close_v2)(sqlite3*);
  const char *(*db_filename)(sqlite3*,const char*);
  int (*db_readonly)(sqlite3*,const char*);
  int (*db_release_memory)(sqlite3*);
  const char *(*errstr)(int);
  int (*stmt_busy)(sqlite3_stmt*);
  int (*stmt_readonly)(sqlite3_stmt*);
  int (*stricmp)(const char*,const char*);
  int (*uri_boolean)(const char*,const char*,int);
  sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
  const char *(*uri_parameter)(const char*,const char*);
  char *(*vsnprintf)(int,char*,const char*,va_list);
  int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
435
436
437
438
439
440
441














442
443
444
445
446
447
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict














#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */







>
>
>
>
>
>
>
>
>
>
>
>
>
>






449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict
/* Version 3.7.16 and later */
#define sqlite3_close_v2               sqlite3_api->close_v2
#define sqlite3_db_filename            sqlite3_api->db_filename
#define sqlite3_db_readonly            sqlite3_api->db_readonly
#define sqlite3_db_release_memory      sqlite3_api->db_release_memory
#define sqlite3_errstr                 sqlite3_api->errstr
#define sqlite3_stmt_busy              sqlite3_api->stmt_busy
#define sqlite3_stmt_readonly          sqlite3_api->stmt_readonly
#define sqlite3_stricmp                sqlite3_api->stricmp
#define sqlite3_uri_boolean            sqlite3_api->uri_boolean
#define sqlite3_uri_int64              sqlite3_api->uri_int64
#define sqlite3_uri_parameter          sqlite3_api->uri_parameter
#define sqlite3_uri_vsnprintf          sqlite3_api->vsnprintf
#define sqlite3_wal_checkpoint_v2      sqlite3_api->wal_checkpoint_v2
#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */