Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Bump all versions to 1.0.92.0. Update SQLite core library to the latest trunk code. Verify all version numbers in the 'testlinq' EF6 configuration files. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
a1cfefb6f2fe2982129d970702939d07 |
User & Date: | mistachkin 2014-03-06 02:29:33.774 |
Context
2014-03-06
| ||
06:49 | For the NuGet packages supporting Entity Framework 6, only list the EF6 DbProviderFactory in the config file. check-in: bb6a9292c1 user: mistachkin tags: trunk | |
02:29 | Bump all versions to 1.0.92.0. Update SQLite core library to the latest trunk code. Verify all version numbers in the 'testlinq' EF6 configuration files. check-in: a1cfefb6f2 user: mistachkin tags: trunk | |
2014-03-02
| ||
12:33 | Update 32-bit only Eagle shell executable. check-in: d6cb0e33bf user: mistachkin tags: trunk | |
Changes
Changes to Doc/Extra/Provider/dbfactorysupport.html.
︙ | ︙ | |||
81 82 83 84 85 86 87 | <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite"/> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, | | | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite"/> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139"/> </DbProviderFactories> </system.data> </configuration> </pre> </div> <p> |
︙ | ︙ |
Changes to Doc/Extra/Provider/version.html.
︙ | ︙ | |||
39 40 41 42 43 44 45 46 47 48 49 50 51 52 | </td> </tr> </table> </div> <div id="mainSection"> <div id="mainBody"> <h1 class="heading">Version History</h1> <p><b>1.0.91.0 - February 12, 2014</b></p> <ul> <li>Updated to <a href="http://www.sqlite.org/releaselog/3_8_3_1.html">SQLite 3.8.3.1</a>.</li> <li>Refresh all included SQLite core library documentation (e.g. SQL syntax).</li> <li>Add support for <a href="http://entityframework.codeplex.com/">Entity Framework 6</a>.</li> <li>Add support for per-connection mappings between type names and DbType values. Pursuant to <a href="http://system.data.sqlite.org/index.html/info/e87af1d06a">[e87af1d06a]</a>.</li> <li>Modify the namespace used for all internal classes in the System.Data.SQLite.Linq assembly. <b>** Potentially Incompatible Change **</b></li> | > > > > > > | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | </td> </tr> </table> </div> <div id="mainSection"> <div id="mainBody"> <h1 class="heading">Version History</h1> <p><b>1.0.92.0 - March XX, 2014 <font color="red">(release scheduled)</font></b></p> <ul> <li>Updated to <a href="http://www.sqlite.org/src/info/trunk">SQLite 3.8.4</a>.</li> <li>When the TraceWarning connection flag is set, issue warnings about possibly malformed UNC paths. Pursuant to <a href="http://system.data.sqlite.org/index.html/info/283344397b">[283344397b]</a>.</li> <li>Enhancements to the NuGet packages, including the new "modular" packages.</li> </ul> <p><b>1.0.91.0 - February 12, 2014</b></p> <ul> <li>Updated to <a href="http://www.sqlite.org/releaselog/3_8_3_1.html">SQLite 3.8.3.1</a>.</li> <li>Refresh all included SQLite core library documentation (e.g. SQL syntax).</li> <li>Add support for <a href="http://entityframework.codeplex.com/">Entity Framework 6</a>.</li> <li>Add support for per-connection mappings between type names and DbType values. Pursuant to <a href="http://system.data.sqlite.org/index.html/info/e87af1d06a">[e87af1d06a]</a>.</li> <li>Modify the namespace used for all internal classes in the System.Data.SQLite.Linq assembly. <b>** Potentially Incompatible Change **</b></li> |
︙ | ︙ |
Changes to Doc/Extra/Provider/welcome.html.
︙ | ︙ | |||
156 157 158 159 160 161 162 | <font color="red"> Itanium processor support not currently included. </font> </p> <h1 class="heading">Distributing the Binaries (Compact Framework)</h1> <p>Both the <b>System.Data.SQLite.DLL </b>and <b>SQLite.Interop.XXX.DLL</b> files must be deployed on the Compact Framework. The XXX is the build number of | | | 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | <font color="red"> Itanium processor support not currently included. </font> </p> <h1 class="heading">Distributing the Binaries (Compact Framework)</h1> <p>Both the <b>System.Data.SQLite.DLL </b>and <b>SQLite.Interop.XXX.DLL</b> files must be deployed on the Compact Framework. The XXX is the build number of the System.Data.SQLite library (e.g. "092"). The <b>SQLite.Interop.XXX.DLL</b> file is a fully native assembly compiled for the ARM processor, and System.Data.SQLite is the fully-managed Compact Framework assembly.</p> <hr /> <div id="footer"> <p> <a href="mailto:sqlite-users@sqlite.org?subject=SQLite.NET%20Class%20Library%20Documentation%20Feedback:%20Welcome"> |
︙ | ︙ |
Changes to NuGet/SQLite.Beta.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Beta.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.Beta</id> <title>System.Data.SQLite (x86/x64) Beta</title> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Beta.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.Beta</id> <title>System.Data.SQLite (x86/x64) Beta</title> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>The official SQLite database engine for both x86 and x64 along with the ADO.NET provider.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> |
︙ | ︙ |
Changes to NuGet/SQLite.Core.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Core.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.Core</id> <title>System.Data.SQLite Core (x86/x64)</title> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Core.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.Core</id> <title>System.Data.SQLite Core (x86/x64)</title> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>The official SQLite database engine for both x86 and x64 along with the ADO.NET provider.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> |
︙ | ︙ |
Changes to NuGet/SQLite.EF6.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.EF6.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.EF6</id> <title>System.Data.SQLite EF6 (x86/x64)</title> | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.EF6.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.EF6</id> <title>System.Data.SQLite EF6 (x86/x64)</title> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>Support for Entity Framework 6 using System.Data.SQLite.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> <copyright>Public Domain</copyright> <dependencies> <group targetFramework="net40"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> <group targetFramework="net45"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> <group targetFramework="net451"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> <group targetFramework="net40"> <dependency id="EntityFramework" version="6.0.0.0" /> </group> <group targetFramework="net45"> <dependency id="EntityFramework" version="6.0.0.0" /> </group> |
︙ | ︙ |
Changes to NuGet/SQLite.Linq.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Linq.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.Linq</id> <title>System.Data.SQLite LINQ (x86/x64)</title> | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Linq.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.Linq</id> <title>System.Data.SQLite LINQ (x86/x64)</title> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>Support for LINQ using System.Data.SQLite.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> <copyright>Public Domain</copyright> <dependencies> <group targetFramework="net20"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> <group targetFramework="net40"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> <group targetFramework="net45"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> <group targetFramework="net451"> <dependency id="System.Data.SQLite.Core" version="1.0.92.0" /> </group> </dependencies> </metadata> <files> <file src="..\bin\2008\Release\bin\System.Data.SQLite.Linq.dll" target="lib\net20" /> <file src="..\bin\2010\Release\bin\System.Data.SQLite.Linq.dll" target="lib\net40" /> <file src="..\bin\2012\Release\bin\System.Data.SQLite.Linq.dll" target="lib\net45" /> |
︙ | ︙ |
Changes to NuGet/SQLite.MSIL.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.MSIL.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.MSIL</id> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.MSIL.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.MSIL</id> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>An ADO.NET provider for SQLite (managed-only).</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> |
︙ | ︙ |
Changes to NuGet/SQLite.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite</id> <title>System.Data.SQLite (x86/x64)</title> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite</id> <title>System.Data.SQLite (x86/x64)</title> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>The official SQLite database engine for both x86 and x64 along with the ADO.NET provider. This package includes support for LINQ and Entity Framework 6.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> |
︙ | ︙ |
Changes to NuGet/SQLite.x64.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.x64.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.x64</id> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.x64.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.x64</id> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>This is a legacy package; if possible, please use either the "System.Data.SQLite" or "System.Data.SQLite.Core" package instead. The official SQLite database engine combined with a complete ADO.NET provider all rolled into a single mixed-mode assembly for x64.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> |
︙ | ︙ |
Changes to NuGet/SQLite.x86.nuspec.
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.x86.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.x86</id> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.x86.nuspec - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <package> <metadata> <id>System.Data.SQLite.x86</id> <version>1.0.92.0</version> <authors>SQLite Development Team</authors> <description>This is a legacy package; if possible, please use either the "System.Data.SQLite" or "System.Data.SQLite.Core" package instead. The official SQLite database engine combined with a complete ADO.NET provider all rolled into a single mixed-mode assembly for x86.</description> <language>en-US</language> <projectUrl>http://system.data.sqlite.org/</projectUrl> <iconUrl>http://system.data.sqlite.org/images/sqlite32.png</iconUrl> <licenseUrl>http://www.sqlite.org/copyright.html</licenseUrl> <tags>sqlite database ado.net provider interop</tags> |
︙ | ︙ |
Changes to SQLite.Designer/AssemblyInfo.cs.
︙ | ︙ | |||
39 40 41 42 43 44 45 | // Major Version // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Revision and Build Numbers // by using the '*' as shown below: | | | | 39 40 41 42 43 44 45 46 47 | // Major Version // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Revision and Build Numbers // by using the '*' as shown below: [assembly: AssemblyVersion("1.0.92.0")] [assembly: AssemblyFileVersion("1.0.92.0")] |
Changes to SQLite.Designer/source.extension.vsixmanifest.
1 2 3 4 5 | <?xml version="1.0" encoding="utf-8"?> <Vsix Version="1.0.0" xmlns="http://schemas.microsoft.com/developer/vsx-schema/2010"> <Identifier Id="67b5f3a9-cde1-430f-a12b-af95bb064851"> <Name>System.Data.SQLite Designer</Name> <Author>http://system.data.sqlite.org/</Author> | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0" encoding="utf-8"?> <Vsix Version="1.0.0" xmlns="http://schemas.microsoft.com/developer/vsx-schema/2010"> <Identifier Id="67b5f3a9-cde1-430f-a12b-af95bb064851"> <Name>System.Data.SQLite Designer</Name> <Author>http://system.data.sqlite.org/</Author> <Version>1.0.92.0</Version> <Description>ADO.NET Data Designer for SQLite</Description> <Locale>1033</Locale> <InstalledByMsi>false</InstalledByMsi> <SupportedProducts> <VisualStudio Version="10.0"> <Edition>Pro</Edition> </VisualStudio> |
︙ | ︙ |
Changes to SQLite.Interop/props/SQLite.Interop.2005.vsprops.
︙ | ︙ | |||
15 16 17 18 19 20 21 | <UserMacro Name="ConfigurationYear" Value="2005" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_BUILD_NUMBER" | | | | | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | <UserMacro Name="ConfigurationYear" Value="2005" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_BUILD_NUMBER" Value="092" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_LINKER_VERSION" Value="1.0" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_MANIFEST_VERSION" Value="1.0.92.0" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_RC_VERSION" Value="1,0,92,0" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_INCLUDE_DIRECTORIES" Value="src\core" PerformEnvironmentSet="true" /> |
︙ | ︙ |
Changes to SQLite.Interop/props/SQLite.Interop.2008.vsprops.
︙ | ︙ | |||
15 16 17 18 19 20 21 | <UserMacro Name="ConfigurationYear" Value="2008" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_BUILD_NUMBER" | | | | | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | <UserMacro Name="ConfigurationYear" Value="2008" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_BUILD_NUMBER" Value="092" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_LINKER_VERSION" Value="1.0" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_MANIFEST_VERSION" Value="1.0.92.0" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_RC_VERSION" Value="1,0,92,0" PerformEnvironmentSet="true" /> <UserMacro Name="INTEROP_INCLUDE_DIRECTORIES" Value="src\core" PerformEnvironmentSet="true" /> |
︙ | ︙ |
Changes to SQLite.Interop/props/SQLite.Interop.2010.props.
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Interop.2010.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup Label="UserMacros"> <ConfigurationYear>2010</ConfigurationYear> | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Interop.2010.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup Label="UserMacros"> <ConfigurationYear>2010</ConfigurationYear> <INTEROP_BUILD_NUMBER>092</INTEROP_BUILD_NUMBER> <INTEROP_LINKER_VERSION>1.0</INTEROP_LINKER_VERSION> <INTEROP_MANIFEST_VERSION>1.0.92.0</INTEROP_MANIFEST_VERSION> <INTEROP_RC_VERSION>1,0,92,0</INTEROP_RC_VERSION> <INTEROP_INCLUDE_DIRECTORIES>src\core</INTEROP_INCLUDE_DIRECTORIES> <INTEROP_LIBRARY_DIRECTORIES></INTEROP_LIBRARY_DIRECTORIES> <INTEROP_LIBRARY_DEPENDENCIES></INTEROP_LIBRARY_DEPENDENCIES> <INTEROP_DEBUG_DEFINES>INTEROP_DEBUG=0x31F;INTEROP_LOG=1;INTEROP_TEST_EXTENSION=1</INTEROP_DEBUG_DEFINES> <INTEROP_EXTRA_DEFINES>INTEROP_EXTENSION_FUNCTIONS=1;INTEROP_CODEC=1;INTEROP_VIRTUAL_TABLE=1;INTEROP_PERCENTILE_EXTENSION=1;INTEROP_TOTYPE_EXTENSION=1;INTEROP_REGEXP_EXTENSION=1</INTEROP_EXTRA_DEFINES> <INTEROP_ASSEMBLY_RESOURCES>/ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteCommand.bmp,System.Data.SQLite.SQLiteCommand.bmp /ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteConnection.bmp,System.Data.SQLite.SQLiteConnection.bmp /ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteDataAdapter.bmp,System.Data.SQLite.SQLiteDataAdapter.bmp</INTEROP_ASSEMBLY_RESOURCES> <INTEROP_KEY_FILE>$(ProjectDir)..\System.Data.SQLite\System.Data.SQLite.snk</INTEROP_KEY_FILE> |
︙ | ︙ |
Changes to SQLite.Interop/props/SQLite.Interop.2012.props.
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Interop.2012.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup Label="UserMacros"> <ConfigurationYear>2012</ConfigurationYear> | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Interop.2012.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup Label="UserMacros"> <ConfigurationYear>2012</ConfigurationYear> <INTEROP_BUILD_NUMBER>092</INTEROP_BUILD_NUMBER> <INTEROP_LINKER_VERSION>1.0</INTEROP_LINKER_VERSION> <INTEROP_MANIFEST_VERSION>1.0.92.0</INTEROP_MANIFEST_VERSION> <INTEROP_RC_VERSION>1,0,92,0</INTEROP_RC_VERSION> <INTEROP_INCLUDE_DIRECTORIES>src\core</INTEROP_INCLUDE_DIRECTORIES> <INTEROP_LIBRARY_DIRECTORIES></INTEROP_LIBRARY_DIRECTORIES> <INTEROP_LIBRARY_DEPENDENCIES></INTEROP_LIBRARY_DEPENDENCIES> <INTEROP_DEBUG_DEFINES>INTEROP_DEBUG=0x31F;INTEROP_LOG=1;INTEROP_TEST_EXTENSION=1</INTEROP_DEBUG_DEFINES> <INTEROP_EXTRA_DEFINES>INTEROP_EXTENSION_FUNCTIONS=1;INTEROP_CODEC=1;INTEROP_VIRTUAL_TABLE=1;INTEROP_PERCENTILE_EXTENSION=1;INTEROP_TOTYPE_EXTENSION=1;INTEROP_REGEXP_EXTENSION=1</INTEROP_EXTRA_DEFINES> <INTEROP_ASSEMBLY_RESOURCES>/ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteCommand.bmp,System.Data.SQLite.SQLiteCommand.bmp /ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteConnection.bmp,System.Data.SQLite.SQLiteConnection.bmp /ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteDataAdapter.bmp,System.Data.SQLite.SQLiteDataAdapter.bmp</INTEROP_ASSEMBLY_RESOURCES> <INTEROP_KEY_FILE>$(ProjectDir)..\System.Data.SQLite\System.Data.SQLite.snk</INTEROP_KEY_FILE> |
︙ | ︙ |
Changes to SQLite.Interop/props/SQLite.Interop.2013.props.
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Interop.2013.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="12.0"> <PropertyGroup Label="UserMacros"> <ConfigurationYear>2013</ConfigurationYear> | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | <?xml version="1.0" encoding="utf-8"?> <!-- * * SQLite.Interop.2013.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="12.0"> <PropertyGroup Label="UserMacros"> <ConfigurationYear>2013</ConfigurationYear> <INTEROP_BUILD_NUMBER>092</INTEROP_BUILD_NUMBER> <INTEROP_LINKER_VERSION>1.0</INTEROP_LINKER_VERSION> <INTEROP_MANIFEST_VERSION>1.0.92.0</INTEROP_MANIFEST_VERSION> <INTEROP_RC_VERSION>1,0,92,0</INTEROP_RC_VERSION> <INTEROP_INCLUDE_DIRECTORIES>src\core</INTEROP_INCLUDE_DIRECTORIES> <INTEROP_LIBRARY_DIRECTORIES></INTEROP_LIBRARY_DIRECTORIES> <INTEROP_LIBRARY_DEPENDENCIES></INTEROP_LIBRARY_DEPENDENCIES> <INTEROP_DEBUG_DEFINES>INTEROP_DEBUG=0x31F;INTEROP_LOG=1;INTEROP_TEST_EXTENSION=1</INTEROP_DEBUG_DEFINES> <INTEROP_EXTRA_DEFINES>INTEROP_EXTENSION_FUNCTIONS=1;INTEROP_CODEC=1;INTEROP_VIRTUAL_TABLE=1;INTEROP_PERCENTILE_EXTENSION=1;INTEROP_TOTYPE_EXTENSION=1;INTEROP_REGEXP_EXTENSION=1</INTEROP_EXTRA_DEFINES> <INTEROP_ASSEMBLY_RESOURCES>/ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteCommand.bmp,System.Data.SQLite.SQLiteCommand.bmp /ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteConnection.bmp,System.Data.SQLite.SQLiteConnection.bmp /ASSEMBLYRESOURCE:..\System.Data.SQLite\SQLiteDataAdapter.bmp,System.Data.SQLite.SQLiteDataAdapter.bmp</INTEROP_ASSEMBLY_RESOURCES> <INTEROP_KEY_FILE>$(ProjectDir)..\System.Data.SQLite\System.Data.SQLite.snk</INTEROP_KEY_FILE> |
︙ | ︙ |
Changes to SQLite.Interop/props/sqlite3.props.
1 2 3 4 5 6 7 8 9 10 11 | <?xml version="1.0" encoding="utf-8"?> <!-- * * sqlite3.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup Label="UserMacros"> | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | <?xml version="1.0" encoding="utf-8"?> <!-- * * sqlite3.props - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! * --> <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup Label="UserMacros"> <SQLITE_MANIFEST_VERSION>3.8.4</SQLITE_MANIFEST_VERSION> <SQLITE_RC_VERSION>3,8,4</SQLITE_RC_VERSION> <SQLITE_COMMON_DEFINES>_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT4=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1;SQLITE_ENABLE_MEMORY_MANAGEMENT=1</SQLITE_COMMON_DEFINES> <SQLITE_EXTRA_DEFINES>SQLITE_HAS_CODEC=1</SQLITE_EXTRA_DEFINES> <SQLITE_WINCE_200X_DEFINES>SQLITE_OMIT_WAL=1</SQLITE_WINCE_200X_DEFINES> <SQLITE_WINCE_2013_DEFINES>HAVE_ERRNO_H=1;SQLITE_MSVC_LOCALTIME_API=1</SQLITE_WINCE_2013_DEFINES> <SQLITE_DEBUG_DEFINES>SQLITE_DEBUG=1;SQLITE_MEMDEBUG=1;SQLITE_ENABLE_EXPENSIVE_ASSERT=1</SQLITE_DEBUG_DEFINES> <SQLITE_RELEASE_DEFINES>SQLITE_WIN32_MALLOC=1</SQLITE_RELEASE_DEFINES> <SQLITE_DISABLE_WARNINGS>4055;4100;4127;4146;4210;4232;4244;4245;4267;4306;4389;4701;4703;4706</SQLITE_DISABLE_WARNINGS> |
︙ | ︙ |
Changes to SQLite.Interop/props/sqlite3.vsprops.
︙ | ︙ | |||
10 11 12 13 14 15 16 | <VisualStudioPropertySheet ProjectType="Visual C++" Version="8.00" Name="sqlite3" > <UserMacro Name="SQLITE_MANIFEST_VERSION" | | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | <VisualStudioPropertySheet ProjectType="Visual C++" Version="8.00" Name="sqlite3" > <UserMacro Name="SQLITE_MANIFEST_VERSION" Value="3.8.4" PerformEnvironmentSet="true" /> <UserMacro Name="SQLITE_RC_VERSION" Value="3,8,4" PerformEnvironmentSet="true" /> <UserMacro Name="SQLITE_COMMON_DEFINES" Value="_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT4=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1;SQLITE_ENABLE_MEMORY_MANAGEMENT=1" PerformEnvironmentSet="true" /> |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.c.
1 2 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite | | | 1 2 3 4 5 6 7 8 9 10 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.8.4. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other |
︙ | ︙ | |||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 | #define SQLITE_AMALGAMATION 1 #ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif #ifndef SQLITE_API # define SQLITE_API #endif /************** Begin file sqlite3.h *****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | #define SQLITE_AMALGAMATION 1 #ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif #ifndef SQLITE_API # define SQLITE_API #endif /************** Begin file sqliteInt.h ***************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any ** system #includes. Hence, this block of code must be the very first ** code in all source files. ** ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch ** on the compiler command line. This is necessary if you are compiling ** on a recent machine (ex: Red Hat 7.2) but you want your code to work ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 ** without this option, LFS is enable. But LFS does not exist in the kernel ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary ** portability you should omit LFS. ** ** The previous paragraph was written in 2005. (This paragraph is written ** on 2008-11-28.) These days, all Linux kernels support large files, so ** you should probably leave LFS enabled. But some embedded platforms might ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. ** ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* ** For MinGW, check to see if we can include the header file containing its ** version information, among other things. Normally, this internal MinGW ** header file would [only] be included automatically by other MinGW header ** files; however, the contained version information is now required by this ** header file to work around binary compatibility issues (see below) and ** this is the only known way to reliably obtain it. This entire #if block ** would be completely unnecessary if there was any other way of detecting ** MinGW via their preprocessor (e.g. if they customized their GCC to define ** some MinGW-specific macros). When compiling for MinGW, either the ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be ** defined; otherwise, detection of conditions specific to MinGW will be ** disabled. */ #if defined(_HAVE_MINGW_H) # include "mingw.h" #elif defined(_HAVE__MINGW_H) # include "_mingw.h" #endif /* ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T ** define is required to maintain binary compatibility with the MSVC runtime ** library in use (e.g. for Windows XP). */ #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ defined(_WIN32) && !defined(_WIN64) && \ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ defined(__MSVCRT__) # define _USE_32BIT_TIME_T #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for ** MinGW. */ /************** Include sqlite3.h in the middle of sqliteInt.h ***************/ /************** Begin file sqlite3.h *****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** |
︙ | ︙ | |||
131 132 133 134 135 136 137 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.4" #define SQLITE_VERSION_NUMBER 3008004 #define SQLITE_SOURCE_ID "2014-03-06 00:30:27 29b0a4f158785449b6f3da6fcceeb63442c9711c" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
6146 6147 6148 6149 6150 6151 6152 | #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 | > | | 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 | #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_LAST 21 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for |
︙ | ︙ | |||
7409 7410 7411 7412 7413 7414 7415 | } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE3RTREE_H_ */ /************** End of sqlite3.h *********************************************/ | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 | } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE3RTREE_H_ */ /************** End of sqlite3.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #ifdef _HAVE_SQLITE_CONFIG_H #include "config.h" |
︙ | ︙ | |||
8839 8840 8841 8842 8843 8844 8845 | SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); | < < | 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 | SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); |
︙ | ︙ | |||
8980 8981 8982 8983 8984 8985 8986 | SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE | | > > > | 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 | SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE u32 cnt; /* Number of times this instruction was executed */ u64 cycles; /* Total time spent executing this instruction */ #endif #ifdef SQLITE_VDBE_COVERAGE int iSrcLine; /* Source-code line that generated this opcode */ #endif }; typedef struct VdbeOp VdbeOp; /* ** A sub-routine used to implement a trigger program. */ |
︙ | ︙ | |||
9092 9093 9094 9095 9096 9097 9098 | #define OP_Vacuum 13 #define OP_VFilter 14 /* synopsis: iPlan=r[P3] zPlan='P4' */ #define OP_VUpdate 15 /* synopsis: data=r[P3@P2] */ #define OP_Goto 16 #define OP_Gosub 17 #define OP_Return 18 #define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ | > > | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | | | | | | | | < < > > | < < | | > > | | | | | | | | | | | | > > | | | | | | | | | | | | | | | | | | | < < < < > > > > | | | | | < < < < > > > > | | | | | | | | | | | | | | | | | | | | | | 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 | #define OP_Vacuum 13 #define OP_VFilter 14 /* synopsis: iPlan=r[P3] zPlan='P4' */ #define OP_VUpdate 15 /* synopsis: data=r[P3@P2] */ #define OP_Goto 16 #define OP_Gosub 17 #define OP_Return 18 #define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ #define OP_InitCoroutine 20 #define OP_EndCoroutine 21 #define OP_Yield 22 #define OP_HaltIfNull 23 /* synopsis: if r[P3]=null halt */ #define OP_Halt 24 #define OP_Integer 25 /* synopsis: r[P2]=P1 */ #define OP_Int64 26 /* synopsis: r[P2]=P4 */ #define OP_String 27 /* synopsis: r[P2]='P4' (len=P1) */ #define OP_Null 28 /* synopsis: r[P2..P3]=NULL */ #define OP_SoftNull 29 /* synopsis: r[P1]=NULL */ #define OP_Blob 30 /* synopsis: r[P2]=P4 (len=P1) */ #define OP_Variable 31 /* synopsis: r[P2]=parameter(P1,P4) */ #define OP_Move 32 /* synopsis: r[P2@P3]=r[P1@P3] */ #define OP_Copy 33 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */ #define OP_SCopy 34 /* synopsis: r[P2]=r[P1] */ #define OP_ResultRow 35 /* synopsis: output=r[P1@P2] */ #define OP_CollSeq 36 #define OP_AddImm 37 /* synopsis: r[P1]=r[P1]+P2 */ #define OP_MustBeInt 38 #define OP_RealAffinity 39 #define OP_Permutation 40 #define OP_Compare 41 #define OP_Jump 42 #define OP_Once 43 #define OP_If 44 #define OP_IfNot 45 #define OP_Column 46 /* synopsis: r[P3]=PX */ #define OP_Affinity 47 /* synopsis: affinity(r[P1@P2]) */ #define OP_MakeRecord 48 /* synopsis: r[P3]=mkrec(r[P1@P2]) */ #define OP_Count 49 /* synopsis: r[P2]=count() */ #define OP_ReadCookie 50 #define OP_SetCookie 51 #define OP_OpenRead 52 /* synopsis: root=P2 iDb=P3 */ #define OP_OpenWrite 53 /* synopsis: root=P2 iDb=P3 */ #define OP_OpenAutoindex 54 /* synopsis: nColumn=P2 */ #define OP_OpenEphemeral 55 /* synopsis: nColumn=P2 */ #define OP_SorterOpen 56 #define OP_OpenPseudo 57 /* synopsis: P3 columns in r[P2] */ #define OP_Close 58 #define OP_SeekLT 59 #define OP_SeekLE 60 #define OP_SeekGE 61 #define OP_SeekGT 62 #define OP_Seek 63 /* synopsis: intkey=r[P2] */ #define OP_NoConflict 64 /* synopsis: key=r[P3@P4] */ #define OP_NotFound 65 /* synopsis: key=r[P3@P4] */ #define OP_Found 66 /* synopsis: key=r[P3@P4] */ #define OP_NotExists 67 /* synopsis: intkey=r[P3] */ #define OP_Sequence 68 /* synopsis: r[P2]=rowid */ #define OP_NewRowid 69 /* synopsis: r[P2]=rowid */ #define OP_Insert 70 /* synopsis: intkey=r[P3] data=r[P2] */ #define OP_Or 71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */ #define OP_And 72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */ #define OP_InsertInt 73 /* synopsis: intkey=P3 data=r[P2] */ #define OP_Delete 74 #define OP_ResetCount 75 #define OP_IsNull 76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */ #define OP_NotNull 77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */ #define OP_Ne 78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */ #define OP_Eq 79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */ #define OP_Gt 80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */ #define OP_Le 81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */ #define OP_Lt 82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */ #define OP_Ge 83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */ #define OP_SorterCompare 84 /* synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 */ #define OP_BitAnd 85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */ #define OP_BitOr 86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */ #define OP_ShiftLeft 87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */ #define OP_ShiftRight 88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */ #define OP_Add 89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */ #define OP_Subtract 90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */ #define OP_Multiply 91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */ #define OP_Divide 92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */ #define OP_Remainder 93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */ #define OP_Concat 94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */ #define OP_SorterData 95 /* synopsis: r[P2]=data */ #define OP_BitNot 96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */ #define OP_String8 97 /* same as TK_STRING, synopsis: r[P2]='P4' */ #define OP_RowKey 98 /* synopsis: r[P2]=key */ #define OP_RowData 99 /* synopsis: r[P2]=data */ #define OP_Rowid 100 /* synopsis: r[P2]=rowid */ #define OP_NullRow 101 #define OP_Last 102 #define OP_SorterSort 103 #define OP_Sort 104 #define OP_Rewind 105 #define OP_SorterInsert 106 #define OP_IdxInsert 107 /* synopsis: key=r[P2] */ #define OP_IdxDelete 108 /* synopsis: key=r[P2@P3] */ #define OP_IdxRowid 109 /* synopsis: r[P2]=rowid */ #define OP_IdxLE 110 /* synopsis: key=r[P3@P4] */ #define OP_IdxGT 111 /* synopsis: key=r[P3@P4] */ #define OP_IdxLT 112 /* synopsis: key=r[P3@P4] */ #define OP_IdxGE 113 /* synopsis: key=r[P3@P4] */ #define OP_Destroy 114 #define OP_Clear 115 #define OP_CreateIndex 116 /* synopsis: r[P2]=root iDb=P1 */ #define OP_CreateTable 117 /* synopsis: r[P2]=root iDb=P1 */ #define OP_ParseSchema 118 #define OP_LoadAnalysis 119 #define OP_DropTable 120 #define OP_DropIndex 121 #define OP_DropTrigger 122 #define OP_IntegrityCk 123 #define OP_RowSetAdd 124 /* synopsis: rowset(P1)=r[P2] */ #define OP_RowSetRead 125 /* synopsis: r[P3]=rowset(P1) */ #define OP_RowSetTest 126 /* synopsis: if r[P3] in rowset(P1) goto P2 */ #define OP_Program 127 #define OP_Param 128 #define OP_FkCounter 129 /* synopsis: fkctr[P1]+=P2 */ #define OP_FkIfZero 130 /* synopsis: if fkctr[P1]==0 goto P2 */ #define OP_MemMax 131 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_IfPos 132 /* synopsis: if r[P1]>0 goto P2 */ #define OP_Real 133 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_IfNeg 134 /* synopsis: if r[P1]<0 goto P2 */ #define OP_IfZero 135 /* synopsis: r[P1]+=P3, if r[P1]==0 goto P2 */ #define OP_AggFinal 136 /* synopsis: accum=r[P1] N=P2 */ #define OP_IncrVacuum 137 #define OP_Expire 138 #define OP_TableLock 139 /* synopsis: iDb=P1 root=P2 write=P3 */ #define OP_VBegin 140 #define OP_VCreate 141 #define OP_VDestroy 142 #define OP_ToText 143 /* same as TK_TO_TEXT */ #define OP_ToBlob 144 /* same as TK_TO_BLOB */ #define OP_ToNumeric 145 /* same as TK_TO_NUMERIC */ #define OP_ToInt 146 /* same as TK_TO_INT */ #define OP_ToReal 147 /* same as TK_TO_REAL */ #define OP_VOpen 148 #define OP_VColumn 149 /* synopsis: r[P3]=vcolumn(P2) */ #define OP_VNext 150 #define OP_VRename 151 #define OP_Pagecount 152 #define OP_MaxPgcnt 153 #define OP_Init 154 /* synopsis: Start at P2 */ #define OP_Noop 155 #define OP_Explain 156 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ #define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ #define OPFLG_IN1 0x0004 /* in1: P1 is an input */ #define OPFLG_IN2 0x0008 /* in2: P2 is an input */ #define OPFLG_IN3 0x0010 /* in3: P3 is an input */ #define OPFLG_OUT2 0x0020 /* out2: P2 is an output */ #define OPFLG_OUT3 0x0040 /* out3: P3 is an output */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,\ /* 8 */ 0x01, 0x01, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,\ /* 16 */ 0x01, 0x01, 0x04, 0x24, 0x01, 0x04, 0x05, 0x10,\ /* 24 */ 0x00, 0x02, 0x02, 0x02, 0x02, 0x00, 0x02, 0x02,\ /* 32 */ 0x00, 0x00, 0x20, 0x00, 0x00, 0x04, 0x05, 0x04,\ /* 40 */ 0x00, 0x00, 0x01, 0x01, 0x05, 0x05, 0x00, 0x00,\ /* 48 */ 0x00, 0x02, 0x02, 0x10, 0x00, 0x00, 0x00, 0x00,\ /* 56 */ 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x08,\ /* 64 */ 0x11, 0x11, 0x11, 0x11, 0x02, 0x02, 0x00, 0x4c,\ /* 72 */ 0x4c, 0x00, 0x00, 0x00, 0x05, 0x05, 0x15, 0x15,\ /* 80 */ 0x15, 0x15, 0x15, 0x15, 0x00, 0x4c, 0x4c, 0x4c,\ /* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x00,\ /* 96 */ 0x24, 0x02, 0x00, 0x00, 0x02, 0x00, 0x01, 0x01,\ /* 104 */ 0x01, 0x01, 0x08, 0x08, 0x00, 0x02, 0x01, 0x01,\ /* 112 */ 0x01, 0x01, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00,\ /* 120 */ 0x00, 0x00, 0x00, 0x00, 0x0c, 0x45, 0x15, 0x01,\ /* 128 */ 0x02, 0x00, 0x01, 0x08, 0x05, 0x02, 0x05, 0x05,\ /* 136 */ 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,\ /* 144 */ 0x04, 0x04, 0x04, 0x04, 0x00, 0x00, 0x01, 0x00,\ /* 152 */ 0x02, 0x02, 0x01, 0x00, 0x00,} /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* ** Prototypes for the VDBE interface. See comments on the implementation ** for a description of what each of these routines does. */ SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*); SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno); SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*); SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1); SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr); |
︙ | ︙ | |||
9315 9316 9317 9318 9319 9320 9321 | SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); | | > > > | 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 | SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,const UnpackedRecord*,int); SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); typedef int (*RecordCompare)(int,const void*,const UnpackedRecord*,int); SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*); #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); #endif /* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on ** each VDBE opcode. |
︙ | ︙ | |||
9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 | # endif #else # define VdbeComment(X) # define VdbeNoopComment(X) # define VdbeModuleComment(X) #endif #endif /************** End of vdbe.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include pager.h in the middle of sqliteInt.h *****************/ /************** Begin file pager.h *******************************************/ /* | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 | # endif #else # define VdbeComment(X) # define VdbeNoopComment(X) # define VdbeModuleComment(X) #endif /* ** The VdbeCoverage macros are used to set a coverage testing point ** for VDBE branch instructions. The coverage testing points are line ** numbers in the sqlite3.c source file. VDBE branch coverage testing ** only works with an amalagmation build. That's ok since a VDBE branch ** coverage build designed for testing the test suite only. No application ** should ever ship with VDBE branch coverage measuring turned on. ** ** VdbeCoverage(v) // Mark the previously coded instruction ** // as a branch ** ** VdbeCoverageIf(v, conditional) // Mark previous if conditional true ** ** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken ** ** VdbeCoverageNeverTaken(v) // Previous branch is never taken ** ** Every VDBE branch operation must be tagged with one of the macros above. ** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and ** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch() ** routine in vdbe.c, alerting the developer to the missed tag. */ #ifdef SQLITE_VDBE_COVERAGE SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe*,int); # define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageAlwaysTaken(v) sqlite3VdbeSetLineNumber(v,2); # define VdbeCoverageNeverTaken(v) sqlite3VdbeSetLineNumber(v,1); #else # define VdbeCoverage(v) # define VdbeCoverageIf(v,x) # define VdbeCoverageAlwaysTaken(v) # define VdbeCoverageNeverTaken(v) #endif #endif /************** End of vdbe.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include pager.h in the middle of sqliteInt.h *****************/ /************** Begin file pager.h *******************************************/ /* |
︙ | ︙ | |||
10402 10403 10404 10405 10406 10407 10408 | #define OptimizationEnabled(db, mask) 1 #endif /* ** Return true if it OK to factor constant expressions into the initialization ** code. The argument is a Parse object for the code generator. */ | | < | 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 | #define OptimizationEnabled(db, mask) 1 #endif /* ** Return true if it OK to factor constant expressions into the initialization ** code. The argument is a Parse object for the code generator. */ #define ConstFactorOk(P) ((P)->okConstFactor) /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ |
︙ | ︙ | |||
10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 | ** affinity value. */ #define SQLITE_AFF_MASK 0x67 /* ** Additional bit values that can be ORed with an affinity without ** changing the affinity. */ #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ /* ** An object of this type is created for each virtual table present in ** the database schema. ** ** If the database schema is shared, then there is one instance of this ** structure for each database connection (sqlite3*) that uses the shared | > > > > > > | 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 | ** affinity value. */ #define SQLITE_AFF_MASK 0x67 /* ** Additional bit values that can be ORed with an affinity without ** changing the affinity. ** ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. ** It causes an assert() to fire if either operand to a comparison ** operator is NULL. It is added to certain comparison operators to ** prove that the operands are always NOT NULL. */ #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ #define SQLITE_NOTNULL 0x88 /* Assert that operands are never NULL */ /* ** An object of this type is created for each virtual table present in ** the database schema. ** ** If the database schema is shared, then there is one instance of this ** structure for each database connection (sqlite3*) that uses the shared |
︙ | ︙ | |||
10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 | ** Records are used to store the content of a table row and to store ** the key of an index. A blob encoding of a record is created by ** the OP_MakeRecord opcode of the VDBE and is disassembled by the ** OP_Column opcode. ** ** This structure holds a record that has already been disassembled ** into its constituent fields. */ struct UnpackedRecord { KeyInfo *pKeyInfo; /* Collation and sort-order information */ u16 nField; /* Number of entries in apMem[] */ | > > > | > > < < < < < | 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 | ** Records are used to store the content of a table row and to store ** the key of an index. A blob encoding of a record is created by ** the OP_MakeRecord opcode of the VDBE and is disassembled by the ** OP_Column opcode. ** ** This structure holds a record that has already been disassembled ** into its constituent fields. ** ** The r1 and r2 member variables are only used by the optimized comparison ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). */ struct UnpackedRecord { KeyInfo *pKeyInfo; /* Collation and sort-order information */ u16 nField; /* Number of entries in apMem[] */ i8 default_rc; /* Comparison result if keys are equal */ Mem *aMem; /* Values */ int r1; /* Value to return if (lhs > rhs) */ int r2; /* Value to return if (rhs < lhs) */ }; /* ** Each SQL index is represented in memory by an ** instance of the following structure. ** ** The columns of the table that are to be indexed are described ** by the aiColumn[] field of this structure. For example, suppose |
︙ | ︙ | |||
11323 11324 11325 11326 11327 11328 11329 | ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each ** jointype expresses the join between the table and the previous table. ** ** In the colUsed field, the high-order bit (bit 63) is set if the table ** contains more than 63 columns and the 64-th or later column is used. */ struct SrcList { | | | > | 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 | ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each ** jointype expresses the join between the table and the previous table. ** ** In the colUsed field, the high-order bit (bit 63) is set if the table ** contains more than 63 columns and the 64-th or later column is used. */ struct SrcList { int nSrc; /* Number of tables or subqueries in the FROM clause */ u32 nAlloc; /* Number of entries allocated in a[] below */ struct SrcList_item { Schema *pSchema; /* Schema to which this item is fixed */ char *zDatabase; /* Name of database holding this table */ char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ int addrFillSub; /* Address of subroutine to manifest a subquery */ int regReturn; /* Register holding return address of addrFillSub */ int regResult; /* Registers holding results of a co-routine */ u8 jointype; /* Type of join between this able and the previous */ unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ unsigned isCorrelated :1; /* True if sub-query is correlated */ unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ #ifndef SQLITE_OMIT_EXPLAIN u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ |
︙ | ︙ | |||
11462 11463 11464 11465 11466 11467 11468 | SrcList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ Select *pPrior; /* Prior select in a compound select statement */ Select *pNext; /* Next select to the left in a compound */ | < | > | 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 | SrcList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ Select *pPrior; /* Prior select in a compound select statement */ Select *pNext; /* Next select to the left in a compound */ Expr *pLimit; /* LIMIT expression. NULL means not used. */ Expr *pOffset; /* OFFSET expression. NULL means not used. */ With *pWith; /* WITH clause attached to this select. Or NULL. */ }; /* ** Allowed values for Select.selFlags. The "SF" prefix stands for ** "Select Flag". */ #define SF_Distinct 0x0001 /* Output should be DISTINCT */ #define SF_Resolved 0x0002 /* Identifiers have been resolved */ #define SF_Aggregate 0x0004 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ #define SF_UseSorter 0x0040 /* Sort using a sorter */ #define SF_Values 0x0080 /* Synthesized from VALUES clause */ #define SF_Materialize 0x0100 /* NOT USED */ #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ #define SF_Compound 0x1000 /* Part of a compound query */ /* ** The results of a SELECT can be distributed in several ways, as defined ** by one of the following macros. The "SRT" prefix means "SELECT Result ** Type". ** |
︙ | ︙ | |||
11662 11663 11664 11665 11666 11667 11668 | char *zErrMsg; /* An error message */ Vdbe *pVdbe; /* An engine for executing database bytecode */ int rc; /* Return code from execution */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 checkSchema; /* Causes schema cookie check after an error */ u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ | < > < < > > | > < < > | | > > > > | 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 | char *zErrMsg; /* An error message */ Vdbe *pVdbe; /* An engine for executing database bytecode */ int rc; /* Return code from execution */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 checkSchema; /* Causes schema cookie check after an error */ u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ u8 nColCache; /* Number of entries in aColCache[] */ u8 iColCache; /* Next entry in aColCache[] to replace */ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ u8 okConstFactor; /* OK to factor out constants */ int aTempReg[8]; /* Holding area for temporary registers */ int nRangeReg; /* Size of the temporary register block */ int iRangeReg; /* First register in temporary register block */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int nSet; /* Number of sets used so far */ int nOnce; /* Number of OP_Once instructions so far */ int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ int ckBase; /* Base register of data during check constraints */ int iPartIdxTab; /* Table corresponding to a partial index */ int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ int iCacheCnt; /* Counter used to generate aColCache[].lru values */ int nLabel; /* Number of labels used */ int *aLabel; /* Space to hold the labels */ struct yColCache { int iTable; /* Table cursor number */ i16 iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ ExprList *pConstExpr;/* Constant expressions */ Token constraintName;/* Name of the constraint currently being parsed */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ /* Information used while coding trigger programs. */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ u32 oldmask; /* Mask of old.* columns referenced */ u32 newmask; /* Mask of new.* columns referenced */ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ u8 disableTriggers; /* True to disable triggers */ /************************************************************************ ** Above is constant between recursions. Below is reset before and after ** each recursion. The boundary between these two regions is determined ** using offsetof(Parse,nVar) so the nVar field must be the first field ** in the recursive region. ************************************************************************/ int nVar; /* Number of '?' variables seen in the SQL so far */ int nzVar; /* Number of available slots in azVar[] */ u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ u8 bFreeWith; /* True if pWith should be freed with parser */ u8 explain; /* True if the EXPLAIN flag is found on the query */ #ifndef SQLITE_OMIT_VIRTUALTABLE u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ int nVtabLock; /* Number of virtual tables to lock */ #endif int nAlias; /* Number of aliased result set columns */ int nHeight; /* Expression tree height of current sub-select */ |
︙ | ︙ | |||
11751 11752 11753 11754 11755 11756 11757 | #ifndef SQLITE_OMIT_VIRTUALTABLE Token sArg; /* Complete text of a module argument */ Table **apVtabLock; /* Pointer to virtual tables needing locking */ #endif Table *pZombieTab; /* List of Table objects to delete after code gen */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ With *pWith; /* Current WITH clause, or NULL */ | < | 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 | #ifndef SQLITE_OMIT_VIRTUALTABLE Token sArg; /* Complete text of a module argument */ Table **apVtabLock; /* Pointer to virtual tables needing locking */ #endif Table *pZombieTab; /* List of Table objects to delete after code gen */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ With *pWith; /* Current WITH clause, or NULL */ }; /* ** Return true if currently inside an sqlite3_declare_vtab() call. */ #ifdef SQLITE_OMIT_VIRTUALTABLE #define IN_DECLARE_VTAB 0 |
︙ | ︙ | |||
11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 | void (*xLog)(void*,int,const char*); /* Function for logging */ void *pLogArg; /* First argument to xLog() */ int bLocaltimeFault; /* True to fail localtime() calls */ #ifdef SQLITE_ENABLE_SQLLOG void(*xSqllog)(void*,sqlite3*,const char*, int); void *pSqllogArg; #endif }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); | > > > > > > > | 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 | void (*xLog)(void*,int,const char*); /* Function for logging */ void *pLogArg; /* First argument to xLog() */ int bLocaltimeFault; /* True to fail localtime() calls */ #ifdef SQLITE_ENABLE_SQLLOG void(*xSqllog)(void*,sqlite3*,const char*, int); void *pSqllogArg; #endif #ifdef SQLITE_VDBE_COVERAGE /* The following callback (if not NULL) is invoked on every VDBE branch ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. */ void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); |
︙ | ︙ | |||
12300 12301 12302 12303 12304 12305 12306 | #ifndef SQLITE_OMIT_AUTOINCREMENT SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse); SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif | < | 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 | #ifndef SQLITE_OMIT_AUTOINCREMENT SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse); SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*); SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, |
︙ | ︙ | |||
12348 12349 12350 12351 12352 12353 12354 | SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*); SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int); SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int); SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*); SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int); | | > | | 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 | SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*); SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int); SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int); SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*); SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int); SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); |
︙ | ︙ | |||
12390 12391 12392 12393 12394 12395 12396 | SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*); SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); | < | 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 | SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*); SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*); |
︙ | ︙ | |||
12534 12535 12536 12537 12538 12539 12540 | (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ sqlite3PutVarint32((A),(B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *); | | | 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 | (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ sqlite3PutVarint32((A),(B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *); SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int); SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2); SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr); SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8); SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...); SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n); SQLITE_PRIVATE u8 sqlite3HexToInt(int h); |
︙ | ︙ | |||
13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 | "OMIT_CHECK", #endif #ifdef SQLITE_OMIT_COMPLETE "OMIT_COMPLETE", #endif #ifdef SQLITE_OMIT_COMPOUND_SELECT "OMIT_COMPOUND_SELECT", #endif #ifdef SQLITE_OMIT_DATETIME_FUNCS "OMIT_DATETIME_FUNCS", #endif #ifdef SQLITE_OMIT_DECLTYPE "OMIT_DECLTYPE", #endif | > > > | 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 | "OMIT_CHECK", #endif #ifdef SQLITE_OMIT_COMPLETE "OMIT_COMPLETE", #endif #ifdef SQLITE_OMIT_COMPOUND_SELECT "OMIT_COMPOUND_SELECT", #endif #ifdef SQLITE_OMIT_CTE "OMIT_CTE", #endif #ifdef SQLITE_OMIT_DATETIME_FUNCS "OMIT_DATETIME_FUNCS", #endif #ifdef SQLITE_OMIT_DECLTYPE "OMIT_DECLTYPE", #endif |
︙ | ︙ | |||
13638 13639 13640 13641 13642 13643 13644 | i8 iDb; /* Index of cursor database in db->aDb[] (or -1) */ u8 nullRow; /* True if pointing to a row with no data */ u8 rowidIsValid; /* True if lastRowid is valid */ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */ Bool isTable:1; /* True if a table requiring integer keys */ Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */ | < | 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 | i8 iDb; /* Index of cursor database in db->aDb[] (or -1) */ u8 nullRow; /* True if pointing to a row with no data */ u8 rowidIsValid; /* True if lastRowid is valid */ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */ Bool isTable:1; /* True if a table requiring integer keys */ Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ i64 lastRowid; /* Rowid being deleted by OP_Delete */ VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */ /* Cached information about the header for the data record that the |
︙ | ︙ | |||
13732 13733 13734 13735 13736 13737 13738 | int nZero; /* Used when bit MEM_Zero is set in flags */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ RowSet *pRowSet; /* Used only when flags==MEM_RowSet */ VdbeFrame *pFrame; /* Used when flags==MEM_Frame */ } u; int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ | < | 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 | int nZero; /* Used when bit MEM_Zero is set in flags */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ RowSet *pRowSet; /* Used only when flags==MEM_RowSet */ VdbeFrame *pFrame; /* Used when flags==MEM_Frame */ } u; int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ #ifdef SQLITE_DEBUG Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */ void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */ #endif void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */ |
︙ | ︙ | |||
13759 13760 13761 13762 13763 13764 13765 13766 13767 | ** flags may coexist with the MEM_Str flag. */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_RowSet 0x0020 /* Value is a RowSet object */ #define MEM_Frame 0x0040 /* Value is a VdbeFrame object */ | > | | | | 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 | ** flags may coexist with the MEM_Str flag. */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_AffMask 0x001f /* Mask of affinity bits */ #define MEM_RowSet 0x0020 /* Value is a RowSet object */ #define MEM_Frame 0x0040 /* Value is a VdbeFrame object */ #define MEM_Undefined 0x0080 /* Value is undefined */ #define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */ #define MEM_TypeMask 0x01ff /* Mask of type bits */ /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0200 /* String rep is nul terminated */ #define MEM_Dyn 0x0400 /* Need to call Mem.xDel() on Mem.z */ #define MEM_Static 0x0800 /* Mem.z points to a static string */ #define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x2000 /* Mem.z points to an agg function context */ #define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */ #ifdef SQLITE_OMIT_INCRBLOB #undef MEM_Zero #define MEM_Zero 0x0000 #endif /* ** Clear any existing type flags from a Mem and replace them with f */ #define MemSetTypeFlag(p, f) \ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f) /* ** Return true if a memory cell is not marked as invalid. This macro ** is for use inside assert() statements only. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_Undefined)==0 #endif /* ** Each auxilliary data pointer stored by a user defined function ** implementation calling sqlite3_set_auxdata() is stored in an instance ** of this structure. All such structures associated with a single VM ** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed |
︙ | ︙ | |||
13955 13956 13957 13958 13959 13960 13961 | SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int); SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32); SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe*, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); | | | 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 | SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int); SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32); SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe*, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,const UnpackedRecord*,int*); SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *); SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); |
︙ | ︙ | |||
13988 13989 13990 13991 13992 13993 13994 | SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p); | | | > | < > | 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 | SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p); #define VdbeMemDynamic(X) \ (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0) #define VdbeMemRelease(X) \ if( VdbeMemDynamic(X) ) sqlite3VdbeMemReleaseExternal(X); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p); SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *); SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *); SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *); #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeEnter(X) # define sqlite3VdbeLeave(X) #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*); SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif |
︙ | ︙ | |||
17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 | mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; /* Return a pointer to the allocated memory. */ return (void*)&mem5.zPool[i*mem5.szAtom]; } /* ** Free an outstanding memory allocation. | > > > > > > | 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 | mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; #ifdef SQLITE_DEBUG /* Make sure the allocated memory does not assume that it is set to zero ** or retains a value from a previous allocation */ memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz); #endif /* Return a pointer to the allocated memory. */ return (void*)&mem5.zPool[i*mem5.szAtom]; } /* ** Free an outstanding memory allocation. |
︙ | ︙ | |||
17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 | iBlock = iBuddy; }else{ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; mem5.aCtrl[iBuddy] = 0; } size *= 2; } memsys5Link(iBlock, iLogsize); } /* ** Allocate nBytes of memory. */ static void *memsys5Malloc(int nBytes){ | > > > > > > > | 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 | iBlock = iBuddy; }else{ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; mem5.aCtrl[iBuddy] = 0; } size *= 2; } #ifdef SQLITE_DEBUG /* Overwrite freed memory with the 0x55 bit pattern to verify that it is ** not used after being freed */ memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size); #endif memsys5Link(iBlock, iLogsize); } /* ** Allocate nBytes of memory. */ static void *memsys5Malloc(int nBytes){ |
︙ | ︙ | |||
21388 21389 21390 21391 21392 21393 21394 | } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; | | | 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 | } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; pMem->flags |= (MEM_Term); pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; |
︙ | ︙ | |||
21516 21517 21518 21519 21520 21521 21522 | sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); if( db->mallocFailed ){ sqlite3VdbeMemRelease(&m); m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); | < | 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 | sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); if( db->mallocFailed ){ sqlite3VdbeMemRelease(&m); m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); assert( m.z || db->mallocFailed ); return m.z; } /* ** zIn is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters |
︙ | ︙ | |||
22726 22727 22728 22729 22730 22731 22732 | i64 iA = *pA; testcase( iA==0 ); testcase( iA==1 ); testcase( iB==-1 ); testcase( iB==0 ); if( iB>=0 ){ testcase( iA>0 && LARGEST_INT64 - iA == iB ); testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; | < < > | 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 | i64 iA = *pA; testcase( iA==0 ); testcase( iA==1 ); testcase( iB==-1 ); testcase( iB==0 ); if( iB>=0 ){ testcase( iA>0 && LARGEST_INT64 - iA == iB ); testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; }else{ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; } *pA += iB; return 0; } SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){ testcase( iB==SMALLEST_INT64+1 ); if( iB==SMALLEST_INT64 ){ testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); if( (*pA)>=0 ) return 1; |
︙ | ︙ | |||
22756 22757 22758 22759 22760 22761 22762 | i64 iA = *pA; i64 iA1, iA0, iB1, iB0, r; iA1 = iA/TWOPOWER32; iA0 = iA % TWOPOWER32; iB1 = iB/TWOPOWER32; iB0 = iB % TWOPOWER32; | | > > > > | > | > > > > | 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 | i64 iA = *pA; i64 iA1, iA0, iB1, iB0, r; iA1 = iA/TWOPOWER32; iA0 = iA % TWOPOWER32; iB1 = iB/TWOPOWER32; iB0 = iB % TWOPOWER32; if( iA1==0 ){ if( iB1==0 ){ *pA *= iB; return 0; } r = iA0*iB1; }else if( iB1==0 ){ r = iA1*iB0; }else{ /* If both iA1 and iB1 are non-zero, overflow will result */ return 1; } testcase( r==(-TWOPOWER31)-1 ); testcase( r==(-TWOPOWER31) ); testcase( r==TWOPOWER31 ); testcase( r==TWOPOWER31-1 ); if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; r *= TWOPOWER32; if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; |
︙ | ︙ | |||
23204 23205 23206 23207 23208 23209 23210 | /* 13 */ "Vacuum" OpHelp(""), /* 14 */ "VFilter" OpHelp("iPlan=r[P3] zPlan='P4'"), /* 15 */ "VUpdate" OpHelp("data=r[P3@P2]"), /* 16 */ "Goto" OpHelp(""), /* 17 */ "Gosub" OpHelp(""), /* 18 */ "Return" OpHelp(""), /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"), | > > | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | | | | | | | | < < > > | < < | | > > | | | | | | | | | | > > | | | | | | | | | | | | | | | | | | | | | < < < < > > > > | | | | | < < < < > > > > | | | | | | 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 | /* 13 */ "Vacuum" OpHelp(""), /* 14 */ "VFilter" OpHelp("iPlan=r[P3] zPlan='P4'"), /* 15 */ "VUpdate" OpHelp("data=r[P3@P2]"), /* 16 */ "Goto" OpHelp(""), /* 17 */ "Gosub" OpHelp(""), /* 18 */ "Return" OpHelp(""), /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"), /* 20 */ "InitCoroutine" OpHelp(""), /* 21 */ "EndCoroutine" OpHelp(""), /* 22 */ "Yield" OpHelp(""), /* 23 */ "HaltIfNull" OpHelp("if r[P3]=null halt"), /* 24 */ "Halt" OpHelp(""), /* 25 */ "Integer" OpHelp("r[P2]=P1"), /* 26 */ "Int64" OpHelp("r[P2]=P4"), /* 27 */ "String" OpHelp("r[P2]='P4' (len=P1)"), /* 28 */ "Null" OpHelp("r[P2..P3]=NULL"), /* 29 */ "SoftNull" OpHelp("r[P1]=NULL"), /* 30 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"), /* 31 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"), /* 32 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"), /* 33 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"), /* 34 */ "SCopy" OpHelp("r[P2]=r[P1]"), /* 35 */ "ResultRow" OpHelp("output=r[P1@P2]"), /* 36 */ "CollSeq" OpHelp(""), /* 37 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"), /* 38 */ "MustBeInt" OpHelp(""), /* 39 */ "RealAffinity" OpHelp(""), /* 40 */ "Permutation" OpHelp(""), /* 41 */ "Compare" OpHelp(""), /* 42 */ "Jump" OpHelp(""), /* 43 */ "Once" OpHelp(""), /* 44 */ "If" OpHelp(""), /* 45 */ "IfNot" OpHelp(""), /* 46 */ "Column" OpHelp("r[P3]=PX"), /* 47 */ "Affinity" OpHelp("affinity(r[P1@P2])"), /* 48 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"), /* 49 */ "Count" OpHelp("r[P2]=count()"), /* 50 */ "ReadCookie" OpHelp(""), /* 51 */ "SetCookie" OpHelp(""), /* 52 */ "OpenRead" OpHelp("root=P2 iDb=P3"), /* 53 */ "OpenWrite" OpHelp("root=P2 iDb=P3"), /* 54 */ "OpenAutoindex" OpHelp("nColumn=P2"), /* 55 */ "OpenEphemeral" OpHelp("nColumn=P2"), /* 56 */ "SorterOpen" OpHelp(""), /* 57 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"), /* 58 */ "Close" OpHelp(""), /* 59 */ "SeekLT" OpHelp(""), /* 60 */ "SeekLE" OpHelp(""), /* 61 */ "SeekGE" OpHelp(""), /* 62 */ "SeekGT" OpHelp(""), /* 63 */ "Seek" OpHelp("intkey=r[P2]"), /* 64 */ "NoConflict" OpHelp("key=r[P3@P4]"), /* 65 */ "NotFound" OpHelp("key=r[P3@P4]"), /* 66 */ "Found" OpHelp("key=r[P3@P4]"), /* 67 */ "NotExists" OpHelp("intkey=r[P3]"), /* 68 */ "Sequence" OpHelp("r[P2]=rowid"), /* 69 */ "NewRowid" OpHelp("r[P2]=rowid"), /* 70 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"), /* 71 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"), /* 72 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"), /* 73 */ "InsertInt" OpHelp("intkey=P3 data=r[P2]"), /* 74 */ "Delete" OpHelp(""), /* 75 */ "ResetCount" OpHelp(""), /* 76 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"), /* 77 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"), /* 78 */ "Ne" OpHelp("if r[P1]!=r[P3] goto P2"), /* 79 */ "Eq" OpHelp("if r[P1]==r[P3] goto P2"), /* 80 */ "Gt" OpHelp("if r[P1]>r[P3] goto P2"), /* 81 */ "Le" OpHelp("if r[P1]<=r[P3] goto P2"), /* 82 */ "Lt" OpHelp("if r[P1]<r[P3] goto P2"), /* 83 */ "Ge" OpHelp("if r[P1]>=r[P3] goto P2"), /* 84 */ "SorterCompare" OpHelp("if key(P1)!=rtrim(r[P3],P4) goto P2"), /* 85 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"), /* 86 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"), /* 87 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<<r[P1]"), /* 88 */ "ShiftRight" OpHelp("r[P3]=r[P2]>>r[P1]"), /* 89 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"), /* 90 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"), /* 91 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"), /* 92 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"), /* 93 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"), /* 94 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"), /* 95 */ "SorterData" OpHelp("r[P2]=data"), /* 96 */ "BitNot" OpHelp("r[P1]= ~r[P1]"), /* 97 */ "String8" OpHelp("r[P2]='P4'"), /* 98 */ "RowKey" OpHelp("r[P2]=key"), /* 99 */ "RowData" OpHelp("r[P2]=data"), /* 100 */ "Rowid" OpHelp("r[P2]=rowid"), /* 101 */ "NullRow" OpHelp(""), /* 102 */ "Last" OpHelp(""), /* 103 */ "SorterSort" OpHelp(""), /* 104 */ "Sort" OpHelp(""), /* 105 */ "Rewind" OpHelp(""), /* 106 */ "SorterInsert" OpHelp(""), /* 107 */ "IdxInsert" OpHelp("key=r[P2]"), /* 108 */ "IdxDelete" OpHelp("key=r[P2@P3]"), /* 109 */ "IdxRowid" OpHelp("r[P2]=rowid"), /* 110 */ "IdxLE" OpHelp("key=r[P3@P4]"), /* 111 */ "IdxGT" OpHelp("key=r[P3@P4]"), /* 112 */ "IdxLT" OpHelp("key=r[P3@P4]"), /* 113 */ "IdxGE" OpHelp("key=r[P3@P4]"), /* 114 */ "Destroy" OpHelp(""), /* 115 */ "Clear" OpHelp(""), /* 116 */ "CreateIndex" OpHelp("r[P2]=root iDb=P1"), /* 117 */ "CreateTable" OpHelp("r[P2]=root iDb=P1"), /* 118 */ "ParseSchema" OpHelp(""), /* 119 */ "LoadAnalysis" OpHelp(""), /* 120 */ "DropTable" OpHelp(""), /* 121 */ "DropIndex" OpHelp(""), /* 122 */ "DropTrigger" OpHelp(""), /* 123 */ "IntegrityCk" OpHelp(""), /* 124 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"), /* 125 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"), /* 126 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"), /* 127 */ "Program" OpHelp(""), /* 128 */ "Param" OpHelp(""), /* 129 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 130 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 131 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 132 */ "IfPos" OpHelp("if r[P1]>0 goto P2"), /* 133 */ "Real" OpHelp("r[P2]=P4"), /* 134 */ "IfNeg" OpHelp("if r[P1]<0 goto P2"), /* 135 */ "IfZero" OpHelp("r[P1]+=P3, if r[P1]==0 goto P2"), /* 136 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 137 */ "IncrVacuum" OpHelp(""), /* 138 */ "Expire" OpHelp(""), /* 139 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"), /* 140 */ "VBegin" OpHelp(""), /* 141 */ "VCreate" OpHelp(""), /* 142 */ "VDestroy" OpHelp(""), /* 143 */ "ToText" OpHelp(""), /* 144 */ "ToBlob" OpHelp(""), /* 145 */ "ToNumeric" OpHelp(""), /* 146 */ "ToInt" OpHelp(""), /* 147 */ "ToReal" OpHelp(""), /* 148 */ "VOpen" OpHelp(""), /* 149 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"), /* 150 */ "VNext" OpHelp(""), /* 151 */ "VRename" OpHelp(""), /* 152 */ "Pagecount" OpHelp(""), /* 153 */ "MaxPgcnt" OpHelp(""), /* 154 */ "Init" OpHelp("Start at P2"), /* 155 */ "Noop" OpHelp(""), /* 156 */ "Explain" OpHelp(""), }; return azName[i]; } #endif /************** End of opcodes.c *********************************************/ /************** Begin file os_unix.c *****************************************/ |
︙ | ︙ | |||
23428 23429 23430 23431 23432 23433 23434 | # if defined(__RTP__) || defined(_WRS_KERNEL) # define OS_VXWORKS 1 # else # define OS_VXWORKS 0 # endif #endif | < < < < < < < < < < < < < < < < < < < < < < < < < < | 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 | # if defined(__RTP__) || defined(_WRS_KERNEL) # define OS_VXWORKS 1 # else # define OS_VXWORKS 0 # endif #endif /* ** standard include files. */ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> |
︙ | ︙ | |||
34442 34443 34444 34445 34446 34447 34448 | /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. ** During sqlite3_os_init() we do a GetSystemInfo() ** to get the granularity size. */ | | | 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 | /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. ** During sqlite3_os_init() we do a GetSystemInfo() ** to get the granularity size. */ static SYSTEM_INFO winSysInfo; #ifndef SQLITE_OMIT_WAL /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the winLockInfo objects used by ** this file, all of which may be shared by multiple threads. |
︙ | ︙ | |||
36376 36377 36378 36379 36380 36381 36382 | } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ | < < < < > > > > > > > > > > > > > > > > > > > > > > > | > | 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 | } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; #if defined(__CYGWIN__) int nFull = pVfs->mxPathname+1; char *zFull = sqlite3MallocZero( nFull ); void *zConverted = 0; if( zFull==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){ sqlite3_free(zFull); OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } zConverted = winConvertFromUtf8Filename(zFull); sqlite3_free(zFull); #else void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); #endif if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); #else h = osLoadLibraryW((LPCWSTR)zConverted); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ h = osLoadLibraryA((char*)zConverted); } #endif OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h)); sqlite3_free(zConverted); return (void*)h; } static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ UNUSED_PARAMETER(pVfs); winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut); } static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){ FARPROC proc; UNUSED_PARAMETER(pVfs); proc = osGetProcAddressA((HANDLE)pH, zSym); OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n", (void*)pH, zSym, (void*)proc)); return (void(*)(void))proc; } static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ UNUSED_PARAMETER(pVfs); osFreeLibrary((HANDLE)pHandle); OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle)); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define winDlOpen 0 #define winDlError 0 #define winDlSym 0 #define winDlClose 0 #endif |
︙ | ︙ | |||
37108 37109 37110 37111 37112 37113 37114 | struct PCache { PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ PgHdr *pSynced; /* Last synced page in dirty page list */ int nRef; /* Number of referenced pages */ int szCache; /* Configured cache size */ int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ | | > | 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 | struct PCache { PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ PgHdr *pSynced; /* Last synced page in dirty page list */ int nRef; /* Number of referenced pages */ int szCache; /* Configured cache size */ int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ u8 bPurgeable; /* True if pages are on backing store */ u8 eCreate; /* eCreate value for for xFetch() */ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ void *pStress; /* Argument to xStress */ sqlite3_pcache *pCache; /* Pluggable cache module */ PgHdr *pPage1; /* Reference to page 1 */ }; /* |
︙ | ︙ | |||
37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 | p->pDirtyTail = pPage->pDirtyPrev; } if( pPage->pDirtyPrev ){ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; }else{ assert( pPage==p->pDirty ); p->pDirty = pPage->pDirtyNext; } pPage->pDirtyNext = 0; pPage->pDirtyPrev = 0; expensive_assert( pcacheCheckSynced(p) ); } /* ** Add page pPage to the head of the dirty list (PCache1.pDirty is set to ** pPage). */ static void pcacheAddToDirtyList(PgHdr *pPage){ PCache *p = pPage->pCache; assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); pPage->pDirtyNext = p->pDirty; if( pPage->pDirtyNext ){ assert( pPage->pDirtyNext->pDirtyPrev==0 ); pPage->pDirtyNext->pDirtyPrev = pPage; } p->pDirty = pPage; if( !p->pDirtyTail ){ p->pDirtyTail = pPage; } if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ p->pSynced = pPage; | > > > > > > > | 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 | p->pDirtyTail = pPage->pDirtyPrev; } if( pPage->pDirtyPrev ){ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; }else{ assert( pPage==p->pDirty ); p->pDirty = pPage->pDirtyNext; if( p->pDirty==0 && p->bPurgeable ){ assert( p->eCreate==1 ); p->eCreate = 2; } } pPage->pDirtyNext = 0; pPage->pDirtyPrev = 0; expensive_assert( pcacheCheckSynced(p) ); } /* ** Add page pPage to the head of the dirty list (PCache1.pDirty is set to ** pPage). */ static void pcacheAddToDirtyList(PgHdr *pPage){ PCache *p = pPage->pCache; assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); pPage->pDirtyNext = p->pDirty; if( pPage->pDirtyNext ){ assert( pPage->pDirtyNext->pDirtyPrev==0 ); pPage->pDirtyNext->pDirtyPrev = pPage; }else if( p->bPurgeable ){ assert( p->eCreate==2 ); p->eCreate = 1; } p->pDirty = pPage; if( !p->pDirtyTail ){ p->pDirtyTail = pPage; } if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ p->pSynced = pPage; |
︙ | ︙ | |||
37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 | void *pStress, /* Argument to xStress */ PCache *p /* Preallocated space for the PCache */ ){ memset(p, 0, sizeof(PCache)); p->szPage = szPage; p->szExtra = szExtra; p->bPurgeable = bPurgeable; p->xStress = xStress; p->pStress = pStress; p->szCache = 100; } /* ** Change the page size for PCache object. The caller must ensure that there | > | 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 | void *pStress, /* Argument to xStress */ PCache *p /* Preallocated space for the PCache */ ){ memset(p, 0, sizeof(PCache)); p->szPage = szPage; p->szExtra = szExtra; p->bPurgeable = bPurgeable; p->eCreate = 2; p->xStress = xStress; p->pStress = pStress; p->szCache = 100; } /* ** Change the page size for PCache object. The caller must ensure that there |
︙ | ︙ | |||
37303 37304 37305 37306 37307 37308 37309 | */ SQLITE_PRIVATE int sqlite3PcacheFetch( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ int createFlag, /* If true, create page if it does not exist already */ PgHdr **ppPage /* Write the page here */ ){ | | | > > > > > > > > > > > | | | < < | 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 | */ SQLITE_PRIVATE int sqlite3PcacheFetch( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ int createFlag, /* If true, create page if it does not exist already */ PgHdr **ppPage /* Write the page here */ ){ sqlite3_pcache_page *pPage; PgHdr *pPgHdr = 0; int eCreate; assert( pCache!=0 ); assert( createFlag==1 || createFlag==0 ); assert( pgno>0 ); /* If the pluggable cache (sqlite3_pcache*) has not been allocated, ** allocate it now. */ if( !pCache->pCache ){ sqlite3_pcache *p; if( !createFlag ){ *ppPage = 0; return SQLITE_OK; } p = sqlite3GlobalConfig.pcache2.xCreate( pCache->szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable ); if( !p ){ return SQLITE_NOMEM; } sqlite3GlobalConfig.pcache2.xCachesize(p, numberOfCachePages(pCache)); pCache->pCache = p; } /* eCreate defines what to do if the page does not exist. ** 0 Do not allocate a new page. (createFlag==0) ** 1 Allocate a new page if doing so is inexpensive. ** (createFlag==1 AND bPurgeable AND pDirty) ** 2 Allocate a new page even it doing so is difficult. ** (createFlag==1 AND !(bPurgeable AND pDirty) */ eCreate = createFlag==0 ? 0 : pCache->eCreate; assert( (createFlag*(1+(!pCache->bPurgeable||!pCache->pDirty)))==eCreate ); pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); if( !pPage && eCreate==1 ){ PgHdr *pPg; /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. |
︙ | ︙ | |||
47918 47919 47920 47921 47922 47923 47924 | } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ | | | 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 | } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ int iDC = sqlite3OsDeviceCharacteristics(pDbFd); if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ pRet->padToSectorBoundary = 0; } *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } |
︙ | ︙ | |||
49289 49290 49291 49292 49293 49294 49295 | int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); | | | 49431 49432 49433 49434 49435 49436 49437 49438 49439 49440 49441 49442 49443 49444 49445 | int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); if( iAmt==0 || rc ) return rc; } rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); return rc; } /* |
︙ | ︙ | |||
50227 50228 50229 50230 50231 50232 50233 | BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ #ifndef SQLITE_OMIT_INCRBLOB Pgno *aOverflow; /* Cache of overflow page locations */ #endif Pgno pgnoRoot; /* The root page of this tree */ | < | 50369 50370 50371 50372 50373 50374 50375 50376 50377 50378 50379 50380 50381 50382 | BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ #ifndef SQLITE_OMIT_INCRBLOB Pgno *aOverflow; /* Cache of overflow page locations */ #endif Pgno pgnoRoot; /* The root page of this tree */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor's last known position */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive */ u8 wrFlag; /* True if writable */ u8 atLast; /* Cursor pointing to the last entry */ u8 validNKey; /* True if info.nKey is valid */ |
︙ | ︙ | |||
52211 52212 52213 52214 52215 52216 52217 | assert( sqlite3PagerGetData(pPage->pDbPage) == data ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->btsFlags & BTS_SECURE_DELETE ){ memset(&data[hdr], 0, pBt->usableSize - hdr); } data[hdr] = (char)flags; | | < | 52352 52353 52354 52355 52356 52357 52358 52359 52360 52361 52362 52363 52364 52365 52366 52367 52368 52369 52370 52371 | assert( sqlite3PagerGetData(pPage->pDbPage) == data ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->btsFlags & BTS_SECURE_DELETE ){ memset(&data[hdr], 0, pBt->usableSize - hdr); } data[hdr] = (char)flags; first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->usableSize]; pPage->aCellIdx = &data[first]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; |
︙ | ︙ | |||
54301 54302 54303 54304 54305 54306 54307 | pCur->wrFlag = (u8)wrFlag; pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; | < | 54441 54442 54443 54444 54445 54446 54447 54448 54449 54450 54451 54452 54453 54454 | pCur->wrFlag = (u8)wrFlag; pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3BtreeCursor( Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
︙ | ︙ | |||
54342 54343 54344 54345 54346 54347 54348 | ** do not need to be zeroed and they are large, so we can save a lot ** of run-time by skipping the initialization of those elements. */ SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){ memset(p, 0, offsetof(BtCursor, iPage)); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 54481 54482 54483 54484 54485 54486 54487 54488 54489 54490 54491 54492 54493 54494 | ** do not need to be zeroed and they are large, so we can save a lot ** of run-time by skipping the initialization of those elements. */ SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){ memset(p, 0, offsetof(BtCursor, iPage)); } /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ |
︙ | ︙ | |||
55248 55249 55250 55251 55252 55253 55254 55255 55256 55257 55258 55259 55260 55261 55262 55263 55264 55265 55266 55267 55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 | BtCursor *pCur, /* The cursor to be moved */ UnpackedRecord *pIdxKey, /* Unpacked index key */ i64 intKey, /* The table key */ int biasRight, /* If true, bias the search to the high end */ int *pRes /* Write search results here */ ){ int rc; assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->apPage[0]->intKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( pCur->atLast && pCur->info.nKey<intKey ){ *pRes = -1; return SQLITE_OK; } } rc = moveToRoot(pCur); if( rc ){ return rc; } assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); | > > > > > > > > > > > | 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 55372 55373 55374 55375 55376 55377 55378 55379 55380 55381 55382 55383 55384 55385 55386 55387 55388 55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 55401 | BtCursor *pCur, /* The cursor to be moved */ UnpackedRecord *pIdxKey, /* Unpacked index key */ i64 intKey, /* The table key */ int biasRight, /* If true, bias the search to the high end */ int *pRes /* Write search results here */ ){ int rc; RecordCompare xRecordCompare; assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->apPage[0]->intKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( pCur->atLast && pCur->info.nKey<intKey ){ *pRes = -1; return SQLITE_OK; } } if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); }else{ xRecordCompare = 0; /* Not actually used. Avoids a compiler warning. */ } rc = moveToRoot(pCur); if( rc ){ return rc; } assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); |
︙ | ︙ | |||
55301 55302 55303 55304 55305 55306 55307 | assert( pPage->nCell>0 ); assert( pPage->intKey==(pIdxKey==0) ); lwr = 0; upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; | | | 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 55431 55432 55433 55434 55435 | assert( pPage->nCell>0 ); assert( pPage->intKey==(pIdxKey==0) ); lwr = 0; upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; pCell = findCell(pPage, idx) + pPage->childPtrSize; if( pPage->hasData ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; } |
︙ | ︙ | |||
55353 55354 55355 55356 55357 55358 55359 | */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); | | | | | 55473 55474 55475 55476 55477 55478 55479 55480 55481 55482 55483 55484 55485 55486 55487 55488 55489 55490 55491 55492 55493 55494 55495 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 | */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0); }else if( !(pCell[1] & 0x80) && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal ){ /* The record-size field is a 2 byte varint and the record ** fits entirely on the main b-tree page. */ testcase( pCell+nCell+2==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0); }else{ /* The record flows over onto one or more overflow pages. In ** this case the whole cell needs to be parsed, a buffer allocated ** and accessPayload() used to retrieve the record into the ** buffer before VdbeRecordCompare() can be called. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; btreeParseCellPtr(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } pCur->aiIdx[pCur->iPage] = (u16)idx; rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); if( rc ){ sqlite3_free(pCellKey); goto moveto_finish; } c = xRecordCompare(nCell, pCellKey, pIdxKey, 0); sqlite3_free(pCellKey); } if( c<0 ){ lwr = idx+1; }else if( c>0 ){ upr = idx-1; }else{ |
︙ | ︙ | |||
55446 55447 55448 55449 55450 55451 55452 55453 55454 55455 55456 55457 55458 55459 55460 55461 55462 55463 55464 55465 55466 55467 | } /* ** Advance the cursor to the next entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the last entry in the database before ** this routine was called, then set *pRes=1. */ SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ int rc; int idx; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); if( pCur->eState!=CURSOR_VALID ){ rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; return rc; } | > > > > > > > > > > | 55566 55567 55568 55569 55570 55571 55572 55573 55574 55575 55576 55577 55578 55579 55580 55581 55582 55583 55584 55585 55586 55587 55588 55589 55590 55591 55592 55593 55594 55595 55596 55597 | } /* ** Advance the cursor to the next entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the last entry in the database before ** this routine was called, then set *pRes=1. ** ** The calling function will set *pRes to 0 or 1. The initial *pRes value ** will be 1 if the cursor being stepped corresponds to an SQL index and ** if this routine could have been skipped if that SQL index had been ** a unique index. Otherwise the caller will have set *pRes to zero. ** Zero is the common case. The btree implementation is free to use the ** initial *pRes value as a hint to improve performance, but the current ** SQLite btree implementation does not. (Note that the comdb2 btree ** implementation does use this hint, however.) */ SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ int rc; int idx; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( *pRes==0 || *pRes==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); if( pCur->eState!=CURSOR_VALID ){ rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; return rc; } |
︙ | ︙ | |||
55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 | /* ** Step the cursor to the back to the previous entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. */ SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); pCur->atLast = 0; if( pCur->eState!=CURSOR_VALID ){ if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){ rc = btreeRestoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; | > > > > > > > > > > | 55662 55663 55664 55665 55666 55667 55668 55669 55670 55671 55672 55673 55674 55675 55676 55677 55678 55679 55680 55681 55682 55683 55684 55685 55686 55687 55688 55689 55690 55691 55692 | /* ** Step the cursor to the back to the previous entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. ** ** The calling function will set *pRes to 0 or 1. The initial *pRes value ** will be 1 if the cursor being stepped corresponds to an SQL index and ** if this routine could have been skipped if that SQL index had been ** a unique index. Otherwise the caller will have set *pRes to zero. ** Zero is the common case. The btree implementation is free to use the ** initial *pRes value as a hint to improve performance, but the current ** SQLite btree implementation does not. (Note that the comdb2 btree ** implementation does use this hint, however.) */ SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); assert( pRes!=0 ); assert( *pRes==0 || *pRes==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); pCur->atLast = 0; if( pCur->eState!=CURSOR_VALID ){ if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){ rc = btreeRestoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ *pRes = 0; |
︙ | ︙ | |||
57635 57636 57637 57638 57639 57640 57641 | ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; | > | | < < > > > > > > > | 57775 57776 57777 57778 57779 57780 57781 57782 57783 57784 57785 57786 57787 57788 57789 57790 57791 57792 57793 57794 57795 57796 57797 57798 57799 | ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; if( pCur->pKeyInfo==0 ){ /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() ** call */ if( pCur->validNKey && nKey>0 && pCur->info.nKey==nKey-1 ){ loc = -1; } } if( !loc ){ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); if( rc ) return rc; } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); |
︙ | ︙ | |||
57709 57710 57711 57712 57713 57714 57715 | ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ pCur->info.nSize = 0; | < > | 57855 57856 57857 57858 57859 57860 57861 57862 57863 57864 57865 57866 57867 57868 57869 57870 | ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ pCur->info.nSize = 0; if( rc==SQLITE_OK && pPage->nOverflow ){ pCur->validNKey = 0; rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ pCur->apPage[pCur->iPage]->nOverflow = 0; |
︙ | ︙ | |||
57765 57766 57767 57768 57769 57770 57771 | ** the cursor to the largest entry in the tree that is smaller than ** the entry being deleted. This cell will replace the cell being deleted ** from the internal node. The 'previous' entry is used for this instead ** of the 'next' entry, as the previous entry is always a part of the ** sub-tree headed by the child page of the cell being deleted. This makes ** balancing the tree following the delete operation easier. */ if( !pPage->leaf ){ | | | 57911 57912 57913 57914 57915 57916 57917 57918 57919 57920 57921 57922 57923 57924 57925 | ** the cursor to the largest entry in the tree that is smaller than ** the entry being deleted. This cell will replace the cell being deleted ** from the internal node. The 'previous' entry is used for this instead ** of the 'next' entry, as the previous entry is always a part of the ** sub-tree headed by the child page of the cell being deleted. This makes ** balancing the tree following the delete operation easier. */ if( !pPage->leaf ){ int notUsed = 0; rc = sqlite3BtreePrevious(pCur, ¬Used); if( rc ) return rc; } /* Save the positions of any other cursors open on this table before ** making any modifications. Make the page containing the entry to be ** deleted writable. Then free any overflow pages associated with the |
︙ | ︙ | |||
59918 59919 59920 59921 59922 59923 59924 59925 59926 59927 59928 59929 59930 59931 | ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 60064 60065 60066 60067 60068 60069 60070 60071 60072 60073 60074 60075 60076 60077 60078 60079 60080 60081 60082 60083 60084 60085 60086 60087 60088 60089 60090 60091 60092 60093 60094 60095 60096 60097 60098 60099 60100 60101 60102 60103 60104 60105 60106 60107 60108 60109 60110 60111 60112 60113 | ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){ /* The MEM_Dyn bit is set if and only if Mem.xDel is a non-NULL destructor ** function for Mem.z */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel ** (3) An ephermal string or blob ** (4) A static string or blob */ if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){ assert( ((p->z==p->zMalloc)? 1 : 0) + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 ); } return 1; } #endif /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string |
︙ | ︙ | |||
59968 59969 59970 59971 59972 59973 59974 | ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ | | < < < < < | > | | | | 60150 60151 60152 60153 60154 60155 60156 60157 60158 60159 60160 60161 60162 60163 60164 60165 60166 60167 60168 60169 60170 60171 60172 60173 60174 60175 60176 60177 60178 60179 60180 60181 60182 60183 60184 60185 60186 60187 60188 60189 60190 60191 60192 60193 60194 60195 60196 60197 60198 | ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ assert( sqlite3VdbeCheckMemInvariants(pMem) ); assert( (pMem->flags&MEM_RowSet)==0 ); /* If the bPreserve flag is set to true, then the memory cell must already ** contain a valid string or blob value. */ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); testcase( bPreserve && pMem->z==0 ); if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ if( n<32 ) n = 32; if( bPreserve && pMem->z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); bPreserve = 0; }else{ sqlite3DbFree(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } if( pMem->zMalloc==0 ){ VdbeMemRelease(pMem); pMem->z = 0; pMem->flags = MEM_Null; return SQLITE_NOMEM; } } if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){ memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( (pMem->flags&MEM_Dyn)!=0 ){ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); pMem->xDel = 0; return SQLITE_OK; } /* ** Make the given Mem object MEM_Dyn. In other words, make it so ** that any TEXT or BLOB content is stored in memory obtained from |
︙ | ︙ | |||
60175 60176 60177 60178 60179 60180 60181 | */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); | | | | > | 60353 60354 60355 60356 60357 60358 60359 60360 60361 60362 60363 60364 60365 60366 60367 60368 60369 60370 60371 60372 60373 60374 60375 60376 60377 60378 60379 60380 60381 60382 60383 60384 60385 | */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else if( p->flags&MEM_Dyn ){ assert( (p->flags&MEM_RowSet)==0 ); assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); p->xDel((void *)p->z); p->xDel = 0; }else if( p->flags&MEM_RowSet ){ sqlite3RowSetClear(p->u.pRowSet); }else if( p->flags&MEM_Frame ){ sqlite3VdbeMemSetNull(p); } } /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.flags==MEM_Str). */ SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){ assert( sqlite3VdbeCheckMemInvariants(p) ); VdbeMemRelease(p); if( p->zMalloc ){ sqlite3DbFree(p->db, p->zMalloc); p->zMalloc = 0; } p->z = 0; assert( p->xDel==0 ); /* Zeroed by VdbeMemRelease() above */ |
︙ | ︙ | |||
60381 60382 60383 60384 60385 60386 60387 | pFrame->pParent = pFrame->v->pDelFrame; pFrame->v->pDelFrame = pFrame; } if( pMem->flags & MEM_RowSet ){ sqlite3RowSetClear(pMem->u.pRowSet); } MemSetTypeFlag(pMem, MEM_Null); | < < | 60560 60561 60562 60563 60564 60565 60566 60567 60568 60569 60570 60571 60572 60573 60574 60575 60576 60577 60578 60579 60580 60581 60582 60583 60584 60585 | pFrame->pParent = pFrame->v->pDelFrame; pFrame->v->pDelFrame = pFrame; } if( pMem->flags & MEM_RowSet ){ sqlite3RowSetClear(pMem->u.pRowSet); } MemSetTypeFlag(pMem, MEM_Null); } SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){ sqlite3VdbeMemSetNull((Mem*)p); } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Blob|MEM_Zero; pMem->n = 0; if( n<0 ) n = 0; pMem->u.nZero = n; pMem->enc = SQLITE_UTF8; #ifdef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemGrow(pMem, n, 0); |
︙ | ︙ | |||
60417 60418 60419 60420 60421 60422 60423 | ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemRelease(pMem); pMem->u.i = val; pMem->flags = MEM_Int; | < < | 60594 60595 60596 60597 60598 60599 60600 60601 60602 60603 60604 60605 60606 60607 60608 60609 60610 60611 60612 60613 60614 60615 60616 60617 60618 60619 60620 60621 | ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemRelease(pMem); pMem->u.i = val; pMem->flags = MEM_Int; } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ if( sqlite3IsNaN(val) ){ sqlite3VdbeMemSetNull(pMem); }else{ sqlite3VdbeMemRelease(pMem); pMem->r = val; pMem->flags = MEM_Real; } } #endif /* ** Delete any previous value and set the value of pMem to be an ** empty boolean index. |
︙ | ︙ | |||
60488 60489 60490 60491 60492 60493 60494 | ** copies are not misused. */ SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ | | | 60663 60664 60665 60666 60667 60668 60669 60670 60671 60672 60673 60674 60675 60676 60677 | ** copies are not misused. */ SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ pX->flags |= MEM_Undefined; pX->pScopyFrom = 0; } } pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ |
︙ | ︙ | |||
60530 60531 60532 60533 60534 60535 60536 60537 60538 60539 60540 60541 60542 60543 | SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( (pFrom->flags & MEM_RowSet)==0 ); VdbeMemRelease(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } | > | 60705 60706 60707 60708 60709 60710 60711 60712 60713 60714 60715 60716 60717 60718 60719 | SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( (pFrom->flags & MEM_RowSet)==0 ); VdbeMemRelease(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; pTo->xDel = 0; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } |
︙ | ︙ | |||
60640 60641 60642 60643 60644 60645 60646 | pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } pMem->n = nByte; pMem->flags = flags; pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 60816 60817 60818 60819 60820 60821 60822 60823 60824 60825 60826 60827 60828 60829 60830 60831 60832 60833 60834 60835 60836 60837 60838 60839 60840 60841 60842 60843 | pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } pMem->n = nByte; pMem->flags = flags; pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); #ifndef SQLITE_OMIT_UTF16 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM; } #endif if( nByte>iLimit ){ return SQLITE_TOOBIG; } return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data or key is taken from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** key is true to get the key or false to get data. The result is written ** into the pMem element. ** |
︙ | ︙ | |||
60808 60809 60810 60811 60812 60813 60814 60815 | } assert( zData!=0 ); if( offset+amt<=available ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ | > < < < > | | < > > > < | 60870 60871 60872 60873 60874 60875 60876 60877 60878 60879 60880 60881 60882 60883 60884 60885 60886 60887 60888 60889 60890 60891 60892 60893 60894 60895 60896 60897 60898 60899 | } assert( zData!=0 ); if( offset+amt<=available ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); }else{ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); } if( rc==SQLITE_OK ){ pMem->z[amt] = 0; pMem->z[amt+1] = 0; pMem->flags = MEM_Blob|MEM_Term; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second |
︙ | ︙ | |||
60881 60882 60883 60884 60885 60886 60887 | /* ** Create a new sqlite3_value object. */ SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; | < | 60943 60944 60945 60946 60947 60948 60949 60950 60951 60952 60953 60954 60955 60956 | /* ** Create a new sqlite3_value object. */ SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; p->db = db; } return p; } /* ** Context object passed by sqlite3Stat4ProbeSetValue() through to |
︙ | ︙ | |||
60927 60928 60929 60930 60931 60932 60933 | nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); | < < | 60988 60989 60990 60991 60992 60993 60994 60995 60996 60997 60998 60999 61000 61001 61002 61003 61004 | nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); for(i=0; i<nCol; i++){ pRec->aMem[i].flags = MEM_Null; pRec->aMem[i].db = db; } }else{ sqlite3DbFree(db, pRec); pRec = 0; } } |
︙ | ︙ | |||
61004 61005 61006 61007 61008 61009 61010 | if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); | < | | | 61063 61064 61065 61066 61067 61068 61069 61070 61071 61072 61073 61074 61075 61076 61077 61078 61079 61080 61081 61082 61083 61084 61085 61086 61087 61088 61089 61090 61091 61092 61093 61094 61095 61096 | if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) && pVal!=0 ){ sqlite3VdbeMemNumerify(pVal); if( pVal->u.i==SMALLEST_INT64 ){ pVal->flags &= ~MEM_Int; pVal->flags |= MEM_Real; pVal->r = (double)SMALLEST_INT64; }else{ pVal->u.i = -pVal->u.i; } pVal->r = -pVal->r; sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_NULL ){ |
︙ | ︙ | |||
61050 61051 61052 61053 61054 61055 61056 | nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif | < < < | 61108 61109 61110 61111 61112 61113 61114 61115 61116 61117 61118 61119 61120 61121 | nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif *ppVal = pVal; return rc; no_mem: db->mallocFailed = 1; sqlite3DbFree(db, zVal); assert( *ppVal==0 ); |
︙ | ︙ | |||
61216 61217 61218 61219 61220 61221 61222 | pVal = valueNew(db, &alloc); if( pVal ){ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); if( rc==SQLITE_OK ){ sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); } pVal->db = pParse->db; | < | 61271 61272 61273 61274 61275 61276 61277 61278 61279 61280 61281 61282 61283 61284 | pVal = valueNew(db, &alloc); if( pVal ){ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); if( rc==SQLITE_OK ){ sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); } pVal->db = pParse->db; } } }else{ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, &alloc); } *pbOk = (pVal!=0); |
︙ | ︙ | |||
61461 61462 61463 61464 61465 61466 61467 61468 61469 61470 61471 61472 61473 61474 | sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(); } #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; #endif return i; } SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ | > > > | 61515 61516 61517 61518 61519 61520 61521 61522 61523 61524 61525 61526 61527 61528 61529 61530 61531 | sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(); } #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif return i; } SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
︙ | ︙ | |||
61823 61824 61825 61826 61827 61828 61829 | return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ | | | 61880 61881 61882 61883 61884 61885 61886 61887 61888 61889 61890 61891 61892 61893 61894 | return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ int addr; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p) ){ return 0; } addr = p->nOp; if( ALWAYS(nOp>0) ){ |
︙ | ︙ | |||
61850 61851 61852 61853 61854 61855 61856 61857 61858 61859 61860 61861 61862 61863 | } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); } #endif } | > > > > > | 61907 61908 61909 61910 61911 61912 61913 61914 61915 61916 61917 61918 61919 61920 61921 61922 61923 61924 61925 | } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOut->iSrcLine = iLineno+i; #else (void)iLineno; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); } #endif } |
︙ | ︙ | |||
62139 62140 62141 62142 62143 62144 62145 62146 62147 62148 62149 62150 62151 62152 62153 62154 62155 62156 62157 | va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ /* ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after a OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. | > > > > > > > > > < < < < < < < < < < < | 62201 62202 62203 62204 62205 62206 62207 62208 62209 62210 62211 62212 62213 62214 62215 62216 62217 62218 62219 62220 62221 62222 62223 62224 62225 62226 62227 62228 62229 62230 62231 62232 62233 62234 62235 62236 62237 62238 62239 62240 62241 62242 | va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ #ifdef SQLITE_VDBE_COVERAGE /* ** Set the value if the iSrcLine field for the previously coded instruction. */ SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; } #endif /* SQLITE_VDBE_COVERAGE */ /* ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after a OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ assert( p->magic==VDBE_MAGIC_INIT ); if( addr<0 ){ addr = p->nOp - 1; } assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; |
︙ | ︙ | |||
62473 62474 62475 62476 62477 62478 62479 | char zCom[100]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS displayComment(pOp, zP4, zCom, sizeof(zCom)); #else | | | 62533 62534 62535 62536 62537 62538 62539 62540 62541 62542 62543 62544 62545 62546 62547 | char zCom[100]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS displayComment(pOp, zP4, zCom, sizeof(zCom)); #else zCom[0] = 0; #endif /* NB: The sqlite3OpcodeName() function is implemented by code created ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the ** information from the vdbe.c source text */ fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, zCom |
︙ | ︙ | |||
62502 62503 62504 62505 62506 62507 62508 62509 62510 62511 62512 62513 62514 62515 62516 62517 62518 62519 62520 62521 62522 62523 62524 62525 62526 62527 62528 | for(pEnd=&p[N]; p<pEnd; p++){ sqlite3DbFree(db, p->zMalloc); } return; } for(pEnd=&p[N]; p<pEnd; p++){ assert( (&p[1])==pEnd || p[0].db==p[1].db ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** ** The justification for duplicating code is that according to ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } | > | | 62562 62563 62564 62565 62566 62567 62568 62569 62570 62571 62572 62573 62574 62575 62576 62577 62578 62579 62580 62581 62582 62583 62584 62585 62586 62587 62588 62589 62590 62591 62592 62593 62594 62595 62596 62597 | for(pEnd=&p[N]; p<pEnd; p++){ sqlite3DbFree(db, p->zMalloc); } return; } for(pEnd=&p[N]; p<pEnd; p++){ assert( (&p[1])==pEnd || p[0].db==p[1].db ); assert( sqlite3VdbeCheckMemInvariants(p) ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** ** The justification for duplicating code is that according to ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } p->flags = MEM_Undefined; } db->mallocFailed = malloc_failed; } } /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
︙ | ︙ | |||
62644 62645 62646 62647 62648 62649 62650 | for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; } pOp = &apSub[j]->aOp[i]; } if( p->explain==1 ){ pMem->flags = MEM_Int; | < < | 62705 62706 62707 62708 62709 62710 62711 62712 62713 62714 62715 62716 62717 62718 62719 62720 62721 62722 62723 62724 62725 | for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; } pOp = &apSub[j]->aOp[i]; } if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->u.i = i; /* Program counter */ pMem++; pMem->flags = MEM_Static|MEM_Str|MEM_Term; pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->enc = SQLITE_UTF8; pMem++; /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. |
︙ | ︙ | |||
62678 62679 62680 62681 62682 62683 62684 | pSub->n = nSub*sizeof(SubProgram*); } } } pMem->flags = MEM_Int; pMem->u.i = pOp->p1; /* P1 */ | < < < | < | < | < < | 62737 62738 62739 62740 62741 62742 62743 62744 62745 62746 62747 62748 62749 62750 62751 62752 62753 62754 62755 62756 62757 62758 62759 62760 62761 62762 62763 62764 62765 62766 62767 62768 62769 62770 62771 62772 62773 62774 62775 62776 62777 62778 62779 62780 62781 62782 62783 62784 62785 62786 62787 62788 62789 62790 62791 62792 62793 62794 62795 62796 | pSub->n = nSub*sizeof(SubProgram*); } } } pMem->flags = MEM_Int; pMem->u.i = pOp->p1; /* P1 */ pMem++; pMem->flags = MEM_Int; pMem->u.i = pOp->p2; /* P2 */ pMem++; pMem->flags = MEM_Int; pMem->u.i = pOp->p3; /* P3 */ pMem++; if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Str|MEM_Term; zP4 = displayP4(pOp, pMem->z, 32); if( zP4!=pMem->z ){ sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); }else{ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->enc = SQLITE_UTF8; } pMem++; if( p->explain==1 ){ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Str|MEM_Term; pMem->n = 2; sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ pMem->enc = SQLITE_UTF8; pMem++; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS if( sqlite3VdbeMemGrow(pMem, 500, 0) ){ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Str|MEM_Term; pMem->n = displayComment(pOp, zP4, pMem->z, 500); pMem->enc = SQLITE_UTF8; #else pMem->flags = MEM_Null; /* Comment */ #endif } p->nResColumn = 8 - 4*(p->explain-1); p->pResultSet = &p->aMem[1]; p->rc = SQLITE_OK; rc = SQLITE_ROW; |
︙ | ︙ | |||
62753 62754 62755 62756 62757 62758 62759 | */ SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){ const char *z = 0; if( p->zSql ){ z = p->zSql; }else if( p->nOp>=1 ){ const VdbeOp *pOp = &p->aOp[0]; | | | | 62805 62806 62807 62808 62809 62810 62811 62812 62813 62814 62815 62816 62817 62818 62819 62820 62821 62822 62823 62824 62825 62826 62827 62828 62829 62830 62831 62832 62833 62834 62835 62836 62837 62838 | */ SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){ const char *z = 0; if( p->zSql ){ z = p->zSql; }else if( p->nOp>=1 ){ const VdbeOp *pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ z = pOp->p4.z; while( sqlite3Isspace(*z) ) z++; } } if( z ) printf("SQL: [%s]\n", z); } #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** Print an IOTRACE message showing SQL content. */ SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( sqlite3IoTrace==0 ) return; if( nOp<1 ) return; pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ int i, j; char z[1000]; sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); for(i=0; sqlite3Isspace(z[i]); i++){} for(j=0; z[i]; i++){ if( sqlite3Isspace(z[i]) ){ if( z[i-1]!=' ' ){ |
︙ | ︙ | |||
62990 62991 62992 62993 62994 62995 62996 | memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); } if( p->aMem ){ p->aMem--; /* aMem[] goes from 1..nMem */ p->nMem = nMem; /* not from 0..nMem-1 */ for(n=1; n<=nMem; n++){ | | | 63042 63043 63044 63045 63046 63047 63048 63049 63050 63051 63052 63053 63054 63055 63056 | memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); } if( p->aMem ){ p->aMem--; /* aMem[] goes from 1..nMem */ p->nMem = nMem; /* not from 0..nMem-1 */ for(n=1; n<=nMem; n++){ p->aMem[n].flags = MEM_Undefined; p->aMem[n].db = db; } } p->explain = pParse->explain; sqlite3VdbeRewind(p); } |
︙ | ︙ | |||
63102 63103 63104 63105 63106 63107 63108 | #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); if( p->aMem ){ | | | 63154 63155 63156 63157 63158 63159 63160 63161 63162 63163 63164 63165 63166 63167 63168 | #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); if( p->aMem ){ for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); } #endif sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; p->pResultSet = 0; } |
︙ | ︙ | |||
63851 63852 63853 63854 63855 63856 63857 63858 | if( out ){ int i; fprintf(out, "---- "); for(i=0; i<p->nOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); for(i=0; i<p->nOp; i++){ | > > > > > > > > > > > | > | 63903 63904 63905 63906 63907 63908 63909 63910 63911 63912 63913 63914 63915 63916 63917 63918 63919 63920 63921 63922 63923 63924 63925 63926 63927 63928 63929 63930 63931 63932 63933 63934 | if( out ){ int i; fprintf(out, "---- "); for(i=0; i<p->nOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); if( p->zSql ){ char c, pc = 0; fprintf(out, "-- "); for(i=0; (c = p->zSql[i])!=0; i++){ if( pc=='\n' ) fprintf(out, "-- "); putc(c, out); pc = c; } if( pc!='\n' ) fprintf(out, "\n"); } for(i=0; i<p->nOp; i++){ char zHdr[100]; sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", p->aOp[i].cnt, p->aOp[i].cycles, p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 ); fprintf(out, "%s", zHdr); sqlite3VdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif p->iCurrentTime = 0; |
︙ | ︙ | |||
64211 64212 64213 64214 64215 64216 64217 64218 64219 64220 64221 64222 64223 64224 64225 64226 64227 64228 | return len; } /* NULL or constants 0 or 1 */ return 0; } /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. Return the number of bytes read. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x; u32 y; | > > > > > > > > < | < | < | | < < < | | | | 64275 64276 64277 64278 64279 64280 64281 64282 64283 64284 64285 64286 64287 64288 64289 64290 64291 64292 64293 64294 64295 64296 64297 64298 64299 64300 64301 64302 64303 64304 64305 64306 64307 64308 64309 64310 64311 64312 64313 64314 64315 64316 64317 64318 64319 64320 64321 64322 64323 64324 64325 64326 64327 64328 64329 64330 64331 64332 64333 64334 64335 64336 64337 64338 64339 64340 64341 64342 64343 64344 64345 64346 64347 64348 64349 64350 64351 64352 64353 64354 64355 64356 | return len; } /* NULL or constants 0 or 1 */ return 0; } /* Input "x" is a sequence of unsigned characters that represent a ** big-endian integer. Return the equivalent native integer */ #define ONE_BYTE_INT(x) ((i8)(x)[0]) #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. Return the number of bytes read. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x; u32 y; switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(buf); pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif x = FOUR_BYTE_UINT(buf); y = FOUR_BYTE_UINT(buf+4); x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); |
︙ | ︙ | |||
64372 64373 64374 64375 64376 64377 64378 | const unsigned char *aKey = (const unsigned char *)pKey; int d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; | | > | < | | | | | < < < < < < < < | | | 64438 64439 64440 64441 64442 64443 64444 64445 64446 64447 64448 64449 64450 64451 64452 64453 64454 64455 64456 64457 64458 64459 64460 64461 64462 64463 64464 64465 64466 64467 64468 64469 64470 64471 64472 64473 64474 64475 64476 64477 64478 64479 64480 64481 64482 64483 64484 | const unsigned char *aKey = (const unsigned char *)pKey; int d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; p->default_rc = 0; assert( EIGHT_BYTE_ALIGNMENT(pMem) ); idx = getVarint32(aKey, szHdr); d = szHdr; u = 0; while( idx<szHdr && u<p->nField && d<=nKey ){ u32 serial_type; idx += getVarint32(&aKey[idx], serial_type); pMem->enc = pKeyInfo->enc; pMem->db = pKeyInfo->db; /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ pMem->zMalloc = 0; d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); pMem++; u++; } assert( u<=pKeyInfo->nField + 1 ); p->nField = u; } #if SQLITE_DEBUG /* ** This function compares two index or table record keys in the same way ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), ** this function deserializes and compares values using the ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used ** in assert() statements to ensure that the optimized code in ** sqlite3VdbeRecordCompare() returns results with these two primitives. */ static int vdbeRecordCompareDebug( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2 /* Right key */ ){ u32 d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; |
︙ | ︙ | |||
64486 64487 64488 64489 64490 64491 64492 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and | | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > | > > > > | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > | | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 64544 64545 64546 64547 64548 64549 64550 64551 64552 64553 64554 64555 64556 64557 64558 64559 64560 64561 64562 64563 64564 64565 64566 64567 64568 64569 64570 64571 64572 64573 64574 64575 64576 64577 64578 64579 64580 64581 64582 64583 64584 64585 64586 64587 64588 64589 64590 64591 64592 64593 64594 64595 64596 64597 64598 64599 64600 64601 64602 64603 64604 64605 64606 64607 64608 64609 64610 64611 64612 64613 64614 64615 64616 64617 64618 64619 64620 64621 64622 64623 64624 64625 64626 64627 64628 64629 64630 64631 64632 64633 64634 64635 64636 64637 64638 64639 64640 64641 64642 64643 64644 64645 64646 64647 64648 64649 64650 64651 64652 64653 64654 64655 64656 64657 64658 64659 64660 64661 64662 64663 64664 64665 64666 64667 64668 64669 64670 64671 64672 64673 64674 64675 64676 64677 64678 64679 64680 64681 64682 64683 64684 64685 64686 64687 64688 64689 64690 64691 64692 64693 64694 64695 64696 64697 64698 64699 64700 64701 64702 64703 64704 64705 64706 64707 64708 64709 64710 64711 64712 64713 64714 64715 64716 64717 64718 64719 64720 64721 64722 64723 64724 64725 64726 64727 64728 64729 64730 64731 64732 64733 64734 64735 64736 64737 64738 64739 64740 64741 64742 64743 64744 64745 64746 64747 64748 64749 64750 64751 64752 64753 64754 64755 64756 64757 64758 64759 64760 64761 64762 64763 64764 64765 64766 64767 64768 64769 64770 64771 64772 64773 64774 64775 64776 64777 64778 64779 64780 64781 64782 64783 64784 64785 64786 64787 64788 64789 64790 64791 64792 64793 64794 64795 64796 64797 64798 64799 64800 64801 64802 64803 64804 64805 64806 64807 64808 64809 64810 64811 64812 64813 64814 64815 64816 64817 64818 64819 64820 64821 64822 64823 64824 64825 64826 64827 64828 64829 64830 64831 64832 64833 64834 64835 64836 64837 64838 64839 64840 64841 64842 64843 64844 64845 64846 64847 64848 64849 64850 64851 64852 64853 64854 64855 64856 64857 64858 64859 64860 64861 64862 64863 64864 64865 64866 64867 64868 64869 64870 64871 64872 64873 64874 64875 64876 64877 64878 64879 64880 64881 64882 64883 64884 64885 64886 64887 64888 64889 64890 64891 64892 64893 64894 64895 64896 64897 64898 64899 64900 64901 64902 64903 64904 64905 64906 64907 64908 64909 64910 64911 64912 64913 64914 64915 64916 64917 64918 64919 64920 64921 64922 64923 64924 64925 64926 64927 64928 64929 64930 64931 64932 64933 64934 64935 64936 64937 64938 64939 64940 64941 64942 64943 64944 64945 64946 64947 64948 64949 64950 64951 64952 64953 64954 64955 64956 64957 64958 64959 64960 64961 64962 64963 64964 64965 64966 64967 64968 64969 64970 64971 64972 64973 64974 64975 64976 64977 64978 64979 64980 64981 64982 64983 64984 64985 64986 64987 64988 64989 64990 64991 64992 64993 64994 64995 64996 64997 64998 64999 65000 65001 65002 65003 65004 65005 65006 65007 65008 65009 65010 65011 65012 65013 65014 65015 65016 65017 65018 65019 65020 65021 65022 65023 65024 65025 65026 65027 65028 65029 65030 65031 65032 65033 65034 65035 65036 65037 65038 65039 65040 65041 65042 65043 65044 65045 65046 65047 65048 65049 65050 65051 65052 65053 65054 65055 65056 65057 65058 65059 65060 65061 65062 65063 65064 65065 65066 65067 65068 65069 65070 65071 65072 65073 65074 65075 65076 65077 65078 65079 65080 65081 65082 65083 65084 65085 65086 65087 65088 65089 65090 65091 65092 65093 65094 65095 65096 65097 65098 65099 65100 65101 65102 65103 65104 65105 65106 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. Return the the default_rc ** value. */ return pPKey2->default_rc; } #endif /* ** Both *pMem1 and *pMem2 contain string values. Compare the two values ** using the collation sequence pColl. As usual, return a negative , zero ** or positive value if *pMem1 is less than, equal to or greater than ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". */ static int vdbeCompareMemString( const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ int rc; const void *v1, *v2; int n1, n2; Mem c1; Mem c2; memset(&c1, 0, sizeof(c1)); memset(&c2, 0, sizeof(c2)); sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); n1 = v1==0 ? 0 : c1.n; v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); n2 = v2==0 ? 0 : c2.n; rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); sqlite3VdbeMemRelease(&c1); sqlite3VdbeMemRelease(&c2); return rc; } } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int rc; int f1, f2; int combined_flags; f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; assert( (combined_flags & MEM_RowSet)==0 ); /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* If one value is a number and the other is not, the number is less. ** If both are numbers, compare as reals if one is a real, or as integers ** if both values are integers. */ if( combined_flags&(MEM_Int|MEM_Real) ){ double r1, r2; if( (f1 & f2 & MEM_Int)!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return 1; return 0; } if( (f1&MEM_Real)!=0 ){ r1 = pMem1->r; }else if( (f1&MEM_Int)!=0 ){ r1 = (double)pMem1->u.i; }else{ return 1; } if( (f2&MEM_Real)!=0 ){ r2 = pMem2->r; }else if( (f2&MEM_Int)!=0 ){ r2 = (double)pMem2->u.i; }else{ return -1; } if( r1<r2 ) return -1; if( r1>r2 ) return 1; return 0; } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ return vdbeCompareMemString(pMem1, pMem2, pColl); } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); if( rc==0 ){ rc = pMem1->n - pMem2->n; } return rc; } /* ** The first argument passed to this function is a serial-type that ** corresponds to an integer - all values between 1 and 9 inclusive ** except 7. The second points to a buffer containing an integer value ** serialized according to serial_type. This function deserializes ** and returns the value. */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: return ONE_BYTE_INT(aKey); case 2: return TWO_BYTE_INT(aKey); case 3: return THREE_BYTE_INT(aKey); case 4: { y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** If argument bSkip is non-zero, it is assumed that the caller has already ** determined that the first fields of the keys are equal. ** ** Key1 and Key2 do not have to contain the same number of fields. If all ** fields that appear in both keys are equal, then pPKey2->default_rc is ** returned. */ SQLITE_PRIVATE int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int bSkip /* If true, skip the first field */ ){ u32 d1; /* Offset into aKey[] of next data element */ int i; /* Index of next field to compare */ u32 szHdr1; /* Size of record header in bytes */ u32 idx1; /* Offset of first type in header */ int rc = 0; /* Return value */ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ KeyInfo *pKeyInfo = pPKey2->pKeyInfo; const unsigned char *aKey1 = (const unsigned char *)pKey1; Mem mem1; /* If bSkip is true, then the caller has already determined that the first ** two elements in the keys are equal. Fix the various stack variables so ** that this routine begins comparing at the second field. */ if( bSkip ){ u32 s1; idx1 = 1 + getVarint32(&aKey1[1], s1); szHdr1 = aKey1[0]; d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); i = 1; pRhs++; }else{ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; i = 0; } VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); assert( pPKey2->pKeyInfo->aSortOrder!=0 ); assert( pPKey2->pKeyInfo->nField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & MEM_Int ){ serial_type = aKey1[idx1]; if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ double rhs = (double)pRhs->u.i; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); if( mem1.r<rhs ){ rc = -1; }else if( mem1.r>rhs ){ rc = +1; } }else{ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); i64 rhs = pRhs->u.i; if( lhs<rhs ){ rc = -1; }else if( lhs>rhs ){ rc = +1; } } } /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else{ double rhs = pRhs->r; double lhs; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); if( serial_type==7 ){ lhs = mem1.r; }else{ lhs = (double)mem1.u.i; } if( lhs<rhs ){ rc = -1; }else if( lhs>rhs ){ rc = +1; } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; if( (d1+mem1.n) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; if( (d1+nStr) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } } } /* RHS is null */ else{ serial_type = aKey1[idx1]; rc = (serial_type!=0); } if( rc!=0 ){ if( pKeyInfo->aSortOrder[i] ){ rc = -rc; } assert( CORRUPT_DB || (rc<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0) || (rc>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0) || pKeyInfo->db->mallocFailed ); assert( mem1.zMalloc==0 ); /* See comment below */ return rc; } i++; pRhs++; d1 += sqlite3VdbeSerialTypeLen(serial_type); idx1 += sqlite3VarintLen(serial_type); }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and ** all the fields up to that point were equal. Return the the default_rc ** value. */ assert( CORRUPT_DB || pPKey2->default_rc==vdbeRecordCompareDebug(nKey1, pKey1, pPKey2) ); return pPKey2->default_rc; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is an integer, and (b) the ** size-of-header varint at the start of (pKey1/nKey1) fits in a single ** byte (i.e. is less than 128). */ static int vdbeRecordCompareInt( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int bSkip /* Ignored */ ){ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; int serial_type = ((const u8*)pKey1)[1]; int res; u32 y; u64 x; i64 v = pPKey2->aMem[0].u.i; i64 lhs; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; break; } case 8: lhs = 0; break; case 9: lhs = 1; break; /* This case could be removed without changing the results of running ** this code. Including it causes gcc to generate a faster switch ** statement (since the range of switch targets now starts at zero and ** is contiguous) but does not cause any duplicate code to be generated ** (as gcc is clever enough to combine the two like cases). Other ** compilers might be similar. */ case 0: case 7: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0); default: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0); } if( v>lhs ){ res = pPKey2->r1; }else if( v<lhs ){ res = pPKey2->r2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1); }else{ /* The first fields of the two keys are equal and there are no trailing ** fields. Return pPKey2->default_rc in this case. */ res = pPKey2->default_rc; } assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0) || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0) || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0) || CORRUPT_DB ); return res; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is a string, that (b) the first field ** uses the collation sequence BINARY and (c) that the size-of-header varint ** at the start of (pKey1/nKey1) fits in a single byte. */ static int vdbeRecordCompareString( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int bSkip ){ const u8 *aKey1 = (const u8*)pKey1; int serial_type; int res; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); getVarint32(&aKey1[1], serial_type); if( serial_type<12 ){ res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ }else if( !(serial_type & 0x01) ){ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ }else{ int nCmp; int nStr; int szHdr = aKey1[0]; nStr = (serial_type-12) / 2; if( (szHdr + nStr) > nKey1 ) return 0; /* Corruption */ nCmp = MIN( pPKey2->aMem[0].n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); if( res==0 ){ res = nStr - pPKey2->aMem[0].n; if( res==0 ){ if( pPKey2->nField>1 ){ res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1); }else{ res = pPKey2->default_rc; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } } assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0) || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0) || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0) || CORRUPT_DB ); return res; } /* ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function ** suitable for comparing serialized records to the unpacked record passed ** as the only argument. */ SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ /* varintRecordCompareInt() and varintRecordCompareString() both assume ** that the size-of-header varint that occurs at the start of each record ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() ** also assumes that it is safe to overread a buffer by at least the ** maximum possible legal header size plus 8 bytes. Because there is ** guaranteed to be at least 74 (but not 136) bytes of padding following each ** buffer passed to varintRecordCompareInt() this makes it convenient to ** limit the size of the header to 64 bytes in cases where the first field ** is an integer. ** ** The easiest way to enforce this limit is to consider only records with ** 13 fields or less. If the first field is an integer, the maximum legal ** header size is (12*5 + 1 + 1) bytes. */ if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ int flags = p->aMem[0].flags; if( p->pKeyInfo->aSortOrder[0] ){ p->r1 = 1; p->r2 = -1; }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } if( (flags & (MEM_Int|MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. ** ** pCur might be pointing to text obtained from a corrupt database file. |
︙ | ︙ | |||
64594 64595 64596 64597 64598 64599 64600 | ** ** pUnpacked is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. Hence, this routine only compares the prefixes ** of the keys prior to the final rowid, not the entire key. */ SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare( | | | | | < | | 65183 65184 65185 65186 65187 65188 65189 65190 65191 65192 65193 65194 65195 65196 65197 65198 65199 65200 65201 65202 65203 65204 65205 65206 65207 65208 65209 65210 65211 65212 65213 65214 65215 65216 65217 65218 65219 65220 | ** ** pUnpacked is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. Hence, this routine only compares the prefixes ** of the keys prior to the final rowid, not the entire key. */ SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare( VdbeCursor *pC, /* The cursor to compare against */ const UnpackedRecord *pUnpacked, /* Unpacked version of key */ int *res /* Write the comparison result here */ ){ i64 nCellKey = 0; int rc; BtCursor *pCur = pC->pCursor; Mem m; assert( sqlite3BtreeCursorIsValid(pCur) ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); if( rc ){ return rc; } *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0); sqlite3VdbeMemRelease(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. |
︙ | ︙ | |||
64682 64683 64684 64685 64686 64687 64688 | if( v ){ Mem *pMem = &v->aVar[iVar-1]; if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); | < | 65270 65271 65272 65273 65274 65275 65276 65277 65278 65279 65280 65281 65282 65283 | if( v ){ Mem *pMem = &v->aVar[iVar-1]; if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); } return pRet; } } return 0; } |
︙ | ︙ | |||
64856 64857 64858 64859 64860 64861 64862 | ** The following routines extract information from a Mem or sqlite3_value ** structure. */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ sqlite3VdbeMemExpandBlob(p); | < | 65443 65444 65445 65446 65447 65448 65449 65450 65451 65452 65453 65454 65455 65456 | ** The following routines extract information from a Mem or sqlite3_value ** structure. */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ sqlite3VdbeMemExpandBlob(p); p->flags |= MEM_Blob; return p->n ? p->z : 0; }else{ return sqlite3_value_text(pVal); } } SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){ |
︙ | ︙ | |||
64893 64894 64895 64896 64897 64898 64899 | return sqlite3ValueText(pVal, SQLITE_UTF16BE); } SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 65479 65480 65481 65482 65483 65484 65485 65486 65487 65488 65489 65490 65491 65492 65493 65494 65495 65496 65497 65498 65499 65500 65501 65502 65503 65504 65505 65506 65507 65508 65509 65510 65511 65512 65513 65514 65515 65516 65517 65518 65519 65520 65521 65522 65523 65524 65525 65526 65527 | return sqlite3ValueText(pVal, SQLITE_UTF16BE); } SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){ static const u8 aType[] = { SQLITE_BLOB, /* 0x00 */ SQLITE_NULL, /* 0x01 */ SQLITE_TEXT, /* 0x02 */ SQLITE_NULL, /* 0x03 */ SQLITE_INTEGER, /* 0x04 */ SQLITE_NULL, /* 0x05 */ SQLITE_INTEGER, /* 0x06 */ SQLITE_NULL, /* 0x07 */ SQLITE_FLOAT, /* 0x08 */ SQLITE_NULL, /* 0x09 */ SQLITE_FLOAT, /* 0x0a */ SQLITE_NULL, /* 0x0b */ SQLITE_INTEGER, /* 0x0c */ SQLITE_NULL, /* 0x0d */ SQLITE_INTEGER, /* 0x0e */ SQLITE_NULL, /* 0x0f */ SQLITE_BLOB, /* 0x10 */ SQLITE_NULL, /* 0x11 */ SQLITE_TEXT, /* 0x12 */ SQLITE_NULL, /* 0x13 */ SQLITE_INTEGER, /* 0x14 */ SQLITE_NULL, /* 0x15 */ SQLITE_INTEGER, /* 0x16 */ SQLITE_NULL, /* 0x17 */ SQLITE_FLOAT, /* 0x18 */ SQLITE_NULL, /* 0x19 */ SQLITE_FLOAT, /* 0x1a */ SQLITE_NULL, /* 0x1b */ SQLITE_INTEGER, /* 0x1c */ SQLITE_NULL, /* 0x1d */ SQLITE_INTEGER, /* 0x1e */ SQLITE_NULL, /* 0x1f */ }; return aType[pVal->flags&MEM_AffMask]; } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. ** ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the |
︙ | ︙ | |||
65414 65415 65416 65417 65418 65419 65420 65421 65422 65423 65424 65425 65426 65427 65428 65429 65430 65431 65432 65433 65434 65435 65436 | */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 || pVm->pResultSet==0 ) return 0; return pVm->nResColumn; } /* ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm; Mem *pOut; pVm = (Vdbe *)pStmt; if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ sqlite3_mutex_enter(pVm->db->mutex); pOut = &pVm->pResultSet[i]; }else{ | > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < < < < < < < < < < < < < < < | | 66034 66035 66036 66037 66038 66039 66040 66041 66042 66043 66044 66045 66046 66047 66048 66049 66050 66051 66052 66053 66054 66055 66056 66057 66058 66059 66060 66061 66062 66063 66064 66065 66066 66067 66068 66069 66070 66071 66072 66073 66074 66075 66076 66077 66078 66079 66080 66081 66082 66083 66084 66085 66086 66087 66088 66089 66090 66091 66092 | */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 || pVm->pResultSet==0 ) return 0; return pVm->nResColumn; } /* ** Return a pointer to static memory containing an SQL NULL value. */ static const Mem *columnNullValue(void){ /* Even though the Mem structure contains an element ** of type i64, on certain architectures (x86) with certain compiler ** switches (-Os), gcc may align this Mem object on a 4-byte boundary ** instead of an 8-byte one. This all works fine, except that when ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s ** that a Mem structure is located on an 8-byte boundary. To prevent ** these assert()s from failing, when building with SQLITE_DEBUG defined ** using gcc, we force nullMem to be 8-byte aligned using the magical ** __attribute__((aligned(8))) macro. */ static const Mem nullMem #if defined(SQLITE_DEBUG) && defined(__GNUC__) __attribute__((aligned(8))) #endif = {0, "", (double)0, {0}, 0, MEM_Null, 0, #ifdef SQLITE_DEBUG 0, 0, /* pScopyFrom, pFiller */ #endif 0, 0 }; return &nullMem; } /* ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm; Mem *pOut; pVm = (Vdbe *)pStmt; if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ sqlite3_mutex_enter(pVm->db->mutex); pOut = &pVm->pResultSet[i]; }else{ if( pVm && ALWAYS(pVm->db) ){ sqlite3_mutex_enter(pVm->db->mutex); sqlite3Error(pVm->db, SQLITE_RANGE, 0); } pOut = (Mem*)columnNullValue(); } return pOut; } /* ** This function is called after invoking an sqlite3_value_XXX function on a ** column value (i.e. a value returned by evaluating an SQL expression in the |
︙ | ︙ | |||
65852 65853 65854 65855 65856 65857 65858 | void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ int rc; | | | 66475 66476 66477 66478 66479 66480 66481 66482 66483 66484 66485 66486 66487 66488 66489 | void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ int rc; switch( sqlite3_value_type((sqlite3_value*)pValue) ){ case SQLITE_INTEGER: { rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); break; } case SQLITE_FLOAT: { rc = sqlite3_bind_double(pStmt, i, pValue->r); break; |
︙ | ︙ | |||
66353 66354 66355 66356 66357 66358 66359 | ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | < < < < < < < < < | < < < < < < < < < < < < < < < < | > > > > | 66976 66977 66978 66979 66980 66981 66982 66983 66984 66985 66986 66987 66988 66989 66990 66991 66992 66993 66994 66995 66996 66997 66998 66999 67000 67001 67002 67003 67004 67005 67006 67007 | ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements the function that runs the ** bytecode of a prepared statement. ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. */ /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing ** like that every happens. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) #else # define memAboutToChange(P,M) #endif |
︙ | ︙ | |||
66450 66451 66452 66453 66454 66455 66456 | if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ sqlite3_max_blobsize = p->n; } } #endif /* | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | < < < < < < < < < < < < < < < < < < < < < < < < | 67052 67053 67054 67055 67056 67057 67058 67059 67060 67061 67062 67063 67064 67065 67066 67067 67068 67069 67070 67071 67072 67073 67074 67075 67076 67077 67078 67079 67080 67081 67082 67083 67084 67085 67086 67087 67088 67089 67090 67091 67092 67093 67094 67095 67096 67097 67098 67099 67100 67101 67102 67103 67104 67105 67106 67107 67108 67109 67110 67111 67112 67113 67114 67115 67116 67117 67118 67119 67120 67121 67122 67123 67124 67125 67126 67127 67128 67129 67130 67131 67132 67133 67134 67135 67136 67137 67138 | if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ sqlite3_max_blobsize = p->n; } } #endif /* ** The next global variable is incremented each time the OP_Found opcode ** is executed. This is used to test whether or not the foreign key ** operation implemented using OP_FkIsZero is working. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_found_count = 0; #endif /* ** Test a register to see if it exceeds the current maximum blob size. ** If it does, record the new maximum blob size. */ #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif /* ** Invoke the VDBE coverage callback, if that callback is defined. This ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is an integer, 2 or 3, that indices how many different ways the ** branch can go. It is usually 2. "I" is the direction the branch ** goes. 0 means falls through. 1 means branch is taken. 2 means the ** second alternative branch is taken. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ M = iSrcLine; /* Assert the truth of VdbeCoverageAlwaysTaken() and ** VdbeCoverageNeverTaken() */ assert( (M & I)==I ); }else{ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, iSrcLine,I,M); } } #endif /* ** Convert the given register into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ { goto no_mem; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the register ** does not control the string, it might be deleted without the register ** knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the register itself controls. In other words, it ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 \ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ #define isSorter(x) ((x)->pSorter!=0) /* ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL ** if we run out of memory. */ static VdbeCursor *allocateCursor( Vdbe *p, /* The virtual machine */ |
︙ | ︙ | |||
66648 66649 66650 66651 66652 66653 66654 | /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without ** loss of information and return the revised type of the argument. */ SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){ | > > | < | | | 67254 67255 67256 67257 67258 67259 67260 67261 67262 67263 67264 67265 67266 67267 67268 67269 67270 67271 67272 67273 67274 | /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without ** loss of information and return the revised type of the argument. */ SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){ int eType = sqlite3_value_type(pVal); if( eType==SQLITE_TEXT ){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem); eType = sqlite3_value_type(pVal); } return eType; } /* ** Exported version of applyAffinity(). This one works on sqlite3_value*, ** not the internal Mem* type. */ SQLITE_PRIVATE void sqlite3ValueApplyAffinity( |
︙ | ︙ | |||
66756 66757 66758 66759 66760 66761 66762 | #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(Mem *p){ | | | 67363 67364 67365 67366 67367 67368 67369 67370 67371 67372 67373 67374 67375 67376 67377 | #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(" NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); }else if( p->flags & MEM_Int ){ printf(" i:%lld", p->u.i); |
︙ | ︙ | |||
66888 66889 66890 66891 66892 66893 66894 | #endif /* !defined(_HWTIME_H_) */ /************** End of hwtime.h **********************************************/ /************** Continuing where we left off in vdbe.c ***********************/ #endif | < < < < < < < < < < < < < < | 67495 67496 67497 67498 67499 67500 67501 67502 67503 67504 67505 67506 67507 67508 | #endif /* !defined(_HWTIME_H_) */ /************** End of hwtime.h **********************************************/ /************** Continuing where we left off in vdbe.c ***********************/ #endif #ifndef NDEBUG /* ** This function is only called from within an assert() expression. It ** checks that the sqlite3.nTransaction variable is correctly set to ** the number of non-transaction savepoints currently in the ** linked list starting at sqlite3.pSavepoint. |
︙ | ︙ | |||
66925 66926 66927 66928 66929 66930 66931 | assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* | | < < < < < < < < < < < < < < | < < < < < < < < < < < < < | 67518 67519 67520 67521 67522 67523 67524 67525 67526 67527 67528 67529 67530 67531 67532 67533 | assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Execute as much of a VDBE program as we can. ** This is the core of sqlite3_step(). */ SQLITE_PRIVATE int sqlite3VdbeExec( Vdbe *p /* The VDBE */ ){ int pc=0; /* The program counter */ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp; /* Current operation */ |
︙ | ︙ | |||
66979 66980 66981 66982 66983 66984 66985 | Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ int *aPermute = 0; /* Permutation of columns for OP_Compare */ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ | < | | 67545 67546 67547 67548 67549 67550 67551 67552 67553 67554 67555 67556 67557 67558 67559 67560 67561 67562 67563 67564 67565 67566 67567 67568 67569 67570 67571 67572 67573 67574 67575 67576 | Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ int *aPermute = 0; /* Permutation of columns for OP_Compare */ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ #endif /*** INSERT STACK UNION HERE ***/ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ sqlite3VdbeEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); assert( p->bIsReader || p->readOnly!=0 ); p->rc = SQLITE_OK; p->iCurrentTime = 0; assert( p->explain==0 ); p->pResultSet = 0; db->busyHandler.nBusy = 0; if( db->u1.isInterrupted ) goto abort_due_to_interrupt; sqlite3VdbeIOTraceSql(p); #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ assert( 0 < db->nProgressOps ); nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; if( nProgressLimit==0 ){ nProgressLimit = db->nProgressOps; |
︙ | ︙ | |||
67041 67042 67043 67044 67045 67046 67047 | } sqlite3EndBenignMalloc(); #endif for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE | < | 67606 67607 67608 67609 67610 67611 67612 67613 67614 67615 67616 67617 67618 67619 | } sqlite3EndBenignMalloc(); #endif for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE start = sqlite3Hwtime(); #endif nVmStep++; pOp = &aOp[pc]; /* Only allow tracing if SQLITE_DEBUG is defined. */ |
︙ | ︙ | |||
67089 67090 67091 67092 67093 67094 67095 67096 67097 67098 67099 67100 67101 67102 67103 67104 67105 67106 67107 67108 67109 67110 67111 67112 67113 67114 | /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (pOp->opflags & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (pOp->opflags & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } | > > > | 67653 67654 67655 67656 67657 67658 67659 67660 67661 67662 67663 67664 67665 67666 67667 67668 67669 67670 67671 67672 67673 67674 67675 67676 67677 67678 67679 67680 67681 | /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (pOp->opflags & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (pOp->opflags & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } |
︙ | ︙ | |||
67173 67174 67175 67176 67177 67178 67179 | ** ** This code uses unstructured "goto" statements and does not look clean. ** But that is not due to sloppy coding habits. The code is written this ** way for performance, to avoid having to run the interrupt and progress ** checks on every opcode. This helps sqlite3_step() to run about 1.5% ** faster according to "valgrind --tool=cachegrind" */ check_for_interrupt: | | | 67740 67741 67742 67743 67744 67745 67746 67747 67748 67749 67750 67751 67752 67753 67754 | ** ** This code uses unstructured "goto" statements and does not look clean. ** But that is not due to sloppy coding habits. The code is written this ** way for performance, to avoid having to run the interrupt and progress ** checks on every opcode. This helps sqlite3_step() to run about 1.5% ** faster according to "valgrind --tool=cachegrind" */ check_for_interrupt: if( db->u1.isInterrupted ) goto abort_due_to_interrupt; #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Call the progress callback if it is configured and the required number ** of VDBE ops have been executed (either since this invocation of ** sqlite3VdbeExec() or since last time the progress callback was called). ** If the progress callback returns non-zero, exit the virtual machine with ** a return code SQLITE_ABORT. */ |
︙ | ︙ | |||
67202 67203 67204 67205 67206 67207 67208 | ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pIn1 = &aMem[pOp->p1]; | | | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | | | | 67769 67770 67771 67772 67773 67774 67775 67776 67777 67778 67779 67780 67781 67782 67783 67784 67785 67786 67787 67788 67789 67790 67791 67792 67793 67794 67795 67796 67797 67798 67799 67800 67801 67802 67803 67804 67805 67806 67807 67808 67809 67810 67811 67812 67813 67814 67815 67816 67817 67818 67819 67820 67821 67822 67823 67824 67825 67826 67827 67828 67829 67830 67831 67832 67833 67834 67835 67836 67837 67838 67839 67840 67841 67842 67843 67844 67845 67846 67847 67848 67849 67850 67851 67852 67853 67854 67855 67856 67857 67858 67859 67860 67861 67862 67863 67864 67865 67866 | ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pOp->p2 - 1; break; } /* Opcode: Return P1 * * * * ** ** Jump to the next instruction after the address in register P1. After ** the jump, register P1 becomes undefined. */ case OP_Return: { /* in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); pc = (int)pIn1->u.i; pIn1->flags = MEM_Undefined; break; } /* Opcode: InitCoroutine P1 P2 P3 * * ** ** Set up register P1 so that it will OP_Yield to the co-routine ** located at address P3. ** ** If P2!=0 then the co-routine implementation immediately follows ** this opcode. So jump over the co-routine implementation to ** address P2. */ case OP_InitCoroutine: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); assert( pOp->p2>=0 && pOp->p2<p->nOp ); assert( pOp->p3>=0 && pOp->p3<p->nOp ); pOut = &aMem[pOp->p1]; assert( !VdbeMemDynamic(pOut) ); pOut->u.i = pOp->p3 - 1; pOut->flags = MEM_Int; if( pOp->p2 ) pc = pOp->p2 - 1; break; } /* Opcode: EndCoroutine P1 * * * * ** ** The instruction at the address in register P1 is an OP_Yield. ** Jump to the P2 parameter of that OP_Yield. ** After the jump, register P1 becomes undefined. */ case OP_EndCoroutine: { /* in1 */ VdbeOp *pCaller; pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); pCaller = &aOp[pIn1->u.i]; assert( pCaller->opcode==OP_Yield ); assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); pc = pCaller->p2 - 1; pIn1->flags = MEM_Undefined; break; } /* Opcode: Yield P1 P2 * * * ** ** Swap the program counter with the value in register P1. ** ** If the co-routine ends with OP_Yield or OP_Return then continue ** to the next instruction. But if the co-routine ends with ** OP_EndCoroutine, jump immediately to P2. */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pcDest; break; } /* Opcode: HaltIfNull P1 P2 P3 P4 P5 ** Synopsis: if r[P3]=null halt ** ** Check the value in register P3. If it is NULL then Halt using ** parameter P1, P2, and P4 as if this were a Halt instruction. If the ** value in register P3 is not NULL, then this routine is a no-op. ** The P5 parameter should be 1. */ case OP_HaltIfNull: { /* in3 */ |
︙ | ︙ | |||
67387 67388 67389 67390 67391 67392 67393 | } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed | | > > | < | 68000 68001 68002 68003 68004 68005 68006 68007 68008 68009 68010 68011 68012 68013 68014 68015 68016 68017 68018 68019 68020 68021 68022 68023 68024 68025 68026 68027 68028 68029 68030 68031 | } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into an OP_String before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2-prerelease */ assert( pOp->p4.z!=0 ); pOp->opcode = OP_String; pOp->p1 = sqlite3Strlen30(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( rc==SQLITE_TOOBIG ) goto too_big; if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; assert( pOut->zMalloc==pOut->z ); assert( VdbeMemDynamic(pOut)==0 ); pOut->zMalloc = 0; pOut->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3DbFree(db, pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pOut->z; pOp->p1 = pOut->n; } |
︙ | ︙ | |||
67461 67462 67463 67464 67465 67466 67467 | VdbeMemRelease(pOut); pOut->flags = nullFlag; cnt--; } break; } | > > > > > > > > > > > > > | > | | | 68075 68076 68077 68078 68079 68080 68081 68082 68083 68084 68085 68086 68087 68088 68089 68090 68091 68092 68093 68094 68095 68096 68097 68098 68099 68100 68101 68102 68103 68104 68105 68106 68107 68108 68109 68110 68111 68112 68113 68114 68115 68116 68117 68118 68119 68120 68121 68122 68123 | VdbeMemRelease(pOut); pOut->flags = nullFlag; cnt--; } break; } /* Opcode: SoftNull P1 * * * * ** Synopsis: r[P1]=NULL ** ** Set register P1 to have the value NULL as seen by the OP_MakeRecord ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pOut = &aMem[pOp->p1]; pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. */ case OP_Blob: { /* out2-prerelease */ assert( pOp->p1 <= SQLITE_MAX_LENGTH ); sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Variable P1 P2 * P4 * ** Synopsis: r[P2]=parameter(P1,P4) ** ** Transfer the values of bound parameter P1 into register P2 ** ** If the parameter is named, then its name appears in P4. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { /* out2-prerelease */ Mem *pVar; /* Value being transferred */ assert( pOp->p1>0 && pOp->p1<=p->nVar ); assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); |
︙ | ︙ | |||
67525 67526 67527 67528 67529 67530 67531 67532 | pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); zMalloc = pOut->zMalloc; | > < | > > | 68153 68154 68155 68156 68157 68158 68159 68160 68161 68162 68163 68164 68165 68166 68167 68168 68169 68170 68171 68172 68173 68174 68175 68176 | pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); VdbeMemRelease(pOut); zMalloc = pOut->zMalloc; memcpy(pOut, pIn1, sizeof(Mem)); #ifdef SQLITE_DEBUG if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ pOut->pScopyFrom += p1 - pOp->p2; } #endif pIn1->flags = MEM_Undefined; pIn1->xDel = 0; pIn1->zMalloc = zMalloc; REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; }while( n-- ); break; } |
︙ | ︙ | |||
67600 67601 67602 67603 67604 67605 67606 | /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt | | | | 68230 68231 68232 68233 68234 68235 68236 68237 68238 68239 68240 68241 68242 68243 68244 68245 | /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt ** structure to provide access to the r(P1)..r(P1+P2-1) values as ** the result row. */ case OP_ResultRow: { Mem *pMem; int i; assert( p->nResColumn==pOp->p2 ); assert( pOp->p1>0 ); assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); |
︙ | ︙ | |||
67666 67667 67668 67669 67670 67671 67672 | pMem = p->pResultSet = &aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ assert( memIsValid(&pMem[i]) ); Deephemeralize(&pMem[i]); assert( (pMem[i].flags & MEM_Ephem)==0 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); sqlite3VdbeMemNulTerminate(&pMem[i]); | < | 68296 68297 68298 68299 68300 68301 68302 68303 68304 68305 68306 68307 68308 68309 | pMem = p->pResultSet = &aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ assert( memIsValid(&pMem[i]) ); Deephemeralize(&pMem[i]); assert( (pMem[i].flags & MEM_Ephem)==0 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); sqlite3VdbeMemNulTerminate(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; /* Return SQLITE_ROW */ p->pc = pc + 1; |
︙ | ︙ | |||
67709 67710 67711 67712 67713 67714 67715 | if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; Stringify(pIn1, encoding); Stringify(pIn2, encoding); nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } | < > | 68338 68339 68340 68341 68342 68343 68344 68345 68346 68347 68348 68349 68350 68351 68352 68353 68354 68355 | if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; Stringify(pIn1, encoding); Stringify(pIn2, encoding); nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ goto no_mem; } MemSetTypeFlag(pOut, MEM_Str); if( pOut!=pIn2 ){ memcpy(pOut->z, pIn2->z, pIn2->n); } memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); pOut->z[nByte]=0; pOut->z[nByte+1] = 0; pOut->flags |= MEM_Term; |
︙ | ︙ | |||
67912 67913 67914 67915 67916 67917 67918 | assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ assert( memIsValid(pArg) ); apVal[i] = pArg; Deephemeralize(pArg); | < | 68541 68542 68543 68544 68545 68546 68547 68548 68549 68550 68551 68552 68553 68554 | assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ assert( memIsValid(pArg) ); apVal[i] = pArg; Deephemeralize(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF ); ctx.pFunc = pOp->p4.pFunc; ctx.iOp = pc; ctx.pVdbe = p; |
︙ | ︙ | |||
68091 68092 68093 68094 68095 68096 68097 68098 68099 68100 68101 68102 68103 68104 | ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; break; | > | 68719 68720 68721 68722 68723 68724 68725 68726 68727 68728 68729 68730 68731 68732 68733 | ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; break; |
︙ | ︙ | |||
68129 68130 68131 68132 68133 68134 68135 | #endif #ifndef SQLITE_OMIT_CAST /* Opcode: ToText P1 * * * * ** ** Force the value in register P1 to be text. ** If the value is numeric, convert it to a string using the | | | 68758 68759 68760 68761 68762 68763 68764 68765 68766 68767 68768 68769 68770 68771 68772 | #endif #ifndef SQLITE_OMIT_CAST /* Opcode: ToText P1 * * * * ** ** Force the value in register P1 to be text. ** If the value is numeric, convert it to a string using the ** equivalent of sprintf(). Blob values are unchanged and ** are afterwards simply interpreted as text. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToText: { /* same as TK_TO_TEXT, in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); |
︙ | ︙ | |||
68331 68332 68333 68334 68335 68336 68337 68338 68339 68340 68341 68342 68343 68344 68345 68346 68347 68348 68349 68350 | if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); assert( (flags1 & MEM_Cleared)==0 ); if( (flags1&MEM_Null)!=0 && (flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Results are equal */ }else{ res = 1; /* Results are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ | > | < < > > > > > | 68960 68961 68962 68963 68964 68965 68966 68967 68968 68969 68970 68971 68972 68973 68974 68975 68976 68977 68978 68979 68980 68981 68982 68983 68984 68985 68986 68987 68988 68989 68990 68991 68992 68993 68994 68995 68996 | if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); assert( (flags1 & MEM_Cleared)==0 ); assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); if( (flags1&MEM_Null)!=0 && (flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Results are equal */ }else{ res = 1; /* Results are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ pc = pOp->p2-1; } } break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity ){ |
︙ | ︙ | |||
68382 68383 68384 68385 68386 68387 68388 | if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); | > > | | | | | 69015 69016 69017 69018 69019 69020 69021 69022 69023 69024 69025 69026 69027 69028 69029 69030 69031 69032 69033 69034 | if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res ){ pc = pOp->p2-1; } } /* Undo any changes made by applyAffinity() to the input registers. */ pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); break; } /* Opcode: Permutation * * * P4 * |
︙ | ︙ | |||
68482 68483 68484 68485 68486 68487 68488 | ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ | | | | | 69117 69118 69119 69120 69121 69122 69123 69124 69125 69126 69127 69128 69129 69130 69131 69132 69133 69134 69135 | ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ pc = pOp->p1 - 1; VdbeBranchTaken(0,3); }else if( iCompare==0 ){ pc = pOp->p2 - 1; VdbeBranchTaken(1,3); }else{ pc = pOp->p3 - 1; VdbeBranchTaken(2,3); } break; } /* Opcode: And P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] && r[P2]) ** |
︙ | ︙ | |||
68584 68585 68586 68587 68588 68589 68590 | } break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, | | > > > | 69219 69220 69221 69222 69223 69224 69225 69226 69227 69228 69229 69230 69231 69232 69233 69234 69235 69236 69237 69238 69239 | } break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, ** this opcode causes all following up codes up through P2 (but not including ** P2) to run just once and skipped on subsequent times through the loop. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); if( p->aOnceFlag[pOp->p1] ){ pc = pOp->p2-1; }else{ p->aOnceFlag[pOp->p1] = 1; } break; } |
︙ | ︙ | |||
68622 68623 68624 68625 68626 68627 68628 68629 68630 68631 68632 68633 68634 68635 68636 68637 68638 68639 68640 68641 68642 68643 68644 68645 68646 68647 68648 68649 68650 68651 68652 68653 68654 68655 68656 68657 68658 68659 68660 68661 | #ifdef SQLITE_OMIT_FLOATING_POINT c = sqlite3VdbeIntValue(pIn1)!=0; #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } if( c ){ pc = pOp->p2-1; } break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Null)!=0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: Column P1 P2 P3 P4 P5 | > > > | 69260 69261 69262 69263 69264 69265 69266 69267 69268 69269 69270 69271 69272 69273 69274 69275 69276 69277 69278 69279 69280 69281 69282 69283 69284 69285 69286 69287 69288 69289 69290 69291 69292 69293 69294 69295 69296 69297 69298 69299 69300 69301 69302 | #ifdef SQLITE_OMIT_FLOATING_POINT c = sqlite3VdbeIntValue(pIn1)!=0; #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } VdbeBranchTaken(c!=0, 2); if( c ){ pc = pOp->p2-1; } break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); if( (pIn1->flags & MEM_Null)!=0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: Column P1 P2 P3 P4 P5 |
︙ | ︙ | |||
68724 68725 68726 68727 68728 68729 68730 | rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){ if( pC->nullRow ){ if( pCrsr==0 ){ assert( pC->pseudoTableReg>0 ); pReg = &aMem[pC->pseudoTableReg]; | < < < < < | 69365 69366 69367 69368 69369 69370 69371 69372 69373 69374 69375 69376 69377 69378 | rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){ if( pC->nullRow ){ if( pCrsr==0 ){ assert( pC->pseudoTableReg>0 ); pReg = &aMem[pC->pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; pC->aRow = (u8*)pReg->z; }else{ MemSetTypeFlag(pDest, MEM_Null); goto op_column_out; |
︙ | ︙ | |||
68879 68880 68881 68882 68883 68884 68885 68886 68887 68888 68889 68890 68891 68892 | /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are ** all valid. */ assert( p2<pC->nHdrParsed ); assert( rc==SQLITE_OK ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ VdbeMemRelease(pDest); sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); }else{ /* This branch happens only when content is on overflow pages */ | > | 69515 69516 69517 69518 69519 69520 69521 69522 69523 69524 69525 69526 69527 69528 69529 | /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are ** all valid. */ assert( p2<pC->nHdrParsed ); assert( rc==SQLITE_OK ); assert( sqlite3VdbeCheckMemInvariants(pDest) ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ VdbeMemRelease(pDest); sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); }else{ /* This branch happens only when content is on overflow pages */ |
︙ | ︙ | |||
68916 68917 68918 68919 68920 68921 68922 | sqlite3VdbeSerialGet(zData, t, pDest); /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( sMem.zMalloc ){ assert( sMem.z==sMem.zMalloc ); | | | | 69553 69554 69555 69556 69557 69558 69559 69560 69561 69562 69563 69564 69565 69566 69567 69568 | sqlite3VdbeSerialGet(zData, t, pDest); /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( sMem.zMalloc ){ assert( sMem.z==sMem.zMalloc ); assert( VdbeMemDynamic(pDest)==0 ); assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z ); pDest->flags &= ~(MEM_Ephem|MEM_Static); pDest->flags |= MEM_Term; pDest->z = sMem.z; pDest->zMalloc = sMem.zMalloc; } } pDest->enc = encoding; |
︙ | ︙ | |||
68954 68955 68956 68957 68958 68959 68960 | zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); | < | 69591 69592 69593 69594 69595 69596 69597 69598 69599 69600 69601 69602 69603 69604 | zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * |
︙ | ︙ | |||
69032 69033 69034 69035 69036 69037 69038 | /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ | | > | | 69668 69669 69670 69671 69672 69673 69674 69675 69676 69677 69678 69679 69680 69681 69682 69683 69684 | /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ applyAffinity(pRec++, *(zAffinity++), encoding); assert( zAffinity[0]==0 || pRec<=pLast ); }while( zAffinity[0] ); } /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ pRec = pLast; do{ |
︙ | ︙ | |||
69100 69101 69102 69103 69104 69105 69106 | j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pOut->n = (int)nByte; | | | 69737 69738 69739 69740 69741 69742 69743 69744 69745 69746 69747 69748 69749 69750 69751 | j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pOut->n = (int)nByte; pOut->flags = MEM_Blob; pOut->xDel = 0; if( nZero ){ pOut->u.nZero = nZero; pOut->flags |= MEM_Zero; } pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ REGISTER_TRACE(pOp->p3, pOut); |
︙ | ︙ | |||
69377 69378 69379 69380 69381 69382 69383 | "cannot commit - no transaction is active")); rc = SQLITE_ERROR; } break; } | | | | > | > < < < < < < < < > > > > > | > > > > > > | 70014 70015 70016 70017 70018 70019 70020 70021 70022 70023 70024 70025 70026 70027 70028 70029 70030 70031 70032 70033 70034 70035 70036 70037 70038 70039 70040 70041 70042 70043 70044 70045 70046 70047 70048 70049 70050 70051 70052 70053 70054 70055 70056 70057 70058 70059 70060 70061 70062 70063 70064 70065 | "cannot commit - no transaction is active")); rc = SQLITE_ERROR; } break; } /* Opcode: Transaction P1 P2 P3 P4 P5 ** ** Begin a transaction on database P1 if a transaction is not already ** active. ** If P2 is non-zero, then a write-transaction is started, or if a ** read-transaction is already active, it is upgraded to a write-transaction. ** If P2 is zero, then a read-transaction is started. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. Indices of 2 or more are used for ** attached databases. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the changes made by this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P5!=0 then this opcode also checks the schema cookie against P3 ** and the schema generation counter against P4. ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. If the schema ** cookie in P3 differs from the schema cookie in the database header or ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; int iMeta; int iGen; assert( p->bIsReader ); assert( p->readOnly==0 || pOp->p2==0 ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ rc = SQLITE_READONLY; |
︙ | ︙ | |||
69453 69454 69455 69456 69457 69458 69459 69460 69461 69462 69463 69464 69465 69466 | /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } } break; } /* Opcode: ReadCookie P1 P2 P3 * * ** ** Read cookie number P3 from database P1 and write it into register P2. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 70095 70096 70097 70098 70099 70100 70101 70102 70103 70104 70105 70106 70107 70108 70109 70110 70111 70112 70113 70114 70115 70116 70117 70118 70119 70120 70121 70122 70123 70124 70125 70126 70127 70128 70129 70130 70131 70132 70133 70134 70135 70136 70137 | /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } /* Gather the schema version number for checking */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); iGen = db->aDb[pOp->p1].pSchema->iGeneration; }else{ iGen = iMeta = 0; } assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do ** not reload the schema from the database file. ** ** If virtual-tables are in use, this is not just an optimization. ** Often, v-tables store their data in other SQLite tables, which ** are queried from within xNext() and other v-table methods using ** prepared queries. If such a query is out-of-date, we do not want to ** discard the database schema, as the user code implementing the ** v-table would have to be ready for the sqlite3_vtab structure itself ** to be invalidated whenever sqlite3_step() is called from within ** a v-table method. */ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ sqlite3ResetOneSchema(db, pOp->p1); } p->expired = 1; rc = SQLITE_SCHEMA; } break; } /* Opcode: ReadCookie P1 P2 P3 * * ** ** Read cookie number P3 from database P1 and write it into register P2. |
︙ | ︙ | |||
69524 69525 69526 69527 69528 69529 69530 | } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); p->expired = 0; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 70195 70196 70197 70198 70199 70200 70201 70202 70203 70204 70205 70206 70207 70208 | } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); p->expired = 0; } break; } /* Opcode: OpenRead P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read-only cursor for the database table whose root page is |
︙ | ︙ | |||
69800 69801 69802 69803 69804 69805 69806 | pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); break; } | | | | | | | < | | 70411 70412 70413 70414 70415 70416 70417 70418 70419 70420 70421 70422 70423 70424 70425 70426 70427 70428 70429 70430 70431 70432 70433 70434 70435 70436 70437 70438 70439 70440 70441 70442 70443 70444 70445 70446 70447 70448 70449 70450 70451 70452 70453 70454 70455 70456 70457 70458 70459 70460 70461 70462 70463 70464 70465 70466 70467 70468 70469 70470 70471 | pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); break; } /* Opcode: SorterOpen P1 P2 * P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens ** a transient index that is specifically designed to sort large ** tables using an external merge-sort algorithm. */ case OP_SorterOpen: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->pKeyInfo = pOp->p4.pKeyInfo; assert( pCx->pKeyInfo->db==db ); assert( pCx->pKeyInfo->enc==ENC(db) ); rc = sqlite3VdbeSorterInit(db, pCx); break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** Synopsis: P3 columns in r[P2] ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row is the content of memory ** register P2. In other words, cursor P1 becomes an alias for the ** MEM_Blob content contained in register P2. ** ** A pseudo-table created by this opcode is used to hold a single ** row output from the sorter so that the row can be decomposed into ** individual columns using the OP_Column opcode. The OP_Column opcode ** is the only cursor opcode that works with a pseudo-table. ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p3>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->pseudoTableReg = pOp->p2; pCx->isTable = 1; assert( pOp->p5==0 ); break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. |
︙ | ︙ | |||
69919 69920 69921 69922 69923 69924 69925 | ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | > > | 70529 70530 70531 70532 70533 70534 70535 70536 70537 70538 70539 70540 70541 70542 70543 70544 70545 70546 70547 70548 70549 70550 70551 70552 70553 70554 70555 70556 70557 70558 70559 70560 70561 70562 70563 70564 70565 70566 70567 70568 70569 70570 70571 70572 70573 70574 70575 70576 70577 70578 70579 70580 70581 70582 70583 70584 70585 70586 70587 70588 70589 70590 70591 70592 70593 70594 70595 70596 70597 70598 70599 70600 70601 70602 70603 70604 70605 70606 70607 70608 70609 70610 70611 70612 70613 70614 70615 70616 70617 70618 70619 70620 70621 70622 70623 70624 70625 70626 70627 70628 70629 70630 70631 70632 70633 70634 70635 70636 70637 70638 70639 70640 70641 70642 70643 70644 70645 70646 70647 70648 70649 70650 70651 70652 70653 70654 70655 70656 70657 70658 70659 70660 70661 70662 70663 70664 70665 70666 70667 70668 70669 70670 70671 70672 70673 70674 70675 70676 | ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ case OP_SeekLT: /* jump, in3 */ case OP_SeekLE: /* jump, in3 */ case OP_SeekGE: /* jump, in3 */ case OP_SeekGT: { /* jump, in3 */ int res; int oc; VdbeCursor *pC; UnpackedRecord r; int nField; i64 iKey; /* The rowid we are to seek to */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p2!=0 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pseudoTableReg==0 ); assert( OP_SeekLE == OP_SeekLT+1 ); assert( OP_SeekGE == OP_SeekLT+2 ); assert( OP_SeekGT == OP_SeekLT+3 ); assert( pC->isOrdered ); assert( pC->pCursor!=0 ); oc = pOp->opcode; pC->nullRow = 0; if( pC->isTable ){ /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so covert it. */ pIn3 = &aMem[pOp->p3]; applyNumericAffinity(pIn3); iKey = sqlite3VdbeIntValue(pIn3); pC->rowidIsValid = 0; /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ pc = pOp->p2 - 1; VdbeBranchTaken(1,2); break; } /* If the approximation iKey is larger than the actual real search ** term, substitute >= for > and < for <=. e.g. if the search term ** is 4.9 and the integer approximation 5: ** ** (x > 4.9) -> (x >= 5) ** (x <= 4.9) -> (x < 5) */ if( pIn3->r<(double)iKey ){ assert( OP_SeekGE==(OP_SeekGT-1) ); assert( OP_SeekLT==(OP_SeekLE-1) ); assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; } /* If the approximation iKey is smaller than the actual real search ** term, substitute <= for < and > for >=. */ else if( pIn3->r>(double)iKey ){ assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res==0 ){ pC->rowidIsValid = 1; pC->lastRowid = iKey; } }else{ nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; /* The next line of code computes as follows, only faster: ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ ** r.default_rc = -1; ** }else{ ** r.default_rc = +1; ** } */ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); assert( oc!=OP_SeekGT || r.default_rc==-1 ); assert( oc!=OP_SeekLE || r.default_rc==-1 ); assert( oc!=OP_SeekGE || r.default_rc==+1 ); assert( oc!=OP_SeekLT || r.default_rc==+1 ); r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif ExpandBlob(r.aMem); rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->rowidIsValid = 0; } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); if( res<0 || (res==0 && oc==OP_SeekGT) ){ res = 0; rc = sqlite3BtreeNext(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; pC->rowidIsValid = 0; }else{ res = 0; } }else{ assert( oc==OP_SeekLT || oc==OP_SeekLE ); if( res>0 || (res==0 && oc==OP_SeekLT) ){ res = 0; rc = sqlite3BtreePrevious(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; pC->rowidIsValid = 0; }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ res = sqlite3BtreeEof(pC->pCursor); } } assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Seek P1 P2 * * * |
︙ | ︙ | |||
70158 70159 70160 70161 70162 70163 70164 | assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; r.aMem = pIn3; | < < < | | > > | < < < > < > | > > | 70771 70772 70773 70774 70775 70776 70777 70778 70779 70780 70781 70782 70783 70784 70785 70786 70787 70788 70789 70790 70791 70792 70793 70794 70795 70796 70797 70798 70799 70800 70801 70802 70803 70804 70805 70806 70807 70808 70809 70810 70811 70812 70813 70814 70815 70816 70817 70818 70819 70820 70821 70822 70823 70824 70825 70826 70827 70828 70829 70830 | assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; r.aMem = pIn3; for(ii=0; ii<r.nField; ii++){ assert( memIsValid(&r.aMem[ii]) ); ExpandBlob(&r.aMem[ii]); #ifdef SQLITE_DEBUG if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); #endif } pIdxKey = &r; }else{ pIdxKey = sqlite3VdbeAllocUnpackedRecord( pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree ); if( pIdxKey==0 ) goto no_mem; assert( pIn3->flags & MEM_Blob ); assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); } pIdxKey->default_rc = 0; if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; ii<r.nField; ii++){ if( r.aMem[ii].flags & MEM_Null ){ pc = pOp->p2 - 1; VdbeBranchTaken(1,2); break; } } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); if( pOp->p4.i==0 ){ sqlite3DbFree(db, pFree); } if( rc!=SQLITE_OK ){ break; } pC->seekResult = res; alreadyExists = (res==0); pC->nullRow = 1-alreadyExists; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pOp->opcode==OP_Found ){ VdbeBranchTaken(alreadyExists!=0,2); if( alreadyExists ) pc = pOp->p2 - 1; }else{ VdbeBranchTaken(alreadyExists==0,2); if( !alreadyExists ) pc = pOp->p2 - 1; } break; } /* Opcode: NotExists P1 P2 P3 * * ** Synopsis: intkey=r[P3] |
︙ | ︙ | |||
70247 70248 70249 70250 70251 70252 70253 70254 70255 70256 70257 70258 70259 70260 | iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->lastRowid = pIn3->u.i; pC->rowidIsValid = res==0 ?1:0; pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; if( res!=0 ){ pc = pOp->p2 - 1; assert( pC->rowidIsValid==0 ); } pC->seekResult = res; break; } | > | 70859 70860 70861 70862 70863 70864 70865 70866 70867 70868 70869 70870 70871 70872 70873 | iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->lastRowid = pIn3->u.i; pC->rowidIsValid = res==0 ?1:0; pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); if( res!=0 ){ pc = pOp->p2 - 1; assert( pC->rowidIsValid==0 ); } pC->seekResult = res; break; } |
︙ | ︙ | |||
70328 70329 70330 70331 70332 70333 70334 | ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ | < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < | 70941 70942 70943 70944 70945 70946 70947 70948 70949 70950 70951 70952 70953 70954 70955 70956 70957 70958 70959 70960 70961 70962 70963 70964 70965 70966 70967 70968 70969 70970 70971 70972 70973 70974 70975 70976 70977 70978 70979 70980 70981 70982 70983 70984 70985 70986 70987 70988 70989 70990 70991 70992 70993 70994 70995 70996 70997 70998 70999 71000 71001 71002 | ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ rc = sqlite3BtreeLast(pC->pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ v = 1; /* IMP: R-61914-48074 */ }else{ assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); rc = sqlite3BtreeKeySize(pC->pCursor, &v); assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ if( v>=MAX_ROWID ){ pC->useRandomRowid = 1; }else{ v++; /* IMP: R-29538-34987 */ } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3>0 ); if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=(p->nMem-p->nCursor) ); pMem = &aMem[pOp->p3]; memAboutToChange(p, pMem); } assert( memIsValid(pMem) ); REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-12275-61338 */ goto abort_due_to_error; } if( v<pMem->u.i+1 ){ v = pMem->u.i + 1; } pMem->u.i = v; } #endif if( pC->useRandomRowid ){ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the ** largest possible integer (9223372036854775807) then the database ** engine starts picking positive candidate ROWIDs at random until ** it finds one that is not previously used. */ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ |
︙ | ︙ | |||
70514 70515 70516 70517 70518 70519 70520 | } seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ nZero = pData->u.nZero; }else{ nZero = 0; } | < | 71122 71123 71124 71125 71126 71127 71128 71129 71130 71131 71132 71133 71134 71135 | } seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ nZero = pData->u.nZero; }else{ nZero = 0; } rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, (pOp->p5 & OPFLAG_APPEND)!=0, seekResult ); pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; |
︙ | ︙ | |||
70576 70577 70578 70579 70580 70581 70582 | ** below is always a no-op and cannot fail. We will run it anyhow, though, ** to guard against future changes to the code generator. **/ assert( pC->deferredMoveto==0 ); rc = sqlite3VdbeCursorMoveto(pC); if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; | < | 71183 71184 71185 71186 71187 71188 71189 71190 71191 71192 71193 71194 71195 71196 | ** below is always a no-op and cannot fail. We will run it anyhow, though, ** to guard against future changes to the code generator. **/ assert( pC->deferredMoveto==0 ); rc = sqlite3VdbeCursorMoveto(pC); if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; rc = sqlite3BtreeDelete(pC->pCursor); pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, db->aDb[pC->iDb].zName, pOp->p4.z, iKey); |
︙ | ︙ | |||
70628 70629 70630 70631 70632 70633 70634 70635 70636 70637 70638 70639 70640 70641 | pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nIgnore = pOp->p4.i; rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res); if( res ){ pc = pOp->p2-1; } break; }; /* Opcode: SorterData P1 P2 * * * | > | 71234 71235 71236 71237 71238 71239 71240 71241 71242 71243 71244 71245 71246 71247 71248 | pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nIgnore = pOp->p4.i; rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2-1; } break; }; /* Opcode: SorterData P1 P2 * * * |
︙ | ︙ | |||
70665 70666 70667 70668 70669 70670 70671 | ** of a real table, not a pseudo-table. */ /* Opcode: RowKey P1 P2 * * * ** Synopsis: r[P2]=key ** ** Write into register P2 the complete row key for cursor P1. ** There is no interpretation of the data. | | | 71272 71273 71274 71275 71276 71277 71278 71279 71280 71281 71282 71283 71284 71285 71286 | ** of a real table, not a pseudo-table. */ /* Opcode: RowKey P1 P2 * * * ** Synopsis: r[P2]=key ** ** Write into register P2 the complete row key for cursor P1. ** There is no interpretation of the data. ** The key is copied onto the P2 register exactly as ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowKey: case OP_RowData: { |
︙ | ︙ | |||
70827 70828 70829 70830 70831 70832 70833 | res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->rowidIsValid = 0; pC->cacheStatus = CACHE_STALE; | | > | | 71434 71435 71436 71437 71438 71439 71440 71441 71442 71443 71444 71445 71446 71447 71448 71449 71450 | res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->rowidIsValid = 0; pC->cacheStatus = CACHE_STALE; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) pc = pOp->p2 - 1; } break; } /* Opcode: Sort P1 P2 * * * ** |
︙ | ︙ | |||
70885 70886 70887 70888 70889 70890 70891 70892 70893 70894 70895 70896 70897 | rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->rowidIsValid = 0; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); if( res ){ pc = pOp->p2 - 1; } break; } | > | > > > > > | | > > > > > | | 71493 71494 71495 71496 71497 71498 71499 71500 71501 71502 71503 71504 71505 71506 71507 71508 71509 71510 71511 71512 71513 71514 71515 71516 71517 71518 71519 71520 71521 71522 71523 71524 71525 71526 71527 71528 71529 71530 71531 71532 71533 71534 71535 71536 71537 71538 71539 71540 71541 71542 71543 71544 71545 71546 71547 71548 71549 71550 71551 71552 71553 71554 71555 71556 71557 71558 71559 71560 71561 71562 71563 | rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->rowidIsValid = 0; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Next P1 P2 P3 P4 P5 ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have ** been opened prior to this opcode or the program will segfault. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** P4 is always of type P4_ADVANCE. The function pointer points to ** sqlite3BtreeNext(). ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. ** ** See also: Prev, NextIfOpen */ /* Opcode: NextIfOpen P1 P2 P3 P4 P5 ** ** This opcode works just like OP_Next except that if cursor P1 is not ** open it behaves a no-op. */ /* Opcode: Prev P1 P2 P3 P4 P5 ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is ** not open then the behavior is undefined. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** P4 is always of type P4_ADVANCE. The function pointer points to ** sqlite3BtreePrevious(). ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. */ /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 ** ** This opcode works just like OP_Prev except that if cursor P1 is not ** open it behaves a no-op. */ case OP_SorterNext: { /* jump */ VdbeCursor *pC; int res; |
︙ | ︙ | |||
70952 70953 70954 70955 70956 70957 70958 70959 70960 70961 70962 70963 70964 70965 70966 70967 70968 70969 70970 70971 70972 70973 70974 70975 | if( p->apCsr[pOp->p1]==0 ) break; /* Fall through */ case OP_Prev: /* jump */ case OP_Next: /* jump */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p5<ArraySize(p->aCounter) ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->pCursor ); assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; if( res==0 ){ pC->nullRow = 0; pc = pOp->p2 - 1; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif | > > > > | 71571 71572 71573 71574 71575 71576 71577 71578 71579 71580 71581 71582 71583 71584 71585 71586 71587 71588 71589 71590 71591 71592 71593 71594 71595 71596 71597 71598 | if( p->apCsr[pOp->p1]==0 ) break; /* Fall through */ case OP_Prev: /* jump */ case OP_Next: /* jump */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p5<ArraySize(p->aCounter) ); pC = p->apCsr[pOp->p1]; res = pOp->p3; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->pCursor ); assert( res==0 || (res==1 && pC->isTable==0) ); testcase( res==1 ); assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(res==0,2); if( res==0 ){ pC->nullRow = 0; pc = pOp->p2 - 1; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif |
︙ | ︙ | |||
70985 70986 70987 70988 70989 70990 70991 70992 70993 70994 70995 70996 70997 70998 | ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. ** ** P3 is a flag that provides a hint to the b-tree layer that this ** insert is likely to be an append. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; | > > > > > > > > | 71608 71609 71610 71611 71612 71613 71614 71615 71616 71617 71618 71619 71620 71621 71622 71623 71624 71625 71626 71627 71628 71629 | ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. ** ** P3 is a flag that provides a hint to the b-tree layer that this ** insert is likely to be an append. ** ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, ** then the change counter is unchanged. ** ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have ** just done a seek to the spot where the new entry is to be inserted. ** This flag avoids doing an extra seek. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; |
︙ | ︙ | |||
71046 71047 71048 71049 71050 71051 71052 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; | | | 71677 71678 71679 71680 71681 71682 71683 71684 71685 71686 71687 71688 71689 71690 71691 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); if( rc==SQLITE_OK && res==0 ){ rc = sqlite3BtreeDelete(pCrsr); |
︙ | ︙ | |||
71100 71101 71102 71103 71104 71105 71106 | break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index | | | > > > > > > > > > | < < | | | > > > > > > > > > | | > > | | | > > | > > | | > | 71731 71732 71733 71734 71735 71736 71737 71738 71739 71740 71741 71742 71743 71744 71745 71746 71747 71748 71749 71750 71751 71752 71753 71754 71755 71756 71757 71758 71759 71760 71761 71762 71763 71764 71765 71766 71767 71768 71769 71770 71771 71772 71773 71774 71775 71776 71777 71778 71779 71780 71781 71782 71783 71784 71785 71786 71787 71788 71789 71790 71791 71792 71793 71794 71795 71796 71797 71798 71799 71800 71801 71802 71803 71804 71805 71806 71807 71808 71809 71810 71811 71812 71813 71814 71815 71816 71817 71818 71819 71820 71821 71822 71823 71824 | break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than or equal to the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxGT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxLT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. */ /* Opcode: IdxLE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than or equal to the key value then jump ** to P2. Otherwise fall through to the next instruction. */ case OP_IdxLE: /* jump */ case OP_IdxGT: /* jump */ case OP_IdxLT: /* jump */ case OP_IdxGE: { /* jump */ VdbeCursor *pC; int res; UnpackedRecord r; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isOrdered ); assert( pC->pCursor!=0); assert( pC->deferredMoveto==0 ); assert( pOp->p5==0 || pOp->p5==1 ); assert( pOp->p4type==P4_INT32 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; if( pOp->opcode<OP_IdxLT ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); r.default_rc = -1; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); r.default_rc = 0; } r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif res = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); if( (pOp->opcode&1)==(OP_IdxLT&1) ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); if( res>0 ){ pc = pOp->p2 - 1 ; } break; } /* Opcode: Destroy P1 P2 P3 * * |
︙ | ︙ | |||
71249 71250 71251 71252 71253 71254 71255 | ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( p->readOnly==0 ); | < | 71903 71904 71905 71906 71907 71908 71909 71910 71911 71912 71913 71914 71915 71916 | ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( p->readOnly==0 ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ |
︙ | ︙ | |||
71518 71519 71520 71521 71522 71523 71524 71525 71526 71527 71528 71529 71530 71531 71532 71533 71534 | pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); pc = pOp->p2 - 1; }else{ /* A value was pulled from the index */ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** | > > | 72171 72172 72173 72174 72175 72176 72177 72178 72179 72180 72181 72182 72183 72184 72185 72186 72187 72188 72189 | pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); pc = pOp->p2 - 1; VdbeBranchTaken(1,2); }else{ /* A value was pulled from the index */ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); VdbeBranchTaken(0,2); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** |
︙ | ︙ | |||
71572 71573 71574 71575 71576 71577 71578 71579 71580 71581 71582 71583 71584 71585 71586 71587 71588 71589 71590 71591 71592 | assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, (u8)(iSet>=0 ? iSet & 0xf : 0xff), pIn3->u.i); if( exists ){ pc = pOp->p2 - 1; break; } } if( iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); } break; } #ifndef SQLITE_OMIT_TRIGGER | > | > > | 72227 72228 72229 72230 72231 72232 72233 72234 72235 72236 72237 72238 72239 72240 72241 72242 72243 72244 72245 72246 72247 72248 72249 72250 72251 72252 72253 72254 72255 72256 72257 72258 72259 72260 72261 72262 72263 72264 72265 72266 72267 72268 72269 | assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, (u8)(iSet>=0 ? iSet & 0xf : 0xff), pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ){ pc = pOp->p2 - 1; break; } } if( iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); } break; } #ifndef SQLITE_OMIT_TRIGGER /* Opcode: Program P1 P2 P3 P4 P5 ** ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). ** ** P1 contains the address of the memory cell that contains the first memory ** cell in an array of values used as arguments to the sub-program. P2 ** contains the address to jump to if the sub-program throws an IGNORE ** exception using the RAISE() function. Register P3 contains the address ** of a memory cell in this (the parent) VM that is used to allocate the ** memory required by the sub-vdbe at runtime. ** ** P4 is a pointer to the VM containing the trigger program. ** ** If P5 is non-zero, then recursive program invocation is enabled. */ case OP_Program: { /* jump */ int nMem; /* Number of memory registers for sub-program */ int nByte; /* Bytes of runtime space required for sub-program */ Mem *pRt; /* Register to allocate runtime space */ Mem *pMem; /* Used to iterate through memory cells */ Mem *pEnd; /* Last memory cell in new array */ |
︙ | ︙ | |||
71675 71676 71677 71678 71679 71680 71681 | pFrame->nOp = p->nOp; pFrame->token = pProgram->token; pFrame->aOnceFlag = p->aOnceFlag; pFrame->nOnceFlag = p->nOnceFlag; pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ | | | 72333 72334 72335 72336 72337 72338 72339 72340 72341 72342 72343 72344 72345 72346 72347 | pFrame->nOp = p->nOp; pFrame->token = pProgram->token; pFrame->aOnceFlag = p->aOnceFlag; pFrame->nOnceFlag = p->nOnceFlag; pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( pc==pFrame->pc ); |
︙ | ︙ | |||
71762 71763 71764 71765 71766 71767 71768 71769 71770 71771 71772 71773 71774 71775 71776 71777 | ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; }else{ if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT | > > | 72420 72421 72422 72423 72424 72425 72426 72427 72428 72429 72430 72431 72432 72433 72434 72435 72436 72437 | ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; }else{ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT |
︙ | ︙ | |||
71812 71813 71814 71815 71816 71817 71818 71819 71820 71821 71822 71823 71824 71825 71826 71827 71828 71829 71830 71831 71832 71833 71834 71835 71836 71837 71838 71839 71840 71841 71842 71843 71844 71845 71846 71847 71848 71849 71850 71851 71852 71853 71854 71855 71856 71857 71858 71859 71860 71861 | ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 * * * ** Synopsis: if r[P1]<0 goto P2 ** ** If the value of register P1 is less than zero, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfNeg: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 ** ** The register P1 must contain an integer. Add literal P3 to the ** value in register P1. If the result is exactly 0, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 | > > > | 72472 72473 72474 72475 72476 72477 72478 72479 72480 72481 72482 72483 72484 72485 72486 72487 72488 72489 72490 72491 72492 72493 72494 72495 72496 72497 72498 72499 72500 72501 72502 72503 72504 72505 72506 72507 72508 72509 72510 72511 72512 72513 72514 72515 72516 72517 72518 72519 72520 72521 72522 72523 72524 | ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 * * * ** Synopsis: if r[P1]<0 goto P2 ** ** If the value of register P1 is less than zero, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfNeg: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 ** ** The register P1 must contain an integer. Add literal P3 to the ** value in register P1. If the result is exactly 0, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 |
︙ | ︙ | |||
71882 71883 71884 71885 71886 71887 71888 | pRec = &aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ assert( memIsValid(pRec) ); apVal[i] = pRec; memAboutToChange(p, pRec); | < | 72545 72546 72547 72548 72549 72550 72551 72552 72553 72554 72555 72556 72557 72558 | pRec = &aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ assert( memIsValid(pRec) ); apVal[i] = pRec; memAboutToChange(p, pRec); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; |
︙ | ︙ | |||
71985 71986 71987 71988 71989 71990 71991 | sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); } break; }; #endif #ifndef SQLITE_OMIT_PRAGMA | | | 72647 72648 72649 72650 72651 72652 72653 72654 72655 72656 72657 72658 72659 72660 72661 | sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); } break; }; #endif #ifndef SQLITE_OMIT_PRAGMA /* Opcode: JournalMode P1 P2 P3 * * ** ** Change the journal mode of database P1 to P3. P3 must be one of the ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. |
︙ | ︙ | |||
72119 72120 72121 72122 72123 72124 72125 72126 72127 72128 72129 72130 72131 72132 | Btree *pBt; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; } #endif | > | 72781 72782 72783 72784 72785 72786 72787 72788 72789 72790 72791 72792 72793 72794 72795 | Btree *pBt; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; } #endif |
︙ | ︙ | |||
72315 72316 72317 72318 72319 72320 72321 | /* Invoke the xFilter method */ { res = 0; apArg = p->apArg; for(i = 0; i<nArg; i++){ apArg[i] = &pArgc[i+1]; | < | | 72978 72979 72980 72981 72982 72983 72984 72985 72986 72987 72988 72989 72990 72991 72992 72993 72994 72995 72996 72997 72998 72999 73000 73001 | /* Invoke the xFilter method */ { res = 0; apArg = p->apArg; for(i = 0; i<nArg; i++){ apArg[i] = &pArgc[i+1]; } p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pVtabCursor); } VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } } pCur->nullRow = 0; break; |
︙ | ︙ | |||
72430 72431 72432 72433 72434 72435 72436 | p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } | | | 73092 73093 73094 73095 73096 73097 73098 73099 73100 73101 73102 73103 73104 73105 73106 | p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } VdbeBranchTaken(!res,2); if( !res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; } goto check_for_interrupt; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
︙ | ︙ | |||
72471 72472 72473 72474 72475 72476 72477 | p->expired = 0; } break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 73133 73134 73135 73136 73137 73138 73139 73140 73141 73142 73143 73144 73145 73146 73147 | p->expired = 0; } break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 P5 ** Synopsis: data=r[P3@P2] ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xUpdate method. P2 values ** are contiguous memory cells starting at P3 to pass to the xUpdate ** invocation. The value in register (P3+P2-1) corresponds to the ** p2th element of the argv array passed to xUpdate. |
︙ | ︙ | |||
72494 72495 72496 72497 72498 72499 72500 72501 72502 72503 72504 72505 72506 72507 | ** ** If P2==1 then no insert is performed. argv[0] is the rowid of ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { sqlite3_vtab *pVtab; sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; | > > > | 73156 73157 73158 73159 73160 73161 73162 73163 73164 73165 73166 73167 73168 73169 73170 73171 73172 | ** ** If P2==1 then no insert is performed. argv[0] is the rowid of ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. ** ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to ** apply in the case of a constraint failure on an insert or update. */ case OP_VUpdate: { sqlite3_vtab *pVtab; sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; |
︙ | ︙ | |||
72519 72520 72521 72522 72523 72524 72525 | if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ assert( memIsValid(pX) ); memAboutToChange(p, pX); | < | 73184 73185 73186 73187 73188 73189 73190 73191 73192 73193 73194 73195 73196 73197 | if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ assert( memIsValid(pX) ); memAboutToChange(p, pX); apArg[i] = pX; pX++; } db->vtabOnConflict = pOp->p5; rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); db->vtabOnConflict = vtabOnConflict; sqlite3VtabImportErrmsg(p, pVtab); |
︙ | ︙ | |||
72582 72583 72584 72585 72586 72587 72588 | } pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); break; } #endif | < | > > > > > > > | > > > > | 73246 73247 73248 73249 73250 73251 73252 73253 73254 73255 73256 73257 73258 73259 73260 73261 73262 73263 73264 73265 73266 73267 73268 73269 73270 73271 73272 73273 73274 73275 73276 73277 73278 73279 | } pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); break; } #endif /* Opcode: Init * P2 * P4 * ** Synopsis: Start at P2 ** ** Programs contain a single instance of this opcode as the very first ** opcode. ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. ** Or if P4 is blank, use the string returned by sqlite3_sql(). ** ** If P2 is not zero, jump to instruction P2. */ case OP_Init: { /* jump */ char *zTrace; char *z; if( pOp->p2 ){ pc = pOp->p2 - 1; } #ifndef SQLITE_OMIT_TRACE if( db->xTrace && !p->doingRerun && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ z = sqlite3VdbeExpandSql(p, zTrace); db->xTrace(db->pTraceArg, z); sqlite3DbFree(db, z); |
︙ | ︙ | |||
72617 72618 72619 72620 72621 72622 72623 72624 72625 | #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ break; } | > < | 73291 73292 73293 73294 73295 73296 73297 73298 73299 73300 73301 73302 73303 73304 73305 73306 73307 | #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ #endif /* SQLITE_OMIT_TRACE */ break; } /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ |
︙ | ︙ | |||
72651 72652 72653 72654 72655 72656 72657 | } #ifdef VDBE_PROFILE { u64 elapsed = sqlite3Hwtime() - start; pOp->cycles += elapsed; pOp->cnt++; | < < < < | 73325 73326 73327 73328 73329 73330 73331 73332 73333 73334 73335 73336 73337 73338 | } #ifdef VDBE_PROFILE { u64 elapsed = sqlite3Hwtime() - start; pOp->cycles += elapsed; pOp->cnt++; } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
︙ | ︙ | |||
72880 72881 72882 72883 72884 72885 72886 72887 | ** uses it to implement the blob_read(), blob_write() and ** blob_bytes() functions. ** ** The sqlite3_blob_close() function finalizes the vdbe program, ** which closes the b-tree cursor and (possibly) commits the ** transaction. */ static const VdbeOpList openBlob[] = { | > | < | < | | < | | | | | | | | 73550 73551 73552 73553 73554 73555 73556 73557 73558 73559 73560 73561 73562 73563 73564 73565 73566 73567 73568 73569 73570 73571 73572 73573 73574 73575 73576 73577 | ** uses it to implement the blob_read(), blob_write() and ** blob_bytes() functions. ** ** The sqlite3_blob_close() function finalizes the vdbe program, ** which closes the b-tree cursor and (possibly) commits the ** transaction. */ static const int iLn = __LINE__+4; static const VdbeOpList openBlob[] = { /* {OP_Transaction, 0, 0, 0}, // 0: Inserted separately */ {OP_TableLock, 0, 0, 0}, /* 1: Acquire a read or write lock */ /* One of the following two instructions is replaced by an OP_Noop. */ {OP_OpenRead, 0, 0, 0}, /* 2: Open cursor 0 for reading */ {OP_OpenWrite, 0, 0, 0}, /* 3: Open cursor 0 for read/write */ {OP_Variable, 1, 1, 1}, /* 4: Push the rowid to the stack */ {OP_NotExists, 0, 10, 1}, /* 5: Seek the cursor */ {OP_Column, 0, 0, 1}, /* 6 */ {OP_ResultRow, 1, 0, 0}, /* 7 */ {OP_Goto, 0, 4, 0}, /* 8 */ {OP_Close, 0, 0, 0}, /* 9 */ {OP_Halt, 0, 0, 0}, /* 10 */ }; int rc = SQLITE_OK; char *zErr = 0; Table *pTab; Parse *pParse = 0; Incrblob *pBlob = 0; |
︙ | ︙ | |||
73008 73009 73010 73011 73012 73013 73014 | pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(pParse); assert( pBlob->pStmt || db->mallocFailed ); if( pBlob->pStmt ){ Vdbe *v = (Vdbe *)pBlob->pStmt; int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | < < | < < | < > | | < | | | | | | | | | | | 73676 73677 73678 73679 73680 73681 73682 73683 73684 73685 73686 73687 73688 73689 73690 73691 73692 73693 73694 73695 73696 73697 73698 73699 73700 73701 73702 73703 73704 73705 73706 73707 73708 73709 73710 73711 73712 73713 73714 73715 73716 73717 73718 73719 73720 73721 73722 73723 73724 | pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(pParse); assert( pBlob->pStmt || db->mallocFailed ); if( pBlob->pStmt ){ Vdbe *v = (Vdbe *)pBlob->pStmt; int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags, pTab->pSchema->schema_cookie, pTab->pSchema->iGeneration); sqlite3VdbeChangeP5(v, 1); sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn); /* Make sure a mutex is held on the table to be accessed */ sqlite3VdbeUsesBtree(v, iDb); /* Configure the OP_TableLock instruction */ #ifdef SQLITE_OMIT_SHARED_CACHE sqlite3VdbeChangeToNoop(v, 1); #else sqlite3VdbeChangeP1(v, 1, iDb); sqlite3VdbeChangeP2(v, 1, pTab->tnum); sqlite3VdbeChangeP3(v, 1, flags); sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT); #endif /* Remove either the OP_OpenWrite or OpenRead. Set the P2 ** parameter of the other to pTab->tnum. */ sqlite3VdbeChangeToNoop(v, 3 - flags); sqlite3VdbeChangeP2(v, 2 + flags, pTab->tnum); sqlite3VdbeChangeP3(v, 2 + flags, iDb); /* Configure the number of columns. Configure the cursor to ** think that the table has one more column than it really ** does. An OP_Column to retrieve this imaginary column will ** always return an SQL NULL. This is useful because it means ** we can invoke OP_Column to fill in the vdbe cursors type ** and offset cache without causing any IO. */ sqlite3VdbeChangeP4(v, 2+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32); sqlite3VdbeChangeP2(v, 6, pTab->nCol); if( !db->mallocFailed ){ pParse->nVar = 1; pParse->nMem = 1; pParse->nTab = 1; sqlite3VdbeMakeReady(v, pParse); } } |
︙ | ︙ | |||
73632 73633 73634 73635 73636 73637 73638 | assert( r2->nField>0 ); for(i=0; i<r2->nField; i++){ if( r2->aMem[i].flags & MEM_Null ){ *pRes = -1; return; } } | | | | 74295 74296 74297 74298 74299 74300 74301 74302 74303 74304 74305 74306 74307 74308 74309 74310 74311 74312 | assert( r2->nField>0 ); for(i=0; i<r2->nField; i++){ if( r2->aMem[i].flags & MEM_Null ){ *pRes = -1; return; } } assert( r2->default_rc==0 ); } *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0); } /* ** This function is called to compare two iterator keys when merging ** multiple b-tree segments. Parameter iOut is the index of the aTree[] ** value to recalculate. */ |
︙ | ︙ | |||
75272 75273 75274 75275 75276 75277 75278 75279 75280 75281 75282 75283 75284 75285 | assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ | > > | 75935 75936 75937 75938 75939 75940 75941 75942 75943 75944 75945 75946 75947 75948 75949 75950 | assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; }else{ pTab = 0; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ |
︙ | ︙ | |||
75315 75316 75317 75318 75319 75320 75321 | } } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ | < | > | 75980 75981 75982 75983 75984 75985 75986 75987 75988 75989 75990 75991 75992 75993 75994 75995 | } } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && pMatch && sqlite3IsRowid(zCol) && HasRowid(pMatch->pTab) ){ cnt = 1; pExpr->iColumn = -1; /* IMP: R-44911-55124 */ pExpr->affinity = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
︙ | ︙ | |||
77447 77448 77449 77450 77451 77452 77453 | if( pPrior ) pPrior->pNext = pNew; pNew->pNext = 0; pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); pNew->iLimit = 0; pNew->iOffset = 0; pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; | < | 78112 78113 78114 78115 78116 78117 78118 78119 78120 78121 78122 78123 78124 78125 | if( pPrior ) pPrior->pNext = pNew; pNew->pNext = 0; pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); pNew->iLimit = 0; pNew->iOffset = 0; pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->addrOpenEphm[2] = -1; pNew->nSelectRow = p->nSelectRow; pNew->pWith = withDup(db, p->pWith); return pNew; } |
︙ | ︙ | |||
77757 77758 77759 77760 77761 77762 77763 | case TK_BLOB: return 0; default: return 1; } } | < < < < < < < < < < < < < < < < < < | 78421 78422 78423 78424 78425 78426 78427 78428 78429 78430 78431 78432 78433 78434 | case TK_BLOB: return 0; default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be ** unchanged by OP_Affinity with the affinity given in the second ** argument. ** ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative |
︙ | ︙ | |||
77971 77972 77973 77974 77975 77976 77977 | assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ pTab = p->pSrc->a[0].pTab; pExpr = p->pEList->a[0].pExpr; iCol = (i16)pExpr->iColumn; | | < < | > | 78617 78618 78619 78620 78621 78622 78623 78624 78625 78626 78627 78628 78629 78630 78631 78632 78633 78634 78635 78636 78637 78638 78639 78640 78641 78642 78643 | assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ pTab = p->pSrc->a[0].pTab; pExpr = p->pEList->a[0].pExpr; iCol = (i16)pExpr->iColumn; /* Code an OP_Transaction and OP_TableLock for <table>. */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; sqlite3VdbeJumpHere(v, iAddr); }else{ Index *pIdx; /* Iterator variable */ |
︙ | ︙ | |||
78009 78010 78011 78012 78013 78014 78015 | int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) ){ | | < > | 78654 78655 78656 78657 78658 78659 78660 78661 78662 78663 78664 78665 78666 78667 78668 78669 78670 78671 78672 78673 78674 78675 78676 78677 78678 78679 | int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) ){ int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; if( prNotFound && !pTab->aCol[iCol].notNull ){ *prNotFound = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); } sqlite3VdbeJumpHere(v, iAddr); } } } } if( eType==0 ){ /* Could not found an existing table or index to use as the RHS b-tree. |
︙ | ︙ | |||
78109 78110 78111 78112 78113 78114 78115 | ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ | | | 78754 78755 78756 78757 78758 78759 78760 78761 78762 78763 78764 78765 78766 78767 78768 | ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); } #ifndef SQLITE_OMIT_EXPLAIN if( pParse->explain==2 ){ char *zMsg = sqlite3MPrintf( pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId |
︙ | ︙ | |||
78150 78151 78152 78153 78154 78155 78156 | ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); | < | 78795 78796 78797 78798 78799 78800 78801 78802 78803 78804 78805 78806 78807 78808 | ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. |
︙ | ︙ | |||
78226 78227 78228 78229 78230 78231 78232 78233 78234 78235 78236 78237 78238 78239 | if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); }else{ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); if( isRowid ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sqlite3ExprCacheAffinityChange(pParse, r3, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } | > | 78870 78871 78872 78873 78874 78875 78876 78877 78878 78879 78880 78881 78882 78883 78884 | if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); }else{ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); if( isRowid ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sqlite3ExprCacheAffinityChange(pParse, r3, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } |
︙ | ︙ | |||
78349 78350 78351 78352 78353 78354 78355 | /* If the LHS is NULL, then the result is either false or NULL depending ** on whether the RHS is empty or not, respectively. */ if( destIfNull==destIfFalse ){ /* Shortcut for the common case where the false and NULL outcomes are ** the same. */ | | | > | > | | > | > | > | < | < < < < | | | 78994 78995 78996 78997 78998 78999 79000 79001 79002 79003 79004 79005 79006 79007 79008 79009 79010 79011 79012 79013 79014 79015 79016 79017 79018 79019 79020 79021 79022 79023 79024 79025 79026 79027 79028 79029 79030 79031 79032 79033 79034 79035 79036 79037 79038 79039 79040 79041 79042 79043 79044 79045 79046 79047 79048 79049 79050 79051 79052 79053 79054 79055 79056 79057 79058 79059 79060 79061 79062 79063 79064 79065 79066 79067 79068 79069 79070 79071 79072 | /* If the LHS is NULL, then the result is either false or NULL depending ** on whether the RHS is empty or not, respectively. */ if( destIfNull==destIfFalse ){ /* Shortcut for the common case where the false and NULL outcomes are ** the same. */ sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); }else{ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); sqlite3VdbeJumpHere(v, addr1); } if( eType==IN_INDEX_ROWID ){ /* In this case, the RHS is the ROWID of table b-tree */ sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); VdbeCoverage(v); }else{ /* In this case, the RHS is an index b-tree. */ sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); /* If the set membership test fails, then the result of the ** "x IN (...)" expression must be either 0 or NULL. If the set ** contains no NULL values, then the result is 0. If the set ** contains one or more NULL values, then the result of the ** expression is also NULL. */ if( rRhsHasNull==0 || destIfFalse==destIfNull ){ /* This branch runs if it is known at compile time that the RHS ** cannot contain NULL values. This happens as the result ** of a "NOT NULL" constraint in the database schema. ** ** Also run this branch if NULL is equivalent to FALSE ** for this particular IN operator. */ sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); VdbeCoverage(v); }else{ /* In this branch, the RHS of the IN might contain a NULL and ** the presence of a NULL on the RHS makes a difference in the ** outcome. */ int j1, j2; /* First check to see if the LHS is contained in the RHS. If so, ** then the presence of NULLs in the RHS does not matter, so jump ** over all of the code that follows. */ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); VdbeCoverage(v); /* Here we begin generating code that runs if the LHS is not ** contained within the RHS. Generate additional code that ** tests the RHS for NULLs. If the RHS contains a NULL then ** jump to destIfNull. If there are no NULLs in the RHS then ** jump to destIfFalse. */ sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v); j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); sqlite3VdbeJumpHere(v, j2); sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); /* The OP_Found at the top of this branch jumps here when true, ** causing the overall IN expression evaluation to fall through. */ sqlite3VdbeJumpHere(v, j1); } } |
︙ | ︙ | |||
78934 78935 78936 78937 78938 78939 78940 | #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | < < < < < < < < < < < < > > > > > > > > | | | | | | | | | | | < < < < < < < < < < < | 79579 79580 79581 79582 79583 79584 79585 79586 79587 79588 79589 79590 79591 79592 79593 79594 79595 79596 79597 79598 79599 79600 79601 79602 79603 79604 79605 79606 79607 79608 79609 79610 79611 79612 79613 79614 79615 79616 79617 79618 79619 79620 79621 79622 79623 79624 79625 79626 79627 79628 79629 79630 79631 79632 79633 79634 79635 79636 79637 79638 79639 79640 79641 79642 79643 79644 | #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); VdbeCoverageIf(v, op==TK_EQ); VdbeCoverageIf(v, op==TK_NE); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); testcase( op==TK_AND ); assert( TK_OR==OP_Or ); testcase( op==TK_OR ); assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp3(v, op, r2, r1, target); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } |
︙ | ︙ | |||
79032 79033 79034 79035 79036 79037 79038 | testcase( regFree2==0 ); } inReg = target; break; } case TK_BITNOT: case TK_NOT: { | | | < < | | < < > > | 79662 79663 79664 79665 79666 79667 79668 79669 79670 79671 79672 79673 79674 79675 79676 79677 79678 79679 79680 79681 79682 79683 79684 79685 79686 79687 79688 79689 79690 79691 79692 79693 79694 | testcase( regFree2==0 ); } inReg = target; break; } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); inReg = target; sqlite3VdbeAddOp2(v, op, r1, inReg); break; } case TK_ISNULL: case TK_NOTNULL: { int addr; assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 ){ |
︙ | ︙ | |||
79104 79105 79106 79107 79108 79109 79110 79111 79112 79113 79114 79115 79116 79117 | */ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); sqlite3ExprCachePop(pParse, 1); } sqlite3VdbeResolveLabel(v, endCoalesce); break; | > | 79732 79733 79734 79735 79736 79737 79738 79739 79740 79741 79742 79743 79744 79745 79746 | */ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); VdbeCoverage(v); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); sqlite3ExprCachePop(pParse, 1); } sqlite3VdbeResolveLabel(v, endCoalesce); break; |
︙ | ︙ | |||
79241 79242 79243 79244 79245 79246 79247 | r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, | | > | 79870 79871 79872 79873 79874 79875 79876 79877 79878 79879 79880 79881 79882 79883 79884 79885 79886 79887 79888 79889 79890 79891 | r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); pLItem++; pRight = pLItem->pExpr; sqlite3ReleaseTempReg(pParse, regFree2); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree2==0 ); codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sqlite3ReleaseTempReg(pParse, r3); sqlite3ReleaseTempReg(pParse, r4); break; } case TK_COLLATE: case TK_UPLUS: { |
︙ | ︙ | |||
79414 79415 79416 79417 79418 79419 79420 79421 79422 79423 79424 79425 79426 79427 | if( pExpr->affinity==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affinity==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); }else{ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, pExpr->affinity, pExpr->u.zToken, 0, 0); } break; } | > | 80044 80045 80046 80047 80048 80049 80050 80051 80052 80053 80054 80055 80056 80057 80058 | if( pExpr->affinity==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affinity==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); VdbeCoverage(v); }else{ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, pExpr->affinity, pExpr->u.zToken, 0, 0); } break; } |
︙ | ︙ | |||
79501 79502 79503 79504 79505 79506 79507 | } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ | | > | > > > > > > > > > > > > | | | < < < < < < < | < > | | | < < | 80132 80133 80134 80135 80136 80137 80138 80139 80140 80141 80142 80143 80144 80145 80146 80147 80148 80149 80150 80151 80152 80153 80154 80155 80156 80157 80158 80159 80160 80161 80162 80163 80164 80165 80166 80167 80168 80169 80170 80171 80172 80173 80174 80175 80176 80177 80178 80179 80180 80181 80182 80183 80184 80185 80186 80187 80188 80189 80190 80191 80192 80193 80194 80195 80196 | } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( target>0 && target<=pParse->nMem ); if( pExpr && pExpr->op==TK_REGISTER ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); }else{ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); assert( pParse->pVdbe || pParse->db->mallocFailed ); if( inReg!=target && pParse->pVdbe ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); } } } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. If the expression is constant, then this routine ** might choose to code the expression at initialization time. */ SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); }else{ sqlite3ExprCode(pParse, pExpr, target); } } /* ** Generate code that evalutes the given expression and puts the result ** in register target. ** ** Also make a copy of the expression results into another "cache" register ** and modify the expression so that the next time it is evaluated, ** the result is a copy of the cache register. ** ** This routine is used for expressions that are used multiple ** times. They are evaluated once and the results of the expression ** are reused. */ SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; int iMem; assert( target>0 ); assert( pExpr->op!=TK_REGISTER ); sqlite3ExprCode(pParse, pExpr, target); iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); exprToRegister(pExpr, iMem); } #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate a human-readable explanation of an expression tree. */ SQLITE_PRIVATE void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ |
︙ | ︙ | |||
79982 79983 79984 79985 79986 79987 79988 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | < < < < < < < < < < < < > > > > > > > > | | < < > > | 80617 80618 80619 80620 80621 80622 80623 80624 80625 80626 80627 80628 80629 80630 80631 80632 80633 80634 80635 80636 80637 80638 80639 80640 80641 80642 80643 80644 80645 80646 80647 80648 80649 80650 80651 80652 80653 80654 80655 80656 80657 80658 80659 80660 80661 80662 80663 80664 80665 80666 80667 80668 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); VdbeCoverageIf(v, op==TK_EQ); VdbeCoverageIf(v, op==TK_NE); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); break; |
︙ | ︙ | |||
80050 80051 80052 80053 80054 80055 80056 80057 80058 80059 80060 80061 80062 80063 | if( exprAlwaysTrue(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysFalse(pExpr) ){ /* No-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); | > | 80681 80682 80683 80684 80685 80686 80687 80688 80689 80690 80691 80692 80693 80694 80695 | if( exprAlwaysTrue(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysFalse(pExpr) ){ /* No-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); |
︙ | ︙ | |||
80141 80142 80143 80144 80145 80146 80147 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | < < < < < < > > > > > > > > < < > > | 80773 80774 80775 80776 80777 80778 80779 80780 80781 80782 80783 80784 80785 80786 80787 80788 80789 80790 80791 80792 80793 80794 80795 80796 80797 80798 80799 80800 80801 80802 80803 80804 80805 80806 80807 80808 80809 80810 80811 80812 80813 80814 80815 80816 80817 80818 80819 80820 80821 80822 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); VdbeCoverageIf(v, op==TK_EQ); VdbeCoverageIf(v, op==TK_NE); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); break; |
︙ | ︙ | |||
80203 80204 80205 80206 80207 80208 80209 80210 80211 80212 80213 80214 80215 80216 | if( exprAlwaysFalse(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysTrue(pExpr) ){ /* no-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); | > | 80837 80838 80839 80840 80841 80842 80843 80844 80845 80846 80847 80848 80849 80850 80851 | if( exprAlwaysFalse(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysTrue(pExpr) ){ /* no-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); |
︙ | ︙ | |||
80749 80750 80751 80752 80753 80754 80755 | do { zCsr += len; len = sqlite3GetToken(zCsr, &token); } while( token==TK_SPACE ); assert( len>0 ); } while( token!=TK_LP && token!=TK_USING ); | | | | 81384 81385 81386 81387 81388 81389 81390 81391 81392 81393 81394 81395 81396 81397 81398 81399 | do { zCsr += len; len = sqlite3GetToken(zCsr, &token); } while( token==TK_SPACE ); assert( len>0 ); } while( token!=TK_LP && token!=TK_USING ); zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql), zSql, zTableName, tname.z+tname.n); sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); } } /* ** This C function implements an SQL user function that is used by SQL code ** generated by the ALTER TABLE ... RENAME command to modify the definition |
︙ | ︙ | |||
80802 80803 80804 80805 80806 80807 80808 | }while( token==TK_SPACE ); zParent = sqlite3DbStrNDup(db, (const char *)z, n); if( zParent==0 ) break; sqlite3Dequote(zParent); if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){ char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"", | | | 81437 81438 81439 81440 81441 81442 81443 81444 81445 81446 81447 81448 81449 81450 81451 | }while( token==TK_SPACE ); zParent = sqlite3DbStrNDup(db, (const char *)z, n); if( zParent==0 ) break; sqlite3Dequote(zParent); if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){ char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"", (zOutput?zOutput:""), (int)(z-zInput), zInput, (const char *)zNew ); sqlite3DbFree(db, zOutput); zOutput = zOut; zInput = &z[n]; } sqlite3DbFree(db, zParent); } |
︙ | ︙ | |||
80888 80889 80890 80891 80892 80893 80894 | dist = 0; } } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); /* Variable tname now contains the token that is the old table-name ** in the CREATE TRIGGER statement. */ | | | | 81523 81524 81525 81526 81527 81528 81529 81530 81531 81532 81533 81534 81535 81536 81537 81538 | dist = 0; } } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); /* Variable tname now contains the token that is the old table-name ** in the CREATE TRIGGER statement. */ zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql), zSql, zTableName, tname.z+tname.n); sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); } } #endif /* !SQLITE_OMIT_TRIGGER */ /* ** Register built-in functions used to help implement ALTER TABLE |
︙ | ︙ | |||
81141 81142 81143 81144 81145 81146 81147 | pVTab = sqlite3GetVTable(db, pTab); if( pVTab->pVtab->pModule->xRename==0 ){ pVTab = 0; } } #endif | | | 81776 81777 81778 81779 81780 81781 81782 81783 81784 81785 81786 81787 81788 81789 81790 | pVTab = sqlite3GetVTable(db, pTab); if( pVTab->pVtab->pModule->xRename==0 ){ pVTab = 0; } } #endif /* Begin a transaction for database iDb. ** Then modify the schema cookie (since the ALTER TABLE modifies the ** schema). Open a statement transaction if the table is a virtual ** table. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto exit_rename_table; |
︙ | ︙ | |||
81277 81278 81279 81280 81281 81282 81283 81284 81285 81286 81287 81288 81289 81290 | int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); int j1; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2); sqlite3VdbeJumpHere(v, j1); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } } | > | 81912 81913 81914 81915 81916 81917 81918 81919 81920 81921 81922 81923 81924 81925 81926 | int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); int j1; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2); sqlite3VdbeJumpHere(v, j1); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } } |
︙ | ︙ | |||
82577 82578 82579 82580 82581 82582 82583 82584 82585 82586 82587 82588 82589 82590 | ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto next_push_0; ** */ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); /* ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 | > | 83213 83214 83215 83216 83217 83218 83219 83220 83221 83222 83223 83224 83225 83226 83227 | ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto next_push_0; ** */ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); /* ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
︙ | ︙ | |||
82598 82599 82600 82601 82602 82603 82604 82605 82606 82607 82608 82609 82610 82611 | for(i=0; i<nCol; i++){ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); aGotoChng[i] = sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); } sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); /* ** chng_addr_0: ** regPrev(0) = idx(0) | > | 83235 83236 83237 83238 83239 83240 83241 83242 83243 83244 83245 83246 83247 83248 83249 | for(i=0; i<nCol; i++){ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); aGotoChng[i] = sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); /* ** chng_addr_0: ** regPrev(0) = idx(0) |
︙ | ︙ | |||
82644 82645 82646 82647 82648 82649 82650 | sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); | | | 83282 83283 83284 83285 83286 83287 83288 83289 83290 83291 83292 83293 83294 83295 83296 | sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); /* Add the entry to the stat1 table. */ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
︙ | ︙ | |||
82671 82672 82673 82674 82675 82676 82677 82678 82679 82680 82681 82682 82683 82684 82685 82686 82687 82688 82689 82690 82691 | u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; pParse->nMem = MAX(pParse->nMem, regCol+nCol+1); addrNext = sqlite3VdbeCurrentAddr(v); callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); #ifdef SQLITE_ENABLE_STAT3 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pIdx->aiColumn[0], regSample); #else for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); #endif | > > | | | 83309 83310 83311 83312 83313 83314 83315 83316 83317 83318 83319 83320 83321 83322 83323 83324 83325 83326 83327 83328 83329 83330 83331 83332 83333 83334 83335 83336 83337 83338 83339 83340 83341 83342 83343 83344 83345 83346 83347 83348 83349 83350 83351 83352 83353 83354 83355 83356 83357 83358 83359 | u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; pParse->nMem = MAX(pParse->nMem, regCol+nCol+1); addrNext = sqlite3VdbeCurrentAddr(v); callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); VdbeCoverage(v); #ifdef SQLITE_ENABLE_STAT3 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pIdx->aiColumn[0], regSample); #else for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); #endif sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); sqlite3VdbeJumpHere(v, addrIsNull); } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* End of analysis */ sqlite3VdbeJumpHere(v, addrRewind); sqlite3DbFree(db, aGotoChng); } /* Create a single sqlite_stat1 entry containing NULL as the index ** name and the row count as the content. */ if( pOnlyIdx==0 && needTableCnt ){ VdbeComment((v, "%s", pTab->zName)); sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeJumpHere(v, jZeroRows); } |
︙ | ︙ | |||
84243 84244 84245 84246 84247 84248 84249 | /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ | | | > | < < < | > > > | | < > > < | | | 84883 84884 84885 84886 84887 84888 84889 84890 84891 84892 84893 84894 84895 84896 84897 84898 84899 84900 84901 84902 84903 84904 84905 84906 84907 84908 84909 84910 84911 84912 84913 84914 84915 84916 84917 84918 84919 84920 84921 84922 84923 84924 84925 84926 84927 84928 84929 84930 84931 84932 84933 84934 84935 84936 84937 84938 84939 84940 84941 84942 | /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ if( db->mallocFailed==0 && (pParse->cookieMask || pParse->pConstExpr) ){ yDbMask mask; int iDb, i; assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); sqlite3VdbeJumpHere(v, 0); for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ if( (mask & pParse->cookieMask)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp4Int(v, OP_Transaction, /* Opcode */ iDb, /* P1 */ (mask & pParse->writeMask)!=0, /* P2 */ pParse->cookieValue[iDb], /* P3 */ db->aDb[iDb].pSchema->iGeneration /* P4 */ ); if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); } #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ codeTableLocks(pParse); /* Initialize any AUTOINCREMENT data structures required. */ sqlite3AutoincrementBegin(pParse); /* Code constant expressions that where factored out of inner loops */ if( pParse->pConstExpr ){ ExprList *pEL = pParse->pConstExpr; pParse->okConstFactor = 0; for(i=0; i<pEL->nExpr; i++){ sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); } } /* Finally, jump back to the beginning of the executable code. */ sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); } } /* Get the VDBE program ready for execution */ if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ |
︙ | ︙ | |||
84310 84311 84312 84313 84314 84315 84316 | pParse->rc = SQLITE_ERROR; } pParse->nTab = 0; pParse->nMem = 0; pParse->nSet = 0; pParse->nVar = 0; pParse->cookieMask = 0; | < | 84951 84952 84953 84954 84955 84956 84957 84958 84959 84960 84961 84962 84963 84964 | pParse->rc = SQLITE_ERROR; } pParse->nTab = 0; pParse->nMem = 0; pParse->nSet = 0; pParse->nVar = 0; pParse->cookieMask = 0; } /* ** Run the parser and code generator recursively in order to generate ** code for the SQL statement given onto the end of the pParse context ** currently under construction. When the parser is run recursively ** this way, the final OP_Halt is not appended and other initialization |
︙ | ︙ | |||
85042 85043 85044 85045 85046 85047 85048 | ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); | | | 85682 85683 85684 85685 85686 85687 85688 85689 85690 85691 85692 85693 85694 85695 85696 | ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1 : SQLITE_MAX_FILE_FORMAT; sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); sqlite3VdbeJumpHere(v, j1); |
︙ | ︙ | |||
86769 86770 86771 86772 86773 86774 86775 | iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); | | | | | | | 87409 87410 87411 87412 87413 87414 87415 87416 87417 87418 87419 87420 87421 87422 87423 87424 87425 87426 87427 87428 87429 87430 87431 87432 87433 87434 87435 87436 87437 87438 87439 87440 87441 87442 87443 87444 87445 87446 87447 87448 87449 87450 87451 87452 | iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3VdbeResolveLabel(v, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); assert( pKey!=0 || db->mallocFailed || pParse->nErr ); if( pIndex->onError!=OE_None && pKey!=0 ){ int j2 = sqlite3VdbeCurrentAddr(v) + 3; sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pKey->nField - pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iIdx); sqlite3VdbeAddOp1(v, OP_Close, iSorter); } |
︙ | ︙ | |||
87567 87568 87569 87570 87571 87572 87573 | /* Sanity checking on calling parameters */ assert( iStart>=0 ); assert( nExtra>=1 ); assert( pSrc!=0 ); assert( iStart<=pSrc->nSrc ); /* Allocate additional space if needed */ | | | | | 88207 88208 88209 88210 88211 88212 88213 88214 88215 88216 88217 88218 88219 88220 88221 88222 88223 88224 88225 88226 88227 88228 88229 88230 88231 88232 88233 88234 88235 88236 88237 88238 88239 88240 88241 | /* Sanity checking on calling parameters */ assert( iStart>=0 ); assert( nExtra>=1 ); assert( pSrc!=0 ); assert( iStart<=pSrc->nSrc ); /* Allocate additional space if needed */ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ SrcList *pNew; int nAlloc = pSrc->nSrc+nExtra; int nGot; pNew = sqlite3DbRealloc(db, pSrc, sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); if( pNew==0 ){ assert( db->mallocFailed ); return pSrc; } pSrc = pNew; nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; pSrc->nAlloc = nGot; } /* Move existing slots that come after the newly inserted slots ** out of the way */ for(i=pSrc->nSrc-1; i>=iStart; i--){ pSrc->a[i+nExtra] = pSrc->a[i]; } pSrc->nSrc += nExtra; /* Zero the newly allocated slots */ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); for(i=iStart; i<iStart+nExtra; i++){ pSrc->a[i].iCursor = -1; } |
︙ | ︙ | |||
87919 87920 87921 87922 87923 87924 87925 | return 1; } } return 0; } /* | | | < < < < < < < | < < < < < | < < < < < < < < < < < < < < < < < < < < | | | | | | | | | | | | < | 88559 88560 88561 88562 88563 88564 88565 88566 88567 88568 88569 88570 88571 88572 88573 88574 88575 88576 88577 88578 88579 88580 88581 88582 88583 88584 88585 88586 88587 88588 88589 88590 88591 88592 | return 1; } } return 0; } /* ** Record the fact that the schema cookie will need to be verified ** for database iDb. The code to actually verify the schema cookie ** will occur at the end of the top-level VDBE and will be generated ** later, by sqlite3FinishCoding(). */ SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3 *db = pToplevel->db; yDbMask mask; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDb<SQLITE_MAX_ATTACHED+2 ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); mask = ((yDbMask)1)<<iDb; if( (pToplevel->cookieMask & mask)==0 ){ pToplevel->cookieMask |= mask; pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pToplevel); } } } /* ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each ** attached database. Otherwise, invoke it for the database named zDb only. |
︙ | ︙ | |||
88942 88943 88944 88945 88946 88947 88948 | int iCur /* Cursor number for ephemerial table */ ){ SelectDest dest; Select *pSel; SrcList *pFrom; sqlite3 *db = pParse->db; int iDb = sqlite3SchemaToIndex(db, pView->pSchema); | < < < < < | 89549 89550 89551 89552 89553 89554 89555 89556 89557 89558 89559 89560 89561 89562 89563 89564 89565 89566 89567 89568 89569 89570 89571 89572 | int iCur /* Cursor number for ephemerial table */ ){ SelectDest dest; Select *pSel; SrcList *pFrom; sqlite3 *db = pParse->db; int iDb = sqlite3SchemaToIndex(db, pView->pSchema); pWhere = sqlite3ExprDup(db, pWhere, 0); pFrom = sqlite3SrcListAppend(db, 0, 0, 0); if( pFrom ){ assert( pFrom->nSrc==1 ); pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName); pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName); assert( pFrom->a[0].pOn==0 ); assert( pFrom->a[0].pUsing==0 ); } pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0); sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur); sqlite3Select(pParse, pSel, &dest); sqlite3SelectDelete(db, pSel); } #endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */ #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) |
︙ | ︙ | |||
89293 89294 89295 89296 89297 89298 89299 | if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */ }else if( pPk ){ /* Construct a composite key for the row to be deleted and remember it */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, | | | 89895 89896 89897 89898 89899 89900 89901 89902 89903 89904 89905 89906 89907 89908 89909 | if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */ }else if( pPk ){ /* Construct a composite key for the row to be deleted and remember it */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(v, pPk), nPk); sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey); }else{ /* Get the rowid of the row to be deleted and remember it in the RowSet */ nKey = 1; /* OP_Seek always uses a single rowid */ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey); } |
︙ | ︙ | |||
89331 89332 89333 89334 89335 89336 89337 89338 89339 | */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); } }else if( pPk ){ | > | > | 89933 89934 89935 89936 89937 89938 89939 89940 89941 89942 89943 89944 89945 89946 89947 89948 89949 89950 89951 89952 89953 89954 89955 | */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey); assert( nKey==0 ); /* OP_Found will use a composite key */ }else{ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey); VdbeCoverage(v); assert( nKey==1 ); } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
︙ | ︙ | |||
89361 89362 89363 89364 89365 89366 89367 | iKey, nKey, count, OE_Default, okOnePass); } /* End of the loop over all rowids/primary-keys. */ if( okOnePass ){ sqlite3VdbeResolveLabel(v, addrBypass); }else if( pPk ){ | | | 89965 89966 89967 89968 89969 89970 89971 89972 89973 89974 89975 89976 89977 89978 89979 | iKey, nKey, count, OE_Default, okOnePass); } /* End of the loop over all rowids/primary-keys. */ if( okOnePass ){ sqlite3VdbeResolveLabel(v, addrBypass); }else if( pPk ){ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrLoop); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrLoop); sqlite3VdbeJumpHere(v, addrLoop); } /* Close the cursors open on the table and its indexes. */ |
︙ | ︙ | |||
89459 89460 89461 89462 89463 89464 89465 | iDataCur, iIdxCur, iPk, (int)nPk)); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(v); opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound; | > | > > > | 90063 90064 90065 90066 90067 90068 90069 90070 90071 90072 90073 90074 90075 90076 90077 90078 90079 90080 90081 | iDataCur, iIdxCur, iPk, (int)nPk)); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(v); opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound; if( !bNoSeek ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); VdbeCoverageIf(v, opSeek==OP_NotExists); VdbeCoverageIf(v, opSeek==OP_NotFound); } /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ int addrStart; /* Start of BEFORE trigger programs */ |
︙ | ︙ | |||
89501 89502 89503 89504 89505 89506 89507 89508 89509 89510 89511 89512 89513 89514 | /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or of already deleted the row that the cursor was ** pointing to. */ if( addrStart<sqlite3VdbeCurrentAddr(v) ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } | > > | 90109 90110 90111 90112 90113 90114 90115 90116 90117 90118 90119 90120 90121 90122 90123 90124 | /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or of already deleted the row that the cursor was ** pointing to. */ if( addrStart<sqlite3VdbeCurrentAddr(v) ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); VdbeCoverageIf(v, opSeek==OP_NotExists); VdbeCoverageIf(v, opSeek==OP_NotFound); } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } |
︙ | ︙ | |||
91758 91759 91760 91761 91762 91763 91764 91765 91766 91767 | ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ if( nIncr<0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); } for(i=0; i<pFKey->nCol; i++){ int iReg = aiCol[i] + regData + 1; | > | > | > | | 92368 92369 92370 92371 92372 92373 92374 92375 92376 92377 92378 92379 92380 92381 92382 92383 92384 92385 92386 92387 92388 92389 92390 92391 92392 92393 92394 92395 92396 92397 92398 92399 92400 92401 92402 92403 92404 92405 92406 92407 92408 92409 92410 92411 92412 92413 92414 92415 | ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ if( nIncr<0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); VdbeCoverage(v); } for(i=0; i<pFKey->nCol; i++){ int iReg = aiCol[i] + regData + 1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); } if( isIgnore==0 ){ if( pIdx==0 ){ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY ** column of the parent table (table pTab). */ int iMustBeInt; /* Address of MustBeInt instruction */ int regTemp = sqlite3GetTempReg(pParse); /* Invoke MustBeInt to coerce the child key value to an integer (i.e. ** apply the affinity of the parent key). If this fails, then there ** is no matching parent key. Before using MustBeInt, make a copy of ** the value. Otherwise, the value inserted into the child key column ** will have INTEGER affinity applied to it, which may not be correct. */ sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); VdbeCoverage(v); /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. */ if( pTab==pFKey->pFrom && nIncr==1 ){ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); } sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); sqlite3VdbeJumpHere(v, iMustBeInt); sqlite3ReleaseTempReg(pParse, regTemp); }else{ int nCol = pFKey->nCol; int regTemp = sqlite3GetTempRange(pParse, nCol); |
︙ | ︙ | |||
91824 91825 91826 91827 91828 91829 91830 | int iChild = aiCol[i]+1+regData; int iParent = pIdx->aiColumn[i]+1+regData; assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } | | | | | | 92437 92438 92439 92440 92441 92442 92443 92444 92445 92446 92447 92448 92449 92450 92451 92452 92453 92454 92455 92456 92457 92458 92459 | int iChild = aiCol[i]+1+regData; int iParent = pIdx->aiColumn[i]+1+regData; assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); } sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); } sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, sqlite3IndexAffinityStr(v,pIdx), nCol); sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) |
︙ | ︙ | |||
91970 91971 91972 91973 91974 91975 91976 91977 91978 91979 91980 91981 91982 91983 | assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); } /* Create an Expr object representing an SQL expression like: ** ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... ** ** The collation sequence used for the comparison should be that of | > | 92583 92584 92585 92586 92587 92588 92589 92590 92591 92592 92593 92594 92595 92596 92597 | assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); VdbeCoverage(v); } /* Create an Expr object representing an SQL expression like: ** ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... ** ** The collation sequence used for the comparison should be that of |
︙ | ︙ | |||
92132 92133 92134 92135 92136 92137 92138 | ** when this statement is run. */ FKey *p; for(p=pTab->pFKey; p; p=p->pNextFrom){ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; } if( !p ) return; iSkip = sqlite3VdbeMakeLabel(v); | | > | 92746 92747 92748 92749 92750 92751 92752 92753 92754 92755 92756 92757 92758 92759 92760 92761 92762 92763 92764 92765 92766 92767 92768 92769 92770 92771 92772 92773 92774 92775 92776 92777 92778 | ** when this statement is run. */ FKey *p; for(p=pTab->pFKey; p; p=p->pNextFrom){ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; } if( !p ) return; iSkip = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); } pParse->disableTriggers = 1; sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); pParse->disableTriggers = 0; /* If the DELETE has generated immediate foreign key constraint ** violations, halt the VDBE and return an error at this point, before ** any modifications to the schema are made. This is because statement ** transactions are not able to rollback schema changes. ** ** If the SQLITE_DeferFKs flag is set, then this is not required, as ** the statement transaction will not be rolled back even if FK ** constraints are violated. */ if( (db->flags & SQLITE_DeferFKs)==0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); } if( iSkip ){ sqlite3VdbeResolveLabel(v, iSkip); } |
︙ | ︙ | |||
92309 92310 92311 92312 92313 92314 92315 | ** missing, behave as if it is empty. i.e. decrement the relevant ** FK counter for each row of the current table with non-NULL keys. */ Vdbe *v = sqlite3GetVdbe(pParse); int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; for(i=0; i<pFKey->nCol; i++){ int iReg = pFKey->aCol[i].iFrom + regOld + 1; | | | 92924 92925 92926 92927 92928 92929 92930 92931 92932 92933 92934 92935 92936 92937 92938 | ** missing, behave as if it is empty. i.e. decrement the relevant ** FK counter for each row of the current table with non-NULL keys. */ Vdbe *v = sqlite3GetVdbe(pParse); int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; for(i=0; i<pFKey->nCol; i++){ int iReg = pFKey->aCol[i].iFrom + regOld + 1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); } continue; } assert( pFKey->nCol==1 || (aiFree && pIdx) ); |
︙ | ︙ | |||
92876 92877 92878 92879 92880 92881 92882 | pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* | < | > > > > > > | | > | | < < < < < < | | < < > | | | > > > > | > > | | | 93491 93492 93493 93494 93495 93496 93497 93498 93499 93500 93501 93502 93503 93504 93505 93506 93507 93508 93509 93510 93511 93512 93513 93514 93515 93516 93517 93518 93519 93520 93521 93522 93523 93524 93525 93526 93527 93528 93529 93530 93531 93532 93533 93534 93535 93536 93537 93538 93539 93540 93541 93542 93543 93544 93545 93546 93547 93548 93549 93550 93551 93552 93553 93554 93555 93556 93557 93558 93559 93560 93561 93562 93563 93564 93565 93566 93567 93568 | pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. ** ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values and ** if iReg>0 then code an OP_Affinity opcode that will set the affinities ** for register iReg and following. Or if affinities exists and iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL */ SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ int i; char *zColAff = pTab->zColAff; if( zColAff==0 ){ sqlite3 *db = sqlite3VdbeDb(v); zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); if( !zColAff ){ db->mallocFailed = 1; return; } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } do{ zColAff[i--] = 0; }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE ); pTab->zColAff = zColAff; } i = sqlite3Strlen30(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program beginning at location ** iStartAddr throught the end of the program. This is used to see if ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can ** run without using temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; #endif for(i=1; i<iEnd; i++){ VdbeOp *pOp = sqlite3VdbeGetOp(v, i); assert( pOp!=0 ); if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ Index *pIndex; int tnum = pOp->p2; if( tnum==pTab->tnum ){ return 1; |
︙ | ︙ | |||
93035 93036 93037 93038 93039 93040 93041 | pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); | | | | | 93655 93656 93657 93658 93659 93660 93661 93662 93663 93664 93665 93666 93667 93668 93669 93670 93671 93672 93673 93674 93675 93676 | pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); sqlite3VdbeAddOp0(v, OP_Close); } } /* ** Update the maximum rowid for an autoincrement calculation. |
︙ | ︙ | |||
93077 93078 93079 93080 93081 93082 93083 | AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 93697 93698 93699 93700 93701 93702 93703 93704 93705 93706 93707 93708 93709 93710 93711 93712 93713 93714 93715 93716 93717 93718 93719 93720 93721 93722 93723 93724 93725 93726 93727 93728 93729 93730 93731 93732 93733 93734 93735 | AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; int j1; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp0(v, OP_Close); sqlite3ReleaseTempReg(pParse, iRec); } } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines ** above are all no-ops */ # define autoIncBegin(A,B,C) (0) # define autoIncStep(A,B,C) #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Forward declaration */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ |
︙ | ︙ | |||
93266 93267 93268 93269 93270 93271 93272 | ** close cursors ** end foreach ** ** The 3rd template is for when the second template does not apply ** and the SELECT clause does not read from <table> at any time. ** The generated code follows this template: ** | < < < | | < < < | < | < | 93786 93787 93788 93789 93790 93791 93792 93793 93794 93795 93796 93797 93798 93799 93800 93801 93802 93803 93804 93805 93806 93807 93808 93809 93810 93811 93812 93813 93814 93815 93816 93817 93818 93819 93820 93821 93822 93823 93824 93825 93826 93827 93828 93829 93830 93831 | ** close cursors ** end foreach ** ** The 3rd template is for when the second template does not apply ** and the SELECT clause does not read from <table> at any time. ** The generated code follows this template: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the rows in the SELECT ** load values into registers R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end-coroutine X ** B: open write cursor to <table> and its indices ** C: yield X, at EOF goto D ** insert the select result into <table> from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use a intermediate table to store the results of ** the select. The template is like this: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end co-routine R ** B: open temp table ** L: yield X, at EOF goto M ** insert row from R..R+n into temp table ** goto L ** M: open write cursor to <table> and its indices ** rewind temp table ** C: loop over rows of intermediate table ** transfer values form intermediate table into <table> ** end loop |
︙ | ︙ | |||
93335 93336 93337 93338 93339 93340 93341 | Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ | < < > | | > < | 93847 93848 93849 93850 93851 93852 93853 93854 93855 93856 93857 93858 93859 93860 93861 93862 93863 93864 93865 93866 93867 93868 93869 93870 93871 93872 93873 93874 93875 93876 93877 93878 93879 | Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ Db *pDb; /* The database containing table being inserted into */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ u8 bIdListInOrder = 1; /* True if IDLIST is in table order */ ExprList *pList = 0; /* List of VALUES() to be inserted */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ #endif |
︙ | ︙ | |||
93456 93457 93458 93459 93460 93461 93462 93463 93464 93465 93466 93467 93468 93469 93470 | } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > | > > > > > > < | | < | < | < | | > > > > > > > > < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 93967 93968 93969 93970 93971 93972 93973 93974 93975 93976 93977 93978 93979 93980 93981 93982 93983 93984 93985 93986 93987 93988 93989 93990 93991 93992 93993 93994 93995 93996 93997 93998 93999 94000 94001 94002 94003 94004 94005 94006 94007 94008 94009 94010 94011 94012 94013 94014 94015 94016 94017 94018 94019 94020 94021 94022 94023 94024 94025 94026 94027 94028 94029 94030 94031 94032 94033 94034 94035 94036 94037 94038 94039 94040 94041 94042 94043 94044 94045 94046 94047 94048 94049 94050 94051 94052 94053 94054 94055 94056 94057 94058 94059 94060 94061 94062 94063 94064 94065 94066 94067 94068 94069 94070 94071 94072 94073 94074 94075 94076 94077 94078 94079 94080 94081 94082 94083 94084 94085 94086 94087 94088 94089 94090 94091 94092 94093 94094 94095 94096 94097 94098 94099 94100 94101 94102 94103 94104 94105 94106 94107 94108 94109 94110 94111 94112 94113 94114 94115 94116 94117 94118 94119 94120 94121 94122 94123 94124 94125 94126 94127 94128 94129 94130 94131 94132 94133 94134 94135 94136 94137 94138 94139 94140 94141 | } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assemblied row record. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) */ if( pColumn ){ for(i=0; i<pColumn->nId; i++){ pColumn->a[i].idx = -1; } for(i=0; i<pColumn->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ pColumn->a[i].idx = j; if( i!=j ) bIdListInOrder = 0; if( j==pTab->iPKey ){ ipkColumn = i; assert( !withoutRowid ); } break; } } if( j>=pTab->nCol ){ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ ipkColumn = i; }else{ sqlite3ErrorMsg(pParse, "table %S has no column named %s", pTabList, 0, pColumn->a[i].zName); pParse->checkSchema = 1; goto insert_cleanup; } } } } /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int rc; /* Result code */ regYield = ++pParse->nMem; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); dest.iSdst = bIdListInOrder ? regData : 0; dest.nSdst = pTab->nCol; rc = sqlite3Select(pParse, pSelect, &dest); regFromSelect = dest.iSdst; assert( pParse->nErr==0 || rc ); if( rc || db->mallocFailed ) goto insert_cleanup; sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each output row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( pTrigger || readsTable(pParse, iDb, pTab) ){ useTempTable = 1; } if( useTempTable ){ /* Invoke the coroutine to extract information from the SELECT ** and add it to a transient table srcTab. The code generated ** here is from the 4th template: ** ** B: open temp table ** L: yield X, goto M at EOF ** insert row from R..R+n into temp table ** goto L ** M: ... */ int regRec; /* Register to hold packed record */ int regTempRowid; /* Register to hold temp table ROWID */ int addrL; /* Label "L" */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a VALUES ** clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); nColumn = pList ? pList->nExpr : 0; for(i=0; i<nColumn; i++){ if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ goto insert_cleanup; } } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the ipkColumn variable to the integer primary key ** column index in the original table definition. */ if( pColumn==0 && nColumn>0 ){ ipkColumn = pTab->iPKey; } /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ if( IsVirtual(pTab) ){ for(i=0; i<pTab->nCol; i++){ nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); } } if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ sqlite3ErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList, 0, pTab->nCol-nHidden, nColumn); goto insert_cleanup; } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ if( db->flags & SQLITE_CountRows ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } |
︙ | ︙ | |||
93625 93626 93627 93628 93629 93630 93631 | } /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** | | | | < | < < | < < < < < < < < < | 94155 94156 94157 94158 94159 94160 94161 94162 94163 94164 94165 94166 94167 94168 94169 94170 94171 94172 94173 94174 94175 94176 94177 94178 94179 94180 94181 94182 94183 94184 94185 94186 94187 94188 | } /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** ** rewind temp table, if empty goto D ** C: loop over rows of intermediate table ** transfer values form intermediate table into <table> ** end loop ** D: ... */ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); addrCont = sqlite3VdbeCurrentAddr(v); }else if( pSelect ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 3): ** ** C: yield X, at EOF goto D ** insert the select result into <table> from R..R+n ** goto C ** D: ... */ addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); } /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(v); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); |
︙ | ︙ | |||
93681 93682 93683 93684 93685 93686 93687 | assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } | | | | 94199 94200 94201 94202 94203 94204 94205 94206 94207 94208 94209 94210 94211 94212 94213 94214 94215 94216 | assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); } /* Cannot have triggers on a virtual table. If it were possible, ** this block would have to account for hidden column. */ assert( !IsVirtual(pTab) ); |
︙ | ︙ | |||
93718 93719 93720 93721 93722 93723 93724 | /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ | < | | 94236 94237 94238 94239 94240 94241 94242 94243 94244 94245 94246 94247 94248 94249 94250 | /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3TableAffinity(v, pTab, regCols+1); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); |
︙ | ︙ | |||
93741 93742 93743 93744 93745 93746 93747 | /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ | | | | | | > | | > | > | 94258 94259 94260 94261 94262 94263 94264 94265 94266 94267 94268 94269 94270 94271 94272 94273 94274 94275 94276 94277 94278 94279 94280 94281 94282 94283 94284 94285 94286 94287 94288 94289 94290 94291 94292 94293 94294 94295 94296 94297 94298 94299 94300 94301 94302 94303 94304 94305 94306 94307 94308 94309 94310 94311 94312 94313 94314 94315 94316 94317 94318 94319 94320 94321 94322 94323 94324 94325 94326 94327 94328 94329 94330 94331 94332 94333 94334 94335 94336 94337 94338 94339 94340 94341 94342 94343 | /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); }else{ VdbeOp *pOp; sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); pOp = sqlite3VdbeGetOp(v, -1); if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ appendFlag = 1; pOp->opcode = OP_NewRowid; pOp->p1 = iDataCur; pOp->p2 = regRowid; pOp->p3 = regAutoinc; } } /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid ** to generate a unique primary key value. */ if( !appendFlag ){ int j1; if( !IsVirtual(pTab) ){ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); sqlite3VdbeJumpHere(v, j1); }else{ j1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); } }else if( IsVirtual(pTab) || withoutRowid ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); }else{ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; } autoIncStep(pParse, regAutoinc, regRowid); /* Compute data for all columns of the new entry, beginning ** with the first column. */ nHidden = 0; for(i=0; i<pTab->nCol; i++){ int iRegStore = regRowid+1+i; if( i==pTab->iPKey ){ /* The value of the INTEGER PRIMARY KEY column is always a NULL. ** Whenever this column is read, the rowid will be substituted ** in its place. Hence, fill this column with a NULL to avoid ** taking up data space with information that will never be used. ** As there may be shallow copies of this value, make it a soft-NULL */ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); continue; } if( pColumn==0 ){ if( IsHiddenColumn(&pTab->aCol[i]) ){ assert( IsVirtual(pTab) ); j = -1; nHidden++; }else{ j = i - nHidden; } }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==i ) break; } } if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); }else if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); }else if( pSelect ){ if( regFromSelect!=regData ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); } }else{ sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); } } /* Generate code to check constraints and generate index keys and ** do the insertion. |
︙ | ︙ | |||
93855 93856 93857 93858 93859 93860 93861 | } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ | | | 94375 94376 94377 94378 94379 94380 94381 94382 94383 94384 94385 94386 94387 94388 94389 | } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrInsTop); sqlite3VdbeAddOp1(v, OP_Close, srcTab); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); sqlite3VdbeJumpHere(v, addrInsTop); } |
︙ | ︙ | |||
94022 94023 94024 94025 94026 94027 94028 94029 94030 94031 94032 94033 94034 94035 | int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ int ipkTop = 0; /* Top of the rowid change constraint check */ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ u8 isUpdate; /* True if this is an UPDATE operation */ int regRowid = -1; /* Register holding ROWID value */ isUpdate = regOldData!=0; db = pParse->db; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ | > | 94542 94543 94544 94545 94546 94547 94548 94549 94550 94551 94552 94553 94554 94555 94556 | int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ int ipkTop = 0; /* Top of the rowid change constraint check */ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int regRowid = -1; /* Register holding ROWID value */ isUpdate = regOldData!=0; db = pParse->db; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
︙ | ︙ | |||
94076 94077 94078 94079 94080 94081 94082 94083 94084 94085 94086 94087 94088 94089 94090 | case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, regNewData+1+i, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); break; } case OE_Ignore: { sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); break; } default: { assert( onError==OE_Replace ); | > > | | 94597 94598 94599 94600 94601 94602 94603 94604 94605 94606 94607 94608 94609 94610 94611 94612 94613 94614 94615 94616 94617 94618 94619 94620 94621 | case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, regNewData+1+i, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); VdbeCoverage(v); break; } case OE_Ignore: { sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); VdbeCoverage(v); break; } default: { assert( onError==OE_Replace ); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v); sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); sqlite3VdbeJumpHere(v, j1); break; } } } |
︙ | ︙ | |||
94136 94137 94138 94139 94140 94141 94142 94143 94144 94145 94146 94147 94148 94149 94150 94151 94152 94153 94154 94155 94156 94157 94158 94159 94160 94161 94162 94163 94164 94165 94166 94167 94168 | } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has change, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace && overrideError!=OE_Replace ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); break; } } } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); /* Generate code that deals with a rowid collision */ switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } | > > > | 94659 94660 94661 94662 94663 94664 94665 94666 94667 94668 94669 94670 94671 94672 94673 94674 94675 94676 94677 94678 94679 94680 94681 94682 94683 94684 94685 94686 94687 94688 94689 94690 94691 94692 94693 94694 | } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has change, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace && overrideError!=OE_Replace ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); break; } } } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); /* Generate code that deals with a rowid collision */ switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } |
︙ | ︙ | |||
94233 94234 94235 94236 94237 94238 94239 94240 94241 94242 94243 94244 94245 94246 | for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ int regIdx; /* Range of registers hold conent for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ iThisCur = iIdxCur+ix; addrUniqueOk = sqlite3VdbeMakeLabel(v); /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->ckBase = regNewData+1; | > > > > | 94759 94760 94761 94762 94763 94764 94765 94766 94767 94768 94769 94770 94771 94772 94773 94774 94775 94776 | for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ int regIdx; /* Range of registers hold conent for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } iThisCur = iIdxCur+ix; addrUniqueOk = sqlite3VdbeMakeLabel(v); /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->ckBase = regNewData+1; |
︙ | ︙ | |||
94263 94264 94265 94266 94267 94268 94269 | }else{ x = iField + regNewData + 1; } sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); | < | 94793 94794 94795 94796 94797 94798 94799 94800 94801 94802 94803 94804 94805 94806 | }else{ x = iField + regNewData + 1; } sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); VdbeComment((v, "for %s", pIdx->zName)); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); /* In an UPDATE operation, if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table and there has been no change the ** primary key, then no collision is possible. The collision detection ** logic below can all be skipped. */ |
︙ | ︙ | |||
94291 94292 94293 94294 94295 94296 94297 | onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, | | > > | 94820 94821 94822 94823 94824 94825 94826 94827 94828 94829 94830 94831 94832 94833 94834 94835 94836 94837 94838 94839 94840 94841 94842 94843 94844 94845 94846 | onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); /* Conflict only if the rowid of the existing index entry ** is different from old-rowid */ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; i<pPk->nKeyCol; i++){ |
︙ | ︙ | |||
94337 94338 94339 94340 94341 94342 94343 94344 94345 94346 94347 94348 94349 94350 | if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | > > > | 94868 94869 94870 94871 94872 94873 94874 94875 94876 94877 94878 94879 94880 94881 94882 94883 94884 | if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverageIf(v, op==OP_Eq); VdbeCoverageIf(v, op==OP_Ne); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
︙ | ︙ | |||
94408 94409 94410 94411 94412 94413 94414 94415 94416 94417 94418 94419 94420 94421 94422 94423 94424 94425 94426 94427 94428 94429 94430 94431 94432 94433 94434 94435 94436 | ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int regData; /* Content registers (after the rowid) */ int regRec; /* Register holding assemblied record for the table */ int i; /* Loop counter */ v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( aRegIdx[i]==0 ) continue; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); pik_flags = 0; if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ assert( pParse->nested==0 ); pik_flags |= OPFLAG_NCHANGE; } if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; regData = regNewData + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); | > > > | | 94942 94943 94944 94945 94946 94947 94948 94949 94950 94951 94952 94953 94954 94955 94956 94957 94958 94959 94960 94961 94962 94963 94964 94965 94966 94967 94968 94969 94970 94971 94972 94973 94974 94975 94976 94977 94978 94979 94980 94981 | ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int regData; /* Content registers (after the rowid) */ int regRec; /* Register holding assemblied record for the table */ int i; /* Loop counter */ u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( aRegIdx[i]==0 ) continue; bAffinityDone = 1; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); pik_flags = 0; if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ assert( pParse->nested==0 ); pik_flags |= OPFLAG_NCHANGE; } if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; regData = regNewData + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0); sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); } |
︙ | ︙ | |||
94799 94800 94801 94802 94803 94804 94805 | ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ | | | > | | | | | 95336 95337 95338 95339 95340 95341 95342 95343 95344 95345 95346 95347 95348 95349 95350 95351 95352 95353 95354 95355 95356 95357 95358 95359 95360 95361 95362 95363 95364 95365 95366 95367 95368 95369 95370 95371 95372 95373 95374 95375 95376 95377 95378 95379 95380 95381 95382 95383 95384 95385 95386 95387 95388 95389 95390 95391 95392 95393 95394 95395 95396 95397 95398 95399 95400 95401 | ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); sqlite3VdbeJumpHere(v, addr1); } if( HasRowid(pSrc) ){ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); } sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regData); if( emptyDestTest ){ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); sqlite3VdbeJumpHere(v, emptyDestTest); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); return 0; |
︙ | ︙ | |||
97083 97084 97085 97086 97087 97088 97089 97090 97091 97092 97093 97094 97095 97096 97097 97098 97099 97100 97101 97102 97103 97104 97105 97106 | ** Older versions of SQLite would set the default cache size to a ** negative number to indicate synchronous=OFF. These days, synchronous ** is always on by default regardless of the sign of the default cache ** size. But continue to take the absolute value of the default cache ** size of historical compatibility. */ case PragTyp_DEFAULT_CACHE_SIZE: { static const VdbeOpList getCacheSize[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 1, 0}, /* 6 */ { OP_Noop, 0, 0, 0}, { OP_ResultRow, 1, 1, 0}, }; int addr; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); pParse->nMem += 2; | > | | 97621 97622 97623 97624 97625 97626 97627 97628 97629 97630 97631 97632 97633 97634 97635 97636 97637 97638 97639 97640 97641 97642 97643 97644 97645 97646 97647 97648 97649 97650 97651 97652 97653 | ** Older versions of SQLite would set the default cache size to a ** negative number to indicate synchronous=OFF. These days, synchronous ** is always on by default regardless of the sign of the default cache ** size. But continue to take the absolute value of the default cache ** size of historical compatibility. */ case PragTyp_DEFAULT_CACHE_SIZE: { static const int iLn = __LINE__+2; static const VdbeOpList getCacheSize[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 1, 0}, /* 6 */ { OP_Noop, 0, 0, 0}, { OP_ResultRow, 1, 1, 0}, }; int addr; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); pParse->nMem += 2; addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize,iLn); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, iDb); sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE); }else{ int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, size, 1); |
︙ | ︙ | |||
97345 97346 97347 97348 97349 97350 97351 97352 97353 97354 97355 97356 97357 97358 97359 97360 | rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_Integer, 0, 1, 0}, /* 4 */ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */ }; int iAddr; | > | | 97884 97885 97886 97887 97888 97889 97890 97891 97892 97893 97894 97895 97896 97897 97898 97899 97900 97901 97902 97903 97904 97905 97906 97907 97908 | rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const int iLn = __LINE__+2; static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_Integer, 0, 1, 0}, /* 4 */ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */ }; int iAddr; iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); sqlite3VdbeChangeP1(v, iAddr, iDb); sqlite3VdbeChangeP1(v, iAddr+1, iDb); sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4); sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1); sqlite3VdbeChangeP1(v, iAddr+5, iDb); sqlite3VdbeUsesBtree(v, iDb); } |
︙ | ︙ | |||
97380 97381 97382 97383 97384 97385 97386 | case PragTyp_INCREMENTAL_VACUUM: { int iLimit, addr; if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); | | | | 97920 97921 97922 97923 97924 97925 97926 97927 97928 97929 97930 97931 97932 97933 97934 97935 97936 97937 | case PragTyp_INCREMENTAL_VACUUM: { int iLimit, addr; if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_ResultRow, 1); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* |
︙ | ︙ | |||
97954 97955 97956 97957 97958 97959 97960 | k = 0; break; } } assert( pParse->nErr>0 || pFK==0 ); if( pFK ) break; if( pParse->nTab<i ) pParse->nTab = i; | | | | | | | | < | > | | 98494 98495 98496 98497 98498 98499 98500 98501 98502 98503 98504 98505 98506 98507 98508 98509 98510 98511 98512 98513 98514 98515 98516 98517 98518 98519 98520 98521 98522 98523 98524 98525 98526 98527 98528 98529 98530 98531 98532 98533 98534 98535 98536 98537 98538 98539 98540 98541 98542 98543 98544 98545 98546 98547 98548 98549 98550 98551 98552 98553 98554 | k = 0; break; } } assert( pParse->nErr>0 || pFK==0 ); if( pFK ) break; if( pParse->nTab<i ) pParse->nTab = i; addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); pIdx = 0; aiCols = 0; if( pParent ){ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 ); } addrOk = sqlite3VdbeMakeLabel(v); if( pParent && pIdx==0 ){ int iKey = pFK->aCol[0].iFrom; assert( iKey>=0 && iKey<pTab->nCol ); if( iKey!=pTab->iPKey ){ sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow); sqlite3ColumnDefault(v, pTab, iKey, regRow); sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow, sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow); } sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); }else{ for(j=0; j<pFK->nCol; j++){ sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j); sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); } if( pParent ){ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, sqlite3IndexAffinityStr(v,pIdx), pFK->nCol); sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); VdbeCoverage(v); } } sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0, pFK->zTo, P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3); sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); sqlite3VdbeResolveLabel(v, addrOk); sqlite3DbFree(db, aiCols); } sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); } } break; #endif /* !defined(SQLITE_OMIT_TRIGGER) */ #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
︙ | ︙ | |||
98047 98048 98049 98050 98051 98052 98053 98054 98055 98056 98057 98058 98059 98060 | case PragTyp_INTEGRITY_CHECK: { int i, j, addr, mxErr; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNeg, 1, 0, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, }; | > | 98587 98588 98589 98590 98591 98592 98593 98594 98595 98596 98597 98598 98599 98600 98601 | case PragTyp_INTEGRITY_CHECK: { int i, j, addr, mxErr; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const int iLn = __LINE__+2; static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNeg, 1, 0, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, }; |
︙ | ︙ | |||
98095 98096 98097 98098 98099 98100 98101 98102 98103 98104 98105 98106 98107 98108 | int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; if( iDb>=0 && i!=iDb ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. | > | 98636 98637 98638 98639 98640 98641 98642 98643 98644 98645 98646 98647 98648 98649 98650 | int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; if( iDb>=0 && i!=iDb ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. |
︙ | ︙ | |||
98126 98127 98128 98129 98130 98131 98132 | /* Make sure sufficient number of registers have been allocated */ pParse->nMem = MAX( pParse->nMem, cnt+8 ); /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, (u8)i); | | | 98668 98669 98670 98671 98672 98673 98674 98675 98676 98677 98678 98679 98680 98681 98682 | /* Make sure sufficient number of registers have been allocated */ pParse->nMem = MAX( pParse->nMem, cnt+8 ); /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, (u8)i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_Move, 2, 4); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); sqlite3VdbeJumpHere(v, addr); |
︙ | ︙ | |||
98148 98149 98150 98151 98152 98153 98154 98155 98156 98157 98158 98159 98160 98161 98162 98163 98164 | int loopTop; int iDataCur, iIdxCur; int r1 = -1; if( pTab->pIndex==0 ) continue; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3ExprCacheClear(pParse); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 1, 0, &iDataCur, &iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); | > | | | | | | > | | 98690 98691 98692 98693 98694 98695 98696 98697 98698 98699 98700 98701 98702 98703 98704 98705 98706 98707 98708 98709 98710 98711 98712 98713 98714 98715 98716 98717 98718 98719 98720 98721 98722 98723 98724 98725 98726 98727 98728 98729 98730 98731 98732 98733 98734 98735 98736 98737 98738 98739 98740 98741 98742 98743 98744 98745 98746 98747 98748 98749 98750 98751 98752 98753 98754 98755 98756 98757 98758 98759 98760 98761 98762 | int loopTop; int iDataCur, iIdxCur; int r1 = -1; if( pTab->pIndex==0 ) continue; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3ExprCacheClear(pParse); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 1, 0, &iDataCur, &iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2, jmp3, jmp4; if( pPk==pIdx ) continue; r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, pPrior, r1); pPrior = pIdx; sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, 0, r1, pIdx->nColumn); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, " missing from index ", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); sqlite3VdbeJumpHere(v, jmp4); sqlite3VdbeJumpHere(v, jmp2); sqlite3VdbeResolveLabel(v, jmp3); } sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); sqlite3VdbeJumpHere(v, loopTop-1); #ifndef SQLITE_OMIT_BTREECOUNT sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, "wrong # of entries in index ", P4_STATIC); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( pPk==pIdx ) continue; addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); } #endif /* SQLITE_OMIT_BTREECOUNT */ } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); sqlite3VdbeChangeP2(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr+1); sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); } break; #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
︙ | ︙ | |||
98342 98343 98344 98345 98346 98347 98348 | if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_Integer, 0, 1, 0}, /* 1 */ { OP_SetCookie, 0, 0, 1}, /* 2 */ }; | | | | 98886 98887 98888 98889 98890 98891 98892 98893 98894 98895 98896 98897 98898 98899 98900 98901 98902 98903 98904 98905 98906 98907 98908 98909 98910 98911 98912 | if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_Integer, 0, 1, 0}, /* 1 */ { OP_SetCookie, 0, 0, 1}, /* 2 */ }; int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight)); sqlite3VdbeChangeP1(v, addr+2, iDb); sqlite3VdbeChangeP2(v, addr+2, iCookie); }else{ /* Read the specified cookie value */ static const VdbeOpList readCookie[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, 0}, /* 1 */ { OP_ResultRow, 1, 1, 0} }; int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie, 0); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, iDb); sqlite3VdbeChangeP3(v, addr+1, iCookie); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); } } |
︙ | ︙ | |||
99560 99561 99562 99563 99564 99565 99566 99567 99568 99569 99570 99571 99572 99573 | */ SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){ if( p ){ clearSelect(db, p); sqlite3DbFree(db, p); } } /* ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER | > > > > > > > > | 100104 100105 100106 100107 100108 100109 100110 100111 100112 100113 100114 100115 100116 100117 100118 100119 100120 100121 100122 100123 100124 100125 | */ SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){ if( p ){ clearSelect(db, p); sqlite3DbFree(db, p); } } /* ** Return a pointer to the right-most SELECT statement in a compound. */ static Select *findRightmost(Select *p){ while( p->pNext ) p = p->pNext; return p; } /* ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER |
︙ | ︙ | |||
99899 99900 99901 99902 99903 99904 99905 | int addr1, addr2; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } | | | | 100451 100452 100453 100454 100455 100456 100457 100458 100459 100460 100461 100462 100463 100464 100465 100466 100467 100468 100469 100470 100471 100472 100473 100474 100475 100476 100477 100478 100479 100480 100481 100482 100483 100484 100485 100486 | int addr1, addr2; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); addr2 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); sqlite3VdbeJumpHere(v, addr2); } } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 && iContinue!=0 ){ int addr; sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1); addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); VdbeComment((v, "skip OFFSET records")); sqlite3VdbeJumpHere(v, addr); } } /* |
︙ | ︙ | |||
99948 99949 99950 99951 99952 99953 99954 | int iMem /* First element */ ){ Vdbe *v; int r1; v = pParse->pVdbe; r1 = sqlite3GetTempReg(pParse); | | | 100500 100501 100502 100503 100504 100505 100506 100507 100508 100509 100510 100511 100512 100513 100514 | int iMem /* First element */ ){ Vdbe *v; int r1; v = pParse->pVdbe; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); sqlite3ReleaseTempReg(pParse, r1); } #ifndef SQLITE_OMIT_SUBQUERY /* |
︙ | ︙ | |||
100029 100030 100031 100032 100033 100034 100035 100036 100037 | if( pOrderBy==0 && !hasDistinct ){ codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = pEList->nExpr; if( pDest->iSdst==0 ){ pDest->iSdst = pParse->nMem+1; | > | > > > > > > < < > | | 100581 100582 100583 100584 100585 100586 100587 100588 100589 100590 100591 100592 100593 100594 100595 100596 100597 100598 100599 100600 100601 100602 100603 100604 100605 100606 100607 100608 100609 100610 100611 100612 100613 100614 100615 100616 100617 100618 100619 | if( pOrderBy==0 && !hasDistinct ){ codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = pEList->nExpr; if( pDest->iSdst==0 ){ pDest->iSdst = pParse->nMem+1; pParse->nMem += nResultCol; }else if( pDest->iSdst+nResultCol > pParse->nMem ){ /* This is an error condition that can result, for example, when a SELECT ** on the right-hand side of an INSERT contains more result columns than ** there are columns in the table on the left. The error will be caught ** and reported later. But we need to make sure enough memory is allocated ** to avoid other spurious errors in the meantime. */ pParse->nMem += nResultCol; } pDest->nSdst = nResultCol; regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; i<nResultCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); VdbeComment((v, "%s", pEList->a[i].zName)); } }else if( eDest!=SRT_Exists ){ /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ sqlite3ExprCodeExprList(pParse, pEList, regResult, (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ if( hasDistinct ){ |
︙ | ︙ | |||
100082 100083 100084 100085 100086 100087 100088 100089 100090 | pOp->p2 = regPrev; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; i<nResultCol; i++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); if( i<nResultCol-1 ){ sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); }else{ sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); | > > | | 100640 100641 100642 100643 100644 100645 100646 100647 100648 100649 100650 100651 100652 100653 100654 100655 100656 100657 100658 | pOp->p2 = regPrev; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; i<nResultCol; i++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); if( i<nResultCol-1 ){ sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); VdbeCoverage(v); } sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); } assert( sqlite3VdbeCurrentAddr(v)==iJump ); sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); break; } |
︙ | ︙ | |||
100150 100151 100152 100153 100154 100155 100156 | if( eDest==SRT_DistTable ){ /* If the destination is DistTable, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; | | | 100710 100711 100712 100713 100714 100715 100716 100717 100718 100719 100720 100721 100722 100723 100724 | if( eDest==SRT_DistTable ){ /* If the destination is DistTable, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); assert( pOrderBy==0 ); } #endif if( pOrderBy ){ pushOntoSorter(pParse, pOrderBy, p, r1); }else{ |
︙ | ︙ | |||
100217 100218 100219 100220 100221 100222 100223 | sqlite3ExprCodeMove(pParse, regResult, iParm, 1); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | < < < < | | | 100777 100778 100779 100780 100781 100782 100783 100784 100785 100786 100787 100788 100789 100790 100791 100792 | sqlite3ExprCodeMove(pParse, regResult, iParm, 1); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ case SRT_Coroutine: /* Send data to a co-routine */ case SRT_Output: { /* Return the results */ testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); if( pOrderBy ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); pushOntoSorter(pParse, pOrderBy, p, r1); sqlite3ReleaseTempReg(pParse, r1); |
︙ | ︙ | |||
100258 100259 100260 100261 100262 100263 100264 | ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; | < | < | > > > > > | 100814 100815 100816 100817 100818 100819 100820 100821 100822 100823 100824 100825 100826 100827 100828 100829 100830 100831 100832 100833 100834 100835 100836 100837 | ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; if( eDest==SRT_DistQueue ){ /* If the destination is DistQueue, then cursor (iParm+1) is open ** on a second ephemeral index that holds all values every previously ** added to the queue. */ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, regResult, nResultCol); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); if( eDest==SRT_DistQueue ){ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } for(i=0; i<nKey; i++){ sqlite3VdbeAddOp2(v, OP_SCopy, regResult + pSO->a[i].u.x.iOrderByCol - 1, r2+i); |
︙ | ︙ | |||
100303 100304 100305 100306 100307 100308 100309 | } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pOrderBy==0 && p->iLimit ){ | | | 100862 100863 100864 100865 100866 100867 100868 100869 100870 100871 100872 100873 100874 100875 100876 | } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pOrderBy==0 && p->iLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); } } /* ** Allocate a KeyInfo object sufficient for an index of N key columns and ** X extra columns. */ |
︙ | ︙ | |||
100522 100523 100524 100525 100526 100527 100528 100529 100530 100531 100532 100533 | regRowid = sqlite3GetTempReg(pParse); } if( p->selFlags & SF_UseSorter ){ int regSortOut = ++pParse->nMem; int ptab2 = pParse->nTab++; sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); }else{ | > | | 101081 101082 101083 101084 101085 101086 101087 101088 101089 101090 101091 101092 101093 101094 101095 101096 101097 101098 101099 101100 101101 | regRowid = sqlite3GetTempReg(pParse); } if( p->selFlags & SF_UseSorter ){ int regSortOut = ++pParse->nMem; int ptab2 = pParse->nTab++; sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); } switch( eDest ){ case SRT_Table: case SRT_EphemTab: { testcase( eDest==SRT_Table ); |
︙ | ︙ | |||
100585 100586 100587 100588 100589 100590 100591 | sqlite3ReleaseTempReg(pParse, regRow); sqlite3ReleaseTempReg(pParse, regRowid); /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( p->selFlags & SF_UseSorter ){ | | | | 101145 101146 101147 101148 101149 101150 101151 101152 101153 101154 101155 101156 101157 101158 101159 101160 101161 | sqlite3ReleaseTempReg(pParse, regRow); sqlite3ReleaseTempReg(pParse, regRowid); /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( p->selFlags & SF_UseSorter ){ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrBreak); if( eDest==SRT_Output || eDest==SRT_Coroutine ){ sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); } } |
︙ | ︙ | |||
100958 100959 100960 100961 100962 100963 100964 | */ nName = sqlite3Strlen30(zName); for(j=cnt=0; j<i; j++){ if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ char *zNewName; int k; for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} | | | 101518 101519 101520 101521 101522 101523 101524 101525 101526 101527 101528 101529 101530 101531 101532 | */ nName = sqlite3Strlen30(zName); for(j=cnt=0; j<i; j++){ if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ char *zNewName; int k; for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} if( k>=0 && zName[k]==':' ) nName = k; zName[nName] = 0; zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); sqlite3DbFree(db, zName); zName = zNewName; j = -1; if( zName==0 ) break; } |
︙ | ︙ | |||
101071 101072 101073 101074 101075 101076 101077 | ** Get a VDBE for the given parser context. Create a new one if necessary. ** If an error occurs, return NULL and leave a message in pParse. */ SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){ Vdbe *v = pParse->pVdbe; if( v==0 ){ v = pParse->pVdbe = sqlite3VdbeCreate(pParse); | < < | > > > > | | 101631 101632 101633 101634 101635 101636 101637 101638 101639 101640 101641 101642 101643 101644 101645 101646 101647 101648 101649 101650 101651 | ** Get a VDBE for the given parser context. Create a new one if necessary. ** If an error occurs, return NULL and leave a message in pParse. */ SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){ Vdbe *v = pParse->pVdbe; if( v==0 ){ v = pParse->pVdbe = sqlite3VdbeCreate(pParse); if( v ) sqlite3VdbeAddOp0(v, OP_Init); if( pParse->pToplevel==0 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) ){ pParse->okConstFactor = 1; } } return v; } /* ** Compute the iLimit and iOffset fields of the SELECT based on the |
︙ | ︙ | |||
101133 101134 101135 101136 101137 101138 101139 | if( n==0 ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); }else if( n>=0 && p->nSelectRow>(u64)n ){ p->nSelectRow = n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); | | | | | | | 101695 101696 101697 101698 101699 101700 101701 101702 101703 101704 101705 101706 101707 101708 101709 101710 101711 101712 101713 101714 101715 101716 101717 101718 101719 101720 101721 101722 101723 101724 | if( n==0 ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); }else if( n>=0 && p->nSelectRow>(u64)n ){ p->nSelectRow = n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); } if( p->pOffset ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, p->pOffset, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); VdbeComment((v, "LIMIT+OFFSET")); addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); sqlite3VdbeJumpHere(v, addr1); } } } #ifndef SQLITE_OMIT_COMPOUND_SELECT |
︙ | ︙ | |||
101331 101332 101333 101334 101335 101336 101337 101338 101339 101340 101341 | p->selFlags |= SF_UsesEphemeral; } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Store the results of the setup-query in Queue. */ rc = sqlite3Select(pParse, pSetup, &destQueue); if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ | > > | > | > > | 101893 101894 101895 101896 101897 101898 101899 101900 101901 101902 101903 101904 101905 101906 101907 101908 101909 101910 101911 101912 101913 101914 101915 101916 101917 101918 101919 101920 101921 101922 101923 101924 101925 101926 101927 101928 101929 101930 101931 101932 | p->selFlags |= SF_UsesEphemeral; } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Store the results of the setup-query in Queue. */ pSetup->pNext = 0; rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); /* Transfer the next row in Queue over to Current */ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ if( pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); } sqlite3VdbeAddOp1(v, OP_Delete, iQueue); /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(v); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, p->pEList, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrCont); /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ p->pPrior = 0; sqlite3Select(pParse, p, &destQueue); |
︙ | ︙ | |||
101436 101437 101438 101439 101440 101441 101442 | /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ assert( p && p->pPrior ); /* Calling function guarantees this much */ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); db = pParse->db; pPrior = p->pPrior; | < < | 102003 102004 102005 102006 102007 102008 102009 102010 102011 102012 102013 102014 102015 102016 | /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ assert( p && p->pPrior ); /* Calling function guarantees this much */ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); db = pParse->db; pPrior = p->pPrior; dest = *pDest; if( pPrior->pOrderBy ){ sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", selectOpName(p->op)); rc = 1; goto multi_select_end; } |
︙ | ︙ | |||
101513 101514 101515 101516 101517 101518 101519 | if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ | | | 102078 102079 102080 102081 102082 102083 102084 102085 102086 102087 102088 102089 102090 102091 102092 | if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); } explainSetInteger(iSub2, pParse->iNextSelectId); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; |
︙ | ︙ | |||
101545 101546 101547 101548 101549 101550 101551 | Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ int addr; SelectDest uniondest; testcase( p->op==TK_EXCEPT ); testcase( p->op==TK_UNION ); priorOp = SRT_Union; | | < < | | 102110 102111 102112 102113 102114 102115 102116 102117 102118 102119 102120 102121 102122 102123 102124 102125 102126 102127 102128 102129 102130 102131 102132 102133 102134 102135 102136 102137 102138 102139 102140 | Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ int addr; SelectDest uniondest; testcase( p->op==TK_EXCEPT ); testcase( p->op==TK_UNION ); priorOp = SRT_Union; if( dest.eDest==priorOp ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ assert( p->pOffset==0 ); /* Not allowed on leftward elements */ unionTab = dest.iSDParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); } /* Code the SELECT statements to our left */ assert( !pPrior->pOrderBy ); sqlite3SelectDestInit(&uniondest, priorOp, unionTab); |
︙ | ︙ | |||
101622 101623 101624 101625 101626 101627 101628 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); | | | | 102185 102186 102187 102188 102189 102190 102191 102192 102193 102194 102195 102196 102197 102198 102199 102200 102201 102202 102203 102204 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, p->pEList, unionTab, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } default: assert( p->op==TK_INTERSECT ); { int tab1, tab2; |
︙ | ︙ | |||
101652 101653 101654 101655 101656 101657 101658 | tab1 = pParse->nTab++; tab2 = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; | | | 102215 102216 102217 102218 102219 102220 102221 102222 102223 102224 102225 102226 102227 102228 102229 | tab1 = pParse->nTab++; tab2 = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); /* Code the SELECTs to our left into temporary table "tab1". */ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); explainSetInteger(iSub1, pParse->iNextSelectId); rc = sqlite3Select(pParse, pPrior, &intersectdest); |
︙ | ︙ | |||
101697 101698 101699 101700 101701 101702 101703 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); | | | | | 102260 102261 102262 102263 102264 102265 102266 102267 102268 102269 102270 102271 102272 102273 102274 102275 102276 102277 102278 102279 102280 102281 102282 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, p->pEList, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } |
︙ | ︙ | |||
101731 101732 101733 101734 101735 101736 101737 | if( p->selFlags & SF_UsesEphemeral ){ int i; /* Loop counter */ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ | | | 102294 102295 102296 102297 102298 102299 102300 102301 102302 102303 102304 102305 102306 102307 102308 | if( p->selFlags & SF_UsesEphemeral ){ int i; /* Loop counter */ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ assert( p->pNext==0 ); nCol = p->pEList->nExpr; pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); if( !pKeyInfo ){ rc = SQLITE_NOMEM; goto multi_select_end; } for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
︙ | ︙ | |||
101812 101813 101814 101815 101816 101817 101818 | addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(v); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int j1, j2; | | | | 102375 102376 102377 102378 102379 102380 102381 102382 102383 102384 102385 102386 102387 102388 102389 102390 102391 102392 | addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(v); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int j1, j2; j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); } if( pParse->db->mallocFailed ) return 0; /* Suppress the first OFFSET entries if there is an OFFSET clause |
︙ | ︙ | |||
101916 101917 101918 101919 101920 101921 101922 | break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ | | | 102479 102480 102481 102482 102483 102484 102485 102486 102487 102488 102489 102490 102491 102492 102493 | break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); } /* Generate the subroutine return */ sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
︙ | ︙ | |||
102024 102025 102026 102027 102028 102029 102030 | ){ int i, j; /* Loop counters */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest destA; /* Destination for coroutine A */ SelectDest destB; /* Destination for coroutine B */ int regAddrA; /* Address register for select-A coroutine */ | < < > | 102587 102588 102589 102590 102591 102592 102593 102594 102595 102596 102597 102598 102599 102600 102601 102602 102603 102604 102605 102606 102607 102608 102609 | ){ int i, j; /* Loop counters */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest destA; /* Destination for coroutine A */ SelectDest destB; /* Destination for coroutine B */ int regAddrA; /* Address register for select-A coroutine */ int regAddrB; /* Address register for select-B coroutine */ int addrSelectA; /* Address of the select-A coroutine */ int addrSelectB; /* Address of the select-B coroutine */ int regOutA; /* Address register for the output-A subroutine */ int regOutB; /* Address register for the output-B subroutine */ int addrOutA; /* Address of the output-A subroutine */ int addrOutB = 0; /* Address of the output-B subroutine */ int addrEofA; /* Address of the select-A-exhausted subroutine */ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ int addrEofB; /* Address of the select-B-exhausted subroutine */ int addrAltB; /* Address of the A<B subroutine */ int addrAeqB; /* Address of the A==B subroutine */ int addrAgtB; /* Address of the A>B subroutine */ int regLimitA; /* Limit register for select-A */ int regLimitB; /* Limit register for select-A */ int regPrev; /* A range of registers to hold previous output */ |
︙ | ︙ | |||
102148 102149 102150 102151 102152 102153 102154 102155 102156 102157 102158 102159 102160 102161 | } } } /* Separate the left and the right query from one another */ p->pPrior = 0; sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); if( pPrior->pPrior==0 ){ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); } /* Compute the limit registers */ computeLimitRegisters(pParse, p, labelEnd); | > | 102710 102711 102712 102713 102714 102715 102716 102717 102718 102719 102720 102721 102722 102723 102724 | } } } /* Separate the left and the right query from one another */ p->pPrior = 0; pPrior->pNext = 0; sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); if( pPrior->pPrior==0 ){ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); } /* Compute the limit registers */ computeLimitRegisters(pParse, p, labelEnd); |
︙ | ︙ | |||
102170 102171 102172 102173 102174 102175 102176 | } sqlite3ExprDelete(db, p->pLimit); p->pLimit = 0; sqlite3ExprDelete(db, p->pOffset); p->pOffset = 0; regAddrA = ++pParse->nMem; | < < < < < < < < < > > | < | | | > | < | < | 102733 102734 102735 102736 102737 102738 102739 102740 102741 102742 102743 102744 102745 102746 102747 102748 102749 102750 102751 102752 102753 102754 102755 102756 102757 102758 102759 102760 102761 102762 102763 102764 102765 102766 102767 102768 102769 102770 102771 102772 102773 102774 102775 102776 102777 102778 102779 | } sqlite3ExprDelete(db, p->pLimit); p->pLimit = 0; sqlite3ExprDelete(db, p->pOffset); p->pOffset = 0; regAddrA = ++pParse->nMem; regAddrB = ++pParse->nMem; regOutA = ++pParse->nMem; regOutB = ++pParse->nMem; sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); /* Generate a coroutine to evaluate the SELECT statement to the ** left of the compound operator - the "A" select. */ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); VdbeComment((v, "left SELECT")); pPrior->iLimit = regLimitA; explainSetInteger(iSub1, pParse->iNextSelectId); sqlite3Select(pParse, pPrior, &destA); sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); sqlite3VdbeJumpHere(v, j1); /* Generate a coroutine to evaluate the SELECT statement on ** the right - the "B" select */ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); VdbeComment((v, "right SELECT")); savedLimit = p->iLimit; savedOffset = p->iOffset; p->iLimit = regLimitB; p->iOffset = 0; explainSetInteger(iSub2, pParse->iNextSelectId); sqlite3Select(pParse, p, &destB); p->iLimit = savedLimit; p->iOffset = savedOffset; sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); /* Generate a subroutine that outputs the current row of the A ** select as the next output row of the compound select. */ VdbeNoopComment((v, "Output routine for A")); addrOutA = generateOutputSubroutine(pParse, p, &destA, pDest, regOutA, |
︙ | ︙ | |||
102235 102236 102237 102238 102239 102240 102241 | regPrev, pKeyDup, labelEnd); } sqlite3KeyInfoUnref(pKeyDup); /* Generate a subroutine to run when the results from select A ** are exhausted and only data in select B remains. */ | < | > | | | < | | < | < | < | | | < < < < | > | 102789 102790 102791 102792 102793 102794 102795 102796 102797 102798 102799 102800 102801 102802 102803 102804 102805 102806 102807 102808 102809 102810 102811 102812 102813 102814 102815 102816 102817 102818 102819 102820 102821 102822 102823 102824 102825 102826 102827 102828 102829 102830 102831 102832 102833 102834 102835 102836 102837 102838 102839 102840 102841 102842 102843 102844 102845 102846 102847 102848 102849 102850 102851 102852 102853 102854 102855 102856 102857 102858 102859 102860 102861 102862 102863 102864 102865 102866 102867 102868 102869 102870 102871 102872 102873 102874 102875 102876 102877 102878 102879 102880 102881 102882 102883 102884 102885 102886 102887 102888 102889 102890 102891 | regPrev, pKeyDup, labelEnd); } sqlite3KeyInfoUnref(pKeyDup); /* Generate a subroutine to run when the results from select A ** are exhausted and only data in select B remains. */ if( op==TK_EXCEPT || op==TK_INTERSECT ){ addrEofA_noB = addrEofA = labelEnd; }else{ VdbeNoopComment((v, "eof-A subroutine")); addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); p->nSelectRow += pPrior->nSelectRow; } /* Generate a subroutine to run when the results from select B ** are exhausted and only data in select A remains. */ if( op==TK_INTERSECT ){ addrEofB = addrEofA; if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; }else{ VdbeNoopComment((v, "eof-B subroutine")); addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); } /* Generate code to handle the case of A<B */ VdbeNoopComment((v, "A-lt-B subroutine")); addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); /* Generate code to handle the case of A==B */ if( op==TK_ALL ){ addrAeqB = addrAltB; }else if( op==TK_INTERSECT ){ addrAeqB = addrAltB; addrAltB++; }else{ VdbeNoopComment((v, "A-eq-B subroutine")); addrAeqB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); } /* Generate code to handle the case of A>B */ VdbeNoopComment((v, "A-gt-B subroutine")); addrAgtB = sqlite3VdbeCurrentAddr(v); if( op==TK_ALL || op==TK_UNION ){ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); } sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); /* This code runs once to initialize everything. */ sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); /* Jump to the this point in order to terminate the query. */ sqlite3VdbeResolveLabel(v, labelEnd); /* Set the number of output columns */ if( pDest->eDest==SRT_Output ){ Select *pFirst = pPrior; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } /* Reassembly the compound query so that it will be freed correctly ** by the calling function */ if( p->pPrior ){ sqlite3SelectDelete(db, p->pPrior); } p->pPrior = pPrior; pPrior->pNext = p; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ explainComposite(pParse, p->op, iSub1, iSub2, 0); return SQLITE_OK; } #endif |
︙ | ︙ | |||
102596 102597 102598 102599 102600 102601 102602 | /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pOffset ) return 0; /* Restriction (14) */ | | | 103143 103144 103145 103146 103147 103148 103149 103150 103151 103152 103153 103154 103155 103156 103157 | /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pOffset ) return 0; /* Restriction (14) */ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ return 0; /* Restrictions (8)(9) */ } |
︙ | ︙ | |||
102747 102748 102749 102750 102751 102752 102753 | p->pOffset = 0; pNew = sqlite3SelectDup(db, p, 0); p->pOffset = pOffset; p->pLimit = pLimit; p->pOrderBy = pOrderBy; p->pSrc = pSrc; p->op = TK_ALL; | < | > | < | > | 103294 103295 103296 103297 103298 103299 103300 103301 103302 103303 103304 103305 103306 103307 103308 103309 103310 103311 103312 103313 103314 103315 | p->pOffset = 0; pNew = sqlite3SelectDup(db, p, 0); p->pOffset = pOffset; p->pLimit = pLimit; p->pOrderBy = pOrderBy; p->pSrc = pSrc; p->op = TK_ALL; if( pNew==0 ){ p->pPrior = pPrior; }else{ pNew->pPrior = pPrior; if( pPrior ) pPrior->pNext = pNew; pNew->pNext = p; p->pPrior = pNew; } if( db->mallocFailed ) return 1; } /* Begin flattening the iFrom-th entry of the FROM clause ** in the outer query. */ pSub = pSub1 = pSubitem->pSelect; |
︙ | ︙ | |||
103093 103094 103095 103096 103097 103098 103099 103100 103101 103102 103103 103104 103105 103106 | p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; pNew->pLimit = 0; pNew->pOffset = 0; return WRC_Continue; } #ifndef SQLITE_OMIT_CTE /* | > > > > | 103640 103641 103642 103643 103644 103645 103646 103647 103648 103649 103650 103651 103652 103653 103654 103655 103656 103657 | p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; p->pNext = 0; p->selFlags &= ~SF_Compound; assert( pNew->pPrior!=0 ); pNew->pPrior->pNext = pNew; pNew->pLimit = 0; pNew->pOffset = 0; return WRC_Continue; } #ifndef SQLITE_OMIT_CTE /* |
︙ | ︙ | |||
103280 103281 103282 103283 103284 103285 103286 | ** ** This function is used as the xSelectCallback2() callback by ** sqlite3SelectExpand() when walking a SELECT tree to resolve table ** names and other FROM clause elements. */ static void selectPopWith(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; | > | | | | 103831 103832 103833 103834 103835 103836 103837 103838 103839 103840 103841 103842 103843 103844 103845 103846 103847 103848 | ** ** This function is used as the xSelectCallback2() callback by ** sqlite3SelectExpand() when walking a SELECT tree to resolve table ** names and other FROM clause elements. */ static void selectPopWith(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; With *pWith = findRightmost(p)->pWith; if( pWith!=0 ){ assert( pParse->pWith==pWith ); pParse->pWith = pWith->pOuter; } } #else #define selectPopWith 0 #endif /* |
︙ | ︙ | |||
103332 103333 103334 103335 103336 103337 103338 | return WRC_Abort; } if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ return WRC_Prune; } pTabList = p->pSrc; pEList = p->pEList; | | | 103884 103885 103886 103887 103888 103889 103890 103891 103892 103893 103894 103895 103896 103897 103898 | return WRC_Abort; } if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ return WRC_Prune; } pTabList = p->pSrc; pEList = p->pEList; sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); /* Make sure cursor numbers have been assigned to all entries in ** the FROM clause of the SELECT statement. */ sqlite3SrcListAssignCursors(pParse, pTabList); /* Look up every table named in the FROM clause of the select. If |
︙ | ︙ | |||
103845 103846 103847 103848 103849 103850 103851 | ** may have been used, invalidating the underlying buffer holding the ** text or blob value. See ticket [883034dcb5]. ** ** Another solution would be to change the OP_SCopy used to copy cached ** values to an OP_Copy. */ if( regHit ){ | | | 104397 104398 104399 104400 104401 104402 104403 104404 104405 104406 104407 104408 104409 104410 104411 | ** may have been used, invalidating the underlying buffer holding the ** text or blob value. See ticket [883034dcb5]. ** ** Another solution would be to change the OP_SCopy used to copy cached ** values to an OP_Copy. */ if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } sqlite3ExprCacheClear(pParse); for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } pAggInfo->directMode = 0; sqlite3ExprCacheClear(pParse); |
︙ | ︙ | |||
104004 104005 104006 104007 104008 104009 104010 | if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ /* This subquery can be absorbed into its parent. */ if( isAggSub ){ isAgg = 1; p->selFlags |= SF_Aggregate; } i = -1; | | | | < < < < < < < < < < < | < < | < < | < < | < < | > > > | 104556 104557 104558 104559 104560 104561 104562 104563 104564 104565 104566 104567 104568 104569 104570 104571 104572 104573 104574 104575 104576 104577 104578 104579 104580 104581 104582 104583 104584 104585 104586 104587 104588 104589 104590 104591 104592 104593 104594 104595 104596 104597 104598 104599 104600 104601 104602 104603 104604 104605 104606 104607 104608 104609 104610 | if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ /* This subquery can be absorbed into its parent. */ if( isAggSub ){ isAgg = 1; p->selFlags |= SF_Aggregate; } i = -1; }else if( pTabList->nSrc==1 && OptimizationEnabled(db, SQLITE_SubqCoroutine) ){ /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%s", pItem->pTab->zName)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; pItem->viaCoroutine = 1; pItem->regResult = dest.iSdst; sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else{ /* Generate a subroutine that will fill an ephemeral table with ** the content of this subquery. pItem->addrFillSub will point ** to the address of the generated subroutine. pItem->regReturn ** is a register allocated to hold the subroutine return address */ int topAddr; int onceAddr = 0; int retAddr; assert( pItem->addrFillSub==0 ); pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); pItem->addrFillSub = topAddr+1; if( pItem->isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); }else{ VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); |
︙ | ︙ | |||
104092 104093 104094 104095 104096 104097 104098 | pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #ifndef SQLITE_OMIT_COMPOUND_SELECT /* If there is are a sequence of queries, do the earlier ones first. */ if( p->pPrior ){ | < < < < < < < < < < < < < < < | 104628 104629 104630 104631 104632 104633 104634 104635 104636 104637 104638 104639 104640 104641 | pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #ifndef SQLITE_OMIT_COMPOUND_SELECT /* If there is are a sequence of queries, do the earlier ones first. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); explainSetInteger(pParse->iSelectId, iRestoreSelectId); return rc; } #endif /* If there is both a GROUP BY and an ORDER BY clause and they are |
︙ | ︙ | |||
104410 104411 104412 104413 104414 104415 104416 | sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); sqlite3WhereEnd(pWInfo); sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); | | | 104931 104932 104933 104934 104935 104936 104937 104938 104939 104940 104941 104942 104943 104944 104945 | sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); sqlite3WhereEnd(pWInfo); sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); sAggInfo.useSortingIdx = 1; sqlite3ExprCacheClear(pParse); } /* Evaluate the current GROUP BY terms and store in b0, b1, b2... ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms |
︙ | ︙ | |||
104437 104438 104439 104440 104441 104442 104443 | sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); j1 = sqlite3VdbeCurrentAddr(v); | | | > | 104958 104959 104960 104961 104962 104963 104964 104965 104966 104967 104968 104969 104970 104971 104972 104973 104974 104975 104976 104977 104978 104979 104980 104981 104982 104983 104984 104985 104986 104987 104988 104989 104990 104991 104992 104993 104994 104995 104996 104997 104998 104999 105000 105001 105002 105003 | sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); j1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); /* Generate code that runs whenever the GROUP BY changes. ** Changes in the GROUP BY are detected by the previous code ** block. If there were no changes, this block is skipped. ** ** This code copies current group by terms in b0,b1,b2,... ** over to a0,a1,a2. It then calls the output subroutine ** and resets the aggregate accumulator registers in preparation ** for the next GROUP BY batch. */ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output one row")); sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); VdbeComment((v, "check abort flag")); sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, j1); updateAccumulator(pParse, &sAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); VdbeCoverage(v); }else{ sqlite3WhereEnd(pWInfo); sqlite3VdbeChangeToNoop(v, addrSortingIdx); } /* Output the final row of result */ |
︙ | ︙ | |||
104495 104496 104497 104498 104499 104500 104501 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); | | | 105017 105018 105019 105020 105021 105022 105023 105024 105025 105026 105027 105028 105029 105030 105031 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, &sAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); |
︙ | ︙ | |||
104768 104769 104770 104771 104772 104773 104774 | } } SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ if( p==0 ){ sqlite3ExplainPrintf(pVdbe, "(null-select)"); return; } | < < < < | 105290 105291 105292 105293 105294 105295 105296 105297 105298 105299 105300 105301 105302 105303 | } } SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ if( p==0 ){ sqlite3ExplainPrintf(pVdbe, "(null-select)"); return; } sqlite3ExplainPush(pVdbe); while( p ){ explainOneSelect(pVdbe, p); p = p->pNext; if( p==0 ) break; sqlite3ExplainNL(pVdbe); sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); |
︙ | ︙ | |||
105556 105557 105558 105559 105560 105561 105562 105563 105564 105565 105566 105567 105568 105569 105570 105571 105572 105573 105574 105575 105576 | #endif /* Generate code to destroy the database record of the trigger. */ assert( pTable!=0 ); if( (v = sqlite3GetVdbe(pParse))!=0 ){ int base; static const VdbeOpList dropTrigger[] = { { OP_Rewind, 0, ADDR(9), 0}, { OP_String8, 0, 1, 0}, /* 1 */ { OP_Column, 0, 1, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_String8, 0, 1, 0}, /* 4: "trigger" */ { OP_Column, 0, 0, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); | > | | 106074 106075 106076 106077 106078 106079 106080 106081 106082 106083 106084 106085 106086 106087 106088 106089 106090 106091 106092 106093 106094 106095 106096 106097 106098 106099 106100 106101 106102 106103 | #endif /* Generate code to destroy the database record of the trigger. */ assert( pTable!=0 ); if( (v = sqlite3GetVdbe(pParse))!=0 ){ int base; static const int iLn = __LINE__+2; static const VdbeOpList dropTrigger[] = { { OP_Rewind, 0, ADDR(9), 0}, { OP_String8, 0, 1, 0}, /* 1 */ { OP_Column, 0, 1, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_String8, 0, 1, 0}, /* 4: "trigger" */ { OP_Column, 0, 0, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger, iLn); sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT); sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp2(v, OP_Close, 0, 0); sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); if( pParse->nMem<3 ){ pParse->nMem = 3; |
︙ | ︙ | |||
105716 105717 105718 105719 105720 105721 105722 | ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; | < < < < < < < | < | 106235 106236 106237 106238 106239 106240 106241 106242 106243 106244 106245 106246 106247 106248 106249 | ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; assert( pParse->okConstFactor==0 ); switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), |
︙ | ︙ | |||
106513 106514 106515 106516 106517 106518 106519 | } if( okOnePass ){ sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, | | | 107024 107025 107026 107027 107028 107029 107030 107031 107032 107033 107034 107035 107036 107037 107038 | } if( okOnePass ){ sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, sqlite3IndexAffinityStr(v, pPk), nPk); sqlite3VdbeAddOp2(v, OP_IdxInsert, iEph, regKey); } sqlite3WhereEnd(pWInfo); } /* Initialize the count of updated rows */ |
︙ | ︙ | |||
106557 106558 106559 106560 106561 106562 106563 106564 106565 106566 106567 106568 | } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); | > > | > > > | | 107068 107069 107070 107071 107072 107073 107074 107075 107076 107077 107078 107079 107080 107081 107082 107083 107084 107085 107086 107087 107088 107089 107090 107091 107092 107093 107094 107095 107096 107097 107098 107099 107100 107101 107102 107103 107104 107105 107106 107107 107108 | } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); VdbeCoverageNeverTaken(v); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverage(v); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); VdbeCoverage(v); }else{ labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak, regOldRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* If the record number will change, set register regNewRowid to ** contain the new value. If the record number is not being modified, ** then regNewRowid is the same register as regOldRowid, which is ** already populated. */ assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid ); if( chngRowid ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v); } /* Compute the old pre-UPDATE content of the row being changed, if that ** information is needed */ if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, |
︙ | ︙ | |||
106647 106648 106649 106650 106651 106652 106653 | } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ | < | > > | 107163 107164 107165 107166 107167 107168 107169 107170 107171 107172 107173 107174 107175 107176 107177 107178 107179 107180 107181 107182 107183 107184 107185 107186 107187 107188 107189 107190 107191 107192 | } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ sqlite3TableAffinity(v, pTab, regNew); sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue); /* The row-trigger may have deleted the row being updated. In this ** case, jump to the next row. No updates or AFTER triggers are ** required. This behavior - what happens when the row being updated ** is deleted or renamed by a BEFORE trigger - is left undefined in the ** documentation. */ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* If it did not delete it, the row-trigger may still have modified ** some of the columns of the row being updated. Load the values for ** all columns not modified by the update statement into their ** registers in case this has happened. */ |
︙ | ︙ | |||
106697 106698 106699 106700 106701 106702 106703 106704 106705 106706 106707 106708 106709 106710 | /* Delete the index entries associated with the current record. */ if( bReplace || chngKey ){ if( pPk ){ j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey); }else{ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid); } } sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx); /* If changing the record number, delete the old record. */ if( hasFK || chngKey || pPk!=0 ){ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0); } | > | 107214 107215 107216 107217 107218 107219 107220 107221 107222 107223 107224 107225 107226 107227 107228 | /* Delete the index entries associated with the current record. */ if( bReplace || chngKey ){ if( pPk ){ j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey); }else{ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid); } VdbeCoverageNeverTaken(v); } sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx); /* If changing the record number, delete the old record. */ if( hasFK || chngKey || pPk!=0 ){ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0); } |
︙ | ︙ | |||
106740 106741 106742 106743 106744 106745 106746 | /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( okOnePass ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( pPk ){ sqlite3VdbeResolveLabel(v, labelContinue); | | | 107258 107259 107260 107261 107262 107263 107264 107265 107266 107267 107268 107269 107270 107271 107272 | /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( okOnePass ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( pPk ){ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelContinue); } sqlite3VdbeResolveLabel(v, labelBreak); /* Close all tables */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
︙ | ︙ | |||
106869 106870 106871 106872 106873 106874 106875 | */ sqlite3SelectDestInit(&dest, SRT_Table, ephemTab); sqlite3Select(pParse, pSelect, &dest); /* Generate code to scan the ephemeral table and call VUpdate. */ iReg = ++pParse->nMem; pParse->nMem += pTab->nCol+1; | | | | 107387 107388 107389 107390 107391 107392 107393 107394 107395 107396 107397 107398 107399 107400 107401 107402 107403 107404 107405 107406 107407 107408 107409 107410 107411 | */ sqlite3SelectDestInit(&dest, SRT_Table, ephemTab); sqlite3Select(pParse, pSelect, &dest); /* Generate code to scan the ephemeral table and call VUpdate. */ iReg = ++pParse->nMem; pParse->nMem += pTab->nCol+1; addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); /* Cleanup */ sqlite3SelectDelete(db, pSelect); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
︙ | ︙ | |||
108451 108452 108453 108454 108455 108456 108457 | int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ u8 iFrom; /* Which entry in the FROM clause */ | | | 108969 108970 108971 108972 108973 108974 108975 108976 108977 108978 108979 108980 108981 108982 108983 | int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to ends the loop */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ |
︙ | ︙ | |||
108838 108839 108840 108841 108842 108843 108844 108845 108846 108847 108848 108849 108850 108851 | #define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */ #define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */ #define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */ #define WHERE_ONEROW 0x00001000 /* Selects no more than one row */ #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */ /************** End of whereInt.h ********************************************/ /************** Continuing where we left off in where.c **********************/ /* ** Return the estimated number of output rows from a WHERE clause */ | > | 109356 109357 109358 109359 109360 109361 109362 109363 109364 109365 109366 109367 109368 109369 109370 | #define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */ #define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */ #define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */ #define WHERE_ONEROW 0x00001000 /* Selects no more than one row */ #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */ #define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/ /************** End of whereInt.h ********************************************/ /************** Continuing where we left off in where.c **********************/ /* ** Return the estimated number of output rows from a WHERE clause */ |
︙ | ︙ | |||
110424 110425 110426 110427 110428 110429 110430 | Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); | | | 110943 110944 110945 110946 110947 110948 110949 110950 110951 110952 110953 110954 110955 110956 110957 | Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; |
︙ | ︙ | |||
110531 110532 110533 110534 110535 110536 110537 | assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ | | | | 111050 111051 111052 111053 111054 111055 111056 111057 111058 111059 111060 111061 111062 111063 111064 111065 111066 111067 111068 111069 | assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); } |
︙ | ︙ | |||
110736 110737 110738 110739 110740 110741 110742 | #endif assert( pRec!=0 ); iCol = pRec->nField - 1; assert( pIdx->nSample>0 ); assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); do{ iTest = (iMin+i)/2; | | | | | | 111255 111256 111257 111258 111259 111260 111261 111262 111263 111264 111265 111266 111267 111268 111269 111270 111271 111272 111273 111274 111275 111276 111277 111278 111279 111280 111281 111282 111283 111284 111285 111286 111287 111288 111289 111290 111291 111292 111293 | #endif assert( pRec!=0 ); iCol = pRec->nField - 1; assert( pIdx->nSample>0 ); assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); do{ iTest = (iMin+i)/2; res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0); if( res<0 ){ iMin = iTest+1; }else{ i = iTest; } }while( res && iMin<i ); #ifdef SQLITE_DEBUG /* The following assert statements check that the binary search code ** above found the right answer. This block serves no purpose other ** than to invoke the asserts. */ if( res==0 ){ /* If (res==0) is true, then sample $i must be equal to pRec */ assert( i<pIdx->nSample ); assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0) || pParse->db->mallocFailed ); }else{ /* Otherwise, pRec must be smaller than sample $i and larger than ** sample ($i-1). */ assert( i==pIdx->nSample || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0 || pParse->db->mallocFailed ); assert( i==0 || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0 || pParse->db->mallocFailed ); } #endif /* ifdef SQLITE_DEBUG */ /* At this point, aSample[i] is the first sample that is greater than ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less ** than pVal. If aSample[i]==pVal, then res==0. |
︙ | ︙ | |||
111212 111213 111214 111215 111216 111217 111218 111219 111220 111221 111222 111223 111224 111225 111226 111227 111228 111229 111230 111231 111232 111233 111234 111235 111236 111237 | eType = sqlite3FindInIndex(pParse, pX, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; | > > | | 111731 111732 111733 111734 111735 111736 111737 111738 111739 111740 111741 111742 111743 111744 111745 111746 111747 111748 111749 111750 111751 111752 111753 111754 111755 111756 111757 111758 111759 111760 111761 111762 111763 111764 111765 111766 | eType = sqlite3FindInIndex(pParse, pX, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); VdbeCoverageIf(v, !bRev); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); }else{ pLevel->u.in.nIn = 0; } #endif } disableTerm(pLevel, pTerm); return iReg; |
︙ | ︙ | |||
111326 111327 111328 111329 111330 111331 111332 111333 111334 | if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); | > > | > > | 111847 111848 111849 111850 111851 111852 111853 111854 111855 111856 111857 111858 111859 111860 111861 111862 111863 111864 111865 111866 111867 111868 | if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); assert( pIdx->aiColumn[j]>=0 ); VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); } } |
︙ | ︙ | |||
111362 111363 111364 111365 111366 111367 111368 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ Expr *pRight = pTerm->pExpr->pRight; | > | > > | 111887 111888 111889 111890 111891 111892 111893 111894 111895 111896 111897 111898 111899 111900 111901 111902 111903 111904 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ Expr *pRight = pTerm->pExpr->pRight; if( sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); VdbeCoverage(v); } if( zAff ){ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ zAff[j] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ zAff[j] = SQLITE_AFF_NONE; } |
︙ | ︙ | |||
111608 111609 111610 111611 111612 111613 111614 | sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->viaCoroutine ){ int regYield = pTabItem->regReturn; | | | > | < | 112136 112137 112138 112139 112140 112141 112142 112143 112144 112145 112146 112147 112148 112149 112150 112151 112152 112153 | sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeCoverage(v); VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext ** to access the data. |
︙ | ︙ | |||
111643 111644 111645 111646 111647 111648 111649 111650 111651 111652 111653 111654 111655 111656 | } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; | > | 112171 112172 112173 112174 112175 112176 112177 112178 112179 112180 112181 112182 112183 112184 112185 | } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; |
︙ | ︙ | |||
111666 111667 111668 111669 111670 111671 111672 | ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); | < > > | > | 112195 112196 112197 112198 112199 112200 112201 112202 112203 112204 112205 112206 112207 112208 112209 112210 112211 112212 112213 112214 112215 112216 112217 112218 112219 112220 | ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); iReleaseReg = ++pParse->nMem; iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); VdbeCoverage(v); sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; }else if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 ){ |
︙ | ︙ | |||
111709 111710 111711 111712 111713 111714 111715 | Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { | | | | | > > > > > > | 112240 112241 112242 112243 112244 112245 112246 112247 112248 112249 112250 112251 112252 112253 112254 112255 112256 112257 112258 112259 112260 112261 112262 112263 112264 112265 112266 112267 112268 112269 112270 112271 112272 112273 112274 112275 112276 112277 112278 112279 112280 112281 | Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); VdbeCoverageIf(v, pX->op==TK_GT); VdbeCoverageIf(v, pX->op==TK_LE); VdbeCoverageIf(v, pX->op==TK_LT); VdbeCoverageIf(v, pX->op==TK_GE); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( (pEnd->wtFlags & TERM_VNULL)==0 ); testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
︙ | ︙ | |||
111754 111755 111756 111757 111758 111759 111760 | } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ | | > > > > | 112291 112292 112293 112294 112295 112296 112297 112298 112299 112300 112301 112302 112303 112304 112305 112306 112307 112308 112309 112310 112311 112312 | } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); VdbeCoverageIf(v, testOp==OP_Le); VdbeCoverageIf(v, testOp==OP_Lt); VdbeCoverageIf(v, testOp==OP_Ge); VdbeCoverageIf(v, testOp==OP_Gt); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLoop->wsFlags & WHERE_INDEXED ){ /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N |
︙ | ︙ | |||
111797 111798 111799 111800 111801 111802 111803 | ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ | | | | | | | | > < < > > | > > > > > > > > | > > | > | | > > | | | | | | < | > > | > > > > > > | > | | | < < < < | < < < < < < < < < < < < < < < < | | > > | 112338 112339 112340 112341 112342 112343 112344 112345 112346 112347 112348 112349 112350 112351 112352 112353 112354 112355 112356 112357 112358 112359 112360 112361 112362 112363 112364 112365 112366 112367 112368 112369 112370 112371 112372 112373 112374 112375 112376 112377 112378 112379 112380 112381 112382 112383 112384 112385 112386 112387 112388 112389 112390 112391 112392 112393 112394 112395 112396 112397 112398 112399 112400 112401 112402 112403 112404 112405 112406 112407 112408 112409 112410 112411 112412 112413 112414 112415 112416 112417 112418 112419 112420 112421 112422 112423 112424 112425 112426 112427 112428 112429 112430 112431 112432 112433 112434 112435 112436 112437 112438 112439 112440 112441 112442 112443 112444 112445 112446 112447 112448 112449 112450 112451 112452 112453 112454 112455 112456 112457 112458 112459 112460 112461 112462 112463 112464 112465 112466 112467 112468 112469 112470 112471 112472 112473 112474 112475 112476 112477 112478 112479 112480 112481 112482 112483 112484 112485 112486 112487 112488 112489 112490 112491 112492 112493 112494 112495 112496 112497 112498 112499 112500 112501 112502 112503 112504 112505 112506 112507 112508 112509 112510 112511 112512 112513 112514 112515 112516 112517 112518 112519 112520 112521 112522 112523 112524 112525 112526 112527 112528 112529 112530 112531 112532 112533 112534 112535 112536 112537 112538 112539 112540 112541 112542 112543 112544 112545 112546 112547 112548 112549 112550 112551 112552 112553 112554 112555 112556 112557 112558 112559 112560 112561 112562 112563 112564 112565 | ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ int regBase; /* Base register holding constraint values */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->u.btree.nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && (pWInfo->bOBSat!=0) && (pIdx->nKeyCol>nEq) ){ assert( pLoop->u.btree.nSkip==0 ); bSeekPastNull = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 && (pRangeEnd->wtFlags & TERM_VNULL)==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff ) cEndAff = zStartAff[nEq]; addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) || (bRev && pIdx->nKeyCol==nEq) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); SWAP(u8, bSeekPastNull, bStopAtNull); } testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zStartAff[nEq] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); }else if( bSeekPastNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) ){ codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); } nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); }else if( bStopAtNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; nConstraint++; } sqlite3DbFree(db, zStartAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ op = aEndOp[bRev*2 + endEq]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); } /* Seek the table cursor, if required */ disableTerm(pLevel, pRangeStart); disableTerm(pLevel, pRangeEnd); if( omitTable ){ /* pIdx is a covering index. No need to access the main table. */ }else if( HasRowid(pIdx->pTable) ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ }else{ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; j<pPk->nKeyCol; j++){ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); } sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; assert( (WHERE_UNQ_WANTED>>16)==1 ); pLevel->p3 = (pLoop->wsFlags>>16)&1; if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } }else |
︙ | ︙ | |||
112175 112176 112177 112178 112179 112180 112181 112182 112183 112184 112185 112186 112187 112188 | if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, regRowid, 0); sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr(v)+2, r, iSet); } sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. | > | 112720 112721 112722 112723 112724 112725 112726 112727 112728 112729 112730 112731 112732 112733 112734 | if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, regRowid, 0); sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr(v)+2, r, iSet); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. |
︙ | ︙ | |||
112243 112244 112245 112246 112247 112248 112249 112250 112251 112252 112253 112254 112255 112256 | /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ | > > | 112789 112790 112791 112792 112793 112794 112795 112796 112797 112798 112799 112800 112801 112802 112803 112804 | /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ |
︙ | ︙ | |||
112324 112325 112326 112327 112328 112329 112330 | continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } | < | 112872 112873 112874 112875 112876 112877 112878 112879 112880 112881 112882 112883 112884 112885 | continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } return pLevel->notReady; } #if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate "Explanation" text for a WhereTerm. |
︙ | ︙ | |||
112811 112812 112813 112814 112815 112816 112817 | pNew->nOut = nRowEst + nInMul + nIn; }else if( pTerm->eOperator & (WO_EQ) ){ assert( (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN|WHERE_SKIPSCAN))!=0 || nInMul==0 ); pNew->wsFlags |= WHERE_COLUMN_EQ; | < < | < > > > | > | 113358 113359 113360 113361 113362 113363 113364 113365 113366 113367 113368 113369 113370 113371 113372 113373 113374 113375 113376 113377 113378 | pNew->nOut = nRowEst + nInMul + nIn; }else if( pTerm->eOperator & (WO_EQ) ){ assert( (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN|WHERE_SKIPSCAN))!=0 || nInMul==0 ); pNew->wsFlags |= WHERE_COLUMN_EQ; if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1)){ assert( (pNew->wsFlags & WHERE_COLUMN_IN)==0 || iCol<0 ); if( iCol>=0 && pProbe->onError==OE_None ){ pNew->wsFlags |= WHERE_UNQ_WANTED; }else{ pNew->wsFlags |= WHERE_ONEROW; } } pNew->u.btree.nEq++; pNew->nOut = nRowEst + nInMul; }else if( pTerm->eOperator & (WO_ISNULL) ){ pNew->wsFlags |= WHERE_COLUMN_NULL; pNew->u.btree.nEq++; /* TUNING: IS NULL selects 2 rows */ |
︙ | ︙ | |||
113695 113696 113697 113698 113699 113700 113701 113702 113703 | } /* end-if not one-row */ /* Mark off any other ORDER BY terms that reference pLoop */ if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; | > | > > | 114243 114244 114245 114246 114247 114248 114249 114250 114251 114252 114253 114254 114255 114256 114257 114258 114259 114260 114261 114262 | } /* end-if not one-row */ /* Mark off any other ORDER BY terms that reference pLoop */ if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; Bitmask mTerm; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; mTerm = exprTableUsage(&pWInfo->sMaskSet,p); if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; if( (mTerm&~orderDistinctMask)==0 ){ obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ if( obSat==obDone ) return 1; if( !isOrderDistinct ) return 0; |
︙ | ︙ | |||
114259 114260 114261 114262 114263 114264 114265 | /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(&pWInfo->sWC, pWInfo); whereSplit(&pWInfo->sWC, pWhere, TK_AND); | < | 114810 114811 114812 114813 114814 114815 114816 114817 114818 114819 114820 114821 114822 114823 | /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(&pWInfo->sWC, pWInfo); whereSplit(&pWInfo->sWC, pWhere, TK_AND); /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ for(ii=0; ii<sWLB.pWC->nTerm; ii++){ if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
︙ | ︙ | |||
114321 114322 114323 114324 114325 114326 114327 | ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, &pWInfo->sWC); if( db->mallocFailed ){ goto whereBeginError; } | < < < < < < < < < < < < < < < < | 114871 114872 114873 114874 114875 114876 114877 114878 114879 114880 114881 114882 114883 114884 | ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, &pWInfo->sWC); if( db->mallocFailed ){ goto whereBeginError; } if( wctrlFlags & WHERE_WANT_DISTINCT ){ if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; }else if( pOrderBy==0 ){ /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; |
︙ | ︙ | |||
114548 114549 114550 114551 114552 114553 114554 | pLevel->iIdxCur = iIndexCur; assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); VdbeComment((v, "%s", pIx->zName)); } | | | 115082 115083 115084 115085 115086 115087 115088 115089 115090 115091 115092 115093 115094 115095 115096 | pLevel->iIdxCur = iIndexCur; assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); VdbeComment((v, "%s", pIx->zName)); } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM |
︙ | ︙ | |||
114610 114611 114612 114613 114614 114615 114616 | sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ | | > > > > > > > | | 115144 115145 115146 115147 115148 115149 115150 115151 115152 115153 115154 115155 115156 115157 115158 115159 115160 115161 115162 115163 115164 115165 115166 115167 115168 115169 115170 115171 115172 115173 115174 115175 115176 115177 115178 115179 115180 115181 115182 115183 115184 115185 115186 115187 | sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); sqlite3VdbeChangeP5(v, pLevel->p5); VdbeCoverage(v); VdbeCoverageIf(v, pLevel->op==OP_Next); VdbeCoverageIf(v, pLevel->op==OP_Prev); VdbeCoverageIf(v, pLevel->op==OP_VNext); } if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); VdbeCoverage(v); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } sqlite3DbFree(db, pLevel->u.in.aInLoop); } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->addrSkip ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } if( pLevel->iLeftJoin ){ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); } if( pLoop->wsFlags & WHERE_INDEXED ){ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
︙ | ︙ | |||
114659 114660 114661 114662 114663 114664 114665 114666 114667 114668 114669 114670 114671 114672 114673 114674 114675 114676 114677 | /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); assert( pWInfo->nLevel<=pTabList->nSrc ); for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ Index *pIdx = 0; struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* Close all of the cursors that were opened by sqlite3WhereBegin. ** Except, do not close cursors that will be reused by the OR optimization ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors ** created for the ONEPASS optimization. */ if( (pTab->tabFlags & TF_Ephemeral)==0 | > > > > > > > > > > > > > > > > > > > > > > > > > > | 115200 115201 115202 115203 115204 115205 115206 115207 115208 115209 115210 115211 115212 115213 115214 115215 115216 115217 115218 115219 115220 115221 115222 115223 115224 115225 115226 115227 115228 115229 115230 115231 115232 115233 115234 115235 115236 115237 115238 115239 115240 115241 115242 115243 115244 | /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); assert( pWInfo->nLevel<=pTabList->nSrc ); for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ int k, last; VdbeOp *pOp; Index *pIdx = 0; struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* For a co-routine, change all OP_Column references to the table of ** the co-routine into OP_SCopy of result contained in a register. ** OP_Rowid becomes OP_Null. */ if( pTabItem->viaCoroutine && !db->mallocFailed ){ last = sqlite3VdbeCurrentAddr(v); k = pLevel->addrBody; pOp = sqlite3VdbeGetOp(v, k); for(; k<last; k++, pOp++){ if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ pOp->opcode = OP_SCopy; pOp->p1 = pOp->p2 + pTabItem->regResult; pOp->p2 = pOp->p3; pOp->p3 = 0; }else if( pOp->opcode==OP_Rowid ){ pOp->opcode = OP_Null; pOp->p1 = 0; pOp->p3 = 0; } } continue; } /* Close all of the cursors that were opened by sqlite3WhereBegin. ** Except, do not close cursors that will be reused by the OR optimization ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors ** created for the ONEPASS optimization. */ if( (pTab->tabFlags & TF_Ephemeral)==0 |
︙ | ︙ | |||
114703 114704 114705 114706 114707 114708 114709 | */ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ pIdx = pLoop->u.btree.pIndex; }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ pIdx = pLevel->u.pCovidx; } if( pIdx && !db->mallocFailed ){ | < < < | 115270 115271 115272 115273 115274 115275 115276 115277 115278 115279 115280 115281 115282 115283 | */ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ pIdx = pLoop->u.btree.pIndex; }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ pIdx = pLevel->u.pCovidx; } if( pIdx && !db->mallocFailed ){ last = sqlite3VdbeCurrentAddr(v); k = pLevel->addrBody; pOp = sqlite3VdbeGetOp(v, k); for(; k<last; k++, pOp++){ if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ int x = pOp->p2; |
︙ | ︙ | |||
117119 117120 117121 117122 117123 117124 117125 | sqlite3ExplainBegin(pParse->pVdbe); sqlite3ExplainSelect(pParse->pVdbe, yymsp[0].minor.yy3); sqlite3ExplainFinish(pParse->pVdbe); sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3); } break; case 112: /* select ::= with selectnowith */ | | | > > | > > > > > > > > > > > | | > > > > > > > > | | | | 117683 117684 117685 117686 117687 117688 117689 117690 117691 117692 117693 117694 117695 117696 117697 117698 117699 117700 117701 117702 117703 117704 117705 117706 117707 117708 117709 117710 117711 117712 117713 117714 117715 117716 117717 117718 117719 117720 117721 117722 117723 117724 117725 117726 117727 117728 117729 117730 117731 117732 117733 117734 117735 117736 117737 117738 117739 117740 | sqlite3ExplainBegin(pParse->pVdbe); sqlite3ExplainSelect(pParse->pVdbe, yymsp[0].minor.yy3); sqlite3ExplainFinish(pParse->pVdbe); sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3); } break; case 112: /* select ::= with selectnowith */ { Select *p = yymsp[0].minor.yy3, *pNext, *pLoop; if( p ){ int cnt = 0, mxSelect; p->pWith = yymsp[-1].minor.yy59; if( p->pPrior ){ pNext = 0; for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ pLoop->pNext = pNext; pLoop->selFlags |= SF_Compound; } mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; if( mxSelect && cnt>mxSelect ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); } } }else{ sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy59); } yygotominor.yy3 = p; } break; case 113: /* selectnowith ::= oneselect */ case 119: /* oneselect ::= values */ yytestcase(yyruleno==119); {yygotominor.yy3 = yymsp[0].minor.yy3;} break; case 114: /* selectnowith ::= selectnowith multiselect_op oneselect */ { Select *pRhs = yymsp[0].minor.yy3; if( pRhs && pRhs->pPrior ){ SrcList *pFrom; Token x; x.n = 0; pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); } if( pRhs ){ pRhs->op = (u8)yymsp[-1].minor.yy328; pRhs->pPrior = yymsp[-2].minor.yy3; if( yymsp[-1].minor.yy328!=TK_ALL ) pParse->hasCompound = 1; }else{ sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy3); } yygotominor.yy3 = pRhs; } break; case 116: /* multiselect_op ::= UNION ALL */ {yygotominor.yy328 = TK_ALL;} break; case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ { |
︙ | ︙ | |||
122709 122710 122711 122712 122713 122714 122715 122716 122717 122718 122719 122720 122721 122722 | ** that demonstrat invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } /* | > > > > > > > > > > > > > > > | 123294 123295 123296 123297 123298 123299 123300 123301 123302 123303 123304 123305 123306 123307 123308 123309 123310 123311 123312 123313 123314 123315 123316 123317 123318 123319 123320 123321 123322 | ** that demonstrat invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); ** ** Set the VDBE coverage callback function to xCallback with context ** pointer ptr. */ case SQLITE_TESTCTRL_VDBE_COVERAGE: { #ifdef SQLITE_VDBE_COVERAGE typedef void (*branch_callback)(void*,int,u8,u8); sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); #endif break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } /* |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.h.
︙ | ︙ | |||
103 104 105 106 107 108 109 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.4" #define SQLITE_VERSION_NUMBER 3008004 #define SQLITE_SOURCE_ID "2014-03-06 00:30:27 29b0a4f158785449b6f3da6fcceeb63442c9711c" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
6118 6119 6120 6121 6122 6123 6124 | #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 | > | | 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 | #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_LAST 21 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for |
︙ | ︙ |
Changes to SQLite.Interop/src/win/interop.h.
1 2 3 4 5 6 7 8 | /* * interop.h - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! */ #ifndef INTEROP_VERSION | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | /* * interop.h - * * Written by Joe Mistachkin. * Released to the public domain, use at your own risk! */ #ifndef INTEROP_VERSION #define INTEROP_VERSION "1.0.92.0" #endif #ifndef INTEROP_SOURCE_ID #define INTEROP_SOURCE_ID "0000000000000000000000000000000000000000" #endif #ifndef INTEROP_SOURCE_TIMESTAMP |
︙ | ︙ |
Changes to System.Data.SQLite.Linq/AssemblyInfo.cs.
︙ | ︙ | |||
49 50 51 52 53 54 55 | // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Build and Revision Numbers // by using the '*' as shown below: // [assembly: AssemblyVersion("1.0.*")] | | | | 49 50 51 52 53 54 55 56 57 | // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Build and Revision Numbers // by using the '*' as shown below: // [assembly: AssemblyVersion("1.0.*")] [assembly: AssemblyVersion("1.0.92.0")] [assembly: AssemblyFileVersion("1.0.92.0")] |
Changes to System.Data.SQLite/AssemblyInfo.cs.
︙ | ︙ | |||
68 69 70 71 72 73 74 | // Major Version // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Revision and Build Numbers // by using the '*' as shown below: | | | | 68 69 70 71 72 73 74 75 76 77 78 | // Major Version // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Revision and Build Numbers // by using the '*' as shown below: [assembly: AssemblyVersion("1.0.92.0")] #if !PLATFORM_COMPACTFRAMEWORK [assembly: AssemblyFileVersion("1.0.92.0")] #endif |
Changes to System.Data.SQLite/SQLite3.cs.
︙ | ︙ | |||
53 54 55 56 57 58 59 | internal const string PublicKey = "002400000480000094000000060200000024000052534131000400000100010005a288de5687c4e1" + "b621ddff5d844727418956997f475eb829429e411aff3e93f97b70de698b972640925bdd44280df0" + "a25a843266973704137cbb0e7441c1fe7cae4e2440ae91ab8cde3933febcb1ac48dd33b40e13c421" + "d8215c18a4349a436dd499e3c385cc683015f886f6c10bd90115eb2bd61b67750839e3a19941dc9c"; #if !PLATFORM_COMPACTFRAMEWORK | | | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | internal const string PublicKey = "002400000480000094000000060200000024000052534131000400000100010005a288de5687c4e1" + "b621ddff5d844727418956997f475eb829429e411aff3e93f97b70de698b972640925bdd44280df0" + "a25a843266973704137cbb0e7441c1fe7cae4e2440ae91ab8cde3933febcb1ac48dd33b40e13c421" + "d8215c18a4349a436dd499e3c385cc683015f886f6c10bd90115eb2bd61b67750839e3a19941dc9c"; #if !PLATFORM_COMPACTFRAMEWORK internal const string DesignerVersion = "1.0.92.0"; #endif /// <summary> /// The opaque pointer returned to us by the sqlite provider /// </summary> protected internal SQLiteConnectionHandle _sql; protected string _fileName; |
︙ | ︙ |
Changes to System.Data.SQLite/UnsafeNativeMethods.cs.
︙ | ︙ | |||
1200 1201 1202 1203 1204 1205 1206 | // // NOTE: On the .NET Compact Framework, the native interop assembly must // be used because it provides several workarounds to .NET Compact // Framework limitations important for proper operation of the core // System.Data.SQLite functionality (e.g. being able to bind // parameters and handle column values of types Int64 and Double). // | | | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 | // // NOTE: On the .NET Compact Framework, the native interop assembly must // be used because it provides several workarounds to .NET Compact // Framework limitations important for proper operation of the core // System.Data.SQLite functionality (e.g. being able to bind // parameters and handle column values of types Int64 and Double). // internal const string SQLITE_DLL = "SQLite.Interop.092.dll"; #elif SQLITE_STANDARD // // NOTE: Otherwise, if the standard SQLite library is enabled, use it. // internal const string SQLITE_DLL = "sqlite3"; #elif USE_INTEROP_DLL // |
︙ | ︙ |
Changes to Tests/version.eagle.
︙ | ︙ | |||
25 26 27 28 29 30 31 | # # NOTE: For these unit tests to be useful and accurate, the following version # numbers must be manually kept synchronized with the version numbers for # the source code files, the built binaries, and the release packages. # set version(major) 1 set version(minor) 0 | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # # NOTE: For these unit tests to be useful and accurate, the following version # numbers must be manually kept synchronized with the version numbers for # the source code files, the built binaries, and the release packages. # set version(major) 1 set version(minor) 0 set version(build) 92; # NOTE: Incremented with each release. set version(revision) 0 ############################################################################### # ********************* END VOLATILE VERSION INFORMATION ********************** ############################################################################### # |
︙ | ︙ | |||
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderServices, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteFactory, System\\.Data\\.SQLite, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.Linq, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderServices, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteFactory, System\\.Data\\.SQLite, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.Linq, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderServices, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteFactory, System\\.Data\\.SQLite, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.Linq, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs AssemblyVersion\\(\" [string map [list . \\.] \ | > > > > > > > > > > > > | 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderServices, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "System\\.Data\\.SQLite\\.EF6\\.SQLiteProviderServices, " \ "System\\.Data\\.SQLite\\.EF6, Version=" \ [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteFactory, System\\.Data\\.SQLite, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.Linq, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderServices, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "System\\.Data\\.SQLite\\.EF6\\.SQLiteProviderServices, " \ "System\\.Data\\.SQLite\\.EF6, Version=" \ [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteFactory, System\\.Data\\.SQLite, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.Linq, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderServices, System\\.Data\\.SQLite\\.EF6, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "System\\.Data\\.SQLite\\.EF6\\.SQLiteProviderServices, " \ "System\\.Data\\.SQLite\\.EF6, Version=" \ [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteFactory, System\\.Data\\.SQLite, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs \ "SQLiteProviderFactory, System\\.Data\\.SQLite\\.Linq, " \ "Version=" [string map [list . \\.] $version(full)] ,] \ [appendArgs AssemblyVersion\\(\" [string map [list . \\.] \ |
︙ | ︙ | |||
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | [file join test AssemblyInfo.cs] \ [file join test app.config] \ [file join testce AssemblyInfo.cs] \ [file join testce AssemblyInfo.cs] \ [file join testlinq 2008 LINQ App.config] \ [file join testlinq 2008 LINQ App.config] \ [file join testlinq 2010 EF6 App.config] \ [file join testlinq 2010 EF6 App.config] \ [file join testlinq 2010 LINQ App.config] \ [file join testlinq 2010 LINQ App.config] \ [file join testlinq 2012 EF6 App.config] \ [file join testlinq 2012 EF6 App.config] \ [file join testlinq 2012 LINQ App.config] \ [file join testlinq 2012 LINQ App.config] \ [file join testlinq 2013 EF6 App.config] \ [file join testlinq 2013 EF6 App.config] \ [file join testlinq 2013 LINQ App.config] \ [file join testlinq 2013 LINQ App.config] \ [file join testlinq Properties AssemblyInfo.cs] \ [file join testlinq Properties AssemblyInfo.cs] \ [file join tools install Properties AssemblyInfo.cs] \ | > > > | 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | [file join test AssemblyInfo.cs] \ [file join test app.config] \ [file join testce AssemblyInfo.cs] \ [file join testce AssemblyInfo.cs] \ [file join testlinq 2008 LINQ App.config] \ [file join testlinq 2008 LINQ App.config] \ [file join testlinq 2010 EF6 App.config] \ [file join testlinq 2010 EF6 App.config] \ [file join testlinq 2010 EF6 App.config] \ [file join testlinq 2010 LINQ App.config] \ [file join testlinq 2010 LINQ App.config] \ [file join testlinq 2012 EF6 App.config] \ [file join testlinq 2012 EF6 App.config] \ [file join testlinq 2012 EF6 App.config] \ [file join testlinq 2012 LINQ App.config] \ [file join testlinq 2012 LINQ App.config] \ [file join testlinq 2013 EF6 App.config] \ [file join testlinq 2013 EF6 App.config] \ [file join testlinq 2013 EF6 App.config] \ [file join testlinq 2013 LINQ App.config] \ [file join testlinq 2013 LINQ App.config] \ [file join testlinq Properties AssemblyInfo.cs] \ [file join testlinq Properties AssemblyInfo.cs] \ [file join tools install Properties AssemblyInfo.cs] \ |
︙ | ︙ |
Changes to readme.htm.
1 2 3 4 5 6 7 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title></title> </head> <body> ADO.NET SQLite Data Provider<br /> | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title></title> </head> <body> ADO.NET SQLite Data Provider<br /> Version 1.0.92.0 March XX, 2014 <font color="red">(release scheduled)</font><br /> Using <a href="http://www.sqlite.org/src/info/trunk">SQLite 3.8.4</a><br /> Originally written by Robert Simpson<br /> Released to the public domain, use at your own risk!<br /> Official provider website: <a href="http://system.data.sqlite.org/">http://system.data.sqlite.org/</a><br /> Legacy versions: <a href="http://sqlite.phxsoftware.com/">http://sqlite.phxsoftware.com/</a><br /> <br /> The current development version can be downloaded from <a href="http://system.data.sqlite.org/index.html/timeline?y=ci"> http://system.data.sqlite.org/index.html/timeline?y=ci</a> |
︙ | ︙ | |||
142 143 144 145 146 147 148 | app.config file:<br /> <pre> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" | | | 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | app.config file:<br /> <pre> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> </configuration> </pre> <p> See the help documentation for further details on implementing both version-specific (GAC enabled) and version independent DBProviderFactories support. |
︙ | ︙ | |||
204 205 206 207 208 209 210 211 212 213 214 215 216 217 | supported <a href="http://www.sqlite.org/compile.html">compile-time options</a> designed for robustness and maximum backward compatibility with previously released versions of System.Data.SQLite. </p> <h2><b>Version History</b></h2> <p> <b>1.0.91.0 - February 12, 2014</b> </p> <ul> <li>Updated to <a href="http://www.sqlite.org/releaselog/3_8_3_1.html">SQLite 3.8.3.1</a>.</li> <li>Refresh all included SQLite core library documentation (e.g. SQL syntax).</li> <li>Add support for <a href="http://entityframework.codeplex.com/">Entity Framework 6</a>.</li> | > > > > > > > > | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | supported <a href="http://www.sqlite.org/compile.html">compile-time options</a> designed for robustness and maximum backward compatibility with previously released versions of System.Data.SQLite. </p> <h2><b>Version History</b></h2> <p> <b>1.0.92.0 - March XX, 2014 <font color="red">(release scheduled)</font></b> </p> <ul> <li>Updated to <a href="http://www.sqlite.org/src/info/trunk">SQLite 3.8.4</a>.</li> <li>When the TraceWarning connection flag is set, issue warnings about possibly malformed UNC paths. Pursuant to [283344397b].</li> <li>Enhancements to the NuGet packages, including the new "modular" packages.</li> </ul> <p> <b>1.0.91.0 - February 12, 2014</b> </p> <ul> <li>Updated to <a href="http://www.sqlite.org/releaselog/3_8_3_1.html">SQLite 3.8.3.1</a>.</li> <li>Refresh all included SQLite core library documentation (e.g. SQL syntax).</li> <li>Add support for <a href="http://entityframework.codeplex.com/">Entity Framework 6</a>.</li> |
︙ | ︙ |
Changes to test/AssemblyInfo.cs.
︙ | ︙ | |||
34 35 36 37 38 39 40 | // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // | | | | 34 35 36 37 38 39 40 41 42 | // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // [assembly: AssemblyVersion("1.0.92.0")] [assembly: AssemblyFileVersion("1.0.92.0")] |
Changes to test/app.config.
1 2 3 4 | <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | 1 2 3 4 5 6 7 8 | <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> </configuration> |
Changes to testce/AssemblyInfo.cs.
︙ | ︙ | |||
34 35 36 37 38 39 40 | // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // | | | | 34 35 36 37 38 39 40 41 42 43 | // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // [assembly: AssemblyVersion("1.0.92.0")] // [assembly: AssemblyFileVersion("1.0.92.0")] |
Changes to testlinq/2008/LINQ/App.config.
1 2 3 4 5 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.Linq" /> <add name="SQLite Data Provider (LINQ)" invariant="System.Data.SQLite.Linq" description=".Net Framework Data Provider for SQLite (LINQ)" type="System.Data.SQLite.Linq.SQLiteProviderFactory, System.Data.SQLite.Linq, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.Linq.2008.csdl|res://*/NorthwindModel.Linq.2008.ssdl|res://*/NorthwindModel.Linq.2008.msl;provider=System.Data.SQLite;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> </configuration> |
Changes to testlinq/2010/EF6/App.config.
1 2 3 4 5 6 7 8 | <?xml version="1.0"?> <configuration> <configSections> <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?> <configuration> <configSections> <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.EF6" /> <add name="SQLite Data Provider (Entity Framework 6)" invariant="System.Data.SQLite.EF6" description=".Net Framework Data Provider for SQLite (Entity Framework 6)" type="System.Data.SQLite.EF6.SQLiteProviderFactory, System.Data.SQLite.EF6, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.EF6.2010.csdl|res://*/NorthwindModel.EF6.2010.ssdl|res://*/NorthwindModel.EF6.2010.msl;provider=System.Data.SQLite.EF6;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> <entityFramework> <providers> <provider invariantName="System.Data.SQLite.EF6" type="System.Data.SQLite.EF6.SQLiteProviderServices, System.Data.SQLite.EF6, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </providers> </entityFramework> </configuration> |
Changes to testlinq/2010/LINQ/App.config.
1 2 3 4 5 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.Linq" /> <add name="SQLite Data Provider (LINQ)" invariant="System.Data.SQLite.Linq" description=".Net Framework Data Provider for SQLite (LINQ)" type="System.Data.SQLite.Linq.SQLiteProviderFactory, System.Data.SQLite.Linq, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.Linq.2010.csdl|res://*/NorthwindModel.Linq.2010.ssdl|res://*/NorthwindModel.Linq.2010.msl;provider=System.Data.SQLite;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> </configuration> |
Changes to testlinq/2012/EF6/App.config.
1 2 3 4 5 6 7 8 | <?xml version="1.0"?> <configuration> <configSections> <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?> <configuration> <configSections> <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.EF6" /> <add name="SQLite Data Provider (Entity Framework 6)" invariant="System.Data.SQLite.EF6" description=".Net Framework Data Provider for SQLite (Entity Framework 6)" type="System.Data.SQLite.EF6.SQLiteProviderFactory, System.Data.SQLite.EF6, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.EF6.2012.csdl|res://*/NorthwindModel.EF6.2012.ssdl|res://*/NorthwindModel.EF6.2012.msl;provider=System.Data.SQLite.EF6;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> <entityFramework> <providers> <provider invariantName="System.Data.SQLite.EF6" type="System.Data.SQLite.EF6.SQLiteProviderServices, System.Data.SQLite.EF6, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </providers> </entityFramework> </configuration> |
Changes to testlinq/2012/LINQ/App.config.
1 2 3 4 5 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.Linq" /> <add name="SQLite Data Provider (LINQ)" invariant="System.Data.SQLite.Linq" description=".Net Framework Data Provider for SQLite (LINQ)" type="System.Data.SQLite.Linq.SQLiteProviderFactory, System.Data.SQLite.Linq, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.Linq.2012.csdl|res://*/NorthwindModel.Linq.2012.ssdl|res://*/NorthwindModel.Linq.2012.msl;provider=System.Data.SQLite;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> </configuration> |
Changes to testlinq/2013/EF6/App.config.
1 2 3 4 5 6 7 8 | <?xml version="1.0"?> <configuration> <configSections> <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?> <configuration> <configSections> <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.EF6" /> <add name="SQLite Data Provider (Entity Framework 6)" invariant="System.Data.SQLite.EF6" description=".Net Framework Data Provider for SQLite (Entity Framework 6)" type="System.Data.SQLite.EF6.SQLiteProviderFactory, System.Data.SQLite.EF6, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.EF6.2013.csdl|res://*/NorthwindModel.EF6.2013.ssdl|res://*/NorthwindModel.EF6.2013.msl;provider=System.Data.SQLite.EF6;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> <entityFramework> <providers> <provider invariantName="System.Data.SQLite.EF6" type="System.Data.SQLite.EF6.SQLiteProviderServices, System.Data.SQLite.EF6, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </providers> </entityFramework> </configuration> |
Changes to testlinq/2013/LINQ/App.config.
1 2 3 4 5 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <?xml version="1.0"?> <configuration> <system.data> <DbProviderFactories> <remove invariant="System.Data.SQLite" /> <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> <remove invariant="System.Data.SQLite.Linq" /> <add name="SQLite Data Provider (LINQ)" invariant="System.Data.SQLite.Linq" description=".Net Framework Data Provider for SQLite (LINQ)" type="System.Data.SQLite.Linq.SQLiteProviderFactory, System.Data.SQLite.Linq, Version=1.0.92.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </DbProviderFactories> </system.data> <connectionStrings> <add name="northwindEFEntities" connectionString="metadata=res://*/NorthwindModel.Linq.2013.csdl|res://*/NorthwindModel.Linq.2013.ssdl|res://*/NorthwindModel.Linq.2013.msl;provider=System.Data.SQLite;provider connection string="data source=.\northwindEF.db"" providerName="System.Data.EntityClient" /> </connectionStrings> </configuration> |
Changes to testlinq/Properties/AssemblyInfo.cs.
1 2 3 | /******************************************************** * ADO.NET 2.0 Data Provider for SQLite Version 3.X * Written by Robert Simpson (robert@blackcastlesoft.com) | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | /******************************************************** * ADO.NET 2.0 Data Provider for SQLite Version 3.X * Written by Robert Simpson (robert@blackcastlesoft.com) * * Released to the public domain, use at your own risk! ********************************************************/ using System.Reflection; using System.Runtime.InteropServices; // General Information about an assembly is controlled through the following // set of attributes. Change these attribute values to modify the information // associated with an assembly. #if USE_ENTITY_FRAMEWORK_6 [assembly: AssemblyTitle("System.Data.SQLite Tester for Entity Framework 6")] #else [assembly: AssemblyTitle("System.Data.SQLite Tester for LINQ")] #endif [assembly: AssemblyDescription("ADO.NET Data Provider for SQLite")] [assembly: AssemblyCompany("http://system.data.sqlite.org/")] [assembly: AssemblyProduct("System.Data.SQLite")] [assembly: AssemblyCopyright("Public Domain")] #if DEBUG [assembly: AssemblyConfiguration("Debug")] #else [assembly: AssemblyConfiguration("Release")] #endif // Setting ComVisible to false makes the types in this assembly not visible // to COM components. If you need to access a type in this assembly from // COM, set the ComVisible attribute to true on that type. [assembly: ComVisible(false)] // The following GUID is for the ID of the typelib if this project is exposed to COM [assembly: Guid("8fd19c43-2fa6-487c-9201-47dd59eed056")] // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // // You can specify all the values or you can default the Build and Revision Numbers // by using the '*' as shown below: // [assembly: AssemblyVersion("1.0.*")] [assembly: AssemblyVersion("1.0.92.0")] [assembly: AssemblyFileVersion("1.0.92.0")] |
Changes to tools/install/Properties/AssemblyInfo.cs.
︙ | ︙ | |||
24 25 26 27 28 29 30 | // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // | | | | 24 25 26 27 28 29 30 31 32 | // Version information for an assembly consists of the following four values: // // Major Version // Minor Version // Build Number // Revision // [assembly: AssemblyVersion("1.0.92.0")] [assembly: AssemblyFileVersion("1.0.92.0")] |
Changes to www/news.wiki.
1 2 3 4 5 6 7 8 9 10 11 | <title>News</title> <b>Version History</b> <p> <b>1.0.91.0 - February 12, 2014</b> </p> <ul> <li>Updated to [http://www.sqlite.org/releaselog/3_8_3_1.html|SQLite 3.8.3.1].</li> <li>Refresh all included SQLite core library documentation (e.g. SQL syntax).</li> <li>Add support for [http://entityframework.codeplex.com/|Entity Framework 6].</li> | > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | <title>News</title> <b>Version History</b> <p> <b>1.0.92.0 - March XX, 2014 <font color="red">(release scheduled)</font></b> </p> <ul> <li>Updated to <a href="http://www.sqlite.org/src/info/trunk">SQLite 3.8.4</a>.</li> <li>When the TraceWarning connection flag is set, issue warnings about possibly malformed UNC paths. Pursuant to [283344397b].</li> <li>Enhancements to the NuGet packages, including the new "modular" packages.</li> </ul> <p> <b>1.0.91.0 - February 12, 2014</b> </p> <ul> <li>Updated to [http://www.sqlite.org/releaselog/3_8_3_1.html|SQLite 3.8.3.1].</li> <li>Refresh all included SQLite core library documentation (e.g. SQL syntax).</li> <li>Add support for [http://entityframework.codeplex.com/|Entity Framework 6].</li> |
︙ | ︙ |