Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update SQLite core library to the latest 3.8.11 alpha. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
9d53109ce0dafc9d241202d591e9a554 |
User & Date: | mistachkin 2015-07-02 01:44:07.020 |
Context
2015-07-03
| ||
21:57 | Update SQLite core library to the latest trunk code. check-in: d545007d7a user: mistachkin tags: trunk | |
2015-07-02
| ||
01:44 | Update SQLite core library to the latest 3.8.11 alpha. check-in: 9d53109ce0 user: mistachkin tags: trunk | |
2015-06-26
| ||
03:13 | Update SQLite core library to the latest trunk code. check-in: a92cbefdad user: mistachkin tags: trunk | |
Changes
Changes to SQLite.Interop/src/core/sqlite3.c.
︙ | ︙ | |||
153 154 155 156 157 158 159 160 161 162 163 164 165 166 | #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* Needed for various definitions... */ #if defined(__GNUC__) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) | > > > > > > > | 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* What version of GCC is being used. 0 means GCC is not being used */ #ifdef __GNUC__ # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif /* Needed for various definitions... */ #if defined(__GNUC__) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) |
︙ | ︙ | |||
316 317 318 319 320 321 322 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 #define SQLITE_SOURCE_ID "2015-06-30 17:28:40 fe144dd73f7097a17c24c7812c2a1cc40466e6da" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 | # define SQLITE_NOINLINE __attribute__((noinline)) #elif defined(_MSC_VER) && _MSC_VER>=1310 # define SQLITE_NOINLINE __declspec(noinline) #else # define SQLITE_NOINLINE #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. ** 0 means mutexes are permanently disable and the library is never ** threadsafe. 1 means the library is serialized which is the highest ** level of threadsafety. 2 means the library is multithreaded - multiple ** threads can use SQLite as long as no two threads try to use the same ** database connection at the same time. | > > > > > > > > > > | 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 | # define SQLITE_NOINLINE __attribute__((noinline)) #elif defined(_MSC_VER) && _MSC_VER>=1310 # define SQLITE_NOINLINE __declspec(noinline) #else # define SQLITE_NOINLINE #endif /* ** Make sure that the compiler intrinsics we desire are enabled when ** compiling with an appropriate version of MSVC. */ #if defined(_MSC_VER) && _MSC_VER>=1300 # include <intrin.h> # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. ** 0 means mutexes are permanently disable and the library is never ** threadsafe. 1 means the library is serialized which is the highest ** level of threadsafety. 2 means the library is multithreaded - multiple ** threads can use SQLite as long as no two threads try to use the same ** database connection at the same time. |
︙ | ︙ | |||
9687 9688 9689 9690 9691 9692 9693 | u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ | | > | 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 | u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union p4union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); |
︙ | ︙ | |||
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 | #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 | > | 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 | #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ #define P4_FUNCCTX (-20) /* P4 is a pointer to an sqlite3_context object */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 |
︙ | ︙ | |||
9802 9803 9804 9805 9806 9807 9808 | ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodeh.awk script for details */ | < | | | | | | | | < | | | | | | | | > > < < | | | | | | | | | | | | | | | > > | 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 | ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodeh.awk script for details */ #define OP_Savepoint 1 #define OP_AutoCommit 2 #define OP_Transaction 3 #define OP_SorterNext 4 #define OP_PrevIfOpen 5 #define OP_NextIfOpen 6 #define OP_Prev 7 #define OP_Next 8 #define OP_Checkpoint 9 #define OP_JournalMode 10 #define OP_Vacuum 11 #define OP_VFilter 12 /* synopsis: iplan=r[P3] zplan='P4' */ #define OP_VUpdate 13 /* synopsis: data=r[P3@P2] */ #define OP_Goto 14 #define OP_Gosub 15 #define OP_Return 16 #define OP_InitCoroutine 17 #define OP_EndCoroutine 18 #define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ #define OP_Yield 20 #define OP_HaltIfNull 21 /* synopsis: if r[P3]=null halt */ #define OP_Halt 22 #define OP_Integer 23 /* synopsis: r[P2]=P1 */ #define OP_Int64 24 /* synopsis: r[P2]=P4 */ #define OP_String 25 /* synopsis: r[P2]='P4' (len=P1) */ #define OP_Null 26 /* synopsis: r[P2..P3]=NULL */ #define OP_SoftNull 27 /* synopsis: r[P1]=NULL */ #define OP_Blob 28 /* synopsis: r[P2]=P4 (len=P1) */ #define OP_Variable 29 /* synopsis: r[P2]=parameter(P1,P4) */ #define OP_Move 30 /* synopsis: r[P2@P3]=r[P1@P3] */ #define OP_Copy 31 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */ #define OP_SCopy 32 /* synopsis: r[P2]=r[P1] */ #define OP_ResultRow 33 /* synopsis: output=r[P1@P2] */ #define OP_CollSeq 34 #define OP_Function0 35 /* synopsis: r[P3]=func(r[P2@P5]) */ #define OP_Function 36 /* synopsis: r[P3]=func(r[P2@P5]) */ #define OP_AddImm 37 /* synopsis: r[P1]=r[P1]+P2 */ #define OP_MustBeInt 38 #define OP_RealAffinity 39 #define OP_Cast 40 /* synopsis: affinity(r[P1]) */ #define OP_Permutation 41 #define OP_Compare 42 /* synopsis: r[P1@P3] <-> r[P2@P3] */ #define OP_Jump 43 |
︙ | ︙ | |||
9944 9945 9946 9947 9948 9949 9950 | #define OP_FkIfZero 136 /* synopsis: if fkctr[P1]==0 goto P2 */ #define OP_MemMax 137 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_IfPos 138 /* synopsis: if r[P1]>0 goto P2 */ #define OP_IfNeg 139 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2 */ #define OP_IfNotZero 140 /* synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 */ #define OP_DecrJumpZero 141 /* synopsis: if (--r[P1])==0 goto P2 */ #define OP_JumpZeroIncr 142 /* synopsis: if (r[P1]++)==0 ) goto P2 */ | > > | | | | | | | | | | | | | | | | | | | | | | | > | 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 | #define OP_FkIfZero 136 /* synopsis: if fkctr[P1]==0 goto P2 */ #define OP_MemMax 137 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_IfPos 138 /* synopsis: if r[P1]>0 goto P2 */ #define OP_IfNeg 139 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2 */ #define OP_IfNotZero 140 /* synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 */ #define OP_DecrJumpZero 141 /* synopsis: if (--r[P1])==0 goto P2 */ #define OP_JumpZeroIncr 142 /* synopsis: if (r[P1]++)==0 ) goto P2 */ #define OP_AggStep0 143 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggStep 144 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggFinal 145 /* synopsis: accum=r[P1] N=P2 */ #define OP_IncrVacuum 146 #define OP_Expire 147 #define OP_TableLock 148 /* synopsis: iDb=P1 root=P2 write=P3 */ #define OP_VBegin 149 #define OP_VCreate 150 #define OP_VDestroy 151 #define OP_VOpen 152 #define OP_VColumn 153 /* synopsis: r[P3]=vcolumn(P2) */ #define OP_VNext 154 #define OP_VRename 155 #define OP_Pagecount 156 #define OP_MaxPgcnt 157 #define OP_Init 158 /* synopsis: Start at P2 */ #define OP_Noop 159 #define OP_Explain 160 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ #define OPFLG_IN1 0x0002 /* in1: P1 is an input */ #define OPFLG_IN2 0x0004 /* in2: P2 is an input */ #define OPFLG_IN3 0x0008 /* in3: P3 is an input */ #define OPFLG_OUT2 0x0010 /* out2: P2 is an output */ #define OPFLG_OUT3 0x0020 /* out3: P3 is an output */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,\ /* 8 */ 0x01, 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01,\ /* 16 */ 0x02, 0x01, 0x02, 0x12, 0x03, 0x08, 0x00, 0x10,\ /* 24 */ 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00,\ /* 32 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03, 0x02,\ /* 40 */ 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x00,\ /* 48 */ 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00, 0x00,\ /* 56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,\ /* 64 */ 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x09, 0x26,\ /* 72 */ 0x26, 0x09, 0x10, 0x10, 0x03, 0x03, 0x0b, 0x0b,\ /* 80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\ /* 88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\ /* 96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\ /* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\ /* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\ /* 136 */ 0x01, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00,\ /* 144 */ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01, 0x00,\ /* 160 */ 0x00,} /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* ** Prototypes for the VDBE interface. See comments on the implementation ** for a description of what each of these routines does. |
︙ | ︙ | |||
10400 10401 10402 10403 10404 10405 10406 | PCache *pCache; /* Cache that owns this page */ PgHdr *pDirtyNext; /* Next element in list of dirty pages */ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ }; /* Bit values for PgHdr.flags */ | > | > | | | < | < | | 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 | PCache *pCache; /* Cache that owns this page */ PgHdr *pDirtyNext; /* Next element in list of dirty pages */ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ }; /* Bit values for PgHdr.flags */ #define PGHDR_CLEAN 0x001 /* Page not on the PCache.pDirty list */ #define PGHDR_DIRTY 0x002 /* Page is on the PCache.pDirty list */ #define PGHDR_WRITEABLE 0x004 /* Journaled and ready to modify */ #define PGHDR_NEED_SYNC 0x008 /* Fsync the rollback journal before ** writing this page to the database */ #define PGHDR_NEED_READ 0x010 /* Content is unread */ #define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ #define PGHDR_MMAP 0x040 /* This is an mmap page object */ /* Initialize and shutdown the page cache subsystem */ SQLITE_PRIVATE int sqlite3PcacheInitialize(void); SQLITE_PRIVATE void sqlite3PcacheShutdown(void); /* Page cache buffer management: ** These routines implement SQLITE_CONFIG_PAGECACHE. |
︙ | ︙ | |||
13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 | # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); #ifndef SQLITE_OMIT_BUILTIN_TEST SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); #endif | > | 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 | # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); #ifndef SQLITE_OMIT_BUILTIN_TEST SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); #endif |
︙ | ︙ | |||
14822 14823 14824 14825 14826 14827 14828 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { | | | | | | | | | > > | 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { Mem *pOut; /* The return value is stored here */ FuncDef *pFunc; /* Pointer to function information */ Mem *pMem; /* Memory cell used to store aggregate context */ Vdbe *pVdbe; /* The VM that owns this context */ int iOp; /* Instruction number of OP_Function */ int isError; /* Error code returned by the function. */ u8 skipFlag; /* Skip accumulator loading if true */ u8 fErrorOrAux; /* isError!=0 or pVdbe->pAuxData modified */ u8 argc; /* Number of arguments */ sqlite3_value *argv[1]; /* Argument set */ }; /* ** An Explain object accumulates indented output which is helpful ** in describing recursive data structures. */ struct Explain { |
︙ | ︙ | |||
21367 21368 21369 21370 21371 21372 21373 | ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** | < | | | | > | < | 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 | ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** ** If an OOM as occurred, then the connection error-code (the value ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. */ SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){ /* If the db handle must hold the connection handle mutex here. ** Otherwise the read (and possible write) of db->mallocFailed ** is unsafe, as is the call to sqlite3Error(). */ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ return apiOomError(db); } return rc & db->errMask; } /************** End of malloc.c **********************************************/ |
︙ | ︙ | |||
23927 23928 23929 23930 23931 23932 23933 | ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ | < < | | 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 | ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ if( z==0 ) return 0; return 0x3fffffff & (int)strlen(z); } /* ** Set the current error code to err_code and clear any prior error message. */ SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){ assert( db!=0 ); |
︙ | ︙ | |||
24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 | } /* ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal | > > > > > > > > > > > > > > > > > > > > > > > > | 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 | } /* ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ #if SQLITE_BYTEORDER==4321 u32 x; memcpy(&x,p,4); return x; #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) u32 x; memcpy(&x,p,4); return __builtin_bswap32(x); #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 u32 x; memcpy(&x,p,4); return _byteswap_ulong(x); #else testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; #endif } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ #if SQLITE_BYTEORDER==4321 memcpy(p,&v,4); #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) u32 x = __builtin_bswap32(v); memcpy(p,&x,4); #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 u32 x = _byteswap_ulong(v); memcpy(p,&x,4); #else p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; #endif } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal |
︙ | ︙ | |||
25477 25478 25479 25480 25481 25482 25483 | #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG) # define OpHelp(X) "\0" X #else # define OpHelp(X) #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { "?", | < | | | | | | | | < | | | | | | | | > > < < | | | | | | | | | | | | | | | > > | 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 | #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG) # define OpHelp(X) "\0" X #else # define OpHelp(X) #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { "?", /* 1 */ "Savepoint" OpHelp(""), /* 2 */ "AutoCommit" OpHelp(""), /* 3 */ "Transaction" OpHelp(""), /* 4 */ "SorterNext" OpHelp(""), /* 5 */ "PrevIfOpen" OpHelp(""), /* 6 */ "NextIfOpen" OpHelp(""), /* 7 */ "Prev" OpHelp(""), /* 8 */ "Next" OpHelp(""), /* 9 */ "Checkpoint" OpHelp(""), /* 10 */ "JournalMode" OpHelp(""), /* 11 */ "Vacuum" OpHelp(""), /* 12 */ "VFilter" OpHelp("iplan=r[P3] zplan='P4'"), /* 13 */ "VUpdate" OpHelp("data=r[P3@P2]"), /* 14 */ "Goto" OpHelp(""), /* 15 */ "Gosub" OpHelp(""), /* 16 */ "Return" OpHelp(""), /* 17 */ "InitCoroutine" OpHelp(""), /* 18 */ "EndCoroutine" OpHelp(""), /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"), /* 20 */ "Yield" OpHelp(""), /* 21 */ "HaltIfNull" OpHelp("if r[P3]=null halt"), /* 22 */ "Halt" OpHelp(""), /* 23 */ "Integer" OpHelp("r[P2]=P1"), /* 24 */ "Int64" OpHelp("r[P2]=P4"), /* 25 */ "String" OpHelp("r[P2]='P4' (len=P1)"), /* 26 */ "Null" OpHelp("r[P2..P3]=NULL"), /* 27 */ "SoftNull" OpHelp("r[P1]=NULL"), /* 28 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"), /* 29 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"), /* 30 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"), /* 31 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"), /* 32 */ "SCopy" OpHelp("r[P2]=r[P1]"), /* 33 */ "ResultRow" OpHelp("output=r[P1@P2]"), /* 34 */ "CollSeq" OpHelp(""), /* 35 */ "Function0" OpHelp("r[P3]=func(r[P2@P5])"), /* 36 */ "Function" OpHelp("r[P3]=func(r[P2@P5])"), /* 37 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"), /* 38 */ "MustBeInt" OpHelp(""), /* 39 */ "RealAffinity" OpHelp(""), /* 40 */ "Cast" OpHelp("affinity(r[P1])"), /* 41 */ "Permutation" OpHelp(""), /* 42 */ "Compare" OpHelp("r[P1@P3] <-> r[P2@P3]"), /* 43 */ "Jump" OpHelp(""), |
︙ | ︙ | |||
25619 25620 25621 25622 25623 25624 25625 | /* 136 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 137 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 138 */ "IfPos" OpHelp("if r[P1]>0 goto P2"), /* 139 */ "IfNeg" OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"), /* 140 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]+=P3, goto P2"), /* 141 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"), /* 142 */ "JumpZeroIncr" OpHelp("if (r[P1]++)==0 ) goto P2"), | > > | | | | | | | | | | | | | | | | | 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 | /* 136 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 137 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 138 */ "IfPos" OpHelp("if r[P1]>0 goto P2"), /* 139 */ "IfNeg" OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"), /* 140 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]+=P3, goto P2"), /* 141 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"), /* 142 */ "JumpZeroIncr" OpHelp("if (r[P1]++)==0 ) goto P2"), /* 143 */ "AggStep0" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 144 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 145 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 146 */ "IncrVacuum" OpHelp(""), /* 147 */ "Expire" OpHelp(""), /* 148 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"), /* 149 */ "VBegin" OpHelp(""), /* 150 */ "VCreate" OpHelp(""), /* 151 */ "VDestroy" OpHelp(""), /* 152 */ "VOpen" OpHelp(""), /* 153 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"), /* 154 */ "VNext" OpHelp(""), /* 155 */ "VRename" OpHelp(""), /* 156 */ "Pagecount" OpHelp(""), /* 157 */ "MaxPgcnt" OpHelp(""), /* 158 */ "Init" OpHelp("Start at P2"), /* 159 */ "Noop" OpHelp(""), /* 160 */ "Explain" OpHelp(""), }; return azName[i]; } #endif /************** End of opcodes.c *********************************************/ /************** Begin file os_unix.c *****************************************/ |
︙ | ︙ | |||
39373 39374 39375 39376 39377 39378 39379 | } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ | | | < > > > > | 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 | } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ assert( p!=0 ); i--; if( i>=p->iSize ) return 0; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return 0; } } if( p->iSize<=BITVEC_NBIT ){ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; } else{ u32 h = BITVEC_HASH(i++); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h = (h+1) % BITVEC_NINT; } return 0; } } SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){ return p!=0 && sqlite3BitvecTestNotNull(p,i); } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. ** ** This routine might cause sub-bitmaps to be allocated. Failing |
︙ | ︙ | |||
39977 39978 39979 39980 39981 39982 39983 | Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr*)pPage->pExtra; assert( pPgHdr->pPage==0 ); | | > | | 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 | Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr*)pPage->pExtra; assert( pPgHdr->pPage==0 ); memset(pPgHdr, 0, sizeof(PgHdr)); pPgHdr->pPage = pPage; pPgHdr->pData = pPage->pBuf; pPgHdr->pExtra = (void *)&pPgHdr[1]; memset(pPgHdr->pExtra, 0, pCache->szExtra); pPgHdr->pCache = pCache; pPgHdr->pgno = pgno; pPgHdr->flags = PGHDR_CLEAN; return sqlite3PcacheFetchFinish(pCache,pgno,pPage); } /* ** This routine converts the sqlite3_pcache_page object returned by ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine ** must be called after sqlite3PcacheFetch() in order to get a usable ** result. */ SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr *)pPage->pExtra; if( !pPgHdr->pPage ){ return pcacheFetchFinishWithInit(pCache, pgno, pPage); } if( 0==pPgHdr->nRef ){ pCache->nRef++; |
︙ | ︙ | |||
40022 40023 40024 40025 40026 40027 40028 | ** reference count drops to 0, then it is made eligible for recycling. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ){ p->pCache->nRef--; | | | 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 | ** reference count drops to 0, then it is made eligible for recycling. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ){ p->pCache->nRef--; if( p->flags&PGHDR_CLEAN ){ pcacheUnpin(p); }else if( p->pDirtyPrev!=0 ){ /* Move the page to the head of the dirty list. */ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); } } } |
︙ | ︙ | |||
40058 40059 40060 40061 40062 40063 40064 | } /* ** Make sure the page is marked as dirty. If it isn't dirty already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){ | < > > | | > | > > | > | 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 | } /* ** Make sure the page is marked as dirty. If it isn't dirty already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){ assert( p->nRef>0 ); if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ p->flags &= ~PGHDR_DONT_WRITE; if( p->flags & PGHDR_CLEAN ){ p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); } } } /* ** Make sure the page is marked as clean. If it isn't clean already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){ if( (p->flags & PGHDR_DIRTY) ){ assert( (p->flags & PGHDR_CLEAN)==0 ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); p->flags |= PGHDR_CLEAN; if( p->nRef==0 ){ pcacheUnpin(p); } } } /* |
︙ | ︙ | |||
40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 | return pPage; } /* ** Remove the page supplied as an argument from the hash table ** (PCache1.apHash structure) that it is currently stored in. ** ** The PGroup mutex must be held when this function is called. */ | > | > | < | 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 | return pPage; } /* ** Remove the page supplied as an argument from the hash table ** (PCache1.apHash structure) that it is currently stored in. ** Also free the page if freePage is true. ** ** The PGroup mutex must be held when this function is called. */ static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ unsigned int h; PCache1 *pCache = pPage->pCache; PgHdr1 **pp; assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); h = pPage->iKey % pCache->nHash; for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); *pp = (*pp)->pNext; pCache->nPage--; if( freeFlag ) pcache1FreePage(pPage); } /* ** If there are currently more than nMaxPage pages allocated, try ** to recycle pages to reduce the number allocated to nMaxPage. */ static void pcache1EnforceMaxPage(PGroup *pGroup){ assert( sqlite3_mutex_held(pGroup->mutex) ); while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ PgHdr1 *p = pGroup->pLruTail; assert( p->pCache->pGroup==pGroup ); assert( p->isPinned==0 ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } } /* ** Discard all pages from cache pCache with a page number (key value) ** greater than or equal to iLimit. Any pinned pages that meet this ** criteria are unpinned before they are discarded. |
︙ | ︙ | |||
41036 41037 41038 41039 41040 41041 41042 | (pCache->nPage+1>=pCache->nMax) || pGroup->nCurrentPage>=pGroup->nMaxPage || pcache1UnderMemoryPressure(pCache) )){ PCache1 *pOther; pPage = pGroup->pLruTail; assert( pPage->isPinned==0 ); | | | 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 | (pCache->nPage+1>=pCache->nMax) || pGroup->nCurrentPage>=pGroup->nMaxPage || pcache1UnderMemoryPressure(pCache) )){ PCache1 *pOther; pPage = pGroup->pLruTail; assert( pPage->isPinned==0 ); pcache1RemoveFromHash(pPage, 0); pcache1PinPage(pPage); pOther = pPage->pCache; /* We want to verify that szPage and szExtra are the same for pOther ** and pCache. Assert that we can verify this by comparing sums. */ assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 ); assert( pCache->szExtra<512 ); |
︙ | ︙ | |||
41234 41235 41236 41237 41238 41239 41240 | ** part of the PGroup LRU list. */ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); assert( pPage->isPinned==1 ); if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ | | < | 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 | ** part of the PGroup LRU list. */ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); assert( pPage->isPinned==1 ); if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ pcache1RemoveFromHash(pPage, 1); }else{ /* Add the page to the PGroup LRU list. */ if( pGroup->pLruHead ){ pGroup->pLruHead->pLruPrev = pPage; pPage->pLruNext = pGroup->pLruHead; pGroup->pLruHead = pPage; }else{ |
︙ | ︙ | |||
41389 41390 41391 41392 41393 41394 41395 | while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ nFree += pcache1MemSize(p->page.pBuf); #ifdef SQLITE_PCACHE_SEPARATE_HEADER nFree += sqlite3MemSize(p); #endif assert( p->isPinned==0 ); pcache1PinPage(p); | | < | 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 | while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ nFree += pcache1MemSize(p->page.pBuf); #ifdef SQLITE_PCACHE_SEPARATE_HEADER nFree += sqlite3MemSize(p); #endif assert( p->isPinned==0 ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } pcache1LeaveMutex(&pcache1.grp); } return nFree; } #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
︙ | ︙ | |||
42531 42532 42533 42534 42535 42536 42537 | u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** Bits of the Pager.doNotSpill flag. See further description below. */ | | | | | 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 | u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** Bits of the Pager.doNotSpill flag. See further description below. */ #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ /* ** An open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** |
︙ | ︙ | |||
42615 42616 42617 42618 42619 42620 42621 | ** writing to the database from pagerStress() is disabled altogether. ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF ** case is a user preference. ** | | | | | | | 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 | ** writing to the database from pagerStress() is disabled altogether. ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF ** case is a user preference. ** ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from ** pagerStress() is permitted, but syncing the journal file is not. ** This flag is set by sqlite3PagerWrite() when the file-system sector-size ** is larger than the database page-size in order to prevent a journal sync ** from happening in between the journalling of two pages on the same sector. ** ** subjInMemory ** ** This is a boolean variable. If true, then any required sub-journal ** is opened as an in-memory journal file. If false, then in-memory ** sub-journals are only used for in-memory pager files. ** |
︙ | ︙ | |||
42722 42723 42724 42725 42726 42727 42728 | u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ u8 bUseFetch; /* True to use xFetch() */ | | | 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 | u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ u8 bUseFetch; /* True to use xFetch() */ u8 hasBeenUsed; /* True if any content previously read */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ u32 cksumInit; /* Quasi-random value added to every checksum */ |
︙ | ︙ | |||
42883 42884 42885 42886 42887 42888 42889 | ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ | | | 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 | ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods!=0) /* ** Return true if this pager uses a write-ahead log instead of the usual ** rollback journal. Otherwise false. */ #ifndef SQLITE_OMIT_WAL static int pagerUseWal(Pager *pPager){ |
︙ | ︙ | |||
43106 43107 43108 43109 43110 43111 43112 | static int subjRequiresPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; PagerSavepoint *p; Pgno pgno = pPg->pgno; int i; for(i=0; i<pPager->nSavepoint; i++){ p = &pPager->aSavepoint[i]; | | > > | 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 | static int subjRequiresPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; PagerSavepoint *p; Pgno pgno = pPg->pgno; int i; for(i=0; i<pPager->nSavepoint; i++){ p = &pPager->aSavepoint[i]; if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ return 1; } } return 0; } #ifdef SQLITE_DEBUG /* ** Return true if the page is already in the journal file. */ static int pageInJournal(Pager *pPager, PgHdr *pPg){ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); } #endif /* ** Read a 32-bit integer from the given file descriptor. Store the integer ** that is read in *pRes. Return SQLITE_OK if everything worked, or an ** error code is something goes wrong. ** ** All values are stored on disk as big-endian. |
︙ | ︙ | |||
43730 43731 43732 43733 43734 43735 43736 | /* Write the master journal data to the end of the journal file. If ** an error occurs, return the error code to the caller. */ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) | | > | 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 | /* Write the master journal data to the end of the journal file. If ** an error occurs, return the error code to the caller. */ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) ){ return rc; } pPager->journalOff += (nMaster+20); /* If the pager is in peristent-journal mode, then the physical ** journal-file may extend past the end of the master-journal name |
︙ | ︙ | |||
44290 44291 44292 44293 44294 44295 44296 | rc = read32bits(jfd, (*pOffset)-4, &cksum); if( rc ) return rc; if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ return SQLITE_DONE; } } | | | 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 | rc = read32bits(jfd, (*pOffset)-4, &cksum); if( rc ) return rc; if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ return SQLITE_DONE; } } /* If this page has already been played back before during the current ** rollback, then don't bother to play it back again. */ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ return rc; } /* When playing back page 1, restore the nReserve setting |
︙ | ︙ | |||
46392 46393 46394 46395 46396 46397 46398 | } } return rc; } /* ** Append a record of the current state of page pPg to the sub-journal. | < < | 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 | } } return rc; } /* ** Append a record of the current state of page pPg to the sub-journal. ** ** If successful, set the bit corresponding to pPg->pgno in the bitvecs ** for all open savepoints before returning. ** ** This function returns SQLITE_OK if everything is successful, an IO ** error code if the attempt to write to the sub-journal fails, or ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint |
︙ | ︙ | |||
46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 | } if( rc==SQLITE_OK ){ pPager->nSubRec++; assert( pPager->nSavepoint>0 ); rc = addToSavepointBitvecs(pPager, pPg->pgno); } return rc; } /* ** This function is called by the pcache layer when it has reached some ** soft memory limit. The first argument is a pointer to a Pager object ** (cast as a void*). The pager is always 'purgeable' (not an in-memory ** database). The second argument is a reference to a page that is | > > > > > > > | 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 | } if( rc==SQLITE_OK ){ pPager->nSubRec++; assert( pPager->nSavepoint>0 ); rc = addToSavepointBitvecs(pPager, pPg->pgno); } return rc; } static int subjournalPageIfRequired(PgHdr *pPg){ if( subjRequiresPage(pPg) ){ return subjournalPage(pPg); }else{ return SQLITE_OK; } } /* ** This function is called by the pcache layer when it has reached some ** soft memory limit. The first argument is a pointer to a Pager object ** (cast as a void*). The pager is always 'purgeable' (not an in-memory ** database). The second argument is a reference to a page that is |
︙ | ︙ | |||
46497 46498 46499 46500 46501 46502 46503 | ){ return SQLITE_OK; } pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ | < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 | ){ return SQLITE_OK; } pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ rc = subjournalPageIfRequired(pPg); if( rc==SQLITE_OK ){ rc = pagerWalFrames(pPager, pPg, 0, 0); } }else{ /* Sync the journal file if required. */ if( pPg->flags&PGHDR_NEED_SYNC || pPager->eState==PAGER_WRITER_CACHEMOD ){ rc = syncJournal(pPager, 1); } /* Write the contents of the page out to the database file. */ if( rc==SQLITE_OK ){ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); rc = pager_write_pagelist(pPager, pPg); } } |
︙ | ︙ | |||
46800 46801 46802 46803 46804 46805 46806 | ** disk and uses an in-memory rollback journal. ** ** This branch also runs for files marked as immutable. */ act_like_temp_file: tempFile = 1; pPager->eState = PAGER_READER; /* Pretend we already have a lock */ | | | | 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 | ** disk and uses an in-memory rollback journal. ** ** This branch also runs for files marked as immutable. */ act_like_temp_file: tempFile = 1; pPager->eState = PAGER_READER; /* Pretend we already have a lock */ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ pPager->noLock = 1; /* Do no locking */ readOnly = (vfsFlags&SQLITE_OPEN_READONLY); } /* The following call to PagerSetPagesize() serves to set the value of ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. */ if( rc==SQLITE_OK ){ assert( pPager->memDb==0 ); rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); testcase( rc!=SQLITE_OK ); } /* Initialize the PCache object. */ if( rc==SQLITE_OK ){ assert( nExtra<1000 ); nExtra = ROUND8(nExtra); rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); } /* If an error occurred above, free the Pager structure and close the file. */ if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->fd); sqlite3PageFree(pPager->pTmpSpace); |
︙ | ︙ | |||
47206 47207 47208 47209 47210 47211 47212 | if( !pPager->tempFile && pPager->hasBeenUsed ){ /* The shared-lock has just been acquired then check to ** see if the database has been modified. If the database has changed, ** flush the cache. The pPager->hasBeenUsed flag prevents this from ** occurring on the very first access to a file, in order to save a ** single unnecessary sqlite3OsRead() call at the start-up. ** | | | 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 | if( !pPager->tempFile && pPager->hasBeenUsed ){ /* The shared-lock has just been acquired then check to ** see if the database has been modified. If the database has changed, ** flush the cache. The pPager->hasBeenUsed flag prevents this from ** occurring on the very first access to a file, in order to save a ** single unnecessary sqlite3OsRead() call at the start-up. ** ** Database changes are detected by looking at 15 bytes beginning ** at offset 24 into the file. The first 4 of these 16 bytes are ** a 32-bit counter that is incremented with each change. The ** other bytes change randomly with each file change when ** a codec is in use. ** ** There is a vanishingly small chance that a change will not be ** detected. The chance of an undetected change is so small that |
︙ | ︙ | |||
47414 47415 47416 47417 47418 47419 47420 | { sqlite3_pcache_page *pBase; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; | > > > > | > | > | | | < | 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 | { sqlite3_pcache_page *pBase; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; if( pBase==0 ){ pPg = *ppPage = 0; rc = SQLITE_NOMEM; goto pager_acquire_err; } } pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); assert( pPg!=0 ); } } if( rc!=SQLITE_OK ){ /* Either the call to sqlite3PcacheFetch() returned an error or the ** pager was already in the error-state when this function was called. ** Set pPg to 0 and jump to the exception handler. */ pPg = 0; goto pager_acquire_err; } assert( pPg==(*ppPage) ); assert( pPg->pgno==pgno ); assert( pPg->pPager==pPager || pPg->pPager==0 ); if( pPg->pPager && !noContent ){ /* In this case the pcache already contains an initialized copy of ** the page. Return without further ado. */ assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); pPager->aStat[PAGER_STAT_HIT]++; return SQLITE_OK; }else{ /* The pager cache has created a new page. Its content needs to ** be initialized. */ pPg->pPager = pPager; /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page ** number greater than this, or the unused locking-page, is requested. */ if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ rc = SQLITE_CORRUPT_BKPT; goto pager_acquire_err; |
︙ | ︙ | |||
47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 | SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); assert( pPage==0 || pPager->hasBeenUsed ); return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** If the number of references to the page drop to zero, then the | > | 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 | SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); assert( pPage==0 || pPager->hasBeenUsed ); if( pPage==0 ) return 0; return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** If the number of references to the page drop to zero, then the |
︙ | ︙ | |||
47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 | assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < | < < < < < < | < < < < < < < < < < | < < < < | < < < | < < < < < < | < | < < < < < < < < < < < < < < < < | | < > | | > | < | | | | | | | | | | | | > > > > > > > | | < < | | | | | < | < | | | | | | | | | | 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 | assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Write page pPg onto the end of the rollback journal. */ static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc; u32 cksum; char *pData2; i64 iOff = pPager->journalOff; /* We should never write to the journal file the page that ** contains the database locks. The following assert verifies ** that we do not. */ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); assert( pPager->journalHdr<=pPager->journalOff ); CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); cksum = pager_cksum(pPager, (u8*)pData2); /* Even if an IO or diskfull error occurs while journalling the ** page in the block above, set the need-sync flag for the page. ** Otherwise, when the transaction is rolled back, the logic in ** playback_one_page() will think that the page needs to be restored ** in the database file. And if an IO error occurs while doing so, ** then corruption may follow. */ pPg->flags |= PGHDR_NEED_SYNC; rc = write32bits(pPager->jfd, iOff, pPg->pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); if( rc!=SQLITE_OK ) return rc; rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); if( rc!=SQLITE_OK ) return rc; IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, pPager->journalOff, pPager->pageSize)); PAGER_INCR(sqlite3_pager_writej_count); PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); pPager->journalOff += 8 + pPager->pageSize; pPager->nRec++; assert( pPager->pInJournal!=0 ); rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); rc |= addToSavepointBitvecs(pPager, pPg->pgno); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; /* This routine is not called unless a write-transaction has already ** been started. The journal file may or may not be open at this point. ** It is never called in the ERROR state. */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( pPager->errCode==0 ); assert( pPager->readOnly==0 ); CHECK_PAGE(pPg); /* The journal file needs to be opened. Higher level routines have already ** obtained the necessary locks to begin the write-transaction, but the ** rollback journal might not yet be open. Open it now if this is the case. ** ** This is done before calling sqlite3PcacheMakeDirty() on the page. ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then ** an error might occur and the pager would end up in WRITER_LOCKED state ** with pages marked as dirty in the cache. */ if( pPager->eState==PAGER_WRITER_LOCKED ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); assert( assert_pager_state(pPager) ); /* Mark the page that is about to be modified as dirty. */ sqlite3PcacheMakeDirty(pPg); /* If a rollback journal is in use, them make sure the page that is about ** to change is in the rollback journal, or if the page is a new page off ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. */ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); if( pPager->pInJournal!=0 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 ){ assert( pagerUseWal(pPager)==0 ); if( pPg->pgno<=pPager->dbOrigSize ){ rc = pagerAddPageToRollbackJournal(pPg); if( rc!=SQLITE_OK ){ return rc; } }else{ if( pPager->eState!=PAGER_WRITER_DBMOD ){ pPg->flags |= PGHDR_NEED_SYNC; } PAGERTRACE(("APPEND %d page %d needSync=%d\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); } } /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list ** and before writing the page into the rollback journal. Wait until now, ** after the page has been successfully journalled, before setting the ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. */ pPg->flags |= PGHDR_WRITEABLE; /* If the statement journal is open and the page is not in it, ** then write the page into the statement journal. */ if( pPager->nSavepoint>0 ){ rc = subjournalPageIfRequired(pPg); } /* Update the database size and return. */ if( pPager->dbSize<pPg->pgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* ** This is a variant of sqlite3PagerWrite() that runs when the sector size ** is larger than the page size. SQLite makes the (reasonable) assumption that ** all bytes of a sector are written together by hardware. Hence, all bytes of ** a sector need to be journalled in case of a power loss in the middle of ** a write. ** ** Usually, the sector size is less than or equal to the page size, in which ** case pages can be individually written. This routine only runs in the ** exceptional case where the page size is smaller than the sector size. */ static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ int rc = SQLITE_OK; /* Return code */ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ Pager *pPager = pPg->pPager; /* The pager that owns pPg */ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow ** a journal header to be written between the pages journaled by ** this function. */ assert( !MEMDB ); |
︙ | ︙ | |||
47962 47963 47964 47965 47966 47967 47968 47969 | ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. ** ** If an error occurs, SQLITE_NOMEM or an IO error code is returned ** as appropriate. Otherwise, SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ assert( (pPg->flags & PGHDR_MMAP)==0 ); | > | | | > > > | | | 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 | ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. ** ** If an error occurs, SQLITE_NOMEM or an IO error code is returned ** as appropriate. Otherwise, SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( (pPg->flags & PGHDR_MMAP)==0 ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( pPager->eState!=PAGER_ERROR ); assert( assert_pager_state(pPager) ); if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); return SQLITE_OK; }else if( pPager->sectorSize > (u32)pPager->pageSize ){ return pagerWriteLargeSector(pPg); }else{ return pager_write(pPg); } } /* ** Return TRUE if the page given in the argument was previously passed ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok ** to change the content of the page. */ #ifndef NDEBUG SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ return pPg->flags & PGHDR_WRITEABLE; } #endif /* ** A call to this routine tells the pager that it is not necessary to ** write the information on page pPg back to the disk, even though ** that page might be marked as dirty. This happens, for example, when |
︙ | ︙ | |||
48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 | */ SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) pPg->flags |= PGHDR_DONT_WRITE; pager_set_pagehash(pPg); } } /* ** This routine is called to increment the value of the database file ** change-counter, stored as a 4-byte big-endian integer starting at | > | 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 | */ SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) pPg->flags |= PGHDR_DONT_WRITE; pPg->flags &= ~PGHDR_WRITEABLE; pager_set_pagehash(pPg); } } /* ** This routine is called to increment the value of the database file ** change-counter, stored as a 4-byte big-endian integer starting at |
︙ | ︙ | |||
48558 48559 48560 48561 48562 48563 48564 | ** to make up the difference. If the number of savepoints is already ** equal to nSavepoint, then this function is a no-op. ** ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | < < < < < < < < < < < < < < < < < < | < < < < < | | < < | < | < < < < < < | 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 48659 48660 48661 48662 48663 48664 48665 48666 48667 48668 48669 48670 48671 48672 48673 48674 48675 | ** to make up the difference. If the number of savepoints is already ** equal to nSavepoint, then this function is a no-op. ** ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ int rc = SQLITE_OK; /* Return code */ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ int ii; /* Iterator variable */ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( nSavepoint>nCurrent && pPager->useJournal ); /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM ** if the allocation fails. Otherwise, zero the new portion in case a ** malloc failure occurs while populating it in the for(...) loop below. */ aNew = (PagerSavepoint *)sqlite3Realloc( pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint ); if( !aNew ){ return SQLITE_NOMEM; } memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); pPager->aSavepoint = aNew; /* Populate the PagerSavepoint structures just allocated. */ for(ii=nCurrent; ii<nSavepoint; ii++){ aNew[ii].nOrig = pPager->dbSize; if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ aNew[ii].iOffset = pPager->journalOff; }else{ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); } aNew[ii].iSubRec = pPager->nSubRec; aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); if( !aNew[ii].pInSavepoint ){ return SQLITE_NOMEM; } if( pagerUseWal(pPager) ){ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); } pPager->nSavepoint = ii+1; } assert( pPager->nSavepoint==nSavepoint ); assertTruncateConstraint(pPager); return rc; } SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ return pagerOpenSavepoint(pPager, nSavepoint); }else{ return SQLITE_OK; } } /* ** This function is called to rollback or release (commit) a savepoint. ** The savepoint to release or rollback need not be the most recently ** created savepoint. ** ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. |
︙ | ︙ | |||
48836 48837 48838 48839 48840 48841 48842 | ** be possible to restore its contents when the "ROLLBACK TO one" ** statement were is processed. ** ** subjournalPage() may need to allocate space to store pPg->pgno into ** one or more savepoint bitvecs. This is the reason this function ** may return SQLITE_NOMEM. */ | | < | | 48892 48893 48894 48895 48896 48897 48898 48899 48900 48901 48902 48903 48904 48905 48906 48907 | ** be possible to restore its contents when the "ROLLBACK TO one" ** statement were is processed. ** ** subjournalPage() may need to allocate space to store pPg->pgno into ** one or more savepoint bitvecs. This is the reason this function ** may return SQLITE_NOMEM. */ if( (pPg->flags & PGHDR_DIRTY)!=0 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) ){ return rc; } PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) |
︙ | ︙ | |||
52820 52821 52822 52823 52824 52825 52826 52827 52828 52829 52830 52831 52832 52833 | u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th ** non-overflow cell */ u8 *apOvfl[5]; /* Pointers to the body of overflow cells */ BtShared *pBt; /* Pointer to BtShared that this page is part of */ u8 *aData; /* Pointer to disk image of the page data */ u8 *aDataEnd; /* One byte past the end of usable data */ u8 *aCellIdx; /* The cell index area */ DbPage *pDbPage; /* Pager page handle */ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */ Pgno pgno; /* Page number for this page */ }; /* | > | 52875 52876 52877 52878 52879 52880 52881 52882 52883 52884 52885 52886 52887 52888 52889 | u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th ** non-overflow cell */ u8 *apOvfl[5]; /* Pointers to the body of overflow cells */ BtShared *pBt; /* Pointer to BtShared that this page is part of */ u8 *aData; /* Pointer to disk image of the page data */ u8 *aDataEnd; /* One byte past the end of usable data */ u8 *aCellIdx; /* The cell index area */ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */ DbPage *pDbPage; /* Pager page handle */ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */ Pgno pgno; /* Page number for this page */ }; /* |
︙ | ︙ | |||
53031 53032 53033 53034 53035 53036 53037 | ** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op. ** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op. ** eState==FAULT: Cursor fault with skipNext as error code. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ | | < > | > > > | > > > > | 53087 53088 53089 53090 53091 53092 53093 53094 53095 53096 53097 53098 53099 53100 53101 53102 53103 53104 53105 53106 53107 53108 53109 53110 53111 53112 53113 53114 53115 53116 53117 53118 53119 53120 53121 53122 53123 53124 53125 53126 53127 53128 53129 53130 53131 53132 53133 | ** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op. ** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op. ** eState==FAULT: Cursor fault with skipNext as error code. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext; /* Forms a linked list of all cursors */ Pgno *aOverflow; /* Cache of overflow page locations */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor last known position */ Pgno pgnoRoot; /* The root page of this tree */ int nOvflAlloc; /* Allocated size of aOverflow[] array */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive. ** Error code if eState==CURSOR_FAULT */ u8 curFlags; /* zero or more BTCF_* flags defined below */ u8 curPagerFlags; /* Flags to send to sqlite3PagerAcquire() */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ u8 hints; /* As configured by CursorSetHints() */ /* All fields above are zeroed when the cursor is allocated. See ** sqlite3BtreeCursorZero(). Fields that follow must be manually ** initialized. */ i8 iPage; /* Index of current page in apPage */ u8 curIntKey; /* Value of apPage[0]->intKey */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ void *padding1; /* Make object size a multiple of 16 */ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ #define BTCF_AtLast 0x08 /* Cursor is pointing ot the last entry */ #define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ #define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */ /* ** Potential values for BtCursor.eState. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been |
︙ | ︙ | |||
53209 53210 53211 53212 53213 53214 53215 53216 53217 53218 53219 53220 53221 53222 | ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /************** End of btreeInt.h ********************************************/ /************** Continuing where we left off in btmutex.c ********************/ #ifndef SQLITE_OMIT_SHARED_CACHE #if SQLITE_THREADSAFE /* ** Obtain the BtShared mutex associated with B-Tree handle p. Also, | > > > > > > > > > > > > > > > | 53272 53273 53274 53275 53276 53277 53278 53279 53280 53281 53282 53283 53284 53285 53286 53287 53288 53289 53290 53291 53292 53293 53294 53295 53296 53297 53298 53299 53300 | ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /* ** get2byteAligned(), unlike get2byte(), requires that its argument point to a ** two-byte aligned address. get2bytea() is only used for accessing the ** cell addresses in a btree header. */ #if SQLITE_BYTEORDER==4321 # define get2byteAligned(x) (*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000 # define get2byteAligned(x) __builtin_bswap16(*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 # define get2byteAligned(x) _byteswap_ushort(*(u16*)(x)) #else # define get2byteAligned(x) ((x)[0]<<8 | (x)[1]) #endif /************** End of btreeInt.h ********************************************/ /************** Continuing where we left off in btmutex.c ********************/ #ifndef SQLITE_OMIT_SHARED_CACHE #if SQLITE_THREADSAFE /* ** Obtain the BtShared mutex associated with B-Tree handle p. Also, |
︙ | ︙ | |||
54118 54119 54120 54121 54122 54123 54124 | /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ | | | > > > > > > > > > | > > | 54196 54197 54198 54199 54200 54201 54202 54203 54204 54205 54206 54207 54208 54209 54210 54211 54212 54213 54214 54215 54216 54217 54218 54219 54220 54221 54222 54223 54224 54225 54226 54227 54228 54229 54230 54231 54232 54233 54234 54235 54236 54237 54238 54239 54240 54241 54242 54243 54244 54245 54246 54247 54248 54249 54250 54251 54252 54253 54254 54255 54256 54257 54258 54259 54260 54261 54262 54263 54264 54265 54266 54267 | /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ if( 0==pCur->curIntKey ){ void *pKey = sqlite3Malloc( pCur->nKey ); if( pKey ){ rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); if( rc==SQLITE_OK ){ pCur->pKey = pKey; }else{ sqlite3_free(pKey); } }else{ rc = SQLITE_NOMEM; } } assert( !pCur->curIntKey || !pCur->pKey ); if( rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } invalidateOverflowCache(pCur); return rc; } /* Forward reference */ static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); /* ** Save the positions of all cursors (except pExcept) that are open on ** the table with root-page iRoot. "Saving the cursor position" means that ** the location in the btree is remembered in such a way that it can be ** moved back to the same spot after the btree has been modified. This ** routine is called just before cursor pExcept is used to modify the ** table, for example in BtreeDelete() or BtreeInsert(). ** ** If there are two or more cursors on the same btree, then all such ** cursors should have their BTCF_Multiple flag set. The btreeCursor() ** routine enforces that rule. This routine only needs to be called in ** the uncommon case when pExpect has the BTCF_Multiple flag set. ** ** If pExpect!=NULL and if no other cursors are found on the same root-page, ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another ** pointless call to this routine. ** ** Implementation note: This routine merely checks to see if any cursors ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) ** event that cursors are in need to being saved. */ static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pExcept==0 || pExcept->pBt==pBt ); for(p=pBt->pCursor; p; p=p->pNext){ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; } if( p ) return saveCursorsOnList(p, iRoot, pExcept); if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; return SQLITE_OK; } /* This helper routine to saveAllCursors does the actual work of saving ** the cursors if and when a cursor is found that actually requires saving. ** The common case is that no cursors need to be saved, so this routine is ** broken out from its caller to avoid unnecessary stack pointer movement. */ |
︙ | ︙ | |||
54451 54452 54453 54454 54455 54456 54457 54458 54459 54460 54461 | #define ptrmapPutOvflPtr(x, y, rc) #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** This routine works only for pages that do not contain overflow cells. */ #define findCell(P,I) \ | > > > | > > > | 54540 54541 54542 54543 54544 54545 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 54561 54562 54563 54564 | #define ptrmapPutOvflPtr(x, y, rc) #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** findCellPastPtr() does the same except it skips past the initial ** 4-byte child pointer found on interior pages, if there is one. ** ** This routine works only for pages that do not contain overflow cells. */ #define findCell(P,I) \ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) #define findCellPastPtr(P,I) \ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) /* ** This is common tail processing for btreeParseCellPtr() and ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely ** on a single B-tree page. Make necessary adjustments to the CellInfo ** structure. */ |
︙ | ︙ | |||
55201 55202 55203 55204 55205 55206 55207 55208 55209 55210 55211 55212 55213 55214 | assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; pPage->aDataEnd = &data[usableSize]; pPage->aCellIdx = &data[cellOffset]; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[hdr+3]); | > | 55296 55297 55298 55299 55300 55301 55302 55303 55304 55305 55306 55307 55308 55309 55310 | assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; pPage->aDataEnd = &data[usableSize]; pPage->aCellIdx = &data[cellOffset]; pPage->aDataOfst = &data[pPage->childPtrSize]; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[hdr+3]); |
︙ | ︙ | |||
55234 55235 55236 55237 55238 55239 55240 | iCellLast = usableSize - 4; if( pBt->db->flags & SQLITE_CellSizeCk ){ int i; /* Index into the cell pointer array */ int sz; /* Size of a cell */ if( !pPage->leaf ) iCellLast--; for(i=0; i<pPage->nCell; i++){ | | | 55330 55331 55332 55333 55334 55335 55336 55337 55338 55339 55340 55341 55342 55343 55344 | iCellLast = usableSize - 4; if( pBt->db->flags & SQLITE_CellSizeCk ){ int i; /* Index into the cell pointer array */ int sz; /* Size of a cell */ if( !pPage->leaf ) iCellLast--; for(i=0; i<pPage->nCell; i++){ pc = get2byteAligned(&data[cellOffset+i*2]); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_BKPT; } sz = pPage->xCellSize(pPage, &data[pc]); testcase( pc+sz==usableSize ); |
︙ | ︙ | |||
55320 55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 55331 55332 55333 55334 55335 55336 55337 55338 55339 55340 55341 55342 55343 55344 | data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->usableSize]; pPage->aCellIdx = &data[first]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by ** the btree layer. */ static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); pPage->aData = sqlite3PagerGetData(pDbPage); pPage->pDbPage = pDbPage; pPage->pBt = pBt; pPage->pgno = pgno; | > | | 55416 55417 55418 55419 55420 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 55431 55432 55433 55434 55435 55436 55437 55438 55439 55440 55441 55442 55443 55444 55445 55446 55447 55448 55449 | data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->usableSize]; pPage->aCellIdx = &data[first]; pPage->aDataOfst = &data[pPage->childPtrSize]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by ** the btree layer. */ static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); pPage->aData = sqlite3PagerGetData(pDbPage); pPage->pDbPage = pDbPage; pPage->pBt = pBt; pPage->pgno = pgno; pPage->hdrOffset = pgno==1 ? 100 : 0; return pPage; } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). ** |
︙ | ︙ | |||
55399 55400 55401 55402 55403 55404 55405 | SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); assert( ((p->pBt->nPage)&0x8000000)==0 ); return btreePagecount(p->pBt); } /* | | | > > > | > > | > | > > > | | > > > > > | | | | | > | | | > > > > > > > > | > > > > | < | | | | | | | | > > | 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 55516 55517 55518 55519 55520 55521 55522 55523 55524 55525 55526 55527 55528 55529 55530 55531 55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 55553 55554 55555 55556 55557 55558 55559 55560 55561 55562 55563 55564 55565 55566 55567 55568 55569 55570 55571 55572 55573 55574 55575 55576 55577 55578 55579 55580 55581 55582 55583 55584 55585 | SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); assert( ((p->pBt->nPage)&0x8000000)==0 ); return btreePagecount(p->pBt); } /* ** Get a page from the pager and initialize it. ** ** If pCur!=0 then the page is being fetched as part of a moveToChild() ** call. Do additional sanity checking on the page in this case. ** And if the fetch fails, this routine must decrement pCur->iPage. ** ** The page is fetched as read-write unless pCur is not NULL and is ** a read-only cursor. ** ** If an error occurs, then *ppPage is undefined. It ** may remain unchanged, or it may be set to an invalid value. */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage, /* Write the page pointer here */ BtCursor *pCur, /* Cursor to receive the page, or NULL */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] ); assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); assert( pCur==0 || pCur->iPage>0 ); if( pgno>btreePagecount(pBt) ){ rc = SQLITE_CORRUPT_BKPT; goto getAndInitPage_error; } rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); if( rc ){ goto getAndInitPage_error; } *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); if( (*ppPage)->isInit==0 ){ rc = btreeInitPage(*ppPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); goto getAndInitPage_error; } } /* If obtaining a child page for a cursor, we must verify that the page is ** compatible with the root page. */ if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ rc = SQLITE_CORRUPT_BKPT; releasePage(*ppPage); goto getAndInitPage_error; } return SQLITE_OK; getAndInitPage_error: if( pCur ) pCur->iPage--; testcase( pgno==0 ); assert( pgno!=0 || rc==SQLITE_CORRUPT ); return rc; } /* ** Release a MemPage. This should be called once for each prior ** call to btreeGetPage. */ static void releasePageNotNull(MemPage *pPage){ assert( pPage->aData ); assert( pPage->pBt ); assert( pPage->pDbPage!=0 ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sqlite3PagerUnrefNotNull(pPage->pDbPage); } static void releasePage(MemPage *pPage){ if( pPage ) releasePageNotNull(pPage); } /* ** Get an unused page. ** ** This works just like btreeGetPage() with the addition: ** |
︙ | ︙ | |||
56421 56422 56423 56424 56425 56426 56427 | assert( sqlite3_mutex_held(pBt->mutex) ); assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ MemPage *pPage1 = pBt->pPage1; assert( pPage1->aData ); assert( sqlite3PagerRefcount(pBt->pPager)==1 ); pBt->pPage1 = 0; | | | 56546 56547 56548 56549 56550 56551 56552 56553 56554 56555 56556 56557 56558 56559 56560 | assert( sqlite3_mutex_held(pBt->mutex) ); assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ MemPage *pPage1 = pBt->pPage1; assert( pPage1->aData ); assert( sqlite3PagerRefcount(pBt->pPager)==1 ); pBt->pPage1 = 0; releasePageNotNull(pPage1); } } /* ** If pBt points to an empty file then convert that empty file ** into a new empty database by initializing the first page of ** the database. |
︙ | ︙ | |||
57477 57478 57479 57480 57481 57482 57483 57484 57485 57486 57487 57488 57489 57490 57491 57492 57493 57494 57495 57496 57497 57498 | Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ BtShared *pBt = p->pBt; /* Shared b-tree handle */ assert( sqlite3BtreeHoldsMutex(p) ); assert( wrFlag==0 || wrFlag==1 ); /* The following assert statements verify that if this is a sharable ** b-tree database, the connection is holding the required table locks, ** and that no other connection has any open cursor that conflicts with ** this lock. */ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); /* Assert that the caller has opened the required transaction. */ assert( p->inTrans>TRANS_NONE ); assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); assert( pBt->pPage1 && pBt->pPage1->aData ); | > < | < | > > > | | > | | > > | 57602 57603 57604 57605 57606 57607 57608 57609 57610 57611 57612 57613 57614 57615 57616 57617 57618 57619 57620 57621 57622 57623 57624 57625 57626 57627 57628 57629 57630 57631 57632 57633 57634 57635 57636 57637 57638 57639 57640 57641 57642 57643 57644 57645 57646 57647 57648 57649 57650 57651 57652 57653 57654 57655 57656 57657 57658 57659 57660 57661 | Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ BtShared *pBt = p->pBt; /* Shared b-tree handle */ BtCursor *pX; /* Looping over other all cursors */ assert( sqlite3BtreeHoldsMutex(p) ); assert( wrFlag==0 || wrFlag==1 ); /* The following assert statements verify that if this is a sharable ** b-tree database, the connection is holding the required table locks, ** and that no other connection has any open cursor that conflicts with ** this lock. */ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); /* Assert that the caller has opened the required transaction. */ assert( p->inTrans>TRANS_NONE ); assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); assert( pBt->pPage1 && pBt->pPage1->aData ); assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); if( wrFlag ){ allocateTempSpace(pBt); if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM; } if( iTable==1 && btreePagecount(pBt)==0 ){ assert( wrFlag==0 ); iTable = 0; } /* Now that no other errors can occur, finish filling in the BtCursor ** variables and link the cursor into the BtShared list. */ pCur->pgnoRoot = (Pgno)iTable; pCur->iPage = -1; pCur->pKeyInfo = pKeyInfo; pCur->pBtree = p; pCur->pBt = pBt; assert( wrFlag==0 || wrFlag==BTCF_WriteFlag ); pCur->curFlags = wrFlag; pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; /* If there are two or more cursors on the same btree, then all such ** cursors *must* have the BTCF_Multiple flag set. */ for(pX=pBt->pCursor; pX; pX=pX->pNext){ if( pX->pgnoRoot==(Pgno)iTable ){ pX->curFlags |= BTCF_Multiple; pCur->curFlags |= BTCF_Multiple; } } pCur->pNext = pBt->pCursor; pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3BtreeCursor( Btree *p, /* The btree */ int iTable, /* Root page of table to open */ |
︙ | ︙ | |||
57575 57576 57577 57578 57579 57580 57581 | SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ int i; BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); sqlite3BtreeClearCursor(pCur); | > | | > > > | > | | | | 57705 57706 57707 57708 57709 57710 57711 57712 57713 57714 57715 57716 57717 57718 57719 57720 57721 57722 57723 57724 57725 57726 57727 57728 57729 57730 | SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ int i; BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); sqlite3BtreeClearCursor(pCur); assert( pBt->pCursor!=0 ); if( pBt->pCursor==pCur ){ pBt->pCursor = pCur->pNext; }else{ BtCursor *pPrev = pBt->pCursor; do{ if( pPrev->pNext==pCur ){ pPrev->pNext = pCur->pNext; break; } pPrev = pPrev->pNext; }while( ALWAYS(pPrev) ); } for(i=0; i<=pCur->iPage; i++){ releasePage(pCur->apPage[i]); } unlockBtreeIfUnused(pBt); sqlite3_free(pCur->aOverflow); /* sqlite3_free(pCur); */ |
︙ | ︙ | |||
58127 58128 58129 58130 58131 58132 58133 | ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ | < < < < < < < < < < | < < > | > | 58262 58263 58264 58265 58266 58267 58268 58269 58270 58271 58272 58273 58274 58275 58276 58277 58278 58279 58280 58281 58282 58283 58284 58285 58286 58287 58288 58289 58290 | ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ BtShared *pBt = pCur->pBt; assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->iPage++; pCur->aiIdx[pCur->iPage] = 0; return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage], pCur, pCur->curPagerFlags); } #if SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of |
︙ | ︙ | |||
58195 58196 58197 58198 58199 58200 58201 | assert( pCur->apPage[pCur->iPage] ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->apPage[pCur->iPage]->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); | < < < > | 58320 58321 58322 58323 58324 58325 58326 58327 58328 58329 58330 58331 58332 58333 58334 58335 58336 | assert( pCur->apPage[pCur->iPage] ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->apPage[pCur->iPage]->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); releasePageNotNull(pCur->apPage[pCur->iPage--]); } /* ** Move the cursor to point to the root page of its b-tree structure. ** ** If the table has a virtual root page, then the cursor is moved to point ** to the virtual root page instead of the actual root page. A table has a |
︙ | ︙ | |||
58240 58241 58242 58243 58244 58245 58246 | assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } if( pCur->iPage>=0 ){ | | > > > > | > | 58363 58364 58365 58366 58367 58368 58369 58370 58371 58372 58373 58374 58375 58376 58377 58378 58379 58380 58381 58382 58383 58384 58385 58386 58387 58388 58389 58390 58391 58392 58393 | assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } if( pCur->iPage>=0 ){ while( pCur->iPage ){ assert( pCur->apPage[pCur->iPage]!=0 ); releasePageNotNull(pCur->apPage[pCur->iPage--]); } }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_OK; }else{ assert( pCur->iPage==(-1) ); rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], 0, pCur->curPagerFlags); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; pCur->curIntKey = pCur->apPage[0]->intKey; } pRoot = pCur->apPage[0]; assert( pRoot->pgno==pCur->pgnoRoot ); /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is ** NULL, the caller expects a table b-tree. If this is not the case, |
︙ | ︙ | |||
58454 58455 58456 58457 58458 58459 58460 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 | | | 58582 58583 58584 58585 58586 58587 58588 58589 58590 58591 58592 58593 58594 58595 58596 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 && pCur->curIntKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ *pRes = -1; |
︙ | ︙ | |||
58489 58490 58491 58492 58493 58494 58495 | assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); return SQLITE_OK; } | | > | 58617 58618 58619 58620 58621 58622 58623 58624 58625 58626 58627 58628 58629 58630 58631 58632 | assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); return SQLITE_OK; } assert( pCur->apPage[0]->intKey==pCur->curIntKey ); assert( pCur->curIntKey || pIdxKey ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->apPage[pCur->iPage]; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page |
︙ | ︙ | |||
58512 58513 58514 58515 58516 58517 58518 | upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; | | | 58641 58642 58643 58644 58645 58646 58647 58648 58649 58650 58651 58652 58653 58654 58655 | upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; pCell = findCellPastPtr(pPage, idx); if( pPage->intKeyLeaf ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; } } getVarint(pCell, (u64*)&nCellKey); if( nCellKey<intKey ){ |
︙ | ︙ | |||
58545 58546 58547 58548 58549 58550 58551 | } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } }else{ for(;;){ int nCell; /* Size of the pCell cell in bytes */ | | | 58674 58675 58676 58677 58678 58679 58680 58681 58682 58683 58684 58685 58686 58687 58688 | } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } }else{ for(;;){ int nCell; /* Size of the pCell cell in bytes */ pCell = findCellPastPtr(pPage, idx); /* The maximum supported page-size is 65536 bytes. This means that ** the maximum number of record bytes stored on an index B-Tree ** page is less than 16384 bytes and may be stored as a 2-byte ** varint. This information is used to attempt to avoid parsing ** the entire cell by checking for the cases where the record is ** stored entirely within the b-tree page by inspecting the first |
︙ | ︙ | |||
59483 59484 59485 59486 59487 59488 59489 | /* Fill in the payload size */ if( pPage->intKey ){ pSrc = pData; nSrc = nData; nData = 0; }else{ | | < < | 59612 59613 59614 59615 59616 59617 59618 59619 59620 59621 59622 59623 59624 59625 59626 | /* Fill in the payload size */ if( pPage->intKey ){ pSrc = pData; nSrc = nData; nData = 0; }else{ assert( nKey<=0x7fffffff && pKey!=0 ); nPayload = (int)nKey; pSrc = pKey; nSrc = (int)nKey; } if( nPayload<=pPage->maxLocal ){ n = nHeader + nPayload; testcase( n==3 ); |
︙ | ︙ | |||
60074 60075 60076 60077 60078 60079 60080 | put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); #ifdef SQLITE_DEBUG for(i=0; i<nNew && !CORRUPT_DB; i++){ u8 *pCell = pCArray->apCell[i+iNew]; | | | 60201 60202 60203 60204 60205 60206 60207 60208 60209 60210 60211 60212 60213 60214 60215 | put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); #ifdef SQLITE_DEBUG for(i=0; i<nNew && !CORRUPT_DB; i++){ u8 *pCell = pCArray->apCell[i+iNew]; int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){ pCell = &pTmp[pCell - aData]; } assert( 0==memcmp(pCell, &aData[iOff], pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); } #endif |
︙ | ︙ | |||
60448 60449 60450 60451 60452 60453 60454 | if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ | | | 60575 60576 60577 60578 60579 60580 60581 60582 60583 60584 60585 60586 60587 60588 60589 | if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); if( rc ){ memset(apOld, 0, (i+1)*sizeof(MemPage*)); goto balance_cleanup; } nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; if( (i--)==0 ) break; |
︙ | ︙ | |||
60576 60577 60578 60579 60580 60581 60582 | ** first. */ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit); if( pOld->nOverflow>0 ){ memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow); limit = pOld->aiOvfl[0]; for(j=0; j<limit; j++){ | | | | 60703 60704 60705 60706 60707 60708 60709 60710 60711 60712 60713 60714 60715 60716 60717 60718 60719 60720 60721 60722 60723 60724 60725 60726 60727 60728 60729 60730 | ** first. */ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit); if( pOld->nOverflow>0 ){ memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow); limit = pOld->aiOvfl[0]; for(j=0; j<limit; j++){ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); piCell += 2; b.nCell++; } for(k=0; k<pOld->nOverflow; k++){ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ b.apCell[b.nCell] = pOld->apOvfl[k]; b.nCell++; } } piEnd = aData + pOld->cellOffset + 2*pOld->nCell; while( piCell<piEnd ){ assert( b.nCell<nMaxCells ); b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); piCell += 2; b.nCell++; } cntOld[i] = b.nCell; if( i<nOld-1 && !leafData){ u16 sz = (u16)szNew[i]; |
︙ | ︙ | |||
61366 61367 61368 61369 61370 61371 61372 | ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the ** integer key to use. It then calls this function to actually insert the ** data into the intkey B-Tree. In this case btreeMoveto() recognizes ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ | > | | | > > | | | | > > | | < | 61493 61494 61495 61496 61497 61498 61499 61500 61501 61502 61503 61504 61505 61506 61507 61508 61509 61510 61511 61512 61513 61514 61515 61516 61517 61518 61519 61520 61521 61522 61523 61524 61525 61526 61527 61528 | ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the ** integer key to use. It then calls this function to actually insert the ** data into the intkey B-Tree. In this case btreeMoveto() recognizes ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; } if( pCur->pKeyInfo==0 ){ assert( pKey==0 ); /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary ** btreeMoveto() call */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){ loc = -1; }else if( loc==0 ){ rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc); if( rc ) return rc; } }else if( loc==0 ){ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); if( rc ) return rc; } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); pPage = pCur->apPage[pCur->iPage]; assert( pPage->intKey || nKey>=0 ); |
︙ | ︙ | |||
61485 61486 61487 61488 61489 61490 61491 | assert( cursorHoldsMutex(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); | < | | < < < | 61616 61617 61618 61619 61620 61621 61622 61623 61624 61625 61626 61627 61628 61629 61630 61631 | assert( cursorHoldsMutex(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); assert( pCur->eState==CURSOR_VALID ); iCellDepth = pCur->iPage; iCellIdx = pCur->aiIdx[iCellDepth]; pPage = pCur->apPage[iCellDepth]; pCell = findCell(pPage, iCellIdx); /* If the page containing the entry to delete is not a leaf page, move |
︙ | ︙ | |||
61515 61516 61517 61518 61519 61520 61521 | } /* Save the positions of any other cursors open on this table before ** making any modifications. Make the page containing the entry to be ** deleted writable. Then free any overflow pages associated with the ** entry and finally remove the cell itself from within the page. */ | > | | > | 61642 61643 61644 61645 61646 61647 61648 61649 61650 61651 61652 61653 61654 61655 61656 61657 61658 61659 | } /* Save the positions of any other cursors open on this table before ** making any modifications. Make the page containing the entry to be ** deleted writable. Then free any overflow pages associated with the ** entry and finally remove the cell itself from within the page. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; } /* If this is a delete operation to remove a row from a table b-tree, ** invalidate any incrblob cursors open on the row being deleted. */ if( pCur->pKeyInfo==0 ){ invalidateIncrblobCursors(p, pCur->info.nKey, 0); } |
︙ | ︙ | |||
61765 61766 61767 61768 61769 61770 61771 | int hdr; u16 szCell; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } | | | 61894 61895 61896 61897 61898 61899 61900 61901 61902 61903 61904 61905 61906 61907 61908 | int hdr; u16 szCell; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); if( rc ) return rc; if( pPage->bBusy ){ rc = SQLITE_CORRUPT_BKPT; goto cleardatabasepage_out; } pPage->bBusy = 1; hdr = pPage->hdrOffset; |
︙ | ︙ | |||
62552 62553 62554 62555 62556 62557 62558 | nCell = get2byte(&data[hdr+3]); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=0; i<nCell; i++){ | | | 62681 62682 62683 62684 62685 62686 62687 62688 62689 62690 62691 62692 62693 62694 62695 | nCell = get2byte(&data[hdr+3]); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=0; i<nCell; i++){ int pc = get2byteAligned(&data[cellStart+i*2]); u32 size = 65536; if( pc<=usableSize-4 ){ size = pPage->xCellSize(pPage, &data[pc]); } if( (int)(pc+size-1)>=usableSize ){ pCheck->zPfx = 0; checkAppendMsg(pCheck, |
︙ | ︙ | |||
66022 66023 66024 66025 66026 66027 66028 | p->bIsReader = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; /* NOTE: Be sure to update mkopcodeh.awk when adding or removing ** cases from this switch! */ switch( opcode ){ | < < < < < | 66151 66152 66153 66154 66155 66156 66157 66158 66159 66160 66161 66162 66163 66164 | p->bIsReader = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; /* NOTE: Be sure to update mkopcodeh.awk when adding or removing ** cases from this switch! */ switch( opcode ){ case OP_Transaction: { if( pOp->p2!=0 ) p->readOnly = 0; /* fall thru */ } case OP_AutoCommit: case OP_Savepoint: { p->bIsReader = 1; |
︙ | ︙ | |||
66270 66271 66272 66273 66274 66275 66276 66277 66278 66279 66280 66281 66282 66283 | /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { sqlite3DbFree(db, p4); break; } | > > > > | 66394 66395 66396 66397 66398 66399 66400 66401 66402 66403 66404 66405 66406 66407 66408 66409 66410 66411 | /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); /* Fall through into the next case */ } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { sqlite3DbFree(db, p4); break; } |
︙ | ︙ | |||
66654 66655 66656 66657 66658 66659 66660 66661 66662 66663 66664 66665 66666 66667 | break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); break; | > > > > > > > | 66782 66783 66784 66785 66786 66787 66788 66789 66790 66791 66792 66793 66794 66795 66796 66797 66798 66799 66800 66801 66802 | break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } #ifdef SQLITE_DEBUG case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } #endif case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); break; |
︙ | ︙ | |||
68488 68489 68490 68491 68492 68493 68494 68495 68496 68497 68498 68499 68500 68501 | n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } /* ** Return the length of the data corresponding to the supplied serial-type. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=12 ){ return (serial_type-12)/2; }else{ | > > > > > > > < | | 68623 68624 68625 68626 68627 68628 68629 68630 68631 68632 68633 68634 68635 68636 68637 68638 68639 68640 68641 68642 68643 68644 68645 68646 68647 68648 68649 68650 68651 | n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } /* ** The sizes for serial types less than 12 */ static const u8 sqlite3SmallTypeSizes[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; /* ** Return the length of the data corresponding to the supplied serial-type. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=12 ){ return (serial_type-12)/2; }else{ return sqlite3SmallTypeSizes[serial_type]; } } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. |
︙ | ︙ | |||
68580 68581 68582 68583 68584 68585 68586 | if( serial_type==7 ){ assert( sizeof(v)==sizeof(pMem->u.r) ); memcpy(&v, &pMem->u.r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pMem->u.i; } | | | 68721 68722 68723 68724 68725 68726 68727 68728 68729 68730 68731 68732 68733 68734 68735 | if( serial_type==7 ){ assert( sizeof(v)==sizeof(pMem->u.r) ); memcpy(&v, &pMem->u.r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pMem->u.i; } len = i = sqlite3SmallTypeSizes[serial_type]; assert( i>0 ); do{ buf[--i] = (u8)(v&0xFF); v >>= 8; }while( i ); return len; } |
︙ | ︙ | |||
69609 69610 69611 69612 69613 69614 69615 | testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } | | | 69750 69751 69752 69753 69754 69755 69756 69757 69758 69759 69760 69761 69762 69763 69764 | testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } lenRowid = sqlite3SmallTypeSizes[typeRowid]; testcase( (u32)m.n==szHdr+lenRowid ); if( unlikely((u32)m.n<szHdr+lenRowid) ){ goto idx_rowid_corruption; } /* Fetch the integer off the end of the index record */ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
︙ | ︙ | |||
73200 73201 73202 73203 73204 73205 73206 | assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } | | | | | > > > > > > > > > > > > | | > > | > | > > > > > | < < < < < < < < < < < < < < < < > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | > | | < | | | 73341 73342 73343 73344 73345 73346 73347 73348 73349 73350 73351 73352 73353 73354 73355 73356 73357 73358 73359 73360 73361 73362 73363 73364 73365 73366 73367 73368 73369 73370 73371 73372 73373 73374 73375 73376 73377 73378 73379 73380 73381 73382 73383 73384 73385 73386 73387 73388 73389 73390 73391 73392 73393 73394 73395 73396 73397 73398 73399 73400 73401 73402 73403 73404 73405 73406 73407 73408 73409 73410 73411 73412 73413 73414 73415 73416 73417 73418 73419 73420 73421 73422 73423 73424 73425 73426 73427 73428 73429 73430 73431 73432 73433 73434 73435 73436 73437 73438 73439 73440 73441 73442 73443 73444 73445 73446 73447 73448 73449 73450 73451 73452 73453 73454 73455 73456 73457 73458 73459 73460 73461 73462 73463 | assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: Function0 P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to a FuncDef object that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: Function, AggStep, AggFinal */ /* Opcode: Function P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with P5 arguments taken ** from register P2 and successors. The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** SQL functions are initially coded as OP_Function0 with P4 pointing ** to a FuncDef object. But on first evaluation, the P4 operand is ** automatically converted into an sqlite3_context object and the operation ** changed to this OP_Function opcode. In this way, the initialization of ** the sqlite3_context object occurs only once, rather than once for each ** evaluation of the function. ** ** See also: Function0, AggStep, AggFinal */ case OP_Function0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pOut = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_Function; /* Fall through into OP_Function */ } case OP_Function: { int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ pOut = &aMem[pOp->p3]; if( pCtx->pOut != pOut ){ pCtx->pOut = pOut; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } memAboutToChange(p, pCtx->pOut); #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif MemSetTypeFlag(pCtx->pOut, MEM_Null); pCtx->fErrorOrAux = 0; db->lastRowid = lastRowid; (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ /* If the function returned an error, throw an exception */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); rc = pCtx->isError; } sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1); } /* Copy the result of the function into register P3 */ if( pOut->flags & (MEM_Str|MEM_Blob) ){ sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; } REGISTER_TRACE(pOp->p3, pCtx->pOut); UPDATE_MAX_BLOBSIZE(pCtx->pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and |
︙ | ︙ | |||
75669 75670 75671 75672 75673 75674 75675 | v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); | | < < > | 75851 75852 75853 75854 75855 75856 75857 75858 75859 75860 75861 75862 75863 75864 75865 75866 | v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); { /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm |
︙ | ︙ | |||
76410 76411 76412 76413 76414 76415 76416 | ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; | < < | | | | 76591 76592 76593 76594 76595 76596 76597 76598 76599 76600 76601 76602 76603 76604 76605 76606 76607 76608 76609 76610 76611 76612 76613 76614 76615 76616 76617 76618 76619 76620 76621 76622 76623 76624 | ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; int nKey; const char *zKey; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ if( pOp->opcode==OP_SorterInsert ){ rc = sqlite3VdbeSorterWrite(pC, pIn2); }else{ nKey = pIn2->n; zKey = pIn2->z; rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3, ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) ); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } } break; |
︙ | ︙ | |||
77351 77352 77353 77354 77355 77356 77357 | pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i==0, 2); if( (pIn1->u.i++)==0 ) goto jump_to_p2; break; } | | | > > > > > > > > > > > | > > > > > > | < < < < | < > < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > | | < < | | > | | | | > > > > | < | 77530 77531 77532 77533 77534 77535 77536 77537 77538 77539 77540 77541 77542 77543 77544 77545 77546 77547 77548 77549 77550 77551 77552 77553 77554 77555 77556 77557 77558 77559 77560 77561 77562 77563 77564 77565 77566 77567 77568 77569 77570 77571 77572 77573 77574 77575 77576 77577 77578 77579 77580 77581 77582 77583 77584 77585 77586 77587 77588 77589 77590 77591 77592 77593 77594 77595 77596 77597 77598 77599 77600 77601 77602 77603 77604 77605 77606 77607 77608 77609 77610 77611 77612 77613 77614 77615 77616 77617 77618 77619 77620 77621 77622 77623 77624 77625 77626 77627 77628 77629 77630 77631 77632 77633 77634 77635 77636 77637 77638 | pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i==0, 2); if( (pIn1->u.i++)==0 ) goto jump_to_p2; break; } /* Opcode: AggStep0 * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to an sqlite3_context ** object that is used to run the function. Register P3 is ** as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. ** ** This opcode is initially coded as OP_AggStep0. On first evaluation, ** the FuncDef stored in P4 is converted into an sqlite3_context and ** the opcode is changed. In this way, the initialization of the ** sqlite3_context only happens once, instead of on each call to the ** step function. */ case OP_AggStep0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pMem = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_AggStep; /* Fall through into OP_AggStep */ } case OP_AggStep: { int i; sqlite3_context *pCtx; Mem *pMem; Mem t; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; pMem = &aMem[pOp->p3]; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif pMem->n++; sqlite3VdbeMemInit(&t, db, MEM_Null); pCtx->pOut = &t; pCtx->fErrorOrAux = 0; pCtx->skipFlag = 0; (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); rc = pCtx->isError; } sqlite3VdbeMemRelease(&t); }else{ assert( t.flags==MEM_Null ); } if( pCtx->skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); } break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** Execute the finalizer function for an aggregate. P1 is |
︙ | ︙ | |||
86559 86560 86561 86562 86563 86564 86565 | pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | 86782 86783 86784 86785 86786 86787 86788 86789 86790 86791 86792 86793 86794 86795 86796 | pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg && constMask==0 ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } break; } |
︙ | ︙ | |||
89573 89574 89575 89576 89577 89578 89579 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif | | | 89796 89797 89798 89799 89800 89801 89802 89803 89804 89805 89806 89807 89808 89809 89810 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4, regOut); sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 1 + IsStat34); } /* ** Generate code to do an analysis of all indices associated with ** a single table. |
︙ | ︙ | |||
89728 89729 89730 89731 89732 89733 89734 | ** The third argument is only used for STAT3 and STAT4 */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); #endif sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); | | | 89951 89952 89953 89954 89955 89956 89957 89958 89959 89960 89961 89962 89963 89964 89965 | ** The third argument is only used for STAT3 and STAT4 */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); #endif sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4+1, regStat4); sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); /* Implementation of the following: ** ** Rewind csr ** if eof(csr) goto end_of_scan; |
︙ | ︙ | |||
89824 89825 89826 89827 89828 89829 89830 | VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); | | | 90047 90048 90049 90050 90051 90052 90053 90054 90055 90056 90057 90058 90059 90060 90061 | VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function0, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); /* Add the entry to the stat1 table. */ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
︙ | ︙ | |||
90883 90884 90885 90886 90887 90888 90889 | regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ | | | 91106 91107 91108 91109 91110 91111 91112 91113 91114 91115 91116 91117 91118 91119 91120 | regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddOp3(v, OP_Function0, 0, regArgs+3-pFunc->nArg, regArgs+3); assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg ); sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg)); sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). |
︙ | ︙ | |||
111758 111759 111760 111761 111762 111763 111764 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | 111981 111982 111983 111984 111985 111986 111987 111988 111989 111990 111991 111992 111993 111994 111995 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); sqlite3ExprCacheClear(pParse); |
︙ | ︙ | |||
115990 115991 115992 115993 115994 115995 115996 115997 | ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ for(i=0; i<db->nVTrans; i++){ | > > | | < | 116213 116214 116215 116216 116217 116218 116219 116220 116221 116222 116223 116224 116225 116226 116227 116228 116229 116230 116231 116232 116233 116234 116235 116236 116237 116238 116239 116240 116241 | ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; i<db->nVTrans; i++){ VTable *pVTab = aVTrans[i]; sqlite3_vtab *p = pVTab->pVtab; if( p ){ int (*x)(sqlite3_vtab *); x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); if( x ) x(p); } pVTab->iSavepoint = 0; sqlite3VtabUnlock(pVTab); } sqlite3DbFree(db, aVTrans); db->nVTrans = 0; } } /* ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans ** array. Return the error code for the first error that occurs, or ** SQLITE_OK if all xSync operations are successful. |
︙ | ︙ | |||
125584 125585 125586 125587 125588 125589 125590 | */ static int yy_pop_parser_stack(yyParser *pParser){ YYCODETYPE yymajor; yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; /* There is no mechanism by which the parser stack can be popped below ** empty in SQLite. */ | | | 125808 125809 125810 125811 125812 125813 125814 125815 125816 125817 125818 125819 125820 125821 125822 | */ static int yy_pop_parser_stack(yyParser *pParser){ YYCODETYPE yymajor; yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; /* There is no mechanism by which the parser stack can be popped below ** empty in SQLite. */ assert( pParser->yyidx>=0 ); #ifndef NDEBUG if( yyTraceFILE && pParser->yyidx>=0 ){ fprintf(yyTraceFILE,"%sPopping %s\n", yyTracePrompt, yyTokenName[yytos->major]); } #endif |
︙ | ︙ | |||
128768 128769 128770 128771 128772 128773 128774 | zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); | | | 128992 128993 128994 128995 128996 128997 128998 128999 129000 129001 129002 129003 129004 129005 129006 | zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_COMPLETE */ /************** End of complete.c ********************************************/ /************** Begin file main.c ********************************************/ /* |
︙ | ︙ | |||
131792 131793 131794 131795 131796 131797 131798 | #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Opening a db handle. Fourth parameter is passed 0. */ void *pArg = sqlite3GlobalConfig.pSqllogArg; sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); } #endif | | | 132016 132017 132018 132019 132020 132021 132022 132023 132024 132025 132026 132027 132028 132029 132030 | #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Opening a db handle. Fourth parameter is passed 0. */ void *pArg = sqlite3GlobalConfig.pSqllogArg; sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); } #endif return rc & 0xff; } /* ** Open a new database handle. */ SQLITE_API int SQLITE_STDCALL sqlite3_open( const char *zFilename, |
︙ | ︙ | |||
131850 131851 131852 131853 131854 131855 131856 | SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); | | | 132074 132075 132076 132077 132078 132079 132080 132081 132082 132083 132084 132085 132086 132087 132088 | SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int SQLITE_STDCALL sqlite3_create_collation( |
︙ | ︙ | |||
159800 159801 159802 159803 159804 159805 159806 | ** File control method. For custom operations on an otaVfs-file. */ static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){ ota_file *p = (ota_file *)pFile; int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl; int rc; | | | | 160024 160025 160026 160027 160028 160029 160030 160031 160032 160033 160034 160035 160036 160037 160038 160039 | ** File control method. For custom operations on an otaVfs-file. */ static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){ ota_file *p = (ota_file *)pFile; int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl; int rc; assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL) ); if( op==SQLITE_FCNTL_OTA ){ sqlite3ota *pOta = (sqlite3ota*)pArg; /* First try to find another OTA vfs lower down in the vfs stack. If ** one is found, this vfs will operate in pass-through mode. The lower ** level vfs will do the special OTA handling. */ |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.h.
︙ | ︙ | |||
109 110 111 112 113 114 115 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 | | | 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 #define SQLITE_SOURCE_ID "2015-06-30 17:28:40 fe144dd73f7097a17c24c7812c2a1cc40466e6da" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ |