System.Data.SQLite

Check-in [9d53109ce0]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update SQLite core library to the latest 3.8.11 alpha.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 9d53109ce0dafc9d241202d591e9a554acf88556
User & Date: mistachkin 2015-07-02 01:44:07.020
Context
2015-07-03
21:57
Update SQLite core library to the latest trunk code. check-in: d545007d7a user: mistachkin tags: trunk
2015-07-02
01:44
Update SQLite core library to the latest 3.8.11 alpha. check-in: 9d53109ce0 user: mistachkin tags: trunk
2015-06-26
03:13
Update SQLite core library to the latest trunk code. check-in: a92cbefdad user: mistachkin tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to SQLite.Interop/src/core/sqlite3.c.
153
154
155
156
157
158
159







160
161
162
163
164
165
166
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif








/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)







>
>
>
>
>
>
>







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif

/* What version of GCC is being used.  0 means GCC is not being used */
#ifdef __GNUC__
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif

/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.11"
#define SQLITE_VERSION_NUMBER 3008011
#define SQLITE_SOURCE_ID      "2015-06-26 02:41:31 015302f15e46a087ec92f3644c6741600dbf4306"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.11"
#define SQLITE_VERSION_NUMBER 3008011
#define SQLITE_SOURCE_ID      "2015-06-30 17:28:40 fe144dd73f7097a17c24c7812c2a1cc40466e6da"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
8345
8346
8347
8348
8349
8350
8351










8352
8353
8354
8355
8356
8357
8358
#  define SQLITE_NOINLINE  __attribute__((noinline))
#elif defined(_MSC_VER) && _MSC_VER>=1310
#  define SQLITE_NOINLINE  __declspec(noinline)
#else
#  define SQLITE_NOINLINE
#endif











/*
** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
** 0 means mutexes are permanently disable and the library is never
** threadsafe.  1 means the library is serialized which is the highest
** level of threadsafety.  2 means the library is multithreaded - multiple
** threads can use SQLite as long as no two threads try to use the same
** database connection at the same time.







>
>
>
>
>
>
>
>
>
>







8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
#  define SQLITE_NOINLINE  __attribute__((noinline))
#elif defined(_MSC_VER) && _MSC_VER>=1310
#  define SQLITE_NOINLINE  __declspec(noinline)
#else
#  define SQLITE_NOINLINE
#endif

/*
** Make sure that the compiler intrinsics we desire are enabled when
** compiling with an appropriate version of MSVC.
*/
#if defined(_MSC_VER) && _MSC_VER>=1300
#  include <intrin.h>
#  pragma intrinsic(_byteswap_ushort)
#  pragma intrinsic(_byteswap_ulong)
#endif

/*
** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
** 0 means mutexes are permanently disable and the library is never
** threadsafe.  1 means the library is serialized which is the highest
** level of threadsafety.  2 means the library is multithreaded - multiple
** threads can use SQLite as long as no two threads try to use the same
** database connection at the same time.
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700

9701
9702
9703
9704
9705
9706
9707
  u8 opcode;          /* What operation to perform */
  signed char p4type; /* One of the P4_xxx constants for p4 */
  u8 opflags;         /* Mask of the OPFLG_* flags in opcodes.h */
  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union {             /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
    i64 *pI64;             /* Used when p4type is P4_INT64 */
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */

    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);







|






>







9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
  u8 opcode;          /* What operation to perform */
  signed char p4type; /* One of the P4_xxx constants for p4 */
  u8 opflags;         /* Mask of the OPFLG_* flags in opcodes.h */
  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union p4union {     /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
    i64 *pI64;             /* Used when p4type is P4_INT64 */
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
    sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);
9760
9761
9762
9763
9764
9765
9766

9767
9768
9769
9770
9771
9772
9773
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */
#define P4_ADVANCE  (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */


/* Error message codes for OP_Halt */
#define P5_ConstraintNotNull 1
#define P5_ConstraintUnique  2
#define P5_ConstraintCheck   3
#define P5_ConstraintFK      4








>







9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */
#define P4_ADVANCE  (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */
#define P4_FUNCCTX  (-20) /* P4 is a pointer to an sqlite3_context object */

/* Error message codes for OP_Halt */
#define P5_ConstraintNotNull 1
#define P5_ConstraintUnique  2
#define P5_ConstraintCheck   3
#define P5_ConstraintFK      4

9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826


9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844


9845
9846
9847
9848
9849
9850
9851
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated.  Do not edit */
/* See the mkopcodeh.awk script for details */
#define OP_Function        1 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Savepoint       2
#define OP_AutoCommit      3
#define OP_Transaction     4
#define OP_SorterNext      5
#define OP_PrevIfOpen      6
#define OP_NextIfOpen      7
#define OP_Prev            8
#define OP_Next            9
#define OP_AggStep        10 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_Checkpoint     11
#define OP_JournalMode    12
#define OP_Vacuum         13
#define OP_VFilter        14 /* synopsis: iplan=r[P3] zplan='P4'           */
#define OP_VUpdate        15 /* synopsis: data=r[P3@P2]                    */
#define OP_Goto           16
#define OP_Gosub          17
#define OP_Return         18


#define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */
#define OP_InitCoroutine  20
#define OP_EndCoroutine   21
#define OP_Yield          22
#define OP_HaltIfNull     23 /* synopsis: if r[P3]=null halt               */
#define OP_Halt           24
#define OP_Integer        25 /* synopsis: r[P2]=P1                         */
#define OP_Int64          26 /* synopsis: r[P2]=P4                         */
#define OP_String         27 /* synopsis: r[P2]='P4' (len=P1)              */
#define OP_Null           28 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       29 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           30 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       31 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           32 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           33 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          34 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      35 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        36


#define OP_AddImm         37 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_MustBeInt      38
#define OP_RealAffinity   39
#define OP_Cast           40 /* synopsis: affinity(r[P1])                  */
#define OP_Permutation    41
#define OP_Compare        42 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Jump           43







<
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
>
>

<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>







9821
9822
9823
9824
9825
9826
9827

9828
9829
9830
9831
9832
9833
9834
9835

9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846


9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated.  Do not edit */
/* See the mkopcodeh.awk script for details */

#define OP_Savepoint       1
#define OP_AutoCommit      2
#define OP_Transaction     3
#define OP_SorterNext      4
#define OP_PrevIfOpen      5
#define OP_NextIfOpen      6
#define OP_Prev            7
#define OP_Next            8

#define OP_Checkpoint      9
#define OP_JournalMode    10
#define OP_Vacuum         11
#define OP_VFilter        12 /* synopsis: iplan=r[P3] zplan='P4'           */
#define OP_VUpdate        13 /* synopsis: data=r[P3@P2]                    */
#define OP_Goto           14
#define OP_Gosub          15
#define OP_Return         16
#define OP_InitCoroutine  17
#define OP_EndCoroutine   18
#define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */


#define OP_Yield          20
#define OP_HaltIfNull     21 /* synopsis: if r[P3]=null halt               */
#define OP_Halt           22
#define OP_Integer        23 /* synopsis: r[P2]=P1                         */
#define OP_Int64          24 /* synopsis: r[P2]=P4                         */
#define OP_String         25 /* synopsis: r[P2]='P4' (len=P1)              */
#define OP_Null           26 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       27 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           28 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       29 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           30 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           31 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          32 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      33 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        34
#define OP_Function0      35 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Function       36 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         37 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_MustBeInt      38
#define OP_RealAffinity   39
#define OP_Cast           40 /* synopsis: affinity(r[P1])                  */
#define OP_Permutation    41
#define OP_Compare        42 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Jump           43
9944
9945
9946
9947
9948
9949
9950


9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999

10000
10001
10002
10003
10004
10005
10006
#define OP_FkIfZero      136 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        137 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         138 /* synopsis: if r[P1]>0 goto P2               */
#define OP_IfNeg         139 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2    */
#define OP_IfNotZero     140 /* synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 */
#define OP_DecrJumpZero  141 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  142 /* synopsis: if (r[P1]++)==0 ) goto P2        */


#define OP_AggFinal      143 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    144
#define OP_Expire        145
#define OP_TableLock     146 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        147
#define OP_VCreate       148
#define OP_VDestroy      149
#define OP_VOpen         150
#define OP_VColumn       151 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         152
#define OP_VRename       153
#define OP_Pagecount     154
#define OP_MaxPgcnt      155
#define OP_Init          156 /* synopsis: Start at P2                      */
#define OP_Noop          157
#define OP_Explain       158


/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
#define OPFLG_IN1             0x0002  /* in1:   P1 is an input */
#define OPFLG_IN2             0x0004  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0008  /* in3:   P3 is an input */
#define OPFLG_OUT2            0x0010  /* out2:  P2 is an output */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,\
/*   8 */ 0x01, 0x01, 0x00, 0x00, 0x10, 0x00, 0x01, 0x00,\
/*  16 */ 0x01, 0x01, 0x02, 0x12, 0x01, 0x02, 0x03, 0x08,\
/*  24 */ 0x00, 0x10, 0x10, 0x10, 0x10, 0x00, 0x10, 0x10,\
/*  32 */ 0x00, 0x00, 0x10, 0x00, 0x00, 0x02, 0x03, 0x02,\
/*  40 */ 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x00,\
/*  48 */ 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00, 0x00,\
/*  56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,\
/*  64 */ 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x09, 0x26,\
/*  72 */ 0x26, 0x09, 0x10, 0x10, 0x03, 0x03, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\
/*  96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\
/* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\
/* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\
/* 136 */ 0x01, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00,\
/* 144 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x01, 0x00, 0x10, 0x10, 0x01, 0x00, 0x00,}


/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.







>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|













|
|
|
|
|













|
|
>







9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
#define OP_FkIfZero      136 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        137 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         138 /* synopsis: if r[P1]>0 goto P2               */
#define OP_IfNeg         139 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2    */
#define OP_IfNotZero     140 /* synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 */
#define OP_DecrJumpZero  141 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  142 /* synopsis: if (r[P1]++)==0 ) goto P2        */
#define OP_AggStep0      143 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       144 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      145 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    146
#define OP_Expire        147
#define OP_TableLock     148 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        149
#define OP_VCreate       150
#define OP_VDestroy      151
#define OP_VOpen         152
#define OP_VColumn       153 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         154
#define OP_VRename       155
#define OP_Pagecount     156
#define OP_MaxPgcnt      157
#define OP_Init          158 /* synopsis: Start at P2                      */
#define OP_Noop          159
#define OP_Explain       160


/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
#define OPFLG_IN1             0x0002  /* in1:   P1 is an input */
#define OPFLG_IN2             0x0004  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0008  /* in3:   P3 is an input */
#define OPFLG_OUT2            0x0010  /* out2:  P2 is an output */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x01, 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01,\
/*  16 */ 0x02, 0x01, 0x02, 0x12, 0x03, 0x08, 0x00, 0x10,\
/*  24 */ 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00,\
/*  32 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03, 0x02,\
/*  40 */ 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x00,\
/*  48 */ 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00, 0x00,\
/*  56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,\
/*  64 */ 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x09, 0x26,\
/*  72 */ 0x26, 0x09, 0x10, 0x10, 0x03, 0x03, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\
/*  96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\
/* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\
/* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\
/* 136 */ 0x01, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00,\
/* 144 */ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01, 0x00,\
/* 160 */ 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
10400
10401
10402
10403
10404
10405
10406

10407

10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
  PCache *pCache;                /* Cache that owns this page */

  PgHdr *pDirtyNext;             /* Next element in list of dirty pages */
  PgHdr *pDirtyPrev;             /* Previous element in list of dirty pages */
};

/* Bit values for PgHdr.flags */

#define PGHDR_DIRTY             0x002  /* Page has changed */

#define PGHDR_NEED_SYNC         0x004  /* Fsync the rollback journal before
                                       ** writing this page to the database */
#define PGHDR_NEED_READ         0x008  /* Content is unread */
#define PGHDR_REUSE_UNLIKELY    0x010  /* A hint that reuse is unlikely */
#define PGHDR_DONT_WRITE        0x020  /* Do not write content to disk */

#define PGHDR_MMAP              0x040  /* This is an mmap page object */

/* Initialize and shutdown the page cache subsystem */
SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
SQLITE_PRIVATE void sqlite3PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.







>
|
>
|
|
|
<
|
<
|







10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434

10435

10436
10437
10438
10439
10440
10441
10442
10443
  PCache *pCache;                /* Cache that owns this page */

  PgHdr *pDirtyNext;             /* Next element in list of dirty pages */
  PgHdr *pDirtyPrev;             /* Previous element in list of dirty pages */
};

/* Bit values for PgHdr.flags */
#define PGHDR_CLEAN           0x001  /* Page not on the PCache.pDirty list */
#define PGHDR_DIRTY           0x002  /* Page is on the PCache.pDirty list */
#define PGHDR_WRITEABLE       0x004  /* Journaled and ready to modify */
#define PGHDR_NEED_SYNC       0x008  /* Fsync the rollback journal before
                                     ** writing this page to the database */
#define PGHDR_NEED_READ       0x010  /* Content is unread */

#define PGHDR_DONT_WRITE      0x020  /* Do not write content to disk */

#define PGHDR_MMAP            0x040  /* This is an mmap page object */

/* Initialize and shutdown the page cache subsystem */
SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
SQLITE_PRIVATE void sqlite3PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.
13176
13177
13178
13179
13180
13181
13182

13183
13184
13185
13186
13187
13188
13189
# define sqlite3FaultSim(X) SQLITE_OK
#else
SQLITE_PRIVATE   int sqlite3FaultSim(int);
#endif

SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);

SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
#ifndef SQLITE_OMIT_BUILTIN_TEST
SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
#endif







>







13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
# define sqlite3FaultSim(X) SQLITE_OK
#else
SQLITE_PRIVATE   int sqlite3FaultSim(int);
#endif

SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32);
SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
#ifndef SQLITE_OMIT_BUILTIN_TEST
SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
#endif
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836


14837
14838
14839
14840
14841
14842
14843
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  Mem *pOut;            /* The return value is stored here */
  FuncDef *pFunc;       /* Pointer to function information */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  Vdbe *pVdbe;          /* The VM that owns this context */
  int iOp;              /* Instruction number of OP_Function */
  int isError;          /* Error code returned by the function. */
  u8 skipFlag;          /* Skip accumulator loading if true */
  u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */


};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
struct Explain {







|
|
|
|
|
|
|
|
>
>







14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  Mem *pOut;              /* The return value is stored here */
  FuncDef *pFunc;         /* Pointer to function information */
  Mem *pMem;              /* Memory cell used to store aggregate context */
  Vdbe *pVdbe;            /* The VM that owns this context */
  int iOp;                /* Instruction number of OP_Function */
  int isError;            /* Error code returned by the function. */
  u8 skipFlag;            /* Skip accumulator loading if true */
  u8 fErrorOrAux;         /* isError!=0 or pVdbe->pAuxData modified */
  u8 argc;                /* Number of arguments */
  sqlite3_value *argv[1]; /* Argument set */
};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
struct Explain {
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382

21383
21384
21385
21386
21387
21388
21389
21390
21391
** returning control to the user) that has called sqlite3_malloc or
** sqlite3_realloc.
**
** The returned value is normally a copy of the second argument to this
** function. However, if a malloc() failure has occurred since the previous
** invocation SQLITE_NOMEM is returned instead. 
**
** If the first argument, db, is not NULL and a malloc() error has occurred,
** then the connection error-code (the value returned by sqlite3_errcode())
** is set to SQLITE_NOMEM.
*/
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
  /* If the db handle is not NULL, then we must hold the connection handle
  ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 
  ** is unsafe, as is the call to sqlite3Error().
  */

  assert( !db || sqlite3_mutex_held(db->mutex) );
  if( db==0 ) return rc & 0xff;
  if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
    return apiOomError(db);
  }
  return rc & db->errMask;
}

/************** End of malloc.c **********************************************/







<
|
|


|
|


>
|
<







21392
21393
21394
21395
21396
21397
21398

21399
21400
21401
21402
21403
21404
21405
21406
21407
21408

21409
21410
21411
21412
21413
21414
21415
** returning control to the user) that has called sqlite3_malloc or
** sqlite3_realloc.
**
** The returned value is normally a copy of the second argument to this
** function. However, if a malloc() failure has occurred since the previous
** invocation SQLITE_NOMEM is returned instead. 
**

** If an OOM as occurred, then the connection error-code (the value
** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
*/
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
  /* If the db handle must hold the connection handle mutex here.
  ** Otherwise the read (and possible write) of db->mallocFailed 
  ** is unsafe, as is the call to sqlite3Error().
  */
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );

  if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
    return apiOomError(db);
  }
  return rc & db->errMask;
}

/************** End of malloc.c **********************************************/
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
** lower 30 bits of a 32-bit signed integer.
**
** The value returned will never be negative.  Nor will it ever be greater
** than the actual length of the string.  For very long strings (greater
** than 1GiB) the value returned might be less than the true string length.
*/
SQLITE_PRIVATE int sqlite3Strlen30(const char *z){
  const char *z2 = z;
  if( z==0 ) return 0;
  while( *z2 ){ z2++; }
  return 0x3fffffff & (int)(z2 - z);
}

/*
** Set the current error code to err_code and clear any prior error message.
*/
SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){
  assert( db!=0 );







<

<
|







23951
23952
23953
23954
23955
23956
23957

23958

23959
23960
23961
23962
23963
23964
23965
23966
** lower 30 bits of a 32-bit signed integer.
**
** The value returned will never be negative.  Nor will it ever be greater
** than the actual length of the string.  For very long strings (greater
** than 1GiB) the value returned might be less than the true string length.
*/
SQLITE_PRIVATE int sqlite3Strlen30(const char *z){

  if( z==0 ) return 0;

  return 0x3fffffff & (int)strlen(z);
}

/*
** Set the current error code to err_code and clear any prior error message.
*/
SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){
  assert( db!=0 );
24902
24903
24904
24905
24906
24907
24908













24909
24910

24911
24912









24913
24914
24915
24916

24917
24918
24919
24920
24921
24922
24923
}


/*
** Read or write a four-byte big-endian integer value.
*/
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){













  testcase( p[0]&0x80 );
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];

}
SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){









  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;

}



/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal







>
>
>
>
>
>
>
>
>
>
>
>
>


>


>
>
>
>
>
>
>
>
>




>







24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
}


/*
** Read or write a four-byte big-endian integer value.
*/
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
  u32 x;
  memcpy(&x,p,4);
  return x;
#elif SQLITE_BYTEORDER==1234 && defined(__GNUC__)
  u32 x;
  memcpy(&x,p,4);
  return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x;
  memcpy(&x,p,4);
  return _byteswap_ulong(x);
#else
  testcase( p[0]&0x80 );
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
  memcpy(p,&v,4);
#elif SQLITE_BYTEORDER==1234 && defined(__GNUC__)
  u32 x = __builtin_bswap32(v);
  memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x = _byteswap_ulong(v);
  memcpy(p,&x,4);
#else
  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;
#endif
}



/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501


25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519


25520
25521
25522
25523
25524
25525
25526
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
# define OpHelp(X) "\0" X
#else
# define OpHelp(X)
#endif
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 static const char *const azName[] = { "?",
     /*   1 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
     /*   2 */ "Savepoint"        OpHelp(""),
     /*   3 */ "AutoCommit"       OpHelp(""),
     /*   4 */ "Transaction"      OpHelp(""),
     /*   5 */ "SorterNext"       OpHelp(""),
     /*   6 */ "PrevIfOpen"       OpHelp(""),
     /*   7 */ "NextIfOpen"       OpHelp(""),
     /*   8 */ "Prev"             OpHelp(""),
     /*   9 */ "Next"             OpHelp(""),
     /*  10 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
     /*  11 */ "Checkpoint"       OpHelp(""),
     /*  12 */ "JournalMode"      OpHelp(""),
     /*  13 */ "Vacuum"           OpHelp(""),
     /*  14 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
     /*  15 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
     /*  16 */ "Goto"             OpHelp(""),
     /*  17 */ "Gosub"            OpHelp(""),
     /*  18 */ "Return"           OpHelp(""),


     /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
     /*  20 */ "InitCoroutine"    OpHelp(""),
     /*  21 */ "EndCoroutine"     OpHelp(""),
     /*  22 */ "Yield"            OpHelp(""),
     /*  23 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
     /*  24 */ "Halt"             OpHelp(""),
     /*  25 */ "Integer"          OpHelp("r[P2]=P1"),
     /*  26 */ "Int64"            OpHelp("r[P2]=P4"),
     /*  27 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
     /*  28 */ "Null"             OpHelp("r[P2..P3]=NULL"),
     /*  29 */ "SoftNull"         OpHelp("r[P1]=NULL"),
     /*  30 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
     /*  31 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
     /*  32 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
     /*  33 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
     /*  34 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
     /*  35 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
     /*  36 */ "CollSeq"          OpHelp(""),


     /*  37 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
     /*  38 */ "MustBeInt"        OpHelp(""),
     /*  39 */ "RealAffinity"     OpHelp(""),
     /*  40 */ "Cast"             OpHelp("affinity(r[P1])"),
     /*  41 */ "Permutation"      OpHelp(""),
     /*  42 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
     /*  43 */ "Jump"             OpHelp(""),







<
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
>
>

<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>







25523
25524
25525
25526
25527
25528
25529

25530
25531
25532
25533
25534
25535
25536
25537

25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548


25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
# define OpHelp(X) "\0" X
#else
# define OpHelp(X)
#endif
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 static const char *const azName[] = { "?",

     /*   1 */ "Savepoint"        OpHelp(""),
     /*   2 */ "AutoCommit"       OpHelp(""),
     /*   3 */ "Transaction"      OpHelp(""),
     /*   4 */ "SorterNext"       OpHelp(""),
     /*   5 */ "PrevIfOpen"       OpHelp(""),
     /*   6 */ "NextIfOpen"       OpHelp(""),
     /*   7 */ "Prev"             OpHelp(""),
     /*   8 */ "Next"             OpHelp(""),

     /*   9 */ "Checkpoint"       OpHelp(""),
     /*  10 */ "JournalMode"      OpHelp(""),
     /*  11 */ "Vacuum"           OpHelp(""),
     /*  12 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
     /*  13 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
     /*  14 */ "Goto"             OpHelp(""),
     /*  15 */ "Gosub"            OpHelp(""),
     /*  16 */ "Return"           OpHelp(""),
     /*  17 */ "InitCoroutine"    OpHelp(""),
     /*  18 */ "EndCoroutine"     OpHelp(""),
     /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),


     /*  20 */ "Yield"            OpHelp(""),
     /*  21 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
     /*  22 */ "Halt"             OpHelp(""),
     /*  23 */ "Integer"          OpHelp("r[P2]=P1"),
     /*  24 */ "Int64"            OpHelp("r[P2]=P4"),
     /*  25 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
     /*  26 */ "Null"             OpHelp("r[P2..P3]=NULL"),
     /*  27 */ "SoftNull"         OpHelp("r[P1]=NULL"),
     /*  28 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
     /*  29 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
     /*  30 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
     /*  31 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
     /*  32 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
     /*  33 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
     /*  34 */ "CollSeq"          OpHelp(""),
     /*  35 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),
     /*  36 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
     /*  37 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
     /*  38 */ "MustBeInt"        OpHelp(""),
     /*  39 */ "RealAffinity"     OpHelp(""),
     /*  40 */ "Cast"             OpHelp("affinity(r[P1])"),
     /*  41 */ "Permutation"      OpHelp(""),
     /*  42 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
     /*  43 */ "Jump"             OpHelp(""),
25619
25620
25621
25622
25623
25624
25625


25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
     /* 136 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
     /* 137 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
     /* 138 */ "IfPos"            OpHelp("if r[P1]>0 goto P2"),
     /* 139 */ "IfNeg"            OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"),
     /* 140 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]+=P3, goto P2"),
     /* 141 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
     /* 142 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),


     /* 143 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
     /* 144 */ "IncrVacuum"       OpHelp(""),
     /* 145 */ "Expire"           OpHelp(""),
     /* 146 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
     /* 147 */ "VBegin"           OpHelp(""),
     /* 148 */ "VCreate"          OpHelp(""),
     /* 149 */ "VDestroy"         OpHelp(""),
     /* 150 */ "VOpen"            OpHelp(""),
     /* 151 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
     /* 152 */ "VNext"            OpHelp(""),
     /* 153 */ "VRename"          OpHelp(""),
     /* 154 */ "Pagecount"        OpHelp(""),
     /* 155 */ "MaxPgcnt"         OpHelp(""),
     /* 156 */ "Init"             OpHelp("Start at P2"),
     /* 157 */ "Noop"             OpHelp(""),
     /* 158 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/







>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
     /* 136 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
     /* 137 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
     /* 138 */ "IfPos"            OpHelp("if r[P1]>0 goto P2"),
     /* 139 */ "IfNeg"            OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"),
     /* 140 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]+=P3, goto P2"),
     /* 141 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
     /* 142 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),
     /* 143 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
     /* 144 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
     /* 145 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
     /* 146 */ "IncrVacuum"       OpHelp(""),
     /* 147 */ "Expire"           OpHelp(""),
     /* 148 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
     /* 149 */ "VBegin"           OpHelp(""),
     /* 150 */ "VCreate"          OpHelp(""),
     /* 151 */ "VDestroy"         OpHelp(""),
     /* 152 */ "VOpen"            OpHelp(""),
     /* 153 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
     /* 154 */ "VNext"            OpHelp(""),
     /* 155 */ "VRename"          OpHelp(""),
     /* 156 */ "Pagecount"        OpHelp(""),
     /* 157 */ "MaxPgcnt"         OpHelp(""),
     /* 158 */ "Init"             OpHelp("Start at P2"),
     /* 159 */ "Noop"             OpHelp(""),
     /* 160 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383

39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401



39402
39403
39404
39405
39406
39407
39408
}

/*
** Check to see if the i-th bit is set.  Return true or false.
** If p is NULL (if the bitmap has not been created) or if
** i is out of range, then return false.
*/
SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
  if( p==0 ) return 0;
  if( i>p->iSize || i==0 ) return 0;
  i--;

  while( p->iDivisor ){
    u32 bin = i/p->iDivisor;
    i = i%p->iDivisor;
    p = p->u.apSub[bin];
    if (!p) {
      return 0;
    }
  }
  if( p->iSize<=BITVEC_NBIT ){
    return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
  } else{
    u32 h = BITVEC_HASH(i++);
    while( p->u.aHash[h] ){
      if( p->u.aHash[h]==i ) return 1;
      h = (h+1) % BITVEC_NINT;
    }
    return 0;
  }



}

/*
** Set the i-th bit.  Return 0 on success and an error code if
** anything goes wrong.
**
** This routine might cause sub-bitmaps to be allocated.  Failing







|
|
<

>


















>
>
>







39421
39422
39423
39424
39425
39426
39427
39428
39429

39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
}

/*
** Check to see if the i-th bit is set.  Return true or false.
** If p is NULL (if the bitmap has not been created) or if
** i is out of range, then return false.
*/
SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
  assert( p!=0 );

  i--;
  if( i>=p->iSize ) return 0;
  while( p->iDivisor ){
    u32 bin = i/p->iDivisor;
    i = i%p->iDivisor;
    p = p->u.apSub[bin];
    if (!p) {
      return 0;
    }
  }
  if( p->iSize<=BITVEC_NBIT ){
    return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
  } else{
    u32 h = BITVEC_HASH(i++);
    while( p->u.aHash[h] ){
      if( p->u.aHash[h]==i ) return 1;
      h = (h+1) % BITVEC_NINT;
    }
    return 0;
  }
}
SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
  return p!=0 && sqlite3BitvecTestNotNull(p,i);
}

/*
** Set the i-th bit.  Return 0 on success and an error code if
** anything goes wrong.
**
** This routine might cause sub-bitmaps to be allocated.  Failing
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990

39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
  Pgno pgno,                  /* Page number obtained */
  sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
){
  PgHdr *pPgHdr;
  assert( pPage!=0 );
  pPgHdr = (PgHdr*)pPage->pExtra;
  assert( pPgHdr->pPage==0 );
 memset(pPgHdr, 0, sizeof(PgHdr));
  pPgHdr->pPage = pPage;
  pPgHdr->pData = pPage->pBuf;
  pPgHdr->pExtra = (void *)&pPgHdr[1];
  memset(pPgHdr->pExtra, 0, pCache->szExtra);
  pPgHdr->pCache = pCache;
  pPgHdr->pgno = pgno;

  return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
}

/*
** This routine converts the sqlite3_pcache_page object returned by
** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
** must be called after sqlite3PcacheFetch() in order to get a usable
** result.
*/
SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(
  PCache *pCache,             /* Obtain the page from this cache */
  Pgno pgno,                  /* Page number obtained */
  sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
){
  PgHdr *pPgHdr;

  if( pPage==0 ) return 0;
  pPgHdr = (PgHdr *)pPage->pExtra;

  if( !pPgHdr->pPage ){
    return pcacheFetchFinishWithInit(pCache, pgno, pPage);
  }
  if( 0==pPgHdr->nRef ){
    pCache->nRef++;







|






>
















|







40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
  Pgno pgno,                  /* Page number obtained */
  sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
){
  PgHdr *pPgHdr;
  assert( pPage!=0 );
  pPgHdr = (PgHdr*)pPage->pExtra;
  assert( pPgHdr->pPage==0 );
  memset(pPgHdr, 0, sizeof(PgHdr));
  pPgHdr->pPage = pPage;
  pPgHdr->pData = pPage->pBuf;
  pPgHdr->pExtra = (void *)&pPgHdr[1];
  memset(pPgHdr->pExtra, 0, pCache->szExtra);
  pPgHdr->pCache = pCache;
  pPgHdr->pgno = pgno;
  pPgHdr->flags = PGHDR_CLEAN;
  return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
}

/*
** This routine converts the sqlite3_pcache_page object returned by
** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
** must be called after sqlite3PcacheFetch() in order to get a usable
** result.
*/
SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(
  PCache *pCache,             /* Obtain the page from this cache */
  Pgno pgno,                  /* Page number obtained */
  sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
){
  PgHdr *pPgHdr;

  assert( pPage!=0 );
  pPgHdr = (PgHdr *)pPage->pExtra;

  if( !pPgHdr->pPage ){
    return pcacheFetchFinishWithInit(pCache, pgno, pPage);
  }
  if( 0==pPgHdr->nRef ){
    pCache->nRef++;
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
** reference count drops to 0, then it is made eligible for recycling.
*/
SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
  assert( p->nRef>0 );
  p->nRef--;
  if( p->nRef==0 ){
    p->pCache->nRef--;
    if( (p->flags&PGHDR_DIRTY)==0 ){
      pcacheUnpin(p);
    }else if( p->pDirtyPrev!=0 ){
      /* Move the page to the head of the dirty list. */
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
    }
  }
}







|







40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
** reference count drops to 0, then it is made eligible for recycling.
*/
SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
  assert( p->nRef>0 );
  p->nRef--;
  if( p->nRef==0 ){
    p->pCache->nRef--;
    if( p->flags&PGHDR_CLEAN ){
      pcacheUnpin(p);
    }else if( p->pDirtyPrev!=0 ){
      /* Move the page to the head of the dirty list. */
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
    }
  }
}
40058
40059
40060
40061
40062
40063
40064
40065
40066


40067
40068

40069

40070
40071
40072
40073
40074
40075
40076
40077
40078

40079
40080

40081
40082
40083
40084
40085
40086
40087
}

/*
** Make sure the page is marked as dirty. If it isn't dirty already,
** make it so.
*/
SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){
  p->flags &= ~PGHDR_DONT_WRITE;
  assert( p->nRef>0 );


  if( 0==(p->flags & PGHDR_DIRTY) ){
    p->flags |= PGHDR_DIRTY;

    pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);

  }
}

/*
** Make sure the page is marked as clean. If it isn't clean already,
** make it so.
*/
SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
  if( (p->flags & PGHDR_DIRTY) ){

    pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
    p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);

    if( p->nRef==0 ){
      pcacheUnpin(p);
    }
  }
}

/*







<

>
>
|
|
>
|
>









>

|
>







40110
40111
40112
40113
40114
40115
40116

40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
}

/*
** Make sure the page is marked as dirty. If it isn't dirty already,
** make it so.
*/
SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){

  assert( p->nRef>0 );
  if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){
    p->flags &= ~PGHDR_DONT_WRITE;
    if( p->flags & PGHDR_CLEAN ){
      p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
      assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
    }
  }
}

/*
** Make sure the page is marked as clean. If it isn't clean already,
** make it so.
*/
SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
  if( (p->flags & PGHDR_DIRTY) ){
    assert( (p->flags & PGHDR_CLEAN)==0 );
    pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
    p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
    p->flags |= PGHDR_CLEAN;
    if( p->nRef==0 ){
      pcacheUnpin(p);
    }
  }
}

/*
40784
40785
40786
40787
40788
40789
40790

40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804

40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
  return pPage;
}


/*
** Remove the page supplied as an argument from the hash table 
** (PCache1.apHash structure) that it is currently stored in.

**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage){
  unsigned int h;
  PCache1 *pCache = pPage->pCache;
  PgHdr1 **pp;

  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
  h = pPage->iKey % pCache->nHash;
  for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
  *pp = (*pp)->pNext;

  pCache->nPage--;

}

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PGroup *pGroup){
  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;
    assert( p->pCache->pGroup==pGroup );
    assert( p->isPinned==0 );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p);
    pcache1FreePage(p);
  }
}

/*
** Discard all pages from cache pCache with a page number (key value) 
** greater than or equal to iLimit. Any pinned pages that meet this 
** criteria are unpinned before they are discarded.







>



|










>













|
<







40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877

40878
40879
40880
40881
40882
40883
40884
  return pPage;
}


/*
** Remove the page supplied as an argument from the hash table 
** (PCache1.apHash structure) that it is currently stored in.
** Also free the page if freePage is true.
**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
  unsigned int h;
  PCache1 *pCache = pPage->pCache;
  PgHdr1 **pp;

  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
  h = pPage->iKey % pCache->nHash;
  for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
  *pp = (*pp)->pNext;

  pCache->nPage--;
  if( freeFlag ) pcache1FreePage(pPage);
}

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PGroup *pGroup){
  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;
    assert( p->pCache->pGroup==pGroup );
    assert( p->isPinned==0 );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p, 1);

  }
}

/*
** Discard all pages from cache pCache with a page number (key value) 
** greater than or equal to iLimit. Any pinned pages that meet this 
** criteria are unpinned before they are discarded.
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
         (pCache->nPage+1>=pCache->nMax)
      || pGroup->nCurrentPage>=pGroup->nMaxPage
      || pcache1UnderMemoryPressure(pCache)
  )){
    PCache1 *pOther;
    pPage = pGroup->pLruTail;
    assert( pPage->isPinned==0 );
    pcache1RemoveFromHash(pPage);
    pcache1PinPage(pPage);
    pOther = pPage->pCache;

    /* We want to verify that szPage and szExtra are the same for pOther
    ** and pCache.  Assert that we can verify this by comparing sums. */
    assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
    assert( pCache->szExtra<512 );







|







41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
         (pCache->nPage+1>=pCache->nMax)
      || pGroup->nCurrentPage>=pGroup->nMaxPage
      || pcache1UnderMemoryPressure(pCache)
  )){
    PCache1 *pOther;
    pPage = pGroup->pLruTail;
    assert( pPage->isPinned==0 );
    pcache1RemoveFromHash(pPage, 0);
    pcache1PinPage(pPage);
    pOther = pPage->pCache;

    /* We want to verify that szPage and szExtra are the same for pOther
    ** and pCache.  Assert that we can verify this by comparing sums. */
    assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
    assert( pCache->szExtra<512 );
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
  ** part of the PGroup LRU list.
  */
  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
  assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
  assert( pPage->isPinned==1 );

  if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
    pcache1RemoveFromHash(pPage);
    pcache1FreePage(pPage);
  }else{
    /* Add the page to the PGroup LRU list. */
    if( pGroup->pLruHead ){
      pGroup->pLruHead->pLruPrev = pPage;
      pPage->pLruNext = pGroup->pLruHead;
      pGroup->pLruHead = pPage;
    }else{







|
<







41292
41293
41294
41295
41296
41297
41298
41299

41300
41301
41302
41303
41304
41305
41306
  ** part of the PGroup LRU list.
  */
  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
  assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
  assert( pPage->isPinned==1 );

  if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
    pcache1RemoveFromHash(pPage, 1);

  }else{
    /* Add the page to the PGroup LRU list. */
    if( pGroup->pLruHead ){
      pGroup->pLruHead->pLruPrev = pPage;
      pPage->pLruNext = pGroup->pLruHead;
      pGroup->pLruHead = pPage;
    }else{
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
    while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);
      pcache1RemoveFromHash(p);
      pcache1FreePage(p);
    }
    pcache1LeaveMutex(&pcache1.grp);
  }
  return nFree;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */








|
<







41446
41447
41448
41449
41450
41451
41452
41453

41454
41455
41456
41457
41458
41459
41460
    while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);
      pcache1RemoveFromHash(p, 1);

    }
    pcache1LeaveMutex(&pcache1.grp);
  }
  return nFree;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */

42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
  u32 aWalData[WAL_SAVEPOINT_NDATA];        /* WAL savepoint context */
#endif
};

/*
** Bits of the Pager.doNotSpill flag.  See further description below.
*/
#define SPILLFLAG_OFF         0x01      /* Never spill cache.  Set via pragma */
#define SPILLFLAG_ROLLBACK    0x02      /* Current rolling back, so do not spill */
#define SPILLFLAG_NOSYNC      0x04      /* Spill is ok, but do not sync */

/*
** An open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**







|
|
|







42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
  u32 aWalData[WAL_SAVEPOINT_NDATA];        /* WAL savepoint context */
#endif
};

/*
** Bits of the Pager.doNotSpill flag.  See further description below.
*/
#define SPILLFLAG_OFF         0x01 /* Never spill cache.  Set via pragma */
#define SPILLFLAG_ROLLBACK    0x02 /* Current rolling back, so do not spill */
#define SPILLFLAG_NOSYNC      0x04 /* Spill is ok, but do not sync */

/*
** An open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
**   writing to the database from pagerStress() is disabled altogether.
**   The SPILLFLAG_ROLLBACK case is done in a very obscure case that
**   comes up during savepoint rollback that requires the pcache module
**   to allocate a new page to prevent the journal file from being written
**   while it is being traversed by code in pager_playback().  The SPILLFLAG_OFF
**   case is a user preference.
** 
**   If the SPILLFLAG_NOSYNC bit is set, writing to the database from pagerStress()
**   is permitted, but syncing the journal file is not. This flag is set
**   by sqlite3PagerWrite() when the file-system sector-size is larger than
**   the database page-size in order to prevent a journal sync from happening 
**   in between the journalling of two pages on the same sector. 
**
** subjInMemory
**
**   This is a boolean variable. If true, then any required sub-journal
**   is opened as an in-memory journal file. If false, then in-memory
**   sub-journals are only used for in-memory pager files.
**







|
|
|
|
|







42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
**   writing to the database from pagerStress() is disabled altogether.
**   The SPILLFLAG_ROLLBACK case is done in a very obscure case that
**   comes up during savepoint rollback that requires the pcache module
**   to allocate a new page to prevent the journal file from being written
**   while it is being traversed by code in pager_playback().  The SPILLFLAG_OFF
**   case is a user preference.
** 
**   If the SPILLFLAG_NOSYNC bit is set, writing to the database from
**   pagerStress() is permitted, but syncing the journal file is not.
**   This flag is set by sqlite3PagerWrite() when the file-system sector-size
**   is larger than the database page-size in order to prevent a journal sync
**   from happening in between the journalling of two pages on the same sector. 
**
** subjInMemory
**
**   This is a boolean variable. If true, then any required sub-journal
**   is opened as an in-memory journal file. If false, then in-memory
**   sub-journals are only used for in-memory pager files.
**
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */
  u8 subjInMemory;            /* True to use in-memory sub-journals */
  u8 bUseFetch;               /* True to use xFetch() */
  u8 hasBeenUsed;             /* True if any content previously read from this pager*/
  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */
  u32 cksumInit;              /* Quasi-random value added to every checksum */







|







42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */
  u8 subjInMemory;            /* True to use in-memory sub-journals */
  u8 bUseFetch;               /* True to use xFetch() */
  u8 hasBeenUsed;             /* True if any content previously read */
  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
**
**   if( isOpen(pPager->jfd) ){ ...
**
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods)

/*
** Return true if this pager uses a write-ahead log instead of the usual
** rollback journal. Otherwise false.
*/
#ifndef SQLITE_OMIT_WAL
static int pagerUseWal(Pager *pPager){







|







42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
**
**   if( isOpen(pPager->jfd) ){ ...
**
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods!=0)

/*
** Return true if this pager uses a write-ahead log instead of the usual
** rollback journal. Otherwise false.
*/
#ifndef SQLITE_OMIT_WAL
static int pagerUseWal(Pager *pPager){
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119

43120
43121
43122
43123
43124
43125

43126
43127
43128
43129
43130
43131
43132
static int subjRequiresPage(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  PagerSavepoint *p;
  Pgno pgno = pPg->pgno;
  int i;
  for(i=0; i<pPager->nSavepoint; i++){
    p = &pPager->aSavepoint[i];
    if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
      return 1;
    }
  }
  return 0;
}


/*
** Return true if the page is already in the journal file.
*/
static int pageInJournal(Pager *pPager, PgHdr *pPg){
  return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno);
}


/*
** Read a 32-bit integer from the given file descriptor.  Store the integer
** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
** error code is something goes wrong.
**
** All values are stored on disk as big-endian.







|






>






>







43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
static int subjRequiresPage(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  PagerSavepoint *p;
  Pgno pgno = pPg->pgno;
  int i;
  for(i=0; i<pPager->nSavepoint; i++){
    p = &pPager->aSavepoint[i];
    if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){
      return 1;
    }
  }
  return 0;
}

#ifdef SQLITE_DEBUG
/*
** Return true if the page is already in the journal file.
*/
static int pageInJournal(Pager *pPager, PgHdr *pPg){
  return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno);
}
#endif

/*
** Read a 32-bit integer from the given file descriptor.  Store the integer
** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
** error code is something goes wrong.
**
** All values are stored on disk as big-endian.
43730
43731
43732
43733
43734
43735
43736
43737

43738
43739
43740
43741
43742
43743
43744
  /* Write the master journal data to the end of the journal file. If
  ** an error occurs, return the error code to the caller.
  */
  if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
   || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
   || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
   || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
   || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8)))

  ){
    return rc;
  }
  pPager->journalOff += (nMaster+20);

  /* If the pager is in peristent-journal mode, then the physical 
  ** journal-file may extend past the end of the master-journal name







|
>







43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
  /* Write the master journal data to the end of the journal file. If
  ** an error occurs, return the error code to the caller.
  */
  if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
   || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
   || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
   || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
   || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8,
                                 iHdrOff+4+nMaster+8)))
  ){
    return rc;
  }
  pPager->journalOff += (nMaster+20);

  /* If the pager is in peristent-journal mode, then the physical 
  ** journal-file may extend past the end of the master-journal name
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
    rc = read32bits(jfd, (*pOffset)-4, &cksum);
    if( rc ) return rc;
    if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
      return SQLITE_DONE;
    }
  }

  /* If this page has already been played by before during the current
  ** rollback, then don't bother to play it back again.
  */
  if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
    return rc;
  }

  /* When playing back page 1, restore the nReserve setting







|







44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
    rc = read32bits(jfd, (*pOffset)-4, &cksum);
    if( rc ) return rc;
    if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
      return SQLITE_DONE;
    }
  }

  /* If this page has already been played back before during the current
  ** rollback, then don't bother to play it back again.
  */
  if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
    return rc;
  }

  /* When playing back page 1, restore the nReserve setting
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
    }
  }
  return rc;
}

/*
** Append a record of the current state of page pPg to the sub-journal. 
** It is the callers responsibility to use subjRequiresPage() to check 
** that it is really required before calling this function.
**
** If successful, set the bit corresponding to pPg->pgno in the bitvecs
** for all open savepoints before returning.
**
** This function returns SQLITE_OK if everything is successful, an IO
** error code if the attempt to write to the sub-journal fails, or 
** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint







<
<







46451
46452
46453
46454
46455
46456
46457


46458
46459
46460
46461
46462
46463
46464
    }
  }
  return rc;
}

/*
** Append a record of the current state of page pPg to the sub-journal. 


**
** If successful, set the bit corresponding to pPg->pgno in the bitvecs
** for all open savepoints before returning.
**
** This function returns SQLITE_OK if everything is successful, an IO
** error code if the attempt to write to the sub-journal fails, or 
** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
46439
46440
46441
46442
46443
46444
46445







46446
46447
46448
46449
46450
46451
46452
  }
  if( rc==SQLITE_OK ){
    pPager->nSubRec++;
    assert( pPager->nSavepoint>0 );
    rc = addToSavepointBitvecs(pPager, pPg->pgno);
  }
  return rc;







}

/*
** This function is called by the pcache layer when it has reached some
** soft memory limit. The first argument is a pointer to a Pager object
** (cast as a void*). The pager is always 'purgeable' (not an in-memory
** database). The second argument is a reference to a page that is 







>
>
>
>
>
>
>







46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
  }
  if( rc==SQLITE_OK ){
    pPager->nSubRec++;
    assert( pPager->nSavepoint>0 );
    rc = addToSavepointBitvecs(pPager, pPg->pgno);
  }
  return rc;
}
static int subjournalPageIfRequired(PgHdr *pPg){
  if( subjRequiresPage(pPg) ){
    return subjournalPage(pPg);
  }else{
    return SQLITE_OK;
  }
}

/*
** This function is called by the pcache layer when it has reached some
** soft memory limit. The first argument is a pointer to a Pager object
** (cast as a void*). The pager is always 'purgeable' (not an in-memory
** database). The second argument is a reference to a page that is 
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
  ){
    return SQLITE_OK;
  }

  pPg->pDirty = 0;
  if( pagerUseWal(pPager) ){
    /* Write a single frame for this page to the log. */
    if( subjRequiresPage(pPg) ){ 
      rc = subjournalPage(pPg); 
    }
    if( rc==SQLITE_OK ){
      rc = pagerWalFrames(pPager, pPg, 0, 0);
    }
  }else{
  
    /* Sync the journal file if required. */
    if( pPg->flags&PGHDR_NEED_SYNC 
     || pPager->eState==PAGER_WRITER_CACHEMOD
    ){
      rc = syncJournal(pPager, 1);
    }
  
    /* If the page number of this page is larger than the current size of
    ** the database image, it may need to be written to the sub-journal.
    ** This is because the call to pager_write_pagelist() below will not
    ** actually write data to the file in this case.
    **
    ** Consider the following sequence of events:
    **
    **   BEGIN;
    **     <journal page X>
    **     <modify page X>
    **     SAVEPOINT sp;
    **       <shrink database file to Y pages>
    **       pagerStress(page X)
    **     ROLLBACK TO sp;
    **
    ** If (X>Y), then when pagerStress is called page X will not be written
    ** out to the database file, but will be dropped from the cache. Then,
    ** following the "ROLLBACK TO sp" statement, reading page X will read
    ** data from the database file. This will be the copy of page X as it
    ** was when the transaction started, not as it was when "SAVEPOINT sp"
    ** was executed.
    **
    ** The solution is to write the current data for page X into the 
    ** sub-journal file now (if it is not already there), so that it will
    ** be restored to its current value when the "ROLLBACK TO sp" is 
    ** executed.
    */
    if( NEVER(
        rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg)
    ) ){
      rc = subjournalPage(pPg);
    }
  
    /* Write the contents of the page out to the database file. */
    if( rc==SQLITE_OK ){
      assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
      rc = pager_write_pagelist(pPager, pPg);
    }
  }








<
|
<












<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







46561
46562
46563
46564
46565
46566
46567

46568

46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580

































46581
46582
46583
46584
46585
46586
46587
  ){
    return SQLITE_OK;
  }

  pPg->pDirty = 0;
  if( pagerUseWal(pPager) ){
    /* Write a single frame for this page to the log. */

    rc = subjournalPageIfRequired(pPg); 

    if( rc==SQLITE_OK ){
      rc = pagerWalFrames(pPager, pPg, 0, 0);
    }
  }else{
  
    /* Sync the journal file if required. */
    if( pPg->flags&PGHDR_NEED_SYNC 
     || pPager->eState==PAGER_WRITER_CACHEMOD
    ){
      rc = syncJournal(pPager, 1);
    }
  

































    /* Write the contents of the page out to the database file. */
    if( rc==SQLITE_OK ){
      assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
      rc = pager_write_pagelist(pPager, pPg);
    }
  }

46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
    ** disk and uses an in-memory rollback journal.
    **
    ** This branch also runs for files marked as immutable.
    */ 
act_like_temp_file:
    tempFile = 1;
    pPager->eState = PAGER_READER;     /* Pretend we already have a lock */
    pPager->eLock = EXCLUSIVE_LOCK;    /* Pretend we are in EXCLUSIVE locking mode */
    pPager->noLock = 1;                /* Do no locking */
    readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
  }

  /* The following call to PagerSetPagesize() serves to set the value of 
  ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
  */
  if( rc==SQLITE_OK ){
    assert( pPager->memDb==0 );
    rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
    testcase( rc!=SQLITE_OK );
  }

  /* Initialize the PCache object. */
  if( rc==SQLITE_OK ){
    assert( nExtra<1000 );
    nExtra = ROUND8(nExtra);
    rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
                           !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
  }

  /* If an error occurred above, free the  Pager structure and close the file.
  */
  if( rc!=SQLITE_OK ){
    sqlite3OsClose(pPager->fd);
    sqlite3PageFree(pPager->pTmpSpace);







|


















|







46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
    ** disk and uses an in-memory rollback journal.
    **
    ** This branch also runs for files marked as immutable.
    */ 
act_like_temp_file:
    tempFile = 1;
    pPager->eState = PAGER_READER;     /* Pretend we already have a lock */
    pPager->eLock = EXCLUSIVE_LOCK;    /* Pretend we are in EXCLUSIVE mode */
    pPager->noLock = 1;                /* Do no locking */
    readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
  }

  /* The following call to PagerSetPagesize() serves to set the value of 
  ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
  */
  if( rc==SQLITE_OK ){
    assert( pPager->memDb==0 );
    rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
    testcase( rc!=SQLITE_OK );
  }

  /* Initialize the PCache object. */
  if( rc==SQLITE_OK ){
    assert( nExtra<1000 );
    nExtra = ROUND8(nExtra);
    rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
                       !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
  }

  /* If an error occurred above, free the  Pager structure and close the file.
  */
  if( rc!=SQLITE_OK ){
    sqlite3OsClose(pPager->fd);
    sqlite3PageFree(pPager->pTmpSpace);
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
    if( !pPager->tempFile && pPager->hasBeenUsed ){
      /* The shared-lock has just been acquired then check to
      ** see if the database has been modified.  If the database has changed,
      ** flush the cache.  The pPager->hasBeenUsed flag prevents this from
      ** occurring on the very first access to a file, in order to save a
      ** single unnecessary sqlite3OsRead() call at the start-up.
      **
      ** Database changes is detected by looking at 15 bytes beginning
      ** at offset 24 into the file.  The first 4 of these 16 bytes are
      ** a 32-bit counter that is incremented with each change.  The
      ** other bytes change randomly with each file change when
      ** a codec is in use.
      ** 
      ** There is a vanishingly small chance that a change will not be 
      ** detected.  The chance of an undetected change is so small that







|







47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
    if( !pPager->tempFile && pPager->hasBeenUsed ){
      /* The shared-lock has just been acquired then check to
      ** see if the database has been modified.  If the database has changed,
      ** flush the cache.  The pPager->hasBeenUsed flag prevents this from
      ** occurring on the very first access to a file, in order to save a
      ** single unnecessary sqlite3OsRead() call at the start-up.
      **
      ** Database changes are detected by looking at 15 bytes beginning
      ** at offset 24 into the file.  The first 4 of these 16 bytes are
      ** a 32-bit counter that is incremented with each change.  The
      ** other bytes change randomly with each file change when
      ** a codec is in use.
      ** 
      ** There is a vanishingly small chance that a change will not be 
      ** detected.  The chance of an undetected change is so small that
47414
47415
47416
47417
47418
47419
47420




47421

47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433

47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455

    {
      sqlite3_pcache_page *pBase;
      pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3);
      if( pBase==0 ){
        rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase);
        if( rc!=SQLITE_OK ) goto pager_acquire_err;




      }

      pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase);
      if( pPg==0 ) rc = SQLITE_NOMEM;
    }
  }

  if( rc!=SQLITE_OK ){
    /* Either the call to sqlite3PcacheFetch() returned an error or the
    ** pager was already in the error-state when this function was called.
    ** Set pPg to 0 and jump to the exception handler.  */
    pPg = 0;
    goto pager_acquire_err;
  }

  assert( (*ppPage)->pgno==pgno );
  assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 );

  if( (*ppPage)->pPager && !noContent ){
    /* In this case the pcache already contains an initialized copy of
    ** the page. Return without further ado.  */
    assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
    pPager->aStat[PAGER_STAT_HIT]++;
    return SQLITE_OK;

  }else{
    /* The pager cache has created a new page. Its content needs to 
    ** be initialized.  */

    pPg = *ppPage;
    pPg->pPager = pPager;

    /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
    ** number greater than this, or the unused locking-page, is requested. */
    if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto pager_acquire_err;







>
>
>
>
|
>

|










>
|
|

|










<







47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482

47483
47484
47485
47486
47487
47488
47489

    {
      sqlite3_pcache_page *pBase;
      pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3);
      if( pBase==0 ){
        rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase);
        if( rc!=SQLITE_OK ) goto pager_acquire_err;
        if( pBase==0 ){
          pPg = *ppPage = 0;
          rc = SQLITE_NOMEM;
          goto pager_acquire_err;
        }
      }
      pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase);
      assert( pPg!=0 );
    }
  }

  if( rc!=SQLITE_OK ){
    /* Either the call to sqlite3PcacheFetch() returned an error or the
    ** pager was already in the error-state when this function was called.
    ** Set pPg to 0 and jump to the exception handler.  */
    pPg = 0;
    goto pager_acquire_err;
  }
  assert( pPg==(*ppPage) );
  assert( pPg->pgno==pgno );
  assert( pPg->pPager==pPager || pPg->pPager==0 );

  if( pPg->pPager && !noContent ){
    /* In this case the pcache already contains an initialized copy of
    ** the page. Return without further ado.  */
    assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
    pPager->aStat[PAGER_STAT_HIT]++;
    return SQLITE_OK;

  }else{
    /* The pager cache has created a new page. Its content needs to 
    ** be initialized.  */


    pPg->pPager = pPager;

    /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
    ** number greater than this, or the unused locking-page, is requested. */
    if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto pager_acquire_err;
47520
47521
47522
47523
47524
47525
47526

47527
47528
47529
47530
47531
47532
47533
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
  sqlite3_pcache_page *pPage;
  assert( pPager!=0 );
  assert( pgno!=0 );
  assert( pPager->pPCache!=0 );
  pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);
  assert( pPage==0 || pPager->hasBeenUsed );

  return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
}

/*
** Release a page reference.
**
** If the number of references to the page drop to zero, then the







>







47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
  sqlite3_pcache_page *pPage;
  assert( pPager!=0 );
  assert( pgno!=0 );
  assert( pPager->pPCache!=0 );
  pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);
  assert( pPage==0 || pPager->hasBeenUsed );
  if( pPage==0 ) return 0;
  return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
}

/*
** Release a page reference.
**
** If the number of references to the page drop to zero, then the
47722
47723
47724
47725
47726
47727
47728





















































47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828

47829
47830

47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844







47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
    assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
    assert( assert_pager_state(pPager) );
  }

  PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
  return rc;
}






















































/*
** Mark a single data page as writeable. The page is written into the 
** main journal or sub-journal as required. If the page is written into
** one of the journals, the corresponding bit is set in the 
** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
** of any open savepoints as appropriate.
*/
static int pager_write(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;
  int inJournal;

  /* This routine is not called unless a write-transaction has already 
  ** been started. The journal file may or may not be open at this point.
  ** It is never called in the ERROR state.
  */
  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );
  assert( pPager->errCode==0 );
  assert( pPager->readOnly==0 );

  CHECK_PAGE(pPg);

  /* The journal file needs to be opened. Higher level routines have already
  ** obtained the necessary locks to begin the write-transaction, but the
  ** rollback journal might not yet be open. Open it now if this is the case.
  **
  ** This is done before calling sqlite3PcacheMakeDirty() on the page. 
  ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
  ** an error might occur and the pager would end up in WRITER_LOCKED state
  ** with pages marked as dirty in the cache.
  */
  if( pPager->eState==PAGER_WRITER_LOCKED ){
    rc = pager_open_journal(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
  assert( assert_pager_state(pPager) );

  /* Mark the page as dirty.  If the page has already been written
  ** to the journal then we can return right away.
  */
  sqlite3PcacheMakeDirty(pPg);
  inJournal = pageInJournal(pPager, pPg);
  if( inJournal && (pPager->nSavepoint==0 || !subjRequiresPage(pPg)) ){
    assert( !pagerUseWal(pPager) );
  }else{
  
    /* The transaction journal now exists and we have a RESERVED or an
    ** EXCLUSIVE lock on the main database file.  Write the current page to
    ** the transaction journal if it is not there already.
    */
    if( !inJournal && !pagerUseWal(pPager) ){
      assert( pagerUseWal(pPager)==0 );
      if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){
        u32 cksum;
        char *pData2;
        i64 iOff = pPager->journalOff;

        /* We should never write to the journal file the page that
        ** contains the database locks.  The following assert verifies
        ** that we do not. */
        assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );

        assert( pPager->journalHdr<=pPager->journalOff );
        CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
        cksum = pager_cksum(pPager, (u8*)pData2);

        /* Even if an IO or diskfull error occurs while journalling the
        ** page in the block above, set the need-sync flag for the page.
        ** Otherwise, when the transaction is rolled back, the logic in
        ** playback_one_page() will think that the page needs to be restored
        ** in the database file. And if an IO error occurs while doing so,
        ** then corruption may follow.
        */
        pPg->flags |= PGHDR_NEED_SYNC;

        rc = write32bits(pPager->jfd, iOff, pPg->pgno);
        if( rc!=SQLITE_OK ) return rc;
        rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
        if( rc!=SQLITE_OK ) return rc;
        rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
        if( rc!=SQLITE_OK ) return rc;

        IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 
                 pPager->journalOff, pPager->pageSize));
        PAGER_INCR(sqlite3_pager_writej_count);
        PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
             PAGERID(pPager), pPg->pgno, 
             ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));

        pPager->journalOff += 8 + pPager->pageSize;
        pPager->nRec++;
        assert( pPager->pInJournal!=0 );
        rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
        testcase( rc==SQLITE_NOMEM );

        assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
        rc |= addToSavepointBitvecs(pPager, pPg->pgno);

        if( rc!=SQLITE_OK ){
          assert( rc==SQLITE_NOMEM );
          return rc;
        }
      }else{
        if( pPager->eState!=PAGER_WRITER_DBMOD ){
          pPg->flags |= PGHDR_NEED_SYNC;
        }
        PAGERTRACE(("APPEND %d page %d needSync=%d\n",
                PAGERID(pPager), pPg->pgno,
               ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
      }
    }
  







    /* If the statement journal is open and the page is not in it,
    ** then write the current page to the statement journal.  Note that
    ** the statement journal format differs from the standard journal format
    ** in that it omits the checksums and the header.
    */
    if( pPager->nSavepoint>0 && subjRequiresPage(pPg) ){
      rc = subjournalPage(pPg);
    }
  }

  /* Update the database size and return.
  */
  if( pPager->dbSize<pPg->pgno ){
    pPager->dbSize = pPg->pgno;
  }
  return rc;
}

/*
** This is a variant of sqlite3PagerWrite() that runs when the sector size
** is larger than the page size.  SQLite makes the (reasonable) assumption that
** all bytes of a sector are written together by hardware.  Hence, all bytes of
** a sector need to be journalled in case of a power loss in the middle of
** a write.
**
** Usually, the sector size is less than or equal to the page size, in which
** case pages can be individually written.  This routine only runs in the exceptional
** case where the page size is smaller than the sector size.
*/
static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){
  int rc = SQLITE_OK;            /* Return code */
  Pgno nPageCount;               /* Total number of pages in database file */
  Pgno pg1;                      /* First page of the sector pPg is located on. */
  int nPage = 0;                 /* Number of pages starting at pg1 to journal */
  int ii;                        /* Loop counter */
  int needSync = 0;              /* True if any page has PGHDR_NEED_SYNC */
  Pager *pPager = pPg->pPager;   /* The pager that owns pPg */
  Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);

  /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
  ** a journal header to be written between the pages journaled by
  ** this function.
  */
  assert( !MEMDB );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











<












<


















|
<
<

<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
|
<
<
<
|
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
>
|
|
>
|
<
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
|
|
<
<
|
|
|
|
|
<
|
<














|
|


|
|
|
|
|
|
|







47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827

47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839

47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858


47859




47860










47861




47862



47863






47864

47865
















47866
47867

47868
47869
47870
47871
47872

47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893


47894
47895
47896
47897
47898

47899

47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
    assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
    assert( assert_pager_state(pPager) );
  }

  PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
  return rc;
}

/*
** Write page pPg onto the end of the rollback journal.
*/
static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  int rc;
  u32 cksum;
  char *pData2;
  i64 iOff = pPager->journalOff;

  /* We should never write to the journal file the page that
  ** contains the database locks.  The following assert verifies
  ** that we do not. */
  assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );

  assert( pPager->journalHdr<=pPager->journalOff );
  CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
  cksum = pager_cksum(pPager, (u8*)pData2);

  /* Even if an IO or diskfull error occurs while journalling the
  ** page in the block above, set the need-sync flag for the page.
  ** Otherwise, when the transaction is rolled back, the logic in
  ** playback_one_page() will think that the page needs to be restored
  ** in the database file. And if an IO error occurs while doing so,
  ** then corruption may follow.
  */
  pPg->flags |= PGHDR_NEED_SYNC;

  rc = write32bits(pPager->jfd, iOff, pPg->pgno);
  if( rc!=SQLITE_OK ) return rc;
  rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
  if( rc!=SQLITE_OK ) return rc;
  rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
  if( rc!=SQLITE_OK ) return rc;

  IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 
           pPager->journalOff, pPager->pageSize));
  PAGER_INCR(sqlite3_pager_writej_count);
  PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
       PAGERID(pPager), pPg->pgno, 
       ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));

  pPager->journalOff += 8 + pPager->pageSize;
  pPager->nRec++;
  assert( pPager->pInJournal!=0 );
  rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
  testcase( rc==SQLITE_NOMEM );
  assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
  rc |= addToSavepointBitvecs(pPager, pPg->pgno);
  assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
  return rc;
}

/*
** Mark a single data page as writeable. The page is written into the 
** main journal or sub-journal as required. If the page is written into
** one of the journals, the corresponding bit is set in the 
** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
** of any open savepoints as appropriate.
*/
static int pager_write(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;


  /* This routine is not called unless a write-transaction has already 
  ** been started. The journal file may or may not be open at this point.
  ** It is never called in the ERROR state.
  */
  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );
  assert( pPager->errCode==0 );
  assert( pPager->readOnly==0 );

  CHECK_PAGE(pPg);

  /* The journal file needs to be opened. Higher level routines have already
  ** obtained the necessary locks to begin the write-transaction, but the
  ** rollback journal might not yet be open. Open it now if this is the case.
  **
  ** This is done before calling sqlite3PcacheMakeDirty() on the page. 
  ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
  ** an error might occur and the pager would end up in WRITER_LOCKED state
  ** with pages marked as dirty in the cache.
  */
  if( pPager->eState==PAGER_WRITER_LOCKED ){
    rc = pager_open_journal(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
  assert( assert_pager_state(pPager) );

  /* Mark the page that is about to be modified as dirty. */


  sqlite3PcacheMakeDirty(pPg);















  /* If a rollback journal is in use, them make sure the page that is about




  ** to change is in the rollback journal, or if the page is a new page off



  ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC.






  */

  assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) );
















  if( pPager->pInJournal!=0
   && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0

  ){
    assert( pagerUseWal(pPager)==0 );
    if( pPg->pgno<=pPager->dbOrigSize ){
      rc = pagerAddPageToRollbackJournal(pPg);
      if( rc!=SQLITE_OK ){

        return rc;
      }
    }else{
      if( pPager->eState!=PAGER_WRITER_DBMOD ){
        pPg->flags |= PGHDR_NEED_SYNC;
      }
      PAGERTRACE(("APPEND %d page %d needSync=%d\n",
              PAGERID(pPager), pPg->pgno,
             ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
    }
  }

  /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list
  ** and before writing the page into the rollback journal.  Wait until now,
  ** after the page has been successfully journalled, before setting the
  ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified.
  */
  pPg->flags |= PGHDR_WRITEABLE;
  
  /* If the statement journal is open and the page is not in it,
  ** then write the page into the statement journal.


  */
  if( pPager->nSavepoint>0 ){
    rc = subjournalPageIfRequired(pPg);
  }


  /* Update the database size and return. */

  if( pPager->dbSize<pPg->pgno ){
    pPager->dbSize = pPg->pgno;
  }
  return rc;
}

/*
** This is a variant of sqlite3PagerWrite() that runs when the sector size
** is larger than the page size.  SQLite makes the (reasonable) assumption that
** all bytes of a sector are written together by hardware.  Hence, all bytes of
** a sector need to be journalled in case of a power loss in the middle of
** a write.
**
** Usually, the sector size is less than or equal to the page size, in which
** case pages can be individually written.  This routine only runs in the
** exceptional case where the page size is smaller than the sector size.
*/
static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){
  int rc = SQLITE_OK;          /* Return code */
  Pgno nPageCount;             /* Total number of pages in database file */
  Pgno pg1;                    /* First page of the sector pPg is located on. */
  int nPage = 0;               /* Number of pages starting at pg1 to journal */
  int ii;                      /* Loop counter */
  int needSync = 0;            /* True if any page has PGHDR_NEED_SYNC */
  Pager *pPager = pPg->pPager; /* The pager that owns pPg */
  Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);

  /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
  ** a journal header to be written between the pages journaled by
  ** this function.
  */
  assert( !MEMDB );
47962
47963
47964
47965
47966
47967
47968

47969
47970
47971
47972



47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
** fit on a single disk sector. In this case all co-resident pages
** must have been written to the journal file before returning.
**
** If an error occurs, SQLITE_NOMEM or an IO error code is returned
** as appropriate. Otherwise, SQLITE_OK.
*/
SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){

  assert( (pPg->flags & PGHDR_MMAP)==0 );
  assert( pPg->pPager->eState>=PAGER_WRITER_LOCKED );
  assert( pPg->pPager->eState!=PAGER_ERROR );
  assert( assert_pager_state(pPg->pPager) );



  if( pPg->pPager->sectorSize > (u32)pPg->pPager->pageSize ){
    return pagerWriteLargeSector(pPg);
  }else{
    return pager_write(pPg);
  }
}

/*
** Return TRUE if the page given in the argument was previously passed
** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
** to change the content of the page.
*/
#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
  return pPg->flags&PGHDR_DIRTY;
}
#endif

/*
** A call to this routine tells the pager that it is not necessary to
** write the information on page pPg back to the disk, even though
** that page might be marked as dirty.  This happens, for example, when







>

|
|
|
>
>
>
|













|







48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
** fit on a single disk sector. In this case all co-resident pages
** must have been written to the journal file before returning.
**
** If an error occurs, SQLITE_NOMEM or an IO error code is returned
** as appropriate. Otherwise, SQLITE_OK.
*/
SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  assert( (pPg->flags & PGHDR_MMAP)==0 );
  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( pPager->eState!=PAGER_ERROR );
  assert( assert_pager_state(pPager) );
  if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){
    if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg);
    return SQLITE_OK;
  }else if( pPager->sectorSize > (u32)pPager->pageSize ){
    return pagerWriteLargeSector(pPg);
  }else{
    return pager_write(pPg);
  }
}

/*
** Return TRUE if the page given in the argument was previously passed
** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
** to change the content of the page.
*/
#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
  return pPg->flags & PGHDR_WRITEABLE;
}
#endif

/*
** A call to this routine tells the pager that it is not necessary to
** write the information on page pPg back to the disk, even though
** that page might be marked as dirty.  This happens, for example, when
48004
48005
48006
48007
48008
48009
48010

48011
48012
48013
48014
48015
48016
48017
*/
SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
    PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
    IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
    pPg->flags |= PGHDR_DONT_WRITE;

    pager_set_pagehash(pPg);
  }
}

/*
** This routine is called to increment the value of the database file 
** change-counter, stored as a 4-byte big-endian integer starting at 







>







48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
*/
SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
    PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
    IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
    pPg->flags |= PGHDR_DONT_WRITE;
    pPg->flags &= ~PGHDR_WRITEABLE;
    pager_set_pagehash(pPg);
  }
}

/*
** This routine is called to increment the value of the database file 
** change-counter, stored as a 4-byte big-endian integer starting at 
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567


48568
48569








































48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
** to make up the difference. If the number of savepoints is already
** equal to nSavepoint, then this function is a no-op.
**
** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 
** occurs while opening the sub-journal file, then an IO error code is
** returned. Otherwise, SQLITE_OK.
*/
SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
  int rc = SQLITE_OK;                       /* Return code */
  int nCurrent = pPager->nSavepoint;        /* Current number of savepoints */



  assert( pPager->eState>=PAGER_WRITER_LOCKED );








































  assert( assert_pager_state(pPager) );

  if( nSavepoint>nCurrent && pPager->useJournal ){
    int ii;                                 /* Iterator variable */
    PagerSavepoint *aNew;                   /* New Pager.aSavepoint array */

    /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
    ** if the allocation fails. Otherwise, zero the new portion in case a 
    ** malloc failure occurs while populating it in the for(...) loop below.
    */
    aNew = (PagerSavepoint *)sqlite3Realloc(
        pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
    );
    if( !aNew ){
      return SQLITE_NOMEM;
    }
    memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
    pPager->aSavepoint = aNew;

    /* Populate the PagerSavepoint structures just allocated. */
    for(ii=nCurrent; ii<nSavepoint; ii++){
      aNew[ii].nOrig = pPager->dbSize;
      if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
        aNew[ii].iOffset = pPager->journalOff;
      }else{
        aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
      }
      aNew[ii].iSubRec = pPager->nSubRec;
      aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
      if( !aNew[ii].pInSavepoint ){
        return SQLITE_NOMEM;
      }
      if( pagerUseWal(pPager) ){
        sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
      }
      pPager->nSavepoint = ii+1;
    }
    assert( pPager->nSavepoint==nSavepoint );
    assertTruncateConstraint(pPager);
  }

  return rc;
}

/*
** This function is called to rollback or release (commit) a savepoint.
** The savepoint to release or rollback need not be the most recently 
** created savepoint.
**
** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.







|


>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
|
<
<
|
<
|
<
<
<
<
<
<







48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662


48663


















48664





48665
48666


48667

48668






48669
48670
48671
48672
48673
48674
48675
** to make up the difference. If the number of savepoints is already
** equal to nSavepoint, then this function is a no-op.
**
** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 
** occurs while opening the sub-journal file, then an IO error code is
** returned. Otherwise, SQLITE_OK.
*/
static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){
  int rc = SQLITE_OK;                       /* Return code */
  int nCurrent = pPager->nSavepoint;        /* Current number of savepoints */
  int ii;                                   /* Iterator variable */
  PagerSavepoint *aNew;                     /* New Pager.aSavepoint array */

  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( assert_pager_state(pPager) );
  assert( nSavepoint>nCurrent && pPager->useJournal );

  /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
  ** if the allocation fails. Otherwise, zero the new portion in case a 
  ** malloc failure occurs while populating it in the for(...) loop below.
  */
  aNew = (PagerSavepoint *)sqlite3Realloc(
      pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
  );
  if( !aNew ){
    return SQLITE_NOMEM;
  }
  memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
  pPager->aSavepoint = aNew;

  /* Populate the PagerSavepoint structures just allocated. */
  for(ii=nCurrent; ii<nSavepoint; ii++){
    aNew[ii].nOrig = pPager->dbSize;
    if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
      aNew[ii].iOffset = pPager->journalOff;
    }else{
      aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
    }
    aNew[ii].iSubRec = pPager->nSubRec;
    aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
    if( !aNew[ii].pInSavepoint ){
      return SQLITE_NOMEM;
    }
    if( pagerUseWal(pPager) ){
      sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
    }
    pPager->nSavepoint = ii+1;
  }
  assert( pPager->nSavepoint==nSavepoint );
  assertTruncateConstraint(pPager);
  return rc;
}
SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( assert_pager_state(pPager) );

  if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){


    return pagerOpenSavepoint(pPager, nSavepoint);


















  }else{





    return SQLITE_OK;
  }


}









/*
** This function is called to rollback or release (commit) a savepoint.
** The savepoint to release or rollback need not be the most recently 
** created savepoint.
**
** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
  ** be possible to restore its contents when the "ROLLBACK TO one"
  ** statement were is processed.
  **
  ** subjournalPage() may need to allocate space to store pPg->pgno into
  ** one or more savepoint bitvecs. This is the reason this function
  ** may return SQLITE_NOMEM.
  */
  if( pPg->flags&PGHDR_DIRTY
   && subjRequiresPage(pPg)
   && SQLITE_OK!=(rc = subjournalPage(pPg))
  ){
    return rc;
  }

  PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 
      PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
  IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))







|
<
|







48892
48893
48894
48895
48896
48897
48898
48899

48900
48901
48902
48903
48904
48905
48906
48907
  ** be possible to restore its contents when the "ROLLBACK TO one"
  ** statement were is processed.
  **
  ** subjournalPage() may need to allocate space to store pPg->pgno into
  ** one or more savepoint bitvecs. This is the reason this function
  ** may return SQLITE_NOMEM.
  */
  if( (pPg->flags & PGHDR_DIRTY)!=0

   && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg))
  ){
    return rc;
  }

  PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 
      PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
  IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
52820
52821
52822
52823
52824
52825
52826

52827
52828
52829
52830
52831
52832
52833
  u16 aiOvfl[5];       /* Insert the i-th overflow cell before the aiOvfl-th
                       ** non-overflow cell */
  u8 *apOvfl[5];       /* Pointers to the body of overflow cells */
  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
  u8 *aData;           /* Pointer to disk image of the page data */
  u8 *aDataEnd;        /* One byte past the end of usable data */
  u8 *aCellIdx;        /* The cell index area */

  DbPage *pDbPage;     /* Pager page handle */
  u16 (*xCellSize)(MemPage*,u8*);             /* cellSizePtr method */
  void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */
  Pgno pgno;           /* Page number for this page */
};

/*







>







52875
52876
52877
52878
52879
52880
52881
52882
52883
52884
52885
52886
52887
52888
52889
  u16 aiOvfl[5];       /* Insert the i-th overflow cell before the aiOvfl-th
                       ** non-overflow cell */
  u8 *apOvfl[5];       /* Pointers to the body of overflow cells */
  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
  u8 *aData;           /* Pointer to disk image of the page data */
  u8 *aDataEnd;        /* One byte past the end of usable data */
  u8 *aCellIdx;        /* The cell index area */
  u8 *aDataOfst;       /* Same as aData for leaves.  aData+4 for interior */
  DbPage *pDbPage;     /* Pager page handle */
  u16 (*xCellSize)(MemPage*,u8*);             /* cellSizePtr method */
  void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */
  Pgno pgno;           /* Page number for this page */
};

/*
53031
53032
53033
53034
53035
53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048

53049
53050



53051



53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
53063

53064
53065
53066
53067
53068
53069
53070
**    eState==SKIPNEXT && skipNext>0:  Next sqlite3BtreeNext() is no-op.
**    eState==SKIPNEXT && skipNext<0:  Next sqlite3BtreePrevious() is no-op.
**    eState==FAULT:                   Cursor fault with skipNext as error code.
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  Pgno *aOverflow;          /* Cache of overflow page locations */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;                 /* Size of pKey, or last integer key */
  void *pKey;               /* Saved key that was cursor last known position */
  Pgno pgnoRoot;            /* The root page of this tree */
  int nOvflAlloc;           /* Allocated size of aOverflow[] array */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive.
                   ** Error code if eState==CURSOR_FAULT */
  u8 curFlags;              /* zero or more BTCF_* flags defined below */

  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                             /* As configured by CursorSetHints() */



  i16 iPage;                            /* Index of current page in apPage */



  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Legal values for BtCursor.curFlags
*/
#define BTCF_WriteFlag    0x01   /* True if a write cursor */
#define BTCF_ValidNKey    0x02   /* True if info.nKey is valid */
#define BTCF_ValidOvfl    0x04   /* True if aOverflow is valid */
#define BTCF_AtLast       0x08   /* Cursor is pointing ot the last entry */
#define BTCF_Incrblob     0x10   /* True if an incremental I/O handle */


/*
** Potential values for BtCursor.eState.
**
** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been







|
<









>

|
>
>
>
|
>
>
>












>







53087
53088
53089
53090
53091
53092
53093
53094

53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
53127
53128
53129
53130
53131
53132
53133
**    eState==SKIPNEXT && skipNext>0:  Next sqlite3BtreeNext() is no-op.
**    eState==SKIPNEXT && skipNext<0:  Next sqlite3BtreePrevious() is no-op.
**    eState==FAULT:                   Cursor fault with skipNext as error code.
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext;          /* Forms a linked list of all cursors */

  Pgno *aOverflow;          /* Cache of overflow page locations */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;                 /* Size of pKey, or last integer key */
  void *pKey;               /* Saved key that was cursor last known position */
  Pgno pgnoRoot;            /* The root page of this tree */
  int nOvflAlloc;           /* Allocated size of aOverflow[] array */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive.
                   ** Error code if eState==CURSOR_FAULT */
  u8 curFlags;              /* zero or more BTCF_* flags defined below */
  u8 curPagerFlags;         /* Flags to send to sqlite3PagerAcquire() */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                 /* As configured by CursorSetHints() */
  /* All fields above are zeroed when the cursor is allocated.  See
  ** sqlite3BtreeCursorZero().  Fields that follow must be manually
  ** initialized. */
  i8 iPage;                 /* Index of current page in apPage */
  u8 curIntKey;             /* Value of apPage[0]->intKey */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  void *padding1;           /* Make object size a multiple of 16 */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Legal values for BtCursor.curFlags
*/
#define BTCF_WriteFlag    0x01   /* True if a write cursor */
#define BTCF_ValidNKey    0x02   /* True if info.nKey is valid */
#define BTCF_ValidOvfl    0x04   /* True if aOverflow is valid */
#define BTCF_AtLast       0x08   /* Cursor is pointing ot the last entry */
#define BTCF_Incrblob     0x10   /* True if an incremental I/O handle */
#define BTCF_Multiple     0x20   /* Maybe another cursor on the same btree */

/*
** Potential values for BtCursor.eState.
**
** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been
53209
53210
53211
53212
53213
53214
53215















53216
53217
53218
53219
53220
53221
53222
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte
















/************** End of btreeInt.h ********************************************/
/************** Continuing where we left off in btmutex.c ********************/
#ifndef SQLITE_OMIT_SHARED_CACHE
#if SQLITE_THREADSAFE

/*
** Obtain the BtShared mutex associated with B-Tree handle p. Also,







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296
53297
53298
53299
53300
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte

/*
** get2byteAligned(), unlike get2byte(), requires that its argument point to a
** two-byte aligned address.  get2bytea() is only used for accessing the
** cell addresses in a btree header.
*/
#if SQLITE_BYTEORDER==4321
# define get2byteAligned(x)  (*(u16*)(x))
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000
# define get2byteAligned(x)  __builtin_bswap16(*(u16*)(x))
#elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
# define get2byteAligned(x)  _byteswap_ushort(*(u16*)(x))
#else
# define get2byteAligned(x)  ((x)[0]<<8 | (x)[1])
#endif

/************** End of btreeInt.h ********************************************/
/************** Continuing where we left off in btmutex.c ********************/
#ifndef SQLITE_OMIT_SHARED_CACHE
#if SQLITE_THREADSAFE

/*
** Obtain the BtShared mutex associated with B-Tree handle p. Also,
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158









54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171


54172
54173
54174
54175
54176
54177
54178

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( 0==pCur->apPage[0]->intKey ){
    void *pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  assert( !pCur->apPage[0]->intKey || !pCur->pKey );

  if( rc==SQLITE_OK ){
    btreeReleaseAllCursorPages(pCur);
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  invalidateOverflowCache(pCur);
  return rc;
}

/* Forward reference */
static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);

/*
** Save the positions of all cursors (except pExcept) that are open on
** the table with root-page iRoot.  "Saving the cursor position" means that
** the location in the btree is remembered in such a way that it can be
** moved back to the same spot after the btree has been modified.  This
** routine is called just before cursor pExcept is used to modify the
** table, for example in BtreeDelete() or BtreeInsert().









**
** Implementation note:  This routine merely checks to see if any cursors
** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
** event that cursors are in need to being saved.
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
  }
  return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;


}

/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/







|












|




















>
>
>
>
>
>
>
>
>












|
>
>







54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( 0==pCur->curIntKey ){
    void *pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  assert( !pCur->curIntKey || !pCur->pKey );

  if( rc==SQLITE_OK ){
    btreeReleaseAllCursorPages(pCur);
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  invalidateOverflowCache(pCur);
  return rc;
}

/* Forward reference */
static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);

/*
** Save the positions of all cursors (except pExcept) that are open on
** the table with root-page iRoot.  "Saving the cursor position" means that
** the location in the btree is remembered in such a way that it can be
** moved back to the same spot after the btree has been modified.  This
** routine is called just before cursor pExcept is used to modify the
** table, for example in BtreeDelete() or BtreeInsert().
**
** If there are two or more cursors on the same btree, then all such 
** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
** routine enforces that rule.  This routine only needs to be called in
** the uncommon case when pExpect has the BTCF_Multiple flag set.
**
** If pExpect!=NULL and if no other cursors are found on the same root-page,
** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
** pointless call to this routine.
**
** Implementation note:  This routine merely checks to see if any cursors
** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
** event that cursors are in need to being saved.
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
  }
  if( p ) return saveCursorsOnList(p, iRoot, pExcept);
  if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
  return SQLITE_OK;
}

/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/
54451
54452
54453
54454
54455
54456
54457



54458
54459
54460
54461
54462



54463
54464
54465
54466
54467
54468
54469
  #define ptrmapPutOvflPtr(x, y, rc)
#endif

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.



**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))




/*
** This is common tail processing for btreeParseCellPtr() and
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
** on a single B-tree page.  Make necessary adjustments to the CellInfo
** structure.
*/







>
>
>




|
>
>
>







54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
  #define ptrmapPutOvflPtr(x, y, rc)
#endif

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** findCellPastPtr() does the same except it skips past the initial
** 4-byte child pointer found on interior pages, if there is one.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
#define findCellPastPtr(P,I) \
  ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))


/*
** This is common tail processing for btreeParseCellPtr() and
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
** on a single B-tree page.  Make necessary adjustments to the CellInfo
** structure.
*/
55201
55202
55203
55204
55205
55206
55207

55208
55209
55210
55211
55212
55213
55214
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];

    /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
    ** the start of the cell content area. A zero value for this integer is
    ** interpreted as 65536. */
    top = get2byteNotZero(&data[hdr+5]);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    pPage->nCell = get2byte(&data[hdr+3]);







>







55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];
    pPage->aDataOfst = &data[pPage->childPtrSize];
    /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
    ** the start of the cell content area. A zero value for this integer is
    ** interpreted as 65536. */
    top = get2byteNotZero(&data[hdr+5]);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    pPage->nCell = get2byte(&data[hdr+3]);
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
    iCellLast = usableSize - 4;
    if( pBt->db->flags & SQLITE_CellSizeCk ){
      int i;            /* Index into the cell pointer array */
      int sz;           /* Size of a cell */

      if( !pPage->leaf ) iCellLast--;
      for(i=0; i<pPage->nCell; i++){
        pc = get2byte(&data[cellOffset+i*2]);
        testcase( pc==iCellFirst );
        testcase( pc==iCellLast );
        if( pc<iCellFirst || pc>iCellLast ){
          return SQLITE_CORRUPT_BKPT;
        }
        sz = pPage->xCellSize(pPage, &data[pc]);
        testcase( pc+sz==usableSize );







|







55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
    iCellLast = usableSize - 4;
    if( pBt->db->flags & SQLITE_CellSizeCk ){
      int i;            /* Index into the cell pointer array */
      int sz;           /* Size of a cell */

      if( !pPage->leaf ) iCellLast--;
      for(i=0; i<pPage->nCell; i++){
        pc = get2byteAligned(&data[cellOffset+i*2]);
        testcase( pc==iCellFirst );
        testcase( pc==iCellLast );
        if( pc<iCellFirst || pc>iCellLast ){
          return SQLITE_CORRUPT_BKPT;
        }
        sz = pPage->xCellSize(pPage, &data[pc]);
        testcase( pc+sz==usableSize );
55320
55321
55322
55323
55324
55325
55326

55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
  data[hdr+7] = 0;
  put2byte(&data[hdr+5], pBt->usableSize);
  pPage->nFree = (u16)(pBt->usableSize - first);
  decodeFlags(pPage, flags);
  pPage->cellOffset = first;
  pPage->aDataEnd = &data[pBt->usableSize];
  pPage->aCellIdx = &data[first];

  pPage->nOverflow = 0;
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nCell = 0;
  pPage->isInit = 1;
}


/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  pPage->aData = sqlite3PagerGetData(pDbPage);
  pPage->pDbPage = pDbPage;
  pPage->pBt = pBt;
  pPage->pgno = pgno;
  pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
**







>


















|







55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
  data[hdr+7] = 0;
  put2byte(&data[hdr+5], pBt->usableSize);
  pPage->nFree = (u16)(pBt->usableSize - first);
  decodeFlags(pPage, flags);
  pPage->cellOffset = first;
  pPage->aDataEnd = &data[pBt->usableSize];
  pPage->aCellIdx = &data[first];
  pPage->aDataOfst = &data[pPage->childPtrSize];
  pPage->nOverflow = 0;
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nCell = 0;
  pPage->isInit = 1;
}


/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  pPage->aData = sqlite3PagerGetData(pDbPage);
  pPage->pDbPage = pDbPage;
  pPage->pBt = pBt;
  pPage->pgno = pgno;
  pPage->hdrOffset = pgno==1 ? 100 : 0;
  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
**
55399
55400
55401
55402
55403
55404
55405
55406
55407



55408


55409
55410
55411
55412
55413
55414
55415
55416

55417
55418
55419

55420


55421
55422
55423
55424
55425





55426
55427
55428
55429
55430

55431
55432
55433








55434




55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453


55454
55455
55456
55457
55458
55459
55460
SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  assert( ((p->pBt->nPage)&0x8000000)==0 );
  return btreePagecount(p->pBt);
}

/*
** Get a page from the pager and initialize it.  This routine is just a
** convenience wrapper around separate calls to btreeGetPage() and 



** btreeInitPage().


**
** If an error occurs, then the value *ppPage is set to is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */

  int bReadonly                   /* PAGER_GET_READONLY or 0 */
){
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );


  assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{





    rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
    if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
      rc = btreeInitPage(*ppPage);
      if( rc!=SQLITE_OK ){
        releasePage(*ppPage);

      }
    }
  }













  testcase( pgno==0 );
  assert( pgno!=0 || rc==SQLITE_CORRUPT );
  return rc;
}

/*
** Release a MemPage.  This should be called once for each prior
** call to btreeGetPage.
*/
static void releasePage(MemPage *pPage){
  if( pPage ){
    assert( pPage->aData );
    assert( pPage->pBt );
    assert( pPage->pDbPage!=0 );
    assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
    assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
    sqlite3PagerUnrefNotNull(pPage->pDbPage);
  }


}

/*
** Get an unused page.
**
** This works just like btreeGetPage() with the addition:
**







|
|
>
>
>
|
>
>

|






>
|


>

>
>
|



|
>
>
>
>
>
|
|
|
|
|
>
|
|
|
>
>
>
>
>
>
>
>
|
>
>
>
>









|
<
|
|
|
|
|
|
|
|
>
>







55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568

55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  assert( ((p->pBt->nPage)&0x8000000)==0 );
  return btreePagecount(p->pBt);
}

/*
** Get a page from the pager and initialize it.
**
** If pCur!=0 then the page is being fetched as part of a moveToChild()
** call.  Do additional sanity checking on the page in this case.
** And if the fetch fails, this routine must decrement pCur->iPage.
**
** The page is fetched as read-write unless pCur is not NULL and is
** a read-only cursor.
**
** If an error occurs, then *ppPage is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
  int bReadOnly                   /* True for a read-only page */
){
  int rc;
  DbPage *pDbPage;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
  assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
  assert( pCur==0 || pCur->iPage>0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
    goto getAndInitPage_error;
  }
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
  if( rc ){
    goto getAndInitPage_error;
  }
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  if( (*ppPage)->isInit==0 ){
    rc = btreeInitPage(*ppPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      goto getAndInitPage_error;
    }
  }

  /* If obtaining a child page for a cursor, we must verify that the page is
  ** compatible with the root page. */
  if( pCur
   && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey)
  ){
    rc = SQLITE_CORRUPT_BKPT;
    releasePage(*ppPage);
    goto getAndInitPage_error;
  }
  return SQLITE_OK;

getAndInitPage_error:
  if( pCur ) pCur->iPage--;
  testcase( pgno==0 );
  assert( pgno!=0 || rc==SQLITE_CORRUPT );
  return rc;
}

/*
** Release a MemPage.  This should be called once for each prior
** call to btreeGetPage.
*/
static void releasePageNotNull(MemPage *pPage){

  assert( pPage->aData );
  assert( pPage->pBt );
  assert( pPage->pDbPage!=0 );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  sqlite3PagerUnrefNotNull(pPage->pDbPage);
}
static void releasePage(MemPage *pPage){
  if( pPage ) releasePageNotNull(pPage);
}

/*
** Get an unused page.
**
** This works just like btreeGetPage() with the addition:
**
56421
56422
56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
    MemPage *pPage1 = pBt->pPage1;
    assert( pPage1->aData );
    assert( sqlite3PagerRefcount(pBt->pPager)==1 );
    pBt->pPage1 = 0;
    releasePage(pPage1);
  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.







|







56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
    MemPage *pPage1 = pBt->pPage1;
    assert( pPage1->aData );
    assert( sqlite3PagerRefcount(pBt->pPager)==1 );
    pBt->pPage1 = 0;
    releasePageNotNull(pPage1);
  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
57477
57478
57479
57480
57481
57482
57483

57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520



57521
57522

57523
57524


57525
57526
57527
57528
57529
57530
57531
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */


  assert( sqlite3BtreeHoldsMutex(p) );
  assert( wrFlag==0 || wrFlag==1 );

  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
    return SQLITE_READONLY;
  }
  if( wrFlag ){
    allocateTempSpace(pBt);
    if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
  pCur->curFlags = wrFlag;



  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){

    pCur->pNext->pPrev = pCur;
  }


  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  return SQLITE_OK;
}
SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */







>















<
|
<
|


















>
>
>
|
|
>
|
|
>
>







57602
57603
57604
57605
57606
57607
57608
57609
57610
57611
57612
57613
57614
57615
57616
57617
57618
57619
57620
57621
57622
57623
57624

57625

57626
57627
57628
57629
57630
57631
57632
57633
57634
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
57654
57655
57656
57657
57658
57659
57660
57661
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( wrFlag==0 || wrFlag==1 );

  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );


  if( wrFlag ){
    allocateTempSpace(pBt);
    if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
  pCur->curFlags = wrFlag;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==(Pgno)iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;
    }
  }
  pCur->pNext = pBt->pCursor;
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  return SQLITE_OK;
}
SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
57575
57576
57577
57578
57579
57580
57581

57582
57583
57584



57585

57586
57587
57588
57589
57590
57591
57592
57593
57594
57595
SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
  Btree *pBtree = pCur->pBtree;
  if( pBtree ){
    int i;
    BtShared *pBt = pCur->pBt;
    sqlite3BtreeEnter(pBtree);
    sqlite3BtreeClearCursor(pCur);

    if( pCur->pPrev ){
      pCur->pPrev->pNext = pCur->pNext;
    }else{



      pBt->pCursor = pCur->pNext;

    }
    if( pCur->pNext ){
      pCur->pNext->pPrev = pCur->pPrev;
    }
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    unlockBtreeIfUnused(pBt);
    sqlite3_free(pCur->aOverflow);
    /* sqlite3_free(pCur); */







>
|
|

>
>
>
|
>
|
|
|







57705
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
57728
57729
57730
SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
  Btree *pBtree = pCur->pBtree;
  if( pBtree ){
    int i;
    BtShared *pBt = pCur->pBt;
    sqlite3BtreeEnter(pBtree);
    sqlite3BtreeClearCursor(pCur);
    assert( pBt->pCursor!=0 );
    if( pBt->pCursor==pCur ){
      pBt->pCursor = pCur->pNext;
    }else{
      BtCursor *pPrev = pBt->pCursor;
      do{
        if( pPrev->pNext==pCur ){
          pPrev->pNext = pCur->pNext;
          break;
        }
        pPrev = pPrev->pNext;
      }while( ALWAYS(pPrev) );
    }
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    unlockBtreeIfUnused(pBt);
    sqlite3_free(pCur->aOverflow);
    /* sqlite3_free(pCur); */
58127
58128
58129
58130
58131
58132
58133
58134
58135
58136
58137
58138
58139
58140
58141
58142
58143
58144
58145
58146
58147
58148
58149
58150
58151
58152
58153
58154
58155
58156
58157

58158

58159
58160
58161
58162
58163
58164
58165
**
** This function returns SQLITE_CORRUPT if the page-header flags field of
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  int i = pCur->iPage;
  MemPage *pNewPage;
  BtShared *pBt = pCur->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, newPgno, &pNewPage,
               (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
  if( rc ) return rc;
  pCur->apPage[i+1] = pNewPage;
  pCur->aiIdx[i+1] = 0;
  pCur->iPage++;

  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }

  return SQLITE_OK;

}

#if SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of







<
<
<









<
<
<
<
<
<
<


|
<
<
>
|
>







58262
58263
58264
58265
58266
58267
58268



58269
58270
58271
58272
58273
58274
58275
58276
58277







58278
58279
58280


58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
**
** This function returns SQLITE_CORRUPT if the page-header flags field of
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){



  BtShared *pBt = pCur->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }







  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  pCur->iPage++;


  pCur->aiIdx[pCur->iPage] = 0;
  return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
                        pCur, pCur->curPagerFlags);
}

#if SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
58195
58196
58197
58198
58199
58200
58201
58202
58203
58204
58205
58206

58207
58208
58209
58210
58211
58212
58213
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );

  releasePage(pCur->apPage[pCur->iPage]);
  pCur->iPage--;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);

}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
** to the virtual root page instead of the actual root page. A table has a







<
<
<


>







58320
58321
58322
58323
58324
58325
58326



58327
58328
58329
58330
58331
58332
58333
58334
58335
58336
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );



  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  releasePageNotNull(pCur->apPage[pCur->iPage--]);
}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
** to the virtual root page instead of the actual root page. A table has a
58240
58241
58242
58243
58244
58245
58246
58247



58248
58249
58250
58251

58252
58253
58254
58255
58256
58257
58258

58259
58260
58261
58262
58263
58264
58265
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
    }
    sqlite3BtreeClearCursor(pCur);
  }

  if( pCur->iPage>=0 ){
    while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);



  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{

    rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
                 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;

  }
  pRoot = pCur->apPage[0];
  assert( pRoot->pgno==pCur->pgnoRoot );

  /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
  ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
  ** NULL, the caller expects a table b-tree. If this is not the case,







|
>
>
>




>

|





>







58363
58364
58365
58366
58367
58368
58369
58370
58371
58372
58373
58374
58375
58376
58377
58378
58379
58380
58381
58382
58383
58384
58385
58386
58387
58388
58389
58390
58391
58392
58393
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
    }
    sqlite3BtreeClearCursor(pCur);
  }

  if( pCur->iPage>=0 ){
    while( pCur->iPage ){
      assert( pCur->apPage[pCur->iPage]!=0 );
      releasePageNotNull(pCur->apPage[pCur->iPage--]);
    }
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    assert( pCur->iPage==(-1) );
    rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
                        0, pCur->curPagerFlags);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;
    pCur->curIntKey = pCur->apPage[0]->intKey;
  }
  pRoot = pCur->apPage[0];
  assert( pRoot->pgno==pCur->pgnoRoot );

  /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
  ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
  ** NULL, the caller expects a table b-tree. If this is not the case,
58454
58455
58456
58457
58458
58459
58460
58461
58462
58463
58464
58465
58466
58467
58468
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
   && pCur->apPage[0]->intKey 
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
      *pRes = -1;







|







58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
58594
58595
58596
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
   && pCur->curIntKey 
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
      *pRes = -1;
58489
58490
58491
58492
58493
58494
58495
58496

58497
58498
58499
58500
58501
58502
58503
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );

  for(;;){
    int lwr, upr, idx, c;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    u8 *pCell;                          /* Pointer to current cell in pPage */

    /* pPage->nCell must be greater than zero. If this is the root-page







|
>







58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey==pCur->curIntKey );
  assert( pCur->curIntKey || pIdxKey );
  for(;;){
    int lwr, upr, idx, c;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    u8 *pCell;                          /* Pointer to current cell in pPage */

    /* pPage->nCell must be greater than zero. If this is the root-page
58512
58513
58514
58515
58516
58517
58518
58519
58520
58521
58522
58523
58524
58525
58526
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->aiIdx[pCur->iPage] = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCell(pPage, idx) + pPage->childPtrSize;
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){







|







58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->aiIdx[pCur->iPage] = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
58545
58546
58547
58548
58549
58550
58551
58552
58553
58554
58555
58556
58557
58558
58559
        }
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
      }
    }else{
      for(;;){
        int nCell;  /* Size of the pCell cell in bytes */
        pCell = findCell(pPage, idx) + pPage->childPtrSize;

        /* The maximum supported page-size is 65536 bytes. This means that
        ** the maximum number of record bytes stored on an index B-Tree
        ** page is less than 16384 bytes and may be stored as a 2-byte
        ** varint. This information is used to attempt to avoid parsing 
        ** the entire cell by checking for the cases where the record is 
        ** stored entirely within the b-tree page by inspecting the first 







|







58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
        }
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
      }
    }else{
      for(;;){
        int nCell;  /* Size of the pCell cell in bytes */
        pCell = findCellPastPtr(pPage, idx);

        /* The maximum supported page-size is 65536 bytes. This means that
        ** the maximum number of record bytes stored on an index B-Tree
        ** page is less than 16384 bytes and may be stored as a 2-byte
        ** varint. This information is used to attempt to avoid parsing 
        ** the entire cell by checking for the cases where the record is 
        ** stored entirely within the b-tree page by inspecting the first 
59483
59484
59485
59486
59487
59488
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
  
  /* Fill in the payload size */
  if( pPage->intKey ){
    pSrc = pData;
    nSrc = nData;
    nData = 0;
  }else{ 
    if( NEVER(nKey>0x7fffffff || pKey==0) ){
      return SQLITE_CORRUPT_BKPT;
    }
    nPayload = (int)nKey;
    pSrc = pKey;
    nSrc = (int)nKey;
  }
  if( nPayload<=pPage->maxLocal ){
    n = nHeader + nPayload;
    testcase( n==3 );







|
<
<







59612
59613
59614
59615
59616
59617
59618
59619


59620
59621
59622
59623
59624
59625
59626
  
  /* Fill in the payload size */
  if( pPage->intKey ){
    pSrc = pData;
    nSrc = nData;
    nData = 0;
  }else{ 
    assert( nKey<=0x7fffffff && pKey!=0 );


    nPayload = (int)nKey;
    pSrc = pKey;
    nSrc = (int)nKey;
  }
  if( nPayload<=pPage->maxLocal ){
    n = nHeader + nPayload;
    testcase( n==3 );
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088

  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);

#ifdef SQLITE_DEBUG
  for(i=0; i<nNew && !CORRUPT_DB; i++){
    u8 *pCell = pCArray->apCell[i+iNew];
    int iOff = get2byte(&pPg->aCellIdx[i*2]);
    if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
      pCell = &pTmp[pCell - aData];
    }
    assert( 0==memcmp(pCell, &aData[iOff],
            pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
  }
#endif







|







60201
60202
60203
60204
60205
60206
60207
60208
60209
60210
60211
60212
60213
60214
60215

  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);

#ifdef SQLITE_DEBUG
  for(i=0; i<nNew && !CORRUPT_DB; i++){
    u8 *pCell = pCArray->apCell[i+iNew];
    int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
    if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
      pCell = &pTmp[pCell - aData];
    }
    assert( 0==memcmp(pCell, &aData[iOff],
            pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
  }
#endif
60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){
    rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;








|







60575
60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
60586
60587
60588
60589
  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){
    rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
60586
60587
60588
60589
60590
60591
60592
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
    if( pOld->nOverflow>0 ){
      memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
        piCell += 2;
        b.nCell++;
      }
      for(k=0; k<pOld->nOverflow; k++){
        assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
        b.apCell[b.nCell] = pOld->apOvfl[k];
        b.nCell++;
      }
    }
    piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
    while( piCell<piEnd ){
      assert( b.nCell<nMaxCells );
      b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
      piCell += 2;
      b.nCell++;
    }

    cntOld[i] = b.nCell;
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];







|












|







60703
60704
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
60720
60721
60722
60723
60724
60725
60726
60727
60728
60729
60730
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
    if( pOld->nOverflow>0 ){
      memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;
      }
      for(k=0; k<pOld->nOverflow; k++){
        assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
        b.apCell[b.nCell] = pOld->apOvfl[k];
        b.nCell++;
      }
    }
    piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
    while( piCell<piEnd ){
      assert( b.nCell<nMaxCells );
      b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
      piCell += 2;
      b.nCell++;
    }

    cntOld[i] = b.nCell;
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
61366
61367
61368
61369
61370
61371
61372

61373
61374
61375

61376

61377
61378
61379
61380
61381
61382
61383
61384
61385
61386
61387


61388
61389
61390
61391
61392
61393
61394
61395
61396
61397
  ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 
  ** integer key to use. It then calls this function to actually insert the 
  ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
  ** that the cursor is already where it needs to be and returns without
  ** doing any work. To avoid thwarting these optimizations, it is important
  ** not to clear the cursor here.
  */

  rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
  if( rc ) return rc;


  if( pCur->pKeyInfo==0 ){

    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, nKey, 0);

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
    ** call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
      && pCur->info.nKey==nKey-1 ){
      loc = -1;
    }


  }

  if( !loc ){
    rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->intKey || nKey>=0 );







>
|
|
|
>

>





|
|


|
|
>
>
|
|
<







61493
61494
61495
61496
61497
61498
61499
61500
61501
61502
61503
61504
61505
61506
61507
61508
61509
61510
61511
61512
61513
61514
61515
61516
61517
61518
61519
61520
61521

61522
61523
61524
61525
61526
61527
61528
  ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 
  ** integer key to use. It then calls this function to actually insert the 
  ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
  ** that the cursor is already where it needs to be and returns without
  ** doing any work. To avoid thwarting these optimizations, it is important
  ** not to clear the cursor here.
  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  if( pCur->pKeyInfo==0 ){
    assert( pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, nKey, 0);

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
      && pCur->info.nKey==nKey-1 ){
       loc = -1;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 ){

    rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->intKey || nKey>=0 );
61485
61486
61487
61488
61489
61490
61491
61492
61493
61494
61495
61496
61497
61498
61499
61500
61501
61502
61503
61504

  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );

  if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) 
   || NEVER(pCur->eState!=CURSOR_VALID)
  ){
    return SQLITE_ERROR;  /* Something has gone awry. */
  }

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the page containing the entry to delete is not a leaf page, move







<
|
|
<
<
<







61616
61617
61618
61619
61620
61621
61622

61623
61624



61625
61626
61627
61628
61629
61630
61631

  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );

  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );




  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the page containing the entry to delete is not a leaf page, move
61515
61516
61517
61518
61519
61520
61521

61522
61523

61524
61525
61526
61527
61528
61529
61530
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications. Make the page containing the entry to be 
  ** deleted writable. Then free any overflow pages associated with the 
  ** entry and finally remove the cell itself from within the page.  
  */

  rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
  if( rc ) return rc;


  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }








>
|
|
>







61642
61643
61644
61645
61646
61647
61648
61649
61650
61651
61652
61653
61654
61655
61656
61657
61658
61659
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications. Make the page containing the entry to be 
  ** deleted writable. Then free any overflow pages associated with the 
  ** entry and finally remove the cell itself from within the page.  
  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

61765
61766
61767
61768
61769
61770
61771
61772
61773
61774
61775
61776
61777
61778
61779
  int hdr;
  u16 szCell;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, pgno, &pPage, 0);
  if( rc ) return rc;
  if( pPage->bBusy ){
    rc = SQLITE_CORRUPT_BKPT;
    goto cleardatabasepage_out;
  }
  pPage->bBusy = 1;
  hdr = pPage->hdrOffset;







|







61894
61895
61896
61897
61898
61899
61900
61901
61902
61903
61904
61905
61906
61907
61908
  int hdr;
  u16 szCell;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
  if( rc ) return rc;
  if( pPage->bBusy ){
    rc = SQLITE_CORRUPT_BKPT;
    goto cleardatabasepage_out;
  }
  pPage->bBusy = 1;
  hdr = pPage->hdrOffset;
62552
62553
62554
62555
62556
62557
62558
62559
62560
62561
62562
62563
62564
62565
62566
    nCell = get2byte(&data[hdr+3]);
    /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
    ** immediately follows the b-tree page header. */
    cellStart = hdr + 12 - 4*pPage->leaf;
    /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
    ** integer offsets to the cell contents. */
    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      if( pc<=usableSize-4 ){
        size = pPage->xCellSize(pPage, &data[pc]);
      }
      if( (int)(pc+size-1)>=usableSize ){
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,







|







62681
62682
62683
62684
62685
62686
62687
62688
62689
62690
62691
62692
62693
62694
62695
    nCell = get2byte(&data[hdr+3]);
    /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
    ** immediately follows the b-tree page header. */
    cellStart = hdr + 12 - 4*pPage->leaf;
    /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
    ** integer offsets to the cell contents. */
    for(i=0; i<nCell; i++){
      int pc = get2byteAligned(&data[cellStart+i*2]);
      u32 size = 65536;
      if( pc<=usableSize-4 ){
        size = pPage->xCellSize(pPage, &data[pc]);
      }
      if( (int)(pc+size-1)>=usableSize ){
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,
66022
66023
66024
66025
66026
66027
66028
66029
66030
66031
66032
66033
66034
66035
66036
66037
66038
66039
66040
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
    ** cases from this switch! */
    switch( opcode ){
      case OP_Function:
      case OP_AggStep: {
        if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
        break;
      }
      case OP_Transaction: {
        if( pOp->p2!=0 ) p->readOnly = 0;
        /* fall thru */
      }
      case OP_AutoCommit:
      case OP_Savepoint: {
        p->bIsReader = 1;







<
<
<
<
<







66151
66152
66153
66154
66155
66156
66157





66158
66159
66160
66161
66162
66163
66164
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
    ** cases from this switch! */
    switch( opcode ){





      case OP_Transaction: {
        if( pOp->p2!=0 ) p->readOnly = 0;
        /* fall thru */
      }
      case OP_AutoCommit:
      case OP_Savepoint: {
        p->bIsReader = 1;
66270
66271
66272
66273
66274
66275
66276




66277
66278
66279
66280
66281
66282
66283
/*
** Delete a P4 value if necessary.
*/
static void freeP4(sqlite3 *db, int p4type, void *p4){
  if( p4 ){
    assert( db );
    switch( p4type ){




      case P4_REAL:
      case P4_INT64:
      case P4_DYNAMIC:
      case P4_INTARRAY: {
        sqlite3DbFree(db, p4);
        break;
      }







>
>
>
>







66394
66395
66396
66397
66398
66399
66400
66401
66402
66403
66404
66405
66406
66407
66408
66409
66410
66411
/*
** Delete a P4 value if necessary.
*/
static void freeP4(sqlite3 *db, int p4type, void *p4){
  if( p4 ){
    assert( db );
    switch( p4type ){
      case P4_FUNCCTX: {
        freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
        /* Fall through into the next case */
      }
      case P4_REAL:
      case P4_INT64:
      case P4_DYNAMIC:
      case P4_INTARRAY: {
        sqlite3DbFree(db, p4);
        break;
      }
66654
66655
66656
66657
66658
66659
66660







66661
66662
66663
66664
66665
66666
66667
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }







    case P4_INT64: {
      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
      break;
    }
    case P4_INT32: {
      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
      break;







>
>
>
>
>
>
>







66782
66783
66784
66785
66786
66787
66788
66789
66790
66791
66792
66793
66794
66795
66796
66797
66798
66799
66800
66801
66802
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#ifdef SQLITE_DEBUG
    case P4_FUNCCTX: {
      FuncDef *pDef = pOp->p4.pCtx->pFunc;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#endif
    case P4_INT64: {
      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
      break;
    }
    case P4_INT32: {
      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
      break;
68488
68489
68490
68491
68492
68493
68494







68495
68496
68497
68498
68499
68500
68501
68502
68503
68504
68505
68506
68507
68508
68509
68510
  n = (u32)pMem->n;
  if( flags & MEM_Zero ){
    n += pMem->u.nZero;
  }
  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}








/*
** Return the length of the data corresponding to the supplied serial-type.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
  if( serial_type>=12 ){
    return (serial_type-12)/2;
  }else{
    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
    return aSize[serial_type];
  }
}

/*
** If we are on an architecture with mixed-endian floating 
** points (ex: ARM7) then swap the lower 4 bytes with the 
** upper 4 bytes.  Return the result.







>
>
>
>
>
>
>







<
|







68623
68624
68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643

68644
68645
68646
68647
68648
68649
68650
68651
  n = (u32)pMem->n;
  if( flags & MEM_Zero ){
    n += pMem->u.nZero;
  }
  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}

/*
** The sizes for serial types less than 12
*/
static const u8 sqlite3SmallTypeSizes[] = {
  0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0
};

/*
** Return the length of the data corresponding to the supplied serial-type.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
  if( serial_type>=12 ){
    return (serial_type-12)/2;
  }else{

    return sqlite3SmallTypeSizes[serial_type];
  }
}

/*
** If we are on an architecture with mixed-endian floating 
** points (ex: ARM7) then swap the lower 4 bytes with the 
** upper 4 bytes.  Return the result.
68580
68581
68582
68583
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
    if( serial_type==7 ){
      assert( sizeof(v)==sizeof(pMem->u.r) );
      memcpy(&v, &pMem->u.r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    assert( i>0 );
    do{
      buf[--i] = (u8)(v&0xFF);
      v >>= 8;
    }while( i );
    return len;
  }







|







68721
68722
68723
68724
68725
68726
68727
68728
68729
68730
68731
68732
68733
68734
68735
    if( serial_type==7 ){
      assert( sizeof(v)==sizeof(pMem->u.r) );
      memcpy(&v, &pMem->u.r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3SmallTypeSizes[serial_type];
    assert( i>0 );
    do{
      buf[--i] = (u8)(v&0xFF);
      v >>= 8;
    }while( i );
    return len;
  }
69609
69610
69611
69612
69613
69614
69615
69616
69617
69618
69619
69620
69621
69622
69623
  testcase( typeRowid==5 );
  testcase( typeRowid==6 );
  testcase( typeRowid==8 );
  testcase( typeRowid==9 );
  if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
    goto idx_rowid_corruption;
  }
  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  testcase( (u32)m.n==szHdr+lenRowid );
  if( unlikely((u32)m.n<szHdr+lenRowid) ){
    goto idx_rowid_corruption;
  }

  /* Fetch the integer off the end of the index record */
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);







|







69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
  testcase( typeRowid==5 );
  testcase( typeRowid==6 );
  testcase( typeRowid==8 );
  testcase( typeRowid==9 );
  if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
    goto idx_rowid_corruption;
  }
  lenRowid = sqlite3SmallTypeSizes[typeRowid];
  testcase( (u32)m.n==szHdr+lenRowid );
  if( unlikely((u32)m.n<szHdr+lenRowid) ){
    goto idx_rowid_corruption;
  }

  /* Fetch the integer off the end of the index record */
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
73200
73201
73202
73203
73204
73205
73206
73207
73208
73209
73210
73211
73212
73213
73214
73215
73216
73217
73218
73219
73220
73221
73222
73223
73224












73225
73226


73227

73228





73229
73230
73231
73232
73233
73234
73235
73236
73237
73238
73239
73240
73241
73242
73243
73244
73245
73246
73247
73248







73249
73250
73251






























73252
73253
73254
73255
73256
73257
73258
73259
73260
73261
73262
73263
73264
73265
73266
73267

73268
73269
73270
73271
73272
73273
73274
73275
73276
73277
73278
73279
73280
73281
  assert( pOp->p4type==P4_COLLSEQ );
  if( pOp->p1 ){
    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
  }
  break;
}

/* Opcode: Function P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
** successors.  The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggStep and AggFinal
*/
case OP_Function: {












  int i;
  Mem *pArg;


  sqlite3_context ctx;

  sqlite3_value **apVal;





  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pOut = &aMem[pOp->p3];
  memAboutToChange(p, ctx.pOut);

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
    assert( memIsValid(pArg) );
    apVal[i] = pArg;
    Deephemeralize(pArg);
    REGISTER_TRACE(pOp->p2+i, pArg);
  }

  assert( pOp->p4type==P4_FUNCDEF );







  ctx.pFunc = pOp->p4.pFunc;
  ctx.iOp = (int)(pOp - aOp);
  ctx.pVdbe = p;






























  MemSetTypeFlag(ctx.pOut, MEM_Null);
  ctx.fErrorOrAux = 0;
  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */

  /* If the function returned an error, throw an exception */
  if( ctx.fErrorOrAux ){
    if( ctx.isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(ctx.pOut));
      rc = ctx.isError;
    }
    sqlite3VdbeDeleteAuxData(p, (int)(pOp - aOp), pOp->p1);
  }

  /* Copy the result of the function into register P3 */

  sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
  if( sqlite3VdbeMemTooBig(ctx.pOut) ){
    goto too_big;
  }

  REGISTER_TRACE(pOp->p3, ctx.pOut);
  UPDATE_MAX_BLOBSIZE(ctx.pOut);
  break;
}

/* Opcode: BitAnd P1 P2 P3 * *
** Synopsis:  r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and







|


|











|

|
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
|
>
|
>
>
>
>
>

|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


>
>
>
>
>
>
>
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|

|



|
|
|
|

|



>
|
|
<


|
|







73341
73342
73343
73344
73345
73346
73347
73348
73349
73350
73351
73352
73353
73354
73355
73356
73357
73358
73359
73360
73361
73362
73363
73364
73365
73366
73367
73368
73369
73370
73371
73372
73373
73374
73375
73376
73377
73378
73379
73380
73381
73382
73383
73384
73385
73386
73387
73388
73389
73390
73391
















73392
73393
73394
73395
73396
73397
73398
73399
73400
73401
73402
73403
73404
73405
73406
73407
73408
73409
73410
73411
73412
73413
73414
73415
73416
73417
73418
73419
73420
73421
73422
73423
73424
73425
73426
73427
73428
73429
73430
73431
73432
73433
73434
73435
73436
73437
73438
73439
73440
73441
73442
73443
73444
73445
73446
73447
73448
73449
73450
73451
73452

73453
73454
73455
73456
73457
73458
73459
73460
73461
73462
73463
  assert( pOp->p4type==P4_COLLSEQ );
  if( pOp->p1 ){
    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
  }
  break;
}

/* Opcode: Function0 P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to a FuncDef object that
** defines the function) with P5 arguments taken from register P2 and
** successors.  The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: Function, AggStep, AggFinal
*/
/* Opcode: Function P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to an sqlite3_context object that
** contains a pointer to the function to be run) with P5 arguments taken
** from register P2 and successors.  The result of the function is stored
** in register P3.  Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** SQL functions are initially coded as OP_Function0 with P4 pointing
** to a FuncDef object.  But on first evaluation, the P4 operand is
** automatically converted into an sqlite3_context object and the operation
** changed to this OP_Function opcode.  In this way, the initialization of
** the sqlite3_context object occurs only once, rather than once for each
** evaluation of the function.
**
** See also: Function0, AggStep, AggFinal
*/
case OP_Function0: {
  int n;
  sqlite3_context *pCtx;

















  assert( pOp->p4type==P4_FUNCDEF );
  n = pOp->p5;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
  if( pCtx==0 ) goto no_mem;
  pCtx->pOut = 0;
  pCtx->pFunc = pOp->p4.pFunc;
  pCtx->iOp = (int)(pOp - aOp);
  pCtx->pVdbe = p;
  pCtx->argc = n;
  pOp->p4type = P4_FUNCCTX;
  pOp->p4.pCtx = pCtx;
  pOp->opcode = OP_Function;
  /* Fall through into OP_Function */
}
case OP_Function: {
  int i;
  sqlite3_context *pCtx;

  assert( pOp->p4type==P4_FUNCCTX );
  pCtx = pOp->p4.pCtx;

  /* If this function is inside of a trigger, the register array in aMem[]
  ** might change from one evaluation to the next.  The next block of code
  ** checks to see if the register array has changed, and if so it
  ** reinitializes the relavant parts of the sqlite3_context object */
  pOut = &aMem[pOp->p3];
  if( pCtx->pOut != pOut ){
    pCtx->pOut = pOut;
    for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
  }

  memAboutToChange(p, pCtx->pOut);
#ifdef SQLITE_DEBUG
  for(i=0; i<pCtx->argc; i++){
    assert( memIsValid(pCtx->argv[i]) );
    REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
  }
#endif
  MemSetTypeFlag(pCtx->pOut, MEM_Null);
  pCtx->fErrorOrAux = 0;
  db->lastRowid = lastRowid;
  (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */

  /* If the function returned an error, throw an exception */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
      rc = pCtx->isError;
    }
    sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
  }

  /* Copy the result of the function into register P3 */
  if( pOut->flags & (MEM_Str|MEM_Blob) ){
    sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
    if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;

  }

  REGISTER_TRACE(pOp->p3, pCtx->pOut);
  UPDATE_MAX_BLOBSIZE(pCtx->pOut);
  break;
}

/* Opcode: BitAnd P1 P2 P3 * *
** Synopsis:  r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
75669
75670
75671
75672
75673
75674
75675
75676
75677
75678

75679
75680
75681
75682
75683
75684
75685

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( NEVER(pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */
  }else{

    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm







|
<
<
>







75851
75852
75853
75854
75855
75856
75857
75858


75859
75860
75861
75862
75863
75864
75865
75866

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );


  {
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
76410
76411
76412
76413
76414
76415
76416
76417
76418
76419
76420
76421
76422
76423
76424
76425
76426
76427
76428
76429
76430
76431
76432
76433
76434
76435
76436
76437
76438
76439
76440
76441
76442
76443
76444
76445
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_SorterInsert:       /* in2 */
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  pCrsr = pC->pCursor;
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  assert( pCrsr!=0 );
  assert( pC->isTable==0 );
  rc = ExpandBlob(pIn2);
  if( rc==SQLITE_OK ){
    if( isSorter(pC) ){
      rc = sqlite3VdbeSorterWrite(pC, pIn2);
    }else{
      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
          );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;







<









<

|



|




|







76591
76592
76593
76594
76595
76596
76597

76598
76599
76600
76601
76602
76603
76604
76605
76606

76607
76608
76609
76610
76611
76612
76613
76614
76615
76616
76617
76618
76619
76620
76621
76622
76623
76624
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_SorterInsert:       /* in2 */
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;

  int nKey;
  const char *zKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );

  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  assert( pC->pCursor!=0 );
  assert( pC->isTable==0 );
  rc = ExpandBlob(pIn2);
  if( rc==SQLITE_OK ){
    if( pOp->opcode==OP_SorterInsert ){
      rc = sqlite3VdbeSorterWrite(pC, pIn2);
    }else{
      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
          );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
77351
77352
77353
77354
77355
77356
77357
77358
77359
77360
77361
77362
77363











77364
77365
77366
77367






77368
77369
77370
77371
77372
77373
77374
77375
77376
77377

77378
77379
77380
77381
77382
77383
77384
77385
77386
77387
77388
77389






















77390

















77391
77392
77393
77394
77395
77396
77397
77398

77399
77400
77401
77402




77403
77404
77405
77406
77407
77408
77409
77410
77411
77412
77413
77414
77415
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( (pIn1->u.i++)==0 ) goto jump_to_p2;
  break;
}

/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Use register











** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.






*/
case OP_AggStep: {
  int n;
  int i;
  Mem *pMem;
  Mem *pRec;
  Mem t;
  sqlite3_context ctx;
  sqlite3_value **apVal;


  n = pOp->p5;
  assert( n>=0 );
  pRec = &aMem[pOp->p2];
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    assert( memIsValid(pRec) );
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );






















  ctx.pMem = pMem = &aMem[pOp->p3];

















  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);
  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pVdbe = p;
  ctx.iOp = (int)(pOp - aOp);
  ctx.skipFlag = 0;
  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */

  if( ctx.isError ){
    sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
    rc = ctx.isError;
  }




  if( ctx.skipFlag ){
    assert( pOp[-1].opcode==OP_CollSeq );
    i = pOp[-1].p1;
    if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
  }
  sqlite3VdbeMemRelease(&t);
  break;
}

/* Opcode: AggFinal P1 P2 * P4 *
** Synopsis: accum=r[P1] N=P2
**
** Execute the finalizer function for an aggregate.  P1 is







|




|
>
>
>
>
>
>
>
>
>
>
>
|



>
>
>
>
>
>

|

<
<
<
<
|
<

>

<
<
<
<
<
<
<
<
<
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
|
<
<
|
|
>
|
|
|
|
>
>
>
>
|




<







77530
77531
77532
77533
77534
77535
77536
77537
77538
77539
77540
77541
77542
77543
77544
77545
77546
77547
77548
77549
77550
77551
77552
77553
77554
77555
77556
77557
77558
77559
77560
77561
77562
77563
77564
77565
77566




77567

77568
77569
77570










77571
77572
77573
77574
77575
77576
77577
77578
77579
77580
77581
77582
77583
77584
77585
77586
77587
77588
77589
77590
77591
77592
77593
77594
77595
77596
77597
77598
77599
77600
77601
77602
77603
77604
77605
77606
77607
77608
77609
77610
77611
77612
77613
77614
77615


77616
77617
77618
77619
77620
77621
77622
77623
77624
77625
77626
77627
77628
77629
77630
77631

77632
77633
77634
77635
77636
77637
77638
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( (pIn1->u.i++)==0 ) goto jump_to_p2;
  break;
}

/* Opcode: AggStep0 * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Register P3 is the
** accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to an sqlite3_context
** object that is used to run the function.  Register P3 is
** as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
**
** This opcode is initially coded as OP_AggStep0.  On first evaluation,
** the FuncDef stored in P4 is converted into an sqlite3_context and
** the opcode is changed.  In this way, the initialization of the
** sqlite3_context only happens once, instead of on each call to the
** step function.
*/
case OP_AggStep0: {
  int n;




  sqlite3_context *pCtx;


  assert( pOp->p4type==P4_FUNCDEF );
  n = pOp->p5;










  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
  if( pCtx==0 ) goto no_mem;
  pCtx->pMem = 0;
  pCtx->pFunc = pOp->p4.pFunc;
  pCtx->iOp = (int)(pOp - aOp);
  pCtx->pVdbe = p;
  pCtx->argc = n;
  pOp->p4type = P4_FUNCCTX;
  pOp->p4.pCtx = pCtx;
  pOp->opcode = OP_AggStep;
  /* Fall through into OP_AggStep */
}
case OP_AggStep: {
  int i;
  sqlite3_context *pCtx;
  Mem *pMem;
  Mem t;

  assert( pOp->p4type==P4_FUNCCTX );
  pCtx = pOp->p4.pCtx;
  pMem = &aMem[pOp->p3];

  /* If this function is inside of a trigger, the register array in aMem[]
  ** might change from one evaluation to the next.  The next block of code
  ** checks to see if the register array has changed, and if so it
  ** reinitializes the relavant parts of the sqlite3_context object */
  if( pCtx->pMem != pMem ){
    pCtx->pMem = pMem;
    for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
  }

#ifdef SQLITE_DEBUG
  for(i=0; i<pCtx->argc; i++){
    assert( memIsValid(pCtx->argv[i]) );
    REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
  }
#endif

  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);
  pCtx->pOut = &t;
  pCtx->fErrorOrAux = 0;


  pCtx->skipFlag = 0;
  (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
      rc = pCtx->isError;
    }
    sqlite3VdbeMemRelease(&t);
  }else{
    assert( t.flags==MEM_Null );
  }
  if( pCtx->skipFlag ){
    assert( pOp[-1].opcode==OP_CollSeq );
    i = pOp[-1].p1;
    if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
  }

  break;
}

/* Opcode: AggFinal P1 P2 * P4 *
** Synopsis: accum=r[P1] N=P2
**
** Execute the finalizer function for an aggregate.  P1 is
86559
86560
86561
86562
86563
86564
86565
86566
86567
86568
86569
86570
86571
86572
86573
        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
      }
#endif
      if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
        if( !pColl ) pColl = db->pDfltColl; 
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
                        (char*)pDef, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, (u8)nFarg);
      if( nFarg && constMask==0 ){
        sqlite3ReleaseTempRange(pParse, r1, nFarg);
      }
      break;
    }







|







86782
86783
86784
86785
86786
86787
86788
86789
86790
86791
86792
86793
86794
86795
86796
        pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
      }
#endif
      if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
        if( !pColl ) pColl = db->pDfltColl; 
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
                        (char*)pDef, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, (u8)nFarg);
      if( nFarg && constMask==0 ){
        sqlite3ReleaseTempRange(pParse, r1, nFarg);
      }
      break;
    }
89573
89574
89575
89576
89577
89578
89579
89580
89581
89582
89583
89584
89585
89586
89587
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
#elif SQLITE_DEBUG
  assert( iParam==STAT_GET_STAT1 );
#else
  UNUSED_PARAMETER( iParam );
#endif
  sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
  sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
  sqlite3VdbeChangeP5(v, 1 + IsStat34);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.







|







89796
89797
89798
89799
89800
89801
89802
89803
89804
89805
89806
89807
89808
89809
89810
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
#elif SQLITE_DEBUG
  assert( iParam==STAT_GET_STAT1 );
#else
  UNUSED_PARAMETER( iParam );
#endif
  sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4, regOut);
  sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
  sqlite3VdbeChangeP5(v, 1 + IsStat34);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
89728
89729
89730
89731
89732
89733
89734
89735
89736
89737
89738
89739
89740
89741
89742
    ** The third argument is only used for STAT3 and STAT4
    */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
#endif
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);

    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;







|







89951
89952
89953
89954
89955
89956
89957
89958
89959
89960
89961
89962
89963
89964
89965
    ** The third argument is only used for STAT3 and STAT4
    */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
#endif
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
    sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);

    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
89824
89825
89826
89827
89828
89829
89830
89831
89832
89833
89834
89835
89836
89837
89838
        VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
      sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
    }
#endif
    assert( regChng==(regStat4+1) );
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );







|







90047
90048
90049
90050
90051
90052
90053
90054
90055
90056
90057
90058
90059
90060
90061
        VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
      sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
    }
#endif
    assert( regChng==(regStat4+1) );
    sqlite3VdbeAddOp3(v, OP_Function0, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
90883
90884
90885
90886
90887
90888
90889
90890
90891
90892
90893
90894
90895
90896
90897
  regArgs = sqlite3GetTempRange(pParse, 4);
  sqlite3ExprCode(pParse, pFilename, regArgs);
  sqlite3ExprCode(pParse, pDbname, regArgs+1);
  sqlite3ExprCode(pParse, pKey, regArgs+2);

  assert( v || db->mallocFailed );
  if( v ){
    sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3);
    assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
    sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
    sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);

    /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
    ** statement only). For DETACH, set it to false (expire all existing
    ** statements).







|







91106
91107
91108
91109
91110
91111
91112
91113
91114
91115
91116
91117
91118
91119
91120
  regArgs = sqlite3GetTempRange(pParse, 4);
  sqlite3ExprCode(pParse, pFilename, regArgs);
  sqlite3ExprCode(pParse, pDbname, regArgs+1);
  sqlite3ExprCode(pParse, pKey, regArgs+2);

  assert( v || db->mallocFailed );
  if( v ){
    sqlite3VdbeAddOp3(v, OP_Function0, 0, regArgs+3-pFunc->nArg, regArgs+3);
    assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
    sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
    sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);

    /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
    ** statement only). For DETACH, set it to false (expire all existing
    ** statements).
111758
111759
111760
111761
111762
111763
111764
111765
111766
111767
111768
111769
111770
111771
111772
      }
      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
      sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
    }
    sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
                      (void*)pF->pFunc, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, (u8)nArg);
    sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
    sqlite3ReleaseTempRange(pParse, regAgg, nArg);
    if( addrNext ){
      sqlite3VdbeResolveLabel(v, addrNext);
      sqlite3ExprCacheClear(pParse);







|







111981
111982
111983
111984
111985
111986
111987
111988
111989
111990
111991
111992
111993
111994
111995
      }
      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
      sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
    }
    sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
                      (void*)pF->pFunc, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, (u8)nArg);
    sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
    sqlite3ReleaseTempRange(pParse, regAgg, nArg);
    if( addrNext ){
      sqlite3VdbeResolveLabel(v, addrNext);
      sqlite3ExprCacheClear(pParse);
115990
115991
115992
115993
115994
115995
115996


115997
115998
115999
116000
116001
116002
116003
116004
116005
116006
116007
116008
116009
116010
116011
116012
116013
116014
116015
116016
116017
** the offset of the method to call in the sqlite3_module structure.
**
** The array is cleared after invoking the callbacks. 
*/
static void callFinaliser(sqlite3 *db, int offset){
  int i;
  if( db->aVTrans ){


    for(i=0; i<db->nVTrans; i++){
      VTable *pVTab = db->aVTrans[i];
      sqlite3_vtab *p = pVTab->pVtab;
      if( p ){
        int (*x)(sqlite3_vtab *);
        x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
        if( x ) x(p);
      }
      pVTab->iSavepoint = 0;
      sqlite3VtabUnlock(pVTab);
    }
    sqlite3DbFree(db, db->aVTrans);
    db->nVTrans = 0;
    db->aVTrans = 0;
  }
}

/*
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
** array. Return the error code for the first error that occurs, or
** SQLITE_OK if all xSync operations are successful.







>
>

|









|

<







116213
116214
116215
116216
116217
116218
116219
116220
116221
116222
116223
116224
116225
116226
116227
116228
116229
116230
116231
116232
116233
116234

116235
116236
116237
116238
116239
116240
116241
** the offset of the method to call in the sqlite3_module structure.
**
** The array is cleared after invoking the callbacks. 
*/
static void callFinaliser(sqlite3 *db, int offset){
  int i;
  if( db->aVTrans ){
    VTable **aVTrans = db->aVTrans;
    db->aVTrans = 0;
    for(i=0; i<db->nVTrans; i++){
      VTable *pVTab = aVTrans[i];
      sqlite3_vtab *p = pVTab->pVtab;
      if( p ){
        int (*x)(sqlite3_vtab *);
        x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
        if( x ) x(p);
      }
      pVTab->iSavepoint = 0;
      sqlite3VtabUnlock(pVTab);
    }
    sqlite3DbFree(db, aVTrans);
    db->nVTrans = 0;

  }
}

/*
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
** array. Return the error code for the first error that occurs, or
** SQLITE_OK if all xSync operations are successful.
125584
125585
125586
125587
125588
125589
125590
125591
125592
125593
125594
125595
125596
125597
125598
*/
static int yy_pop_parser_stack(yyParser *pParser){
  YYCODETYPE yymajor;
  yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];

  /* There is no mechanism by which the parser stack can be popped below
  ** empty in SQLite.  */
  if( NEVER(pParser->yyidx<0) ) return 0;
#ifndef NDEBUG
  if( yyTraceFILE && pParser->yyidx>=0 ){
    fprintf(yyTraceFILE,"%sPopping %s\n",
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif







|







125808
125809
125810
125811
125812
125813
125814
125815
125816
125817
125818
125819
125820
125821
125822
*/
static int yy_pop_parser_stack(yyParser *pParser){
  YYCODETYPE yymajor;
  yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];

  /* There is no mechanism by which the parser stack can be popped below
  ** empty in SQLite.  */
  assert( pParser->yyidx>=0 );
#ifndef NDEBUG
  if( yyTraceFILE && pParser->yyidx>=0 ){
    fprintf(yyTraceFILE,"%sPopping %s\n",
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif
128768
128769
128770
128771
128772
128773
128774
128775
128776
128777
128778
128779
128780
128781
128782
  zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
  if( zSql8 ){
    rc = sqlite3_complete(zSql8);
  }else{
    rc = SQLITE_NOMEM;
  }
  sqlite3ValueFree(pVal);
  return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_COMPLETE */

/************** End of complete.c ********************************************/
/************** Begin file main.c ********************************************/
/*







|







128992
128993
128994
128995
128996
128997
128998
128999
129000
129001
129002
129003
129004
129005
129006
  zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
  if( zSql8 ){
    rc = sqlite3_complete(zSql8);
  }else{
    rc = SQLITE_NOMEM;
  }
  sqlite3ValueFree(pVal);
  return rc & 0xff;
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_COMPLETE */

/************** End of complete.c ********************************************/
/************** Begin file main.c ********************************************/
/*
131792
131793
131794
131795
131796
131797
131798
131799
131800
131801
131802
131803
131804
131805
131806
#ifdef SQLITE_ENABLE_SQLLOG
  if( sqlite3GlobalConfig.xSqllog ){
    /* Opening a db handle. Fourth parameter is passed 0. */
    void *pArg = sqlite3GlobalConfig.pSqllogArg;
    sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
  }
#endif
  return sqlite3ApiExit(0, rc);
}

/*
** Open a new database handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_open(
  const char *zFilename, 







|







132016
132017
132018
132019
132020
132021
132022
132023
132024
132025
132026
132027
132028
132029
132030
#ifdef SQLITE_ENABLE_SQLLOG
  if( sqlite3GlobalConfig.xSqllog ){
    /* Opening a db handle. Fourth parameter is passed 0. */
    void *pArg = sqlite3GlobalConfig.pSqllogArg;
    sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
  }
#endif
  return rc & 0xff;
}

/*
** Open a new database handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_open(
  const char *zFilename, 
131850
131851
131852
131853
131854
131855
131856
131857
131858
131859
131860
131861
131862
131863
131864
      SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE;
    }
  }else{
    rc = SQLITE_NOMEM;
  }
  sqlite3ValueFree(pVal);

  return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation(







|







132074
132075
132076
132077
132078
132079
132080
132081
132082
132083
132084
132085
132086
132087
132088
      SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE;
    }
  }else{
    rc = SQLITE_NOMEM;
  }
  sqlite3ValueFree(pVal);

  return rc & 0xff;
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation(
159800
159801
159802
159803
159804
159805
159806
159807
159808
159809
159810
159811
159812
159813
159814
159815
** File control method. For custom operations on an otaVfs-file.
*/
static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
  ota_file *p = (ota_file *)pFile;
  int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
  int rc;

  assert( p->openFlags & 
      (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB|SQLITE_OPEN_TRANSIENT_DB) 
  );
  if( op==SQLITE_FCNTL_OTA ){
    sqlite3ota *pOta = (sqlite3ota*)pArg;

    /* First try to find another OTA vfs lower down in the vfs stack. If
    ** one is found, this vfs will operate in pass-through mode. The lower
    ** level vfs will do the special OTA handling.  */







|
|







160024
160025
160026
160027
160028
160029
160030
160031
160032
160033
160034
160035
160036
160037
160038
160039
** File control method. For custom operations on an otaVfs-file.
*/
static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
  ota_file *p = (ota_file *)pFile;
  int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
  int rc;

  assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB)
       || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL)
  );
  if( op==SQLITE_FCNTL_OTA ){
    sqlite3ota *pOta = (sqlite3ota*)pArg;

    /* First try to find another OTA vfs lower down in the vfs stack. If
    ** one is found, this vfs will operate in pass-through mode. The lower
    ** level vfs will do the special OTA handling.  */
Changes to SQLite.Interop/src/core/sqlite3.h.
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.11"
#define SQLITE_VERSION_NUMBER 3008011
#define SQLITE_SOURCE_ID      "2015-06-26 02:41:31 015302f15e46a087ec92f3644c6741600dbf4306"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.11"
#define SQLITE_VERSION_NUMBER 3008011
#define SQLITE_SOURCE_ID      "2015-06-30 17:28:40 fe144dd73f7097a17c24c7812c2a1cc40466e6da"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros