System.Data.SQLite

Check-in [4504c503f5]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update SQLite core library to the latest trunk code.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 4504c503f5e72fcf746a3f95f567beac6a961641
User & Date: mistachkin 2016-02-13 03:53:59.785
Context
2016-02-14
04:41
Update SQLite core library to the latest trunk code again. check-in: 3973e62505 user: mistachkin tags: trunk
2016-02-13
03:53
Update SQLite core library to the latest trunk code. check-in: 4504c503f5 user: mistachkin tags: trunk
2016-02-05
05:00
More corrections to the batch tool changes in the previous check-in. check-in: a5c24a6b71 user: mistachkin tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to Doc/Extra/Provider/version.html.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
      </table>
    </div>
    <div id="mainSection">
    <div id="mainBody">
    <h1 class="heading">Version History</h1>
    <p><b>1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font></b></p>
    <ul>
      <li>Updated to <a href="https://www.sqlite.org/releaselog/3_10_2.html">SQLite 3.10.2</a>.</li>
      <li>Properly handle NULL values in the &quot;name&quot; column of the results returned by PRAGMA index_info(). Fix for <a href="https://system.data.sqlite.org/index.html/info/5251bd0878">[5251bd0878]</a>.</li>
      <li>For column types that resolve to boolean, recognize case-insensitive prefixes of &quot;True&quot; and &quot;False&quot;. Fix for <a href="https://system.data.sqlite.org/index.html/info/dbd65441a5">[dbd65441a5]</a>.</li>
      <li>Add NoVerifyTextAffinity connection flag to skip type affinity checking when fetching a column value as a string. Pursuant to <a href="https://system.data.sqlite.org/index.html/info/dbd65441a5">[dbd65441a5]</a>.</li>
    </ul>
    <p><b>1.0.99.0 - December 9, 2015</b></p>
    <ul>
      <li>Updated to <a href="https://www.sqlite.org/releaselog/3_9_2.html">SQLite 3.9.2</a>.</li>







|







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
      </table>
    </div>
    <div id="mainSection">
    <div id="mainBody">
    <h1 class="heading">Version History</h1>
    <p><b>1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font></b></p>
    <ul>
      <li>Updated to <a href="https://www.sqlite.org/releaselog/3_11_0.html">SQLite 3.11</a>.</li>
      <li>Properly handle NULL values in the &quot;name&quot; column of the results returned by PRAGMA index_info(). Fix for <a href="https://system.data.sqlite.org/index.html/info/5251bd0878">[5251bd0878]</a>.</li>
      <li>For column types that resolve to boolean, recognize case-insensitive prefixes of &quot;True&quot; and &quot;False&quot;. Fix for <a href="https://system.data.sqlite.org/index.html/info/dbd65441a5">[dbd65441a5]</a>.</li>
      <li>Add NoVerifyTextAffinity connection flag to skip type affinity checking when fetching a column value as a string. Pursuant to <a href="https://system.data.sqlite.org/index.html/info/dbd65441a5">[dbd65441a5]</a>.</li>
    </ul>
    <p><b>1.0.99.0 - December 9, 2015</b></p>
    <ul>
      <li>Updated to <a href="https://www.sqlite.org/releaselog/3_9_2.html">SQLite 3.9.2</a>.</li>
Changes to SQLite.Interop/props/sqlite3.props.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<?xml version="1.0" encoding="utf-8"?>
<!--
 *
 * sqlite3.props -
 *
 * Written by Joe Mistachkin.
 * Released to the public domain, use at your own risk!
 *
-->
<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
  <PropertyGroup Label="UserMacros">
    <SQLITE_MANIFEST_VERSION>3.10.2.0</SQLITE_MANIFEST_VERSION>
    <SQLITE_RC_VERSION>3,10,2,0</SQLITE_RC_VERSION>
    <SQLITE_COMMON_DEFINES>_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT4=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1;SQLITE_ENABLE_MEMORY_MANAGEMENT=1;SQLITE_ENABLE_API_ARMOR=1</SQLITE_COMMON_DEFINES>
    <SQLITE_EXTRA_DEFINES>SQLITE_PLACEHOLDER=1;SQLITE_HAS_CODEC=1</SQLITE_EXTRA_DEFINES>
    <SQLITE_WINCE_200X_DEFINES>SQLITE_OMIT_WAL=1</SQLITE_WINCE_200X_DEFINES>
    <SQLITE_WINCE_2013_DEFINES>HAVE_ERRNO_H=1;SQLITE_MSVC_LOCALTIME_API=1</SQLITE_WINCE_2013_DEFINES>
    <SQLITE_DEBUG_DEFINES>SQLITE_DEBUG=1;SQLITE_MEMDEBUG=1;SQLITE_ENABLE_EXPENSIVE_ASSERT=1</SQLITE_DEBUG_DEFINES>
    <SQLITE_RELEASE_DEFINES>SQLITE_WIN32_MALLOC=1</SQLITE_RELEASE_DEFINES>
    <SQLITE_DISABLE_WARNINGS>4055;4100;4127;4146;4210;4232;4244;4245;4267;4306;4389;4701;4703;4706</SQLITE_DISABLE_WARNINGS>











|
|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<?xml version="1.0" encoding="utf-8"?>
<!--
 *
 * sqlite3.props -
 *
 * Written by Joe Mistachkin.
 * Released to the public domain, use at your own risk!
 *
-->
<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
  <PropertyGroup Label="UserMacros">
    <SQLITE_MANIFEST_VERSION>3.11.0.0</SQLITE_MANIFEST_VERSION>
    <SQLITE_RC_VERSION>3,11,0,0</SQLITE_RC_VERSION>
    <SQLITE_COMMON_DEFINES>_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT4=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1;SQLITE_ENABLE_MEMORY_MANAGEMENT=1;SQLITE_ENABLE_API_ARMOR=1</SQLITE_COMMON_DEFINES>
    <SQLITE_EXTRA_DEFINES>SQLITE_PLACEHOLDER=1;SQLITE_HAS_CODEC=1</SQLITE_EXTRA_DEFINES>
    <SQLITE_WINCE_200X_DEFINES>SQLITE_OMIT_WAL=1</SQLITE_WINCE_200X_DEFINES>
    <SQLITE_WINCE_2013_DEFINES>HAVE_ERRNO_H=1;SQLITE_MSVC_LOCALTIME_API=1</SQLITE_WINCE_2013_DEFINES>
    <SQLITE_DEBUG_DEFINES>SQLITE_DEBUG=1;SQLITE_MEMDEBUG=1;SQLITE_ENABLE_EXPENSIVE_ASSERT=1</SQLITE_DEBUG_DEFINES>
    <SQLITE_RELEASE_DEFINES>SQLITE_WIN32_MALLOC=1</SQLITE_RELEASE_DEFINES>
    <SQLITE_DISABLE_WARNINGS>4055;4100;4127;4146;4210;4232;4244;4245;4267;4306;4389;4701;4703;4706</SQLITE_DISABLE_WARNINGS>
Changes to SQLite.Interop/props/sqlite3.vsprops.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<VisualStudioPropertySheet
	ProjectType="Visual C++"
	Version="8.00"
	Name="sqlite3"
	>
	<UserMacro
		Name="SQLITE_MANIFEST_VERSION"
		Value="3.10.2.0"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_RC_VERSION"
		Value="3,10,2,0"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_COMMON_DEFINES"
		Value="_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT4=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1;SQLITE_ENABLE_MEMORY_MANAGEMENT=1;SQLITE_ENABLE_API_ARMOR=1"
		PerformEnvironmentSet="true"
	/>







|




|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
<VisualStudioPropertySheet
	ProjectType="Visual C++"
	Version="8.00"
	Name="sqlite3"
	>
	<UserMacro
		Name="SQLITE_MANIFEST_VERSION"
		Value="3.11.0.0"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_RC_VERSION"
		Value="3,11,0,0"
		PerformEnvironmentSet="true"
	/>
	<UserMacro
		Name="SQLITE_COMMON_DEFINES"
		Value="_CRT_SECURE_NO_DEPRECATE;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE;_CRT_NONSTDC_NO_WARNINGS;SQLITE_THREADSAFE=1;SQLITE_USE_URI=1;SQLITE_ENABLE_COLUMN_METADATA=1;SQLITE_ENABLE_STAT4=1;SQLITE_ENABLE_FTS3=1;SQLITE_ENABLE_LOAD_EXTENSION=1;SQLITE_ENABLE_RTREE=1;SQLITE_SOUNDEX=1;SQLITE_ENABLE_MEMORY_MANAGEMENT=1;SQLITE_ENABLE_API_ARMOR=1"
		PerformEnvironmentSet="true"
	/>
Changes to SQLite.Interop/src/core/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.10.2.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.11.0.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
117
118
119
120
121
122
123



124
125
126
127
128
129
130
#define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1
#define SQLITE_OMIT_LOAD_EXTENSION 1
#define SQLITE_ENABLE_LOCKING_STYLE 0
#define HAVE_UTIME 1
#else
/* This is not VxWorks. */
#define OS_VXWORKS 0



#endif /* defined(_WRS_KERNEL) */

/************** End of vxworks.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/*
** These #defines should enable >2GB file support on POSIX if the







>
>
>







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1
#define SQLITE_OMIT_LOAD_EXTENSION 1
#define SQLITE_ENABLE_LOCKING_STYLE 0
#define HAVE_UTIME 1
#else
/* This is not VxWorks. */
#define OS_VXWORKS 0
#define HAVE_FCHOWN 1
#define HAVE_READLINK 1
#define HAVE_LSTAT 1
#endif /* defined(_WRS_KERNEL) */

/************** End of vxworks.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/*
** These #defines should enable >2GB file support on POSIX if the
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.10.2"
#define SQLITE_VERSION_NUMBER 3010002
#define SQLITE_SOURCE_ID      "2016-01-20 15:27:19 17efb4209f97fb4971656086b138599a91a75ff9"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.11.0"
#define SQLITE_VERSION_NUMBER 3011000
#define SQLITE_SOURCE_ID      "2016-02-12 18:48:09 a049fbbde5da2e43d41aa8c2b41f9eb21507ac76"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
** ^If an error occurs while evaluating the SQL statements passed into
** sqlite3_exec(), then execution of the current statement stops and
** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
** is not NULL then any error message is written into memory obtained
** from [sqlite3_malloc()] and passed back through the 5th parameter.
** To avoid memory leaks, the application should invoke [sqlite3_free()]
** on error message strings returned through the 5th parameter of
** of sqlite3_exec() after the error message string is no longer needed.
** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
** NULL before returning.
**
** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
** routine returns SQLITE_ABORT without invoking the callback again and
** without running any subsequent SQL statements.







|







560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
** ^If an error occurs while evaluating the SQL statements passed into
** sqlite3_exec(), then execution of the current statement stops and
** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
** is not NULL then any error message is written into memory obtained
** from [sqlite3_malloc()] and passed back through the 5th parameter.
** To avoid memory leaks, the application should invoke [sqlite3_free()]
** on error message strings returned through the 5th parameter of
** sqlite3_exec() after the error message string is no longer needed.
** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
** NULL before returning.
**
** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
** routine returns SQLITE_ABORT without invoking the callback again and
** without running any subsequent SQL statements.
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
** sqlite3_libversion_number() returns a value greater than or equal to
** 3009000.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */
     unsigned char usable;     /* True if this constraint is usable */
     int iTermOffset;          /* Used internally - xBestIndex should ignore */
  } *aConstraint;            /* Table of WHERE clause constraints */
  int nOrderBy;              /* Number of terms in the ORDER BY clause */
  struct sqlite3_index_orderby {
     int iColumn;              /* Column number */







|







5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
** sqlite3_libversion_number() returns a value greater than or equal to
** 3009000.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column constrained.  -1 for ROWID */
     unsigned char op;         /* Constraint operator */
     unsigned char usable;     /* True if this constraint is usable */
     int iTermOffset;          /* Used internally - xBestIndex should ignore */
  } *aConstraint;            /* Table of WHERE clause constraints */
  int nOrderBy;              /* Number of terms in the ORDER BY clause */
  struct sqlite3_index_orderby {
     int iColumn;              /* Column number */
8403
8404
8405
8406
8407
8408
8409



8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429





8430
8431
8432
8433
8434






8435
8436
8437



8438
8439
8440
8441
8442
8443
8444
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**



** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**





** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().






**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.



**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**







>
>
>




















>
>
>
>
>





>
>
>
>
>
>



>
>
>







8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**
**   This function may be quite inefficient if used with an FTS5 table
**   created with the "columnsize=0" option.
**
** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always returns 0.
**
** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().
**
**   Usually, output parameter *piPhrase is set to the phrase number, *piCol
**   to the column in which it occurs and *piOff the token offset of the
**   first token of the phrase. The exception is if the table was created
**   with the offsets=0 option specified. In this case *piOff is always
**   set to -1.
**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. 
**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530

8531






8532
8533































8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iOff>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods.

**






** xPhraseNext()
**   See xPhraseFirst above.































*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 1 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);








|







|
>

>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|







8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iCol>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods (and by
**   xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always iterates
**   through an empty set (all calls to xPhraseFirst() set iCol to -1).
**
** xPhraseNext()
**   See xPhraseFirst above.
**
** xPhraseFirstColumn()
**   This function and xPhraseNextColumn() are similar to the xPhraseFirst()
**   and xPhraseNext() APIs described above. The difference is that instead
**   of iterating through all instances of a phrase in the current row, these
**   APIs are used to iterate through the set of columns in the current row
**   that contain one or more instances of a specified phrase. For example:
**
**       Fts5PhraseIter iter;
**       int iCol;
**       for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
**           iCol>=0;
**           pApi->xPhraseNextColumn(pFts, &iter, &iCol)
**       ){
**         // Column iCol contains at least one instance of phrase iPhrase
**       }
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" option. If the FTS5 table is created with either 
**   "detail=none" "content=" option (i.e. if it is a contentless table), 
**   then this API always iterates through an empty set (all calls to 
**   xPhraseFirstColumn() set iCol to -1).
**
**   The information accessed using this API and its companion
**   xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
**   (or xInst/xInstCount). The chief advantage of this API is that it is
**   significantly more efficient than those alternatives when used with
**   "detail=column" tables.  
**
** xPhraseNextColumn()
**   See xPhraseFirstColumn above.
*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 3 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);

8559
8560
8561
8562
8563
8564
8565
8566
8567



8568
8569
8570
8571
8572
8573
8574

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  void (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);



};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************







|

>
>
>







8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);

  int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
  void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************
9344
9345
9346
9347
9348
9349
9350















9351
9352
9353
9354
9355
9356
9357
# define ALWAYS(X)      ((X)?1:(assert(0),0))
# define NEVER(X)       ((X)?(assert(0),1):0)
#else
# define ALWAYS(X)      (X)
# define NEVER(X)       (X)
#endif
















/*
** Declarations used for tracing the operating system interfaces.
*/
#if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
    (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
  extern int sqlite3OSTrace;
# define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
# define ALWAYS(X)      ((X)?1:(assert(0),0))
# define NEVER(X)       ((X)?(assert(0),1):0)
#else
# define ALWAYS(X)      (X)
# define NEVER(X)       (X)
#endif

/*
** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is
** defined.  We need to defend against those failures when testing with
** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches
** during a normal build.  The following macro can be used to disable tests
** that are always false except when SQLITE_TEST_REALLOC_STRESS is set.
*/
#if defined(SQLITE_TEST_REALLOC_STRESS)
# define ONLY_IF_REALLOC_STRESS(X)  (X)
#elif !defined(NDEBUG)
# define ONLY_IF_REALLOC_STRESS(X)  ((X)?(assert(0),1):0)
#else
# define ONLY_IF_REALLOC_STRESS(X)  (0)
#endif

/*
** Declarations used for tracing the operating system interfaces.
*/
#if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
    (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
  extern int sqlite3OSTrace;
# define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
#endif

/*
** Default maximum size of memory used by memory-mapped I/O in the VFS
*/
#ifdef __APPLE__
# include <TargetConditionals.h>
# if TARGET_OS_IPHONE
#   undef SQLITE_MAX_MMAP_SIZE
#   define SQLITE_MAX_MMAP_SIZE 0
# endif
#endif
#ifndef SQLITE_MAX_MMAP_SIZE
# if defined(__linux__) \
  || defined(_WIN32) \
  || (defined(__APPLE__) && defined(__MACH__)) \
  || defined(__sun) \
  || defined(__FreeBSD__) \







<
<
<
<







10056
10057
10058
10059
10060
10061
10062




10063
10064
10065
10066
10067
10068
10069
#endif

/*
** Default maximum size of memory used by memory-mapped I/O in the VFS
*/
#ifdef __APPLE__
# include <TargetConditionals.h>




#endif
#ifndef SQLITE_MAX_MMAP_SIZE
# if defined(__linux__) \
  || defined(_WIN32) \
  || (defined(__APPLE__) && defined(__MACH__)) \
  || defined(__sun) \
  || defined(__FreeBSD__) \
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409










10410
10411
10412
10413
10414
10415
10416
#define BTREE_BULKLOAD 0x00000001  /* Used to full index in sorted order */
#define BTREE_SEEK_EQ  0x00000002  /* EQ seeks only - no range seeks */

/* 
** Flags passed as the third argument to sqlite3BtreeCursor().
**
** For read-only cursors the wrFlag argument is always zero. For read-write
** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or
** (BTREE_WRCSR). If the BTREE_FORDELETE flag is set, then the cursor will
** only be used by SQLite for the following:
**
**   * to seek to and delete specific entries, and/or
**
**   * to read values that will be used to create keys that other
**     BTREE_FORDELETE cursors will seek to and delete.










*/
#define BTREE_WRCSR     0x00000004     /* read-write cursor */
#define BTREE_FORDELETE 0x00000008     /* Cursor is for seek/delete only */

SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */







|
|


|



>
>
>
>
>
>
>
>
>
>







10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
#define BTREE_BULKLOAD 0x00000001  /* Used to full index in sorted order */
#define BTREE_SEEK_EQ  0x00000002  /* EQ seeks only - no range seeks */

/* 
** Flags passed as the third argument to sqlite3BtreeCursor().
**
** For read-only cursors the wrFlag argument is always zero. For read-write
** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just
** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will
** only be used by SQLite for the following:
**
**   * to seek to and then delete specific entries, and/or
**
**   * to read values that will be used to create keys that other
**     BTREE_FORDELETE cursors will seek to and delete.
**
** The BTREE_FORDELETE flag is an optimization hint.  It is not used by
** by this, the native b-tree engine of SQLite, but it is available to
** alternative storage engines that might be substituted in place of this
** b-tree system.  For alternative storage engines in which a delete of
** the main table row automatically deletes corresponding index rows,
** the FORDELETE flag hint allows those alternative storage engines to
** skip a lot of work.  Namely:  FORDELETE cursors may treat all SEEK
** and DELETE operations as no-ops, and any READ operation against a
** FORDELETE cursor may return a null row: 0x01 0x00.
*/
#define BTREE_WRCSR     0x00000004     /* read-write cursor */
#define BTREE_FORDELETE 0x00000008     /* Cursor is for seek/delete only */

SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
10431
10432
10433
10434
10435
10436
10437
10438





10439
10440
10441
10442
10443
10444
10445
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,
  int *pRes
);
SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, int);





SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
                                  const void *pData, int nData,
                                  int nZero, int bias, int seekResult);
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);







|
>
>
>
>
>







10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,
  int *pRes
);
SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags);

/* Allowed flags for the 2nd argument to sqlite3BtreeDelete() */
#define BTREE_SAVEPOSITION 0x02  /* Leave cursor pointing at NEXT or PREV */
#define BTREE_AUXDELETE    0x04  /* not the primary delete operation */

SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
                                  const void *pData, int nData,
                                  int nZero, int bias, int seekResult);
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
10483
10484
10485
10486
10487
10488
10489


10490
10491
10492


10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures.  So make the
** Enter and Leave procedures no-ops.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE   void sqlite3BtreeEnter(Btree*);
SQLITE_PRIVATE   void sqlite3BtreeEnterAll(sqlite3*);


#else
# define sqlite3BtreeEnter(X) 
# define sqlite3BtreeEnterAll(X)


#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
SQLITE_PRIVATE   int sqlite3BtreeSharable(Btree*);
SQLITE_PRIVATE   void sqlite3BtreeLeave(Btree*);
SQLITE_PRIVATE   void sqlite3BtreeEnterCursor(BtCursor*);
SQLITE_PRIVATE   void sqlite3BtreeLeaveCursor(BtCursor*);
SQLITE_PRIVATE   void sqlite3BtreeLeaveAll(sqlite3*);
#ifndef NDEBUG
  /* These routines are used inside assert() statements only. */
SQLITE_PRIVATE   int sqlite3BtreeHoldsMutex(Btree*);
SQLITE_PRIVATE   int sqlite3BtreeHoldsAllMutexes(sqlite3*);
SQLITE_PRIVATE   int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
#endif
#else

# define sqlite3BtreeSharable(X) 0
# define sqlite3BtreeLeave(X)
# define sqlite3BtreeEnterCursor(X)
# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeLeaveAll(X)

# define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeHoldsAllMutexes(X) 1
# define sqlite3SchemaMutexHeld(X,Y,Z) 1
#endif







>
>



>
>



<

<










<

<







10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586

10587

10588
10589
10590
10591
10592
10593
10594
10595
10596
10597

10598

10599
10600
10601
10602
10603
10604
10605
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures.  So make the
** Enter and Leave procedures no-ops.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE   void sqlite3BtreeEnter(Btree*);
SQLITE_PRIVATE   void sqlite3BtreeEnterAll(sqlite3*);
SQLITE_PRIVATE   int sqlite3BtreeSharable(Btree*);
SQLITE_PRIVATE   void sqlite3BtreeEnterCursor(BtCursor*);
#else
# define sqlite3BtreeEnter(X) 
# define sqlite3BtreeEnterAll(X)
# define sqlite3BtreeSharable(X) 0
# define sqlite3BtreeEnterCursor(X)
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE

SQLITE_PRIVATE   void sqlite3BtreeLeave(Btree*);

SQLITE_PRIVATE   void sqlite3BtreeLeaveCursor(BtCursor*);
SQLITE_PRIVATE   void sqlite3BtreeLeaveAll(sqlite3*);
#ifndef NDEBUG
  /* These routines are used inside assert() statements only. */
SQLITE_PRIVATE   int sqlite3BtreeHoldsMutex(Btree*);
SQLITE_PRIVATE   int sqlite3BtreeHoldsAllMutexes(sqlite3*);
SQLITE_PRIVATE   int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
#endif
#else


# define sqlite3BtreeLeave(X)

# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeLeaveAll(X)

# define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeHoldsAllMutexes(X) 1
# define sqlite3SchemaMutexHeld(X,Y,Z) 1
#endif
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713

10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765

10766
10767
10768
10769
10770


10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808

10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827

10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909






10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated.  Do not edit */
/* See the tool/mkopcodeh.tcl script for details */
#define OP_Savepoint       1
#define OP_AutoCommit      2
#define OP_Transaction     3
#define OP_SorterNext      4
#define OP_PrevIfOpen      5
#define OP_NextIfOpen      6
#define OP_Prev            7
#define OP_Next            8
#define OP_Checkpoint      9
#define OP_JournalMode    10
#define OP_Vacuum         11
#define OP_VFilter        12 /* synopsis: iplan=r[P3] zplan='P4'           */
#define OP_VUpdate        13 /* synopsis: data=r[P3@P2]                    */
#define OP_Goto           14
#define OP_Gosub          15
#define OP_Return         16
#define OP_InitCoroutine  17
#define OP_EndCoroutine   18

#define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */
#define OP_Yield          20
#define OP_HaltIfNull     21 /* synopsis: if r[P3]=null halt               */
#define OP_Halt           22
#define OP_Integer        23 /* synopsis: r[P2]=P1                         */
#define OP_Int64          24 /* synopsis: r[P2]=P4                         */
#define OP_String         25 /* synopsis: r[P2]='P4' (len=P1)              */
#define OP_Null           26 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       27 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           28 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       29 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           30 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           31 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          32 /* synopsis: r[P2]=r[P1]                      */
#define OP_IntCopy        33 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      34 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        35
#define OP_Function0      36 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Function       37 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         38 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_MustBeInt      39
#define OP_RealAffinity   40
#define OP_Cast           41 /* synopsis: affinity(r[P1])                  */
#define OP_Permutation    42
#define OP_Compare        43 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Jump           44
#define OP_Once           45
#define OP_If             46
#define OP_IfNot          47
#define OP_Column         48 /* synopsis: r[P3]=PX                         */
#define OP_Affinity       49 /* synopsis: affinity(r[P1@P2])               */
#define OP_MakeRecord     50 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
#define OP_Count          51 /* synopsis: r[P2]=count()                    */
#define OP_ReadCookie     52
#define OP_SetCookie      53
#define OP_ReopenIdx      54 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenRead       55 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenWrite      56 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenAutoindex  57 /* synopsis: nColumn=P2                       */
#define OP_OpenEphemeral  58 /* synopsis: nColumn=P2                       */
#define OP_SorterOpen     59
#define OP_SequenceTest   60 /* synopsis: if( cursor[P1].ctr++ ) pc = P2   */
#define OP_OpenPseudo     61 /* synopsis: P3 columns in r[P2]              */
#define OP_Close          62
#define OP_ColumnsUsed    63
#define OP_SeekLT         64 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekLE         65 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGE         66 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGT         67 /* synopsis: key=r[P3@P4]                     */
#define OP_Seek           68 /* synopsis: intkey=r[P2]                     */
#define OP_NoConflict     69 /* synopsis: key=r[P3@P4]                     */
#define OP_NotFound       70 /* synopsis: key=r[P3@P4]                     */

#define OP_Or             71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And            72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
#define OP_Found          73 /* synopsis: key=r[P3@P4]                     */
#define OP_NotExists      74 /* synopsis: intkey=r[P3]                     */
#define OP_Sequence       75 /* synopsis: r[P2]=cursor[P1].ctr++           */


#define OP_IsNull         76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull        77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne             78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */
#define OP_Eq             79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */
#define OP_Gt             80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */
#define OP_Le             81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */
#define OP_Lt             82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */
#define OP_Ge             83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */
#define OP_NewRowid       84 /* synopsis: r[P2]=rowid                      */
#define OP_BitAnd         85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr          86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft      87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight     88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add            89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract       90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply       91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide         92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder      93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat         94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_Insert         95 /* synopsis: intkey=r[P3] data=r[P2]          */
#define OP_BitNot         96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */
#define OP_InsertInt      98 /* synopsis: intkey=P3 data=r[P2]             */
#define OP_Delete         99
#define OP_ResetCount    100
#define OP_SorterCompare 101 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
#define OP_SorterData    102 /* synopsis: r[P2]=data                       */
#define OP_RowKey        103 /* synopsis: r[P2]=key                        */
#define OP_RowData       104 /* synopsis: r[P2]=data                       */
#define OP_Rowid         105 /* synopsis: r[P2]=rowid                      */
#define OP_NullRow       106
#define OP_Last          107
#define OP_SorterSort    108
#define OP_Sort          109
#define OP_Rewind        110
#define OP_SorterInsert  111
#define OP_IdxInsert     112 /* synopsis: key=r[P2]                        */
#define OP_IdxDelete     113 /* synopsis: key=r[P2@P3]                     */

#define OP_IdxRowid      114 /* synopsis: r[P2]=rowid                      */
#define OP_IdxLE         115 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGT         116 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxLT         117 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGE         118 /* synopsis: key=r[P3@P4]                     */
#define OP_Destroy       119
#define OP_Clear         120
#define OP_ResetSorter   121
#define OP_CreateIndex   122 /* synopsis: r[P2]=root iDb=P1                */
#define OP_CreateTable   123 /* synopsis: r[P2]=root iDb=P1                */
#define OP_ParseSchema   124
#define OP_LoadAnalysis  125
#define OP_DropTable     126
#define OP_DropIndex     127
#define OP_DropTrigger   128
#define OP_IntegrityCk   129
#define OP_RowSetAdd     130 /* synopsis: rowset(P1)=r[P2]                 */
#define OP_RowSetRead    131 /* synopsis: r[P3]=rowset(P1)                 */
#define OP_RowSetTest    132 /* synopsis: if r[P3] in rowset(P1) goto P2   */

#define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */
#define OP_Program       134
#define OP_Param         135
#define OP_FkCounter     136 /* synopsis: fkctr[P1]+=P2                    */
#define OP_FkIfZero      137 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        138 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         139 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
#define OP_SetIfNotPos   140 /* synopsis: if r[P1]<=0 then r[P2]=P3        */
#define OP_IfNotZero     141 /* synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 */
#define OP_DecrJumpZero  142 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  143 /* synopsis: if (r[P1]++)==0 ) goto P2        */
#define OP_AggStep0      144 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       145 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      146 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    147
#define OP_Expire        148
#define OP_TableLock     149 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        150
#define OP_VCreate       151
#define OP_VDestroy      152
#define OP_VOpen         153
#define OP_VColumn       154 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         155
#define OP_VRename       156
#define OP_Pagecount     157
#define OP_MaxPgcnt      158
#define OP_Init          159 /* synopsis: Start at P2                      */
#define OP_CursorHint    160
#define OP_Noop          161
#define OP_Explain       162

/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
#define OPFLG_IN1             0x0002  /* in1:   P1 is an input */
#define OPFLG_IN2             0x0004  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0008  /* in3:   P3 is an input */
#define OPFLG_OUT2            0x0010  /* out2:  P2 is an output */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x01, 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01,\
/*  16 */ 0x02, 0x01, 0x02, 0x12, 0x03, 0x08, 0x00, 0x10,\
/*  24 */ 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00,\
/*  32 */ 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03,\
/*  40 */ 0x02, 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03,\
/*  48 */ 0x00, 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00,\
/*  56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/*  64 */ 0x09, 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x26,\
/*  72 */ 0x26, 0x09, 0x09, 0x10, 0x03, 0x03, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x10, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\
/*  96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 104 */ 0x00, 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04,\
/* 112 */ 0x04, 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10,\
/* 120 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x00, 0x00, 0x06, 0x23, 0x0b, 0x10, 0x01, 0x10,\
/* 136 */ 0x00, 0x01, 0x04, 0x03, 0x06, 0x03, 0x03, 0x03,\
/* 144 */ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01,\
/* 160 */ 0x00, 0x00, 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*);
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe*,int,const char*);
SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe*,int,const char*,...);
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);






SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>

<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>


<
<
|
>
>








|










|


<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>

<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|





|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|



















>
>
>
>
>
>
|







|







10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802

10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855


10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880


10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916

10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated.  Do not edit */
/* See the tool/mkopcodeh.tcl script for details */
#define OP_Savepoint       0
#define OP_AutoCommit      1
#define OP_Transaction     2
#define OP_SorterNext      3
#define OP_PrevIfOpen      4
#define OP_NextIfOpen      5
#define OP_Prev            6
#define OP_Next            7
#define OP_Checkpoint      8
#define OP_JournalMode     9
#define OP_Vacuum         10
#define OP_VFilter        11 /* synopsis: iplan=r[P3] zplan='P4'           */
#define OP_VUpdate        12 /* synopsis: data=r[P3@P2]                    */
#define OP_Goto           13
#define OP_Gosub          14
#define OP_Return         15
#define OP_InitCoroutine  16
#define OP_EndCoroutine   17
#define OP_Yield          18
#define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */

#define OP_HaltIfNull     20 /* synopsis: if r[P3]=null halt               */
#define OP_Halt           21
#define OP_Integer        22 /* synopsis: r[P2]=P1                         */
#define OP_Int64          23 /* synopsis: r[P2]=P4                         */
#define OP_String         24 /* synopsis: r[P2]='P4' (len=P1)              */
#define OP_Null           25 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       26 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           27 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       28 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           29 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           30 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          31 /* synopsis: r[P2]=r[P1]                      */
#define OP_IntCopy        32 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      33 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        34
#define OP_Function0      35 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Function       36 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         37 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_MustBeInt      38
#define OP_RealAffinity   39
#define OP_Cast           40 /* synopsis: affinity(r[P1])                  */
#define OP_Permutation    41
#define OP_Compare        42 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Jump           43
#define OP_Once           44
#define OP_If             45
#define OP_IfNot          46
#define OP_Column         47 /* synopsis: r[P3]=PX                         */
#define OP_Affinity       48 /* synopsis: affinity(r[P1@P2])               */
#define OP_MakeRecord     49 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
#define OP_Count          50 /* synopsis: r[P2]=count()                    */
#define OP_ReadCookie     51
#define OP_SetCookie      52
#define OP_ReopenIdx      53 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenRead       54 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenWrite      55 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenAutoindex  56 /* synopsis: nColumn=P2                       */
#define OP_OpenEphemeral  57 /* synopsis: nColumn=P2                       */
#define OP_SorterOpen     58
#define OP_SequenceTest   59 /* synopsis: if( cursor[P1].ctr++ ) pc = P2   */
#define OP_OpenPseudo     60 /* synopsis: P3 columns in r[P2]              */
#define OP_Close          61
#define OP_ColumnsUsed    62
#define OP_SeekLT         63 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekLE         64 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGE         65 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGT         66 /* synopsis: key=r[P3@P4]                     */
#define OP_NoConflict     67 /* synopsis: key=r[P3@P4]                     */
#define OP_NotFound       68 /* synopsis: key=r[P3@P4]                     */
#define OP_Found          69 /* synopsis: key=r[P3@P4]                     */
#define OP_NotExists      70 /* synopsis: intkey=r[P3]                     */
#define OP_Or             71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And            72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */


#define OP_Sequence       73 /* synopsis: r[P2]=cursor[P1].ctr++           */
#define OP_NewRowid       74 /* synopsis: r[P2]=rowid                      */
#define OP_Insert         75 /* synopsis: intkey=r[P3] data=r[P2]          */
#define OP_IsNull         76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull        77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne             78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */
#define OP_Eq             79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */
#define OP_Gt             80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */
#define OP_Le             81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */
#define OP_Lt             82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */
#define OP_Ge             83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */
#define OP_InsertInt      84 /* synopsis: intkey=P3 data=r[P2]             */
#define OP_BitAnd         85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr          86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft      87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight     88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add            89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract       90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply       91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide         92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder      93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat         94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_Delete         95
#define OP_BitNot         96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */


#define OP_ResetCount     98
#define OP_SorterCompare  99 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
#define OP_SorterData    100 /* synopsis: r[P2]=data                       */
#define OP_RowKey        101 /* synopsis: r[P2]=key                        */
#define OP_RowData       102 /* synopsis: r[P2]=data                       */
#define OP_Rowid         103 /* synopsis: r[P2]=rowid                      */
#define OP_NullRow       104
#define OP_Last          105
#define OP_SorterSort    106
#define OP_Sort          107
#define OP_Rewind        108
#define OP_SorterInsert  109
#define OP_IdxInsert     110 /* synopsis: key=r[P2]                        */
#define OP_IdxDelete     111 /* synopsis: key=r[P2@P3]                     */
#define OP_Seek          112 /* synopsis: Move P3 to P1.rowid              */
#define OP_IdxRowid      113 /* synopsis: r[P2]=rowid                      */
#define OP_IdxLE         114 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGT         115 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxLT         116 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGE         117 /* synopsis: key=r[P3@P4]                     */
#define OP_Destroy       118
#define OP_Clear         119
#define OP_ResetSorter   120
#define OP_CreateIndex   121 /* synopsis: r[P2]=root iDb=P1                */
#define OP_CreateTable   122 /* synopsis: r[P2]=root iDb=P1                */
#define OP_ParseSchema   123
#define OP_LoadAnalysis  124
#define OP_DropTable     125
#define OP_DropIndex     126
#define OP_DropTrigger   127
#define OP_IntegrityCk   128
#define OP_RowSetAdd     129 /* synopsis: rowset(P1)=r[P2]                 */
#define OP_RowSetRead    130 /* synopsis: r[P3]=rowset(P1)                 */
#define OP_RowSetTest    131 /* synopsis: if r[P3] in rowset(P1) goto P2   */
#define OP_Program       132
#define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */

#define OP_Param         134
#define OP_FkCounter     135 /* synopsis: fkctr[P1]+=P2                    */
#define OP_FkIfZero      136 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        137 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         138 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
#define OP_OffsetLimit   139 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */
#define OP_IfNotZero     140 /* synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 */
#define OP_DecrJumpZero  141 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  142 /* synopsis: if (r[P1]++)==0 ) goto P2        */
#define OP_AggStep0      143 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       144 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      145 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    146
#define OP_Expire        147
#define OP_TableLock     148 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        149
#define OP_VCreate       150
#define OP_VDestroy      151
#define OP_VOpen         152
#define OP_VColumn       153 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         154
#define OP_VRename       155
#define OP_Pagecount     156
#define OP_MaxPgcnt      157
#define OP_Init          158 /* synopsis: Start at P2                      */
#define OP_CursorHint    159
#define OP_Noop          160
#define OP_Explain       161

/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP        0x01  /* jump:  P2 holds jmp target */
#define OPFLG_IN1         0x02  /* in1:   P1 is an input */
#define OPFLG_IN2         0x04  /* in2:   P2 is an input */
#define OPFLG_IN3         0x08  /* in3:   P3 is an input */
#define OPFLG_OUT2        0x10  /* out2:  P2 is an output */
#define OPFLG_OUT3        0x20  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01, 0x02,\
/*  16 */ 0x01, 0x02, 0x03, 0x12, 0x08, 0x00, 0x10, 0x10,\
/*  24 */ 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00, 0x10,\
/*  32 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03, 0x02,\
/*  40 */ 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x00,\
/*  48 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00,\
/*  56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,\
/*  64 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x26,\
/*  72 */ 0x26, 0x10, 0x10, 0x00, 0x03, 0x03, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\
/*  96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,\
/* 104 */ 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04, 0x00,\
/* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\
/* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\
/* 136 */ 0x01, 0x04, 0x03, 0x1a, 0x03, 0x03, 0x03, 0x00,\
/* 144 */ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01, 0x00,\
/* 160 */ 0x00, 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
*/
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*);
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe*,int,const char*);
SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe*,int,const char*,...);
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe*,int);
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
SQLITE_PRIVATE   void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
#endif
SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
11121
11122
11123
11124
11125
11126
11127

11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139

/*
** Flags for sqlite3PagerSetFlags()
*/
#define PAGER_SYNCHRONOUS_OFF       0x01  /* PRAGMA synchronous=OFF */
#define PAGER_SYNCHRONOUS_NORMAL    0x02  /* PRAGMA synchronous=NORMAL */
#define PAGER_SYNCHRONOUS_FULL      0x03  /* PRAGMA synchronous=FULL */

#define PAGER_SYNCHRONOUS_MASK      0x03  /* Mask for three values above */
#define PAGER_FULLFSYNC             0x04  /* PRAGMA fullfsync=ON */
#define PAGER_CKPT_FULLFSYNC        0x08  /* PRAGMA checkpoint_fullfsync=ON */
#define PAGER_CACHESPILL            0x10  /* PRAGMA cache_spill=ON */
#define PAGER_FLAGS_MASK            0x1c  /* All above except SYNCHRONOUS */

/*
** The remainder of this file contains the declarations of the functions
** that make up the Pager sub-system API. See source code comments for 
** a detailed description of each routine.
*/








>
|
|
|
|
|







11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233

/*
** Flags for sqlite3PagerSetFlags()
*/
#define PAGER_SYNCHRONOUS_OFF       0x01  /* PRAGMA synchronous=OFF */
#define PAGER_SYNCHRONOUS_NORMAL    0x02  /* PRAGMA synchronous=NORMAL */
#define PAGER_SYNCHRONOUS_FULL      0x03  /* PRAGMA synchronous=FULL */
#define PAGER_SYNCHRONOUS_EXTRA     0x04  /* PRAGMA synchronous=EXTRA */
#define PAGER_SYNCHRONOUS_MASK      0x07  /* Mask for four values above */
#define PAGER_FULLFSYNC             0x08  /* PRAGMA fullfsync=ON */
#define PAGER_CKPT_FULLFSYNC        0x10  /* PRAGMA checkpoint_fullfsync=ON */
#define PAGER_CACHESPILL            0x20  /* PRAGMA cache_spill=ON */
#define PAGER_FLAGS_MASK            0x38  /* All above except SYNCHRONOUS */

/*
** The remainder of this file contains the declarations of the functions
** that make up the Pager sub-system API. See source code comments for 
** a detailed description of each routine.
*/

11314
11315
11316
11317
11318
11319
11320


11321
11322
11323
11324
11325
11326
11327
#define PGHDR_DIRTY           0x002  /* Page is on the PCache.pDirty list */
#define PGHDR_WRITEABLE       0x004  /* Journaled and ready to modify */
#define PGHDR_NEED_SYNC       0x008  /* Fsync the rollback journal before
                                     ** writing this page to the database */
#define PGHDR_NEED_READ       0x010  /* Content is unread */
#define PGHDR_DONT_WRITE      0x020  /* Do not write content to disk */
#define PGHDR_MMAP            0x040  /* This is an mmap page object */



/* Initialize and shutdown the page cache subsystem */
SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
SQLITE_PRIVATE void sqlite3PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.







>
>







11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
#define PGHDR_DIRTY           0x002  /* Page is on the PCache.pDirty list */
#define PGHDR_WRITEABLE       0x004  /* Journaled and ready to modify */
#define PGHDR_NEED_SYNC       0x008  /* Fsync the rollback journal before
                                     ** writing this page to the database */
#define PGHDR_NEED_READ       0x010  /* Content is unread */
#define PGHDR_DONT_WRITE      0x020  /* Do not write content to disk */
#define PGHDR_MMAP            0x040  /* This is an mmap page object */

#define PGHDR_WAL_APPEND      0x080  /* Appended to wal file */

/* Initialize and shutdown the page cache subsystem */
SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
SQLITE_PRIVATE void sqlite3PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.
11883
11884
11885
11886
11887
11888
11889

11890
11891
11892
11893
11894
11895
11896
11897
11898
** with a particular database connection.  Hence, schema information cannot
** be stored in lookaside because in shared cache mode the schema information
** is shared by multiple database connections.  Therefore, while parsing
** schema information, the Lookaside.bEnabled flag is cleared so that
** lookaside allocations are not used to construct the schema objects.
*/
struct Lookaside {

  u16 sz;                 /* Size of each buffer in bytes */
  u8 bEnabled;            /* False to disable new lookaside allocations */
  u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
  int nOut;               /* Number of buffers currently checked out */
  int mxOut;              /* Highwater mark for nOut */
  int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
  LookasideSlot *pFree;   /* List of available buffers */
  void *pStart;           /* First byte of available memory space */
  void *pEnd;             /* First byte past end of available space */







>

<







11979
11980
11981
11982
11983
11984
11985
11986
11987

11988
11989
11990
11991
11992
11993
11994
** with a particular database connection.  Hence, schema information cannot
** be stored in lookaside because in shared cache mode the schema information
** is shared by multiple database connections.  Therefore, while parsing
** schema information, the Lookaside.bEnabled flag is cleared so that
** lookaside allocations are not used to construct the schema objects.
*/
struct Lookaside {
  u32 bDisable;           /* Only operate the lookaside when zero */
  u16 sz;                 /* Size of each buffer in bytes */

  u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
  int nOut;               /* Number of buffers currently checked out */
  int mxOut;              /* Highwater mark for nOut */
  int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
  LookasideSlot *pFree;   /* List of available buffers */
  void *pStart;           /* First byte of available memory space */
  void *pEnd;             /* First byte past end of available space */
11967
11968
11969
11970
11971
11972
11973

11974
11975
11976
11977
11978
11979
11980
  int errCode;                  /* Most recent error code (SQLITE_*) */
  int errMask;                  /* & result codes with this before returning */
  u16 dbOptFlags;               /* Flags to enable/disable optimizations */
  u8 enc;                       /* Text encoding */
  u8 autoCommit;                /* The auto-commit flag. */
  u8 temp_store;                /* 1: file 2: memory 0: default */
  u8 mallocFailed;              /* True if we have seen a malloc failure */

  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */







>







12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
  int errCode;                  /* Most recent error code (SQLITE_*) */
  int errMask;                  /* & result codes with this before returning */
  u16 dbOptFlags;               /* Flags to enable/disable optimizations */
  u8 enc;                       /* Text encoding */
  u8 autoCommit;                /* The auto-commit flag. */
  u8 temp_store;                /* 1: file 2: memory 0: default */
  u8 mallocFailed;              /* True if we have seen a malloc failure */
  u8 bBenignMalloc;             /* Do not require OOMs if true */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
12075
12076
12077
12078
12079
12080
12081

12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
#define ENC(db)        ((db)->enc)

/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */

#define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
#define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
#define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
#define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
#define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */







>
|
|
|
<







12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182

12183
12184
12185
12186
12187
12188
12189
#define ENC(db)        ((db)->enc)

/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
#define SQLITE_FullColNames   0x00000004  /* Show full column names on SELECT */
#define SQLITE_FullFSync      0x00000008  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00000010  /* Use full fsync for checkpoint */
#define SQLITE_CacheSpill     0x00000020  /* OK to spill pager cache */

#define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
#define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
** points to a linked list of these structures.
*/
struct FuncDef {
  i16 nArg;            /* Number of arguments.  -1 means unlimited */
  u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
  void *pUserData;     /* User data parameter */
  FuncDef *pNext;      /* Next function with same name */
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
  char *zName;         /* SQL name of the function. */
  FuncDef *pHash;      /* Next with a different name but the same hash */
  FuncDestructor *pDestructor;   /* Reference counted destructor function */
};

/*
** This structure encapsulates a user-function destructor callback (as







|
<
|







12264
12265
12266
12267
12268
12269
12270
12271

12272
12273
12274
12275
12276
12277
12278
12279
** points to a linked list of these structures.
*/
struct FuncDef {
  i16 nArg;            /* Number of arguments.  -1 means unlimited */
  u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
  void *pUserData;     /* User data parameter */
  FuncDef *pNext;      /* Next function with same name */
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */

  void (*xFinalize)(sqlite3_context*);                  /* Agg finalizer */
  char *zName;         /* SQL name of the function. */
  FuncDef *pHash;      /* Next with a different name but the same hash */
  FuncDestructor *pDestructor;   /* Reference counted destructor function */
};

/*
** This structure encapsulates a user-function destructor callback (as
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
**     function likeFunc. Argument pArg is cast to a (void *) and made
**     available as the function user-data (sqlite3_user_data()). The
**     FuncDef.flags variable is set to the value passed as the flags
**     parameter.
*/
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
  {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
  {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
   (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
#define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}

/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/







|


|


|


|


|


|


|


|







12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
**     function likeFunc. Argument pArg is cast to a (void *) and made
**     available as the function user-data (sqlite3_user_data()). The
**     FuncDef.flags variable is set to the value passed as the flags
**     parameter.
*/
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0}
#define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0}
#define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \
  {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0}
#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
  {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
   SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, 0, 0}
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
  {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   pArg, 0, xFunc, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
   (void *)arg, 0, likeFunc, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName,0,0}
#define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName,0,0}

/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
};

/*
** During code generation of statements that do inserts into AUTOINCREMENT 
** tables, the following information is attached to the Table.u.autoInc.p
** pointer of each autoincrement table to record some side information that
** the code generator needs.  We have to keep per-table autoincrement
** information in case inserts are down within triggers.  Triggers do not
** normally coordinate their activities, but we do need to coordinate the
** loading and saving of autoincrement information.
*/
struct AutoincInfo {
  AutoincInfo *pNext;   /* Next info block in a list of them all */
  Table *pTab;          /* Table this info block refers to */
  int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */







|







13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
};

/*
** During code generation of statements that do inserts into AUTOINCREMENT 
** tables, the following information is attached to the Table.u.autoInc.p
** pointer of each autoincrement table to record some side information that
** the code generator needs.  We have to keep per-table autoincrement
** information in case inserts are done within triggers.  Triggers do not
** normally coordinate their activities, but we do need to coordinate the
** loading and saving of autoincrement information.
*/
struct AutoincInfo {
  AutoincInfo *pNext;   /* Next info block in a list of them all */
  Table *pTab;          /* Table this info block refers to */
  int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
13523
13524
13525
13526
13527
13528
13529

13530
13531
13532
13533
13534
13535
13536
  u8 checkSchema;      /* Causes schema cookie check after an error */
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
  u8 okConstFactor;    /* OK to factor out constants */

  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */







>







13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
  u8 checkSchema;      /* Causes schema cookie check after an error */
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
  u8 okConstFactor;    /* OK to factor out constants */
  u8 disableLookaside; /* Number of times lookaside has been disabled */
  int aTempReg[8];     /* Holding area for temporary registers */
  int nRangeReg;       /* Size of the temporary register block */
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
  /************************************************************************
  ** Above is constant between recursions.  Below is reset before and after
  ** each recursion.  The boundary between these two regions is determined
  ** using offsetof(Parse,nVar) so the nVar field must be the first field
  ** in the recursive region.
  ************************************************************************/

  int nVar;                 /* Number of '?' variables seen in the SQL so far */
  int nzVar;                /* Number of available slots in azVar[] */
  u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif







|







13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
  /************************************************************************
  ** Above is constant between recursions.  Below is reset before and after
  ** each recursion.  The boundary between these two regions is determined
  ** using offsetof(Parse,nVar) so the nVar field must be the first field
  ** in the recursive region.
  ************************************************************************/

  ynVar nVar;               /* Number of '?' variables seen in the SQL so far */
  int nzVar;                /* Number of available slots in azVar[] */
  u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
13637
13638
13639
13640
13641
13642
13643
13644

13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656


13657
13658
13659
13660
13661
13662
13663
  const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
  Parse *pParse;              /* The Parse structure */
};

/*
** Bitfield flags for P5 value in various opcodes.
*/
#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */

#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
#define OPFLAG_FORDELETE     0x08    /* OP_Open is opening for-delete csr */
#define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */



/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 







|
>









|


>
>







13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
  const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
  Parse *pParse;              /* The Parse structure */
};

/*
** Bitfield flags for P5 value in various opcodes.
*/
#define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
                                     /* Also used in P2 (not P5) of OP_Delete */
#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
#define OPFLAG_FORDELETE     0x08    /* OP_Open should use BTREE_FORDELETE */
#define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
#define OPFLAG_SAVEPOSITION  0x02    /* OP_Delete: keep cursor position */
#define OPFLAG_AUXDELETE     0x04    /* OP_Delete: index in a DELETE op */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778






13779
13780
13781
13782
13783
13784
13785
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  u32  nChar;          /* Length of the string so far */
  u32  nAlloc;         /* Amount of space allocated in zText */
  u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
  u8   bMalloced;      /* zText points to allocated space */
};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2







/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */







|



>
>
>
>
>
>







13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  u32  nChar;          /* Length of the string so far */
  u32  nAlloc;         /* Amount of space allocated in zText */
  u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
  u8   printfFlags;    /* SQLITE_PRINTF flags below */
};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2
#define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
#define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
#define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */

#define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)


/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */
13866
13867
13868
13869
13870
13871
13872

13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885

13886
13887
13888
13889
13890
13891
13892
*/
#define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)

/*
** Context pointer passed down through the tree-walk.
*/
struct Walker {

  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */

  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);







>



<









>







13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982

13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
*/
#define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)

/*
** Context pointer passed down through the tree-walk.
*/
struct Walker {
  Parse *pParse;                            /* Parser context.  */
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */

  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
    int *aiCol;                                /* array of column indexes */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
13948
13949
13950
13951
13952
13953
13954







13955
13956
13957
13958
13959
13960
13961
SQLITE_PRIVATE int sqlite3CorruptError(int);
SQLITE_PRIVATE int sqlite3MisuseError(int);
SQLITE_PRIVATE int sqlite3CantopenError(int);
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)









/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)







>
>
>
>
>
>
>







14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
SQLITE_PRIVATE int sqlite3CorruptError(int);
SQLITE_PRIVATE int sqlite3MisuseError(int);
SQLITE_PRIVATE int sqlite3CantopenError(int);
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)

/*
** FTS3 and FTS4 both require virtual table support
*/
#if defined(SQLITE_OMIT_VIRTUALTABLE)
# undef SQLITE_ENABLE_FTS3
# undef SQLITE_ENABLE_FTS4
#endif

/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
14006
14007
14008
14009
14010
14011
14012

14013
14014
14015
14016
14017
14018
14019

SQLITE_PRIVATE int sqlite3MallocInit(void);
SQLITE_PRIVATE void sqlite3MallocEnd(void);
SQLITE_PRIVATE void *sqlite3Malloc(u64);
SQLITE_PRIVATE void *sqlite3MallocZero(u64);
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, u64);
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, u64);

SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
SQLITE_PRIVATE void *sqlite3Realloc(void*, u64);
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64);
SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
SQLITE_PRIVATE int sqlite3MallocSize(void*);







>







14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134

SQLITE_PRIVATE int sqlite3MallocInit(void);
SQLITE_PRIVATE void sqlite3MallocEnd(void);
SQLITE_PRIVATE void *sqlite3Malloc(u64);
SQLITE_PRIVATE void *sqlite3MallocZero(u64);
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, u64);
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, u64);
SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64);
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
SQLITE_PRIVATE void *sqlite3Realloc(void*, u64);
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64);
SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
SQLITE_PRIVATE int sqlite3MallocSize(void*);
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118

14119
14120
14121
14122
14123
14124
14125
*/
struct PrintfArguments {
  int nArg;                /* Total number of arguments */
  int nUsed;               /* Number of arguments used so far */
  sqlite3_value **apArg;   /* The argument values */
};

#define SQLITE_PRINTF_INTERNAL 0x01
#define SQLITE_PRINTF_SQLFUNC  0x02
SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
SQLITE_PRIVATE void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
SQLITE_PRIVATE   void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
SQLITE_PRIVATE   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWith(TreeView*, const With*, u8);
#endif


SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*);
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
SQLITE_PRIVATE int sqlite3Dequote(char*);

SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);







<
<
|
|




















>







14203
14204
14205
14206
14207
14208
14209


14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
*/
struct PrintfArguments {
  int nArg;                /* Total number of arguments */
  int nUsed;               /* Number of arguments used so far */
  sqlite3_value **apArg;   /* The argument values */
};



SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, const char*, va_list);
SQLITE_PRIVATE void sqlite3XPrintf(StrAccum*, const char*, ...);
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
SQLITE_PRIVATE   void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
SQLITE_PRIVATE   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWith(TreeView*, const With*, u8);
#endif


SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*);
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
SQLITE_PRIVATE int sqlite3Dequote(char*);
SQLITE_PRIVATE void sqlite3TokenInit(Token*,char*);
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*);
SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);
SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*);
SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
SQLITE_PRIVATE i16 sqlite3ColumnOfIndex(Index*, i16);







<







14254
14255
14256
14257
14258
14259
14260

14261
14262
14263
14264
14265
14266
14267
SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*);
SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);

SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*);
SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
SQLITE_PRIVATE i16 sqlite3ColumnOfIndex(Index*, i16);
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);







|







14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566


14567
14568
14569
14570
14571
14572
14573
SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
SQLITE_PRIVATE void sqlite3SchemaClear(void *);
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*);
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*);
#endif
SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);


SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);

SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
SQLITE_PRIVATE void sqlite3StrAccumAppendAll(StrAccum*,const char*);
SQLITE_PRIVATE void sqlite3AppendChar(StrAccum*,int,char);







<















>
>







14657
14658
14659
14660
14661
14662
14663

14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);

SQLITE_PRIVATE void sqlite3SchemaClear(void *);
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*);
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*);
#endif
SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);
SQLITE_PRIVATE void sqlite3OomFault(sqlite3*);
SQLITE_PRIVATE void sqlite3OomClear(sqlite3*);
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);

SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
SQLITE_PRIVATE void sqlite3StrAccumAppendAll(StrAccum*,const char*);
SQLITE_PRIVATE void sqlite3AppendChar(StrAccum*,int,char);
15656
15657
15658
15659
15660
15661
15662

15663
15664
15665
15666
15667
15668
15669
15670

15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688


15689
15690
15691
15692
15693
15694
15695
**      * A b-tree cursor
**          -  In the main database or in an ephemeral database
**          -  On either an index or a table
**      * A sorter
**      * A virtual table
**      * A one-row "pseudotable" stored in a single register
*/

struct VdbeCursor {
  u8 eCurType;          /* One of the CURTYPE_* values above */
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  u8 isTable;           /* True for rowid tables.  False for indexes */
#ifdef SQLITE_DEBUG
  u8 seekOp;            /* Most recent seek operation on this cursor */

#endif
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
  union {
    BtCursor *pCursor;          /* CURTYPE_BTREE.  Btree cursor */
    sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB.   Vtab cursor */
    int pseudoTableReg;         /* CURTYPE_PSEUDO. Reg holding content. */
    VdbeSorter *pSorter;        /* CURTYPE_SORTER. Sorter object */
  } uc;
  Btree *pBt;           /* Separate file holding temporary table */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int seekResult;       /* Result of previous sqlite3BtreeMoveto() */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */


#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
  u64 maskUsed;         /* Mask of columns used by this cursor */
#endif

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of







>








>


















>
>







15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
**      * A b-tree cursor
**          -  In the main database or in an ephemeral database
**          -  On either an index or a table
**      * A sorter
**      * A virtual table
**      * A one-row "pseudotable" stored in a single register
*/
typedef struct VdbeCursor VdbeCursor;
struct VdbeCursor {
  u8 eCurType;          /* One of the CURTYPE_* values above */
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  u8 isTable;           /* True for rowid tables.  False for indexes */
#ifdef SQLITE_DEBUG
  u8 seekOp;            /* Most recent seek operation on this cursor */
  u8 wrFlag;            /* The wrFlag argument to sqlite3BtreeCursor() */
#endif
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
  union {
    BtCursor *pCursor;          /* CURTYPE_BTREE.  Btree cursor */
    sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB.   Vtab cursor */
    int pseudoTableReg;         /* CURTYPE_PSEUDO. Reg holding content. */
    VdbeSorter *pSorter;        /* CURTYPE_SORTER. Sorter object */
  } uc;
  Btree *pBt;           /* Separate file holding temporary table */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int seekResult;       /* Result of previous sqlite3BtreeMoveto() */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  VdbeCursor *pAltCursor; /* Associated index cursor from which to read */
  int *aAltMap;           /* Mapping from table to index column numbers */
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
  u64 maskUsed;         /* Mask of columns used by this cursor */
#endif

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
  const u8 *aRow;       /* Data for the current row, if all on one page */
  u32 *aOffset;         /* Pointer to aType[nField] */
  u32 aType[1];         /* Type values for all entries in the record */
  /* 2*nField extra array elements allocated for aType[], beyond the one
  ** static element declared in the structure.  nField total array slots for
  ** aType[] and nField+1 array slots for aOffset[] */
};
typedef struct VdbeCursor VdbeCursor;

/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific
** values stored in the Vdbe struct. When the sub-program is finished, 
** these values are copied back to the Vdbe from the VdbeFrame structure,







<







15824
15825
15826
15827
15828
15829
15830

15831
15832
15833
15834
15835
15836
15837
  const u8 *aRow;       /* Data for the current row, if all on one page */
  u32 *aOffset;         /* Pointer to aType[nField] */
  u32 aType[1];         /* Type values for all entries in the record */
  /* 2*nField extra array elements allocated for aType[], beyond the one
  ** static element declared in the structure.  nField total array slots for
  ** aType[] and nField+1 array slots for aOffset[] */
};


/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific
** values stored in the Vdbe struct. When the sub-program is finished, 
** these values are copied back to the Vdbe from the VdbeFrame structure,
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837

15838
15839
15840
15841






15842
15843
15844
15845
15846
15847
15848
#define MEM_Real      0x0008   /* Value is a real number */
#define MEM_Blob      0x0010   /* Value is a BLOB */
#define MEM_AffMask   0x001f   /* Mask of affinity bits */
#define MEM_RowSet    0x0020   /* Value is a RowSet object */
#define MEM_Frame     0x0040   /* Value is a VdbeFrame object */
#define MEM_Undefined 0x0080   /* Value is undefined */
#define MEM_Cleared   0x0100   /* NULL set by OP_Null, not from data */
#define MEM_TypeMask  0x01ff   /* Mask of type bits */


/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z.  The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/
#define MEM_Term      0x0200   /* String rep is nul terminated */
#define MEM_Dyn       0x0400   /* Need to call Mem.xDel() on Mem.z */
#define MEM_Static    0x0800   /* Mem.z points to a static string */
#define MEM_Ephem     0x1000   /* Mem.z points to an ephemeral string */
#define MEM_Agg       0x2000   /* Mem.z points to an agg function context */
#define MEM_Zero      0x4000   /* Mem.i contains count of 0s appended to blob */

#ifdef SQLITE_OMIT_INCRBLOB
  #undef MEM_Zero
  #define MEM_Zero 0x0000
#endif







/*
** Clear any existing type flags from a Mem and replace them with f
*/
#define MemSetTypeFlag(p, f) \
   ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)








|













>




>
>
>
>
>
>







15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
#define MEM_Real      0x0008   /* Value is a real number */
#define MEM_Blob      0x0010   /* Value is a BLOB */
#define MEM_AffMask   0x001f   /* Mask of affinity bits */
#define MEM_RowSet    0x0020   /* Value is a RowSet object */
#define MEM_Frame     0x0040   /* Value is a VdbeFrame object */
#define MEM_Undefined 0x0080   /* Value is undefined */
#define MEM_Cleared   0x0100   /* NULL set by OP_Null, not from data */
#define MEM_TypeMask  0x81ff   /* Mask of type bits */


/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z.  The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/
#define MEM_Term      0x0200   /* String rep is nul terminated */
#define MEM_Dyn       0x0400   /* Need to call Mem.xDel() on Mem.z */
#define MEM_Static    0x0800   /* Mem.z points to a static string */
#define MEM_Ephem     0x1000   /* Mem.z points to an ephemeral string */
#define MEM_Agg       0x2000   /* Mem.z points to an agg function context */
#define MEM_Zero      0x4000   /* Mem.i contains count of 0s appended to blob */
#define MEM_Subtype   0x8000   /* Mem.eSubtype is valid */
#ifdef SQLITE_OMIT_INCRBLOB
  #undef MEM_Zero
  #define MEM_Zero 0x0000
#endif

/* Return TRUE if Mem X contains dynamically allocated content - anything
** that needs to be deallocated to avoid a leak.
*/
#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)

/*
** Clear any existing type flags from a Mem and replace them with f
*/
#define MemSetTypeFlag(p, f) \
   ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)

16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019

/*
** Function prototypes
*/
SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...);
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8);
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int, u32*);







|







16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143

/*
** Function prototypes
*/
SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...);
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor**, int*);
SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8);
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int, u32*);
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082





16083
16084
16085
16086
16087
16088
16089
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8);
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p);

SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
SQLITE_PRIVATE   void sqlite3VdbeEnter(Vdbe*);
SQLITE_PRIVATE   void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)





# define sqlite3VdbeLeave(X)
#endif

#ifdef SQLITE_DEBUG
SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*);
#endif







<
<


















|

<


>
>
>
>
>







16175
16176
16177
16178
16179
16180
16181


16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201

16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8);
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);


SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p);

SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);

#if !defined(SQLITE_OMIT_SHARED_CACHE) 
SQLITE_PRIVATE   void sqlite3VdbeEnter(Vdbe*);

#else
# define sqlite3VdbeEnter(X)
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
SQLITE_PRIVATE   void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeLeave(X)
#endif

#ifdef SQLITE_DEBUG
SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*);
#endif
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522




16523


16524
16525
16526
16527




16528
16529





16530
16531
16532



16533
16534
16535
16536
16537
16538
16539
16540
16541
16542


16543

16544

16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561

16562
16563
16564
16565
16566
16567
16568
  char validJD;      /* True (1) if iJD is valid */
  char validTZ;      /* True (1) if tz is valid */
  char tzSet;        /* Timezone was set explicitly */
};


/*
** Convert zDate into one or more integers.  Additional arguments
** come in groups of 5 as follows:
**




**       N       number of digits in the integer


**       min     minimum allowed value of the integer
**       max     maximum allowed value of the integer
**       nextC   first character after the integer
**       pVal    where to write the integers value.




**
** Conversions continue until one with nextC==0 is encountered.





** The function returns the number of successful conversions.
*/
static int getDigits(const char *zDate, ...){



  va_list ap;
  int val;
  int N;
  int min;
  int max;
  int nextC;
  int *pVal;
  int cnt = 0;
  va_start(ap, zDate);
  do{


    N = va_arg(ap, int);

    min = va_arg(ap, int);

    max = va_arg(ap, int);
    nextC = va_arg(ap, int);
    pVal = va_arg(ap, int*);
    val = 0;
    while( N-- ){
      if( !sqlite3Isdigit(*zDate) ){
        goto end_getDigits;
      }
      val = val*10 + *zDate - '0';
      zDate++;
    }
    if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
      goto end_getDigits;
    }
    *pVal = val;
    zDate++;
    cnt++;

  }while( nextC );
end_getDigits:
  va_end(ap);
  return cnt;
}

/*







|
|

>
>
>
>
|
>
>
|
|
|
|
>
>
>
>

<
>
>
>
>
>


|
>
>
>

<
|
<
<
|
<
<
|

>
>
|
>
|
>
|
|
<








|


|


>







16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664

16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676

16677


16678


16679
16680
16681
16682
16683
16684
16685
16686
16687
16688

16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
  char validJD;      /* True (1) if iJD is valid */
  char validTZ;      /* True (1) if tz is valid */
  char tzSet;        /* Timezone was set explicitly */
};


/*
** Convert zDate into one or more integers according to the conversion
** specifier zFormat.
**
** zFormat[] contains 4 characters for each integer converted, except for
** the last integer which is specified by three characters.  The meaning
** of a four-character format specifiers ABCD is:
**
**    A:   number of digits to convert.  Always "2" or "4".
**    B:   minimum value.  Always "0" or "1".
**    C:   maximum value, decoded as:
**           a:  12
**           b:  14
**           c:  24
**           d:  31
**           e:  59
**           f:  9999
**    D:   the separator character, or \000 to indicate this is the
**         last number to convert.
**

** Example:  To translate an ISO-8601 date YYYY-MM-DD, the format would
** be "40f-21a-20c".  The "40f-" indicates the 4-digit year followed by "-".
** The "21a-" indicates the 2-digit month followed by "-".  The "20c" indicates
** the 2-digit day which is the last integer in the set.
**
** The function returns the number of successful conversions.
*/
static int getDigits(const char *zDate, const char *zFormat, ...){
  /* The aMx[] array translates the 3rd character of each format
  ** spec into a max size:    a   b   c   d   e     f */
  static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
  va_list ap;

  int cnt = 0;


  char nextC;


  va_start(ap, zFormat);
  do{
    char N = zFormat[0] - '0';
    char min = zFormat[1] - '0';
    int val = 0;
    u16 max;

    assert( zFormat[2]>='a' && zFormat[2]<='f' );
    max = aMx[zFormat[2] - 'a'];
    nextC = zFormat[3];

    val = 0;
    while( N-- ){
      if( !sqlite3Isdigit(*zDate) ){
        goto end_getDigits;
      }
      val = val*10 + *zDate - '0';
      zDate++;
    }
    if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
      goto end_getDigits;
    }
    *va_arg(ap,int*) = val;
    zDate++;
    cnt++;
    zFormat += 4;
  }while( nextC );
end_getDigits:
  va_end(ap);
  return cnt;
}

/*
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
  }else if( c=='Z' || c=='z' ){
    zDate++;
    goto zulu_time;
  }else{
    return c!=0;
  }
  zDate++;
  if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
    return 1;
  }
  zDate += 5;
  p->tz = sgn*(nMn + nHr*60);
zulu_time:
  while( sqlite3Isspace(*zDate) ){ zDate++; }
  p->tzSet = 1;
  return *zDate!=0;
}

/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits.  The
** fractional seconds FFFF can be one or more digits.
**
** Return 1 if there is a parsing error and 0 on success.
*/
static int parseHhMmSs(const char *zDate, DateTime *p){
  int h, m, s;
  double ms = 0.0;
  if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
    return 1;
  }
  zDate += 5;
  if( *zDate==':' ){
    zDate++;
    if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
      return 1;
    }
    zDate += 2;
    if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
      double rScale = 1.0;
      zDate++;
      while( sqlite3Isdigit(*zDate) ){







|




















|





|







16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
  }else if( c=='Z' || c=='z' ){
    zDate++;
    goto zulu_time;
  }else{
    return c!=0;
  }
  zDate++;
  if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
    return 1;
  }
  zDate += 5;
  p->tz = sgn*(nMn + nHr*60);
zulu_time:
  while( sqlite3Isspace(*zDate) ){ zDate++; }
  p->tzSet = 1;
  return *zDate!=0;
}

/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits.  The
** fractional seconds FFFF can be one or more digits.
**
** Return 1 if there is a parsing error and 0 on success.
*/
static int parseHhMmSs(const char *zDate, DateTime *p){
  int h, m, s;
  double ms = 0.0;
  if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
    return 1;
  }
  zDate += 5;
  if( *zDate==':' ){
    zDate++;
    if( getDigits(zDate, "20e", &s)!=1 ){
      return 1;
    }
    zDate += 2;
    if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
      double rScale = 1.0;
      zDate++;
      while( sqlite3Isdigit(*zDate) ){
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724

  if( zDate[0]=='-' ){
    zDate++;
    neg = 1;
  }else{
    neg = 0;
  }
  if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
    return 1;
  }
  zDate += 10;
  while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
  if( parseHhMmSs(zDate, p)==0 ){
    /* We got the time */
  }else if( *zDate==0 ){







|







16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866

  if( zDate[0]=='-' ){
    zDate++;
    neg = 1;
  }else{
    neg = 0;
  }
  if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
    return 1;
  }
  zDate += 10;
  while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
  if( parseHhMmSs(zDate, p)==0 ){
    /* We got the time */
  }else if( *zDate==0 ){
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
  testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
  if( n<sizeof(zBuf) ){
    z = zBuf;
  }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    sqlite3_result_error_toobig(context);
    return;
  }else{
    z = sqlite3DbMallocRaw(db, (int)n);
    if( z==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
  }
  computeJD(&x);
  computeYMD_HMS(&x);







|







17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
  testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
  if( n<sizeof(zBuf) ){
    z = zBuf;
  }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    sqlite3_result_error_toobig(context);
    return;
  }else{
    z = sqlite3DbMallocRawNN(db, (int)n);
    if( z==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
  }
  computeJD(&x);
  computeYMD_HMS(&x);
17609
17610
17611
17612
17613
17614
17615






















17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
** This file contains OS interface code that is common to all
** architectures.
*/
#define _SQLITE_OS_C_ 1
/* #include "sqliteInt.h" */
#undef _SQLITE_OS_C_























/*
** The default SQLite sqlite3_vfs implementations do not allocate
** memory (actually, os_unix.c allocates a small amount of memory
** from within OsOpen()), but some third-party implementations may.
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
**
** The following functions are instrumented for malloc() failure 
** testing:
**
**     sqlite3OsRead()
**     sqlite3OsWrite()
**     sqlite3OsSync()
**     sqlite3OsFileSize()
**     sqlite3OsLock()







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







|







17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
** This file contains OS interface code that is common to all
** architectures.
*/
#define _SQLITE_OS_C_ 1
/* #include "sqliteInt.h" */
#undef _SQLITE_OS_C_

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#if defined(SQLITE_TEST)
SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#endif /* defined(SQLITE_TEST) */

/*
** When testing, also keep a count of the number of open files.
*/
#if defined(SQLITE_TEST)
SQLITE_API int sqlite3_open_file_count = 0;
#endif /* defined(SQLITE_TEST) */

/*
** The default SQLite sqlite3_vfs implementations do not allocate
** memory (actually, os_unix.c allocates a small amount of memory
** from within OsOpen()), but some third-party implementations may.
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
**
** The following functions are instrumented for malloc() failure
** testing:
**
**     sqlite3OsRead()
**     sqlite3OsWrite()
**     sqlite3OsSync()
**     sqlite3OsFileSize()
**     sqlite3OsLock()
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
** is only a hint and can be safely ignored.  The sqlite3OsFileControlHint()
** routine has no return value since the return value would be meaningless.
*/
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
#ifdef SQLITE_TEST
  if( op!=SQLITE_FCNTL_COMMIT_PHASETWO ){
    /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite
    ** is using a regular VFS, it is called after the corresponding 
    ** transaction has been committed. Injecting a fault at this point 
    ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM
    ** but the transaction is committed anyway.
    **
    ** The core must call OsFileControl() though, not OsFileControlHint(),
    ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably
    ** means the commit really has failed and an error should be returned
    ** to the user.  */







|
|







17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
** is only a hint and can be safely ignored.  The sqlite3OsFileControlHint()
** routine has no return value since the return value would be meaningless.
*/
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
#ifdef SQLITE_TEST
  if( op!=SQLITE_FCNTL_COMMIT_PHASETWO ){
    /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite
    ** is using a regular VFS, it is called after the corresponding
    ** transaction has been committed. Injecting a fault at this point
    ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM
    ** but the transaction is committed anyway.
    **
    ** The core must call OsFileControl() though, not OsFileControlHint(),
    ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably
    ** means the commit really has failed and an error should be returned
    ** to the user.  */
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
#endif

/*
** The next group of routines are convenience wrappers around the
** VFS methods.
*/
SQLITE_PRIVATE int sqlite3OsOpen(
  sqlite3_vfs *pVfs, 
  const char *zPath, 
  sqlite3_file *pFile, 
  int flags, 
  int *pFlagsOut
){
  int rc;
  DO_OS_MALLOC_TEST(0);
  /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  DO_OS_MALLOC_TEST(0);
  assert( dirSync==0 || dirSync==1 );
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
SQLITE_PRIVATE int sqlite3OsAccess(
  sqlite3_vfs *pVfs, 
  const char *zPath, 
  int flags, 
  int *pResOut
){
  DO_OS_MALLOC_TEST(0);
  return pVfs->xAccess(pVfs, zPath, flags, pResOut);
}
SQLITE_PRIVATE int sqlite3OsFullPathname(
  sqlite3_vfs *pVfs, 
  const char *zPath, 
  int nPathOut, 
  char *zPathOut
){
  DO_OS_MALLOC_TEST(0);
  zPathOut[0] = 0;
  return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION







|
|
|
|


















|
|
|






|
|
|







17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
#endif

/*
** The next group of routines are convenience wrappers around the
** VFS methods.
*/
SQLITE_PRIVATE int sqlite3OsOpen(
  sqlite3_vfs *pVfs,
  const char *zPath,
  sqlite3_file *pFile,
  int flags,
  int *pFlagsOut
){
  int rc;
  DO_OS_MALLOC_TEST(0);
  /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  DO_OS_MALLOC_TEST(0);
  assert( dirSync==0 || dirSync==1 );
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
SQLITE_PRIVATE int sqlite3OsAccess(
  sqlite3_vfs *pVfs,
  const char *zPath,
  int flags,
  int *pResOut
){
  DO_OS_MALLOC_TEST(0);
  return pVfs->xAccess(pVfs, zPath, flags, pResOut);
}
SQLITE_PRIVATE int sqlite3OsFullPathname(
  sqlite3_vfs *pVfs,
  const char *zPath,
  int nPathOut,
  char *zPathOut
){
  DO_OS_MALLOC_TEST(0);
  zPathOut[0] = 0;
  return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
    rc = pVfs->xCurrentTime(pVfs, &r);
    *pTimeOut = (sqlite3_int64)(r*86400000.0);
  }
  return rc;
}

SQLITE_PRIVATE int sqlite3OsOpenMalloc(
  sqlite3_vfs *pVfs, 
  const char *zFile, 
  sqlite3_file **ppFile, 
  int flags,
  int *pOutFlags
){
  int rc = SQLITE_NOMEM;
  sqlite3_file *pFile;
  pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
  if( pFile ){







|
|
|







18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
    rc = pVfs->xCurrentTime(pVfs, &r);
    *pTimeOut = (sqlite3_int64)(r*86400000.0);
  }
  return rc;
}

SQLITE_PRIVATE int sqlite3OsOpenMalloc(
  sqlite3_vfs *pVfs,
  const char *zFile,
  sqlite3_file **ppFile,
  int flags,
  int *pOutFlags
){
  int rc = SQLITE_NOMEM;
  sqlite3_file *pFile;
  pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
  if( pFile ){
19763
19764
19765
19766
19767
19768
19769

19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780

19781
19782
19783
19784
19785
19786
19787
  u8 *zPool;       /* Memory available to be allocated */
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;


  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */

  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** aiFreelist[2] holds free blocks of size szAtom*4.  And so forth.
  */
  int aiFreelist[LOGMAX+1];







>











>







19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
  u8 *zPool;       /* Memory available to be allocated */
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
#endif
  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** aiFreelist[2] holds free blocks of size szAtom*4.  And so forth.
  */
  int aiFreelist[LOGMAX+1];
19885
19886
19887
19888
19889
19890
19891




19892
19893
19894
19895
19896
19897
19898
19899


19900
19901
19902
19903
19904
19905
19906
  int iBin;        /* Index into mem5.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */

  /* nByte must be a positive */
  assert( nByte>0 );





  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){
    /* Abort if the requested allocation size is larger than the largest
    ** power of two that we can represent using 32-bit signed integers. */
    if( nByte > 0x40000000 ) return 0;
    mem5.maxRequest = nByte;
  }



  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.







>
>
>
>



<
<
<


>
>







20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064



20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
  int iBin;        /* Index into mem5.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */

  /* nByte must be a positive */
  assert( nByte>0 );

  /* No more than 1GiB per allocation */
  if( nByte > 0x40000000 ) return 0;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){



    mem5.maxRequest = nByte;
  }
#endif


  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
19919
19920
19921
19922
19923
19924
19925

19926
19927
19928
19929
19930
19931
19932
19933

19934
19935
19936
19937
19938
19939
19940
    iBin--;
    newSize = 1 << iBin;
    mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
    memsys5Link(i+newSize, iBin);
  }
  mem5.aCtrl[i] = iLogsize;


  /* Update allocator performance statistics. */
  mem5.nAlloc++;
  mem5.totalAlloc += iFullSz;
  mem5.totalExcess += iFullSz - nByte;
  mem5.currentCount++;
  mem5.currentOut += iFullSz;
  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;


#ifdef SQLITE_DEBUG
  /* Make sure the allocated memory does not assume that it is set to zero
  ** or retains a value from a previous allocation */
  memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
#endif








>








>







20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
    iBin--;
    newSize = 1 << iBin;
    mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
    memsys5Link(i+newSize, iBin);
  }
  mem5.aCtrl[i] = iLogsize;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /* Update allocator performance statistics. */
  mem5.nAlloc++;
  mem5.totalAlloc += iFullSz;
  mem5.totalExcess += iFullSz - nByte;
  mem5.currentCount++;
  mem5.currentOut += iFullSz;
  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
#endif

#ifdef SQLITE_DEBUG
  /* Make sure the allocated memory does not assume that it is set to zero
  ** or retains a value from a previous allocation */
  memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
#endif

19961
19962
19963
19964
19965
19966
19967


19968
19969
19970
19971
19972
19973

19974
19975
19976
19977
19978
19979

19980
19981

19982
19983
19984
19985
19986
19987
19988
19989
19990
19991

  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( iBlock+size-1<(u32)mem5.nBlock );

  mem5.aCtrl[iBlock] |= CTRL_FREE;
  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;


  assert( mem5.currentCount>0 );
  assert( mem5.currentOut>=(size*mem5.szAtom) );
  mem5.currentCount--;
  mem5.currentOut -= size*mem5.szAtom;
  assert( mem5.currentOut>0 || mem5.currentCount==0 );
  assert( mem5.currentCount>0 || mem5.currentOut==0 );


  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  while( ALWAYS(iLogsize<LOGMAX) ){
    int iBuddy;
    if( (iBlock>>iLogsize) & 1 ){
      iBuddy = iBlock - size;

    }else{
      iBuddy = iBlock + size;

    }
    assert( iBuddy>=0 );
    if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
    if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
    memsys5Unlink(iBuddy, iLogsize);
    iLogsize++;
    if( iBuddy<iBlock ){
      mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
      mem5.aCtrl[iBlock] = 0;
      iBlock = iBuddy;







>
>






>






>


>

<
<







20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158


20159
20160
20161
20162
20163
20164
20165

  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( iBlock+size-1<(u32)mem5.nBlock );

  mem5.aCtrl[iBlock] |= CTRL_FREE;
  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  assert( mem5.currentCount>0 );
  assert( mem5.currentOut>=(size*mem5.szAtom) );
  mem5.currentCount--;
  mem5.currentOut -= size*mem5.szAtom;
  assert( mem5.currentOut>0 || mem5.currentCount==0 );
  assert( mem5.currentCount>0 || mem5.currentOut==0 );
#endif

  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  while( ALWAYS(iLogsize<LOGMAX) ){
    int iBuddy;
    if( (iBlock>>iLogsize) & 1 ){
      iBuddy = iBlock - size;
      assert( iBuddy>=0 );
    }else{
      iBuddy = iBlock + size;
      if( iBuddy>=mem5.nBlock ) break;
    }


    if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
    memsys5Unlink(iBuddy, iLogsize);
    iLogsize++;
    if( iBuddy<iBlock ){
      mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
      mem5.aCtrl[iBlock] = 0;
      iBlock = iBuddy;
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/* 
** hwtime.h contains inline assembler code for implementing 
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**







|
|







21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/*
** hwtime.h contains inline assembler code for implementing
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));







|
|
|
|
|
|
|
|







21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#if defined(SQLITE_TEST)
SQLITE_API extern int sqlite3_io_error_hit;
SQLITE_API extern int sqlite3_io_error_hardhit;
SQLITE_API extern int sqlite3_io_error_pending;
SQLITE_API extern int sqlite3_io_error_persist;
SQLITE_API extern int sqlite3_io_error_benign;
SQLITE_API extern int sqlite3_diskfull_pending;
SQLITE_API extern int sqlite3_diskfull;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif

/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in mutex_w32.c ******************/

/*







|




|
|



|







21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif /* defined(SQLITE_TEST) */

/*
** When testing, keep a count of the number of open files.
*/
#if defined(SQLITE_TEST)
SQLITE_API extern int sqlite3_open_file_count;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif /* defined(SQLITE_TEST) */

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in mutex_w32.c ******************/

/*
22278
22279
22280
22281
22282
22283
22284


22285
22286
22287

22288












22289
22290
22291
22292

22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308



22309
22310
22311

22312
22313




22314
22315
22316
22317

22318
22319
22320

22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333


22334
22335
22336



22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348


22349
22350
22351
22352
22353
22354







22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
}

/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, u64 n){


  void *p = sqlite3DbMallocRaw(db, n);
  if( p ){
    memset(p, 0, (size_t)n);

  }












  return p;
}

/*

** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
**
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
** failure on the same database connection) then always return 0.
** Hence for a particular database connection, once malloc starts
** failing, it fails consistently until mallocFailed is reset.
** This is an important assumption.  There are many places in the
** code that do things like this:
**
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.



*/
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
  void *p;

  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  assert( db==0 || db->pnBytesFreed==0 );




#ifndef SQLITE_OMIT_LOOKASIDE
  if( db ){
    LookasideSlot *pBuf;
    if( db->mallocFailed ){

      return 0;
    }
    if( db->lookaside.bEnabled ){

      if( n>db->lookaside.sz ){
        db->lookaside.anStat[1]++;
      }else if( (pBuf = db->lookaside.pFree)==0 ){
        db->lookaside.anStat[2]++;
      }else{
        db->lookaside.pFree = pBuf->pNext;
        db->lookaside.nOut++;
        db->lookaside.anStat[0]++;
        if( db->lookaside.nOut>db->lookaside.mxOut ){
          db->lookaside.mxOut = db->lookaside.nOut;
        }
        return (void*)pBuf;
      }


    }
  }
#else



  if( db && db->mallocFailed ){
    return 0;
  }
#endif
  p = sqlite3Malloc(n);
  if( !p && db ){
    db->mallocFailed = 1;
  }
  sqlite3MemdebugSetType(p, 
         (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
  return p;
}



/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){







  void *pNew = 0;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->mallocFailed==0 ){
    if( p==0 ){
      return sqlite3DbMallocRaw(db, n);
    }
    if( isLookaside(db, p) ){
      if( n<=db->lookaside.sz ){
        return p;
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}

/*
** Attempt to reallocate p.  If the reallocation fails, then free p







>
>
|
<
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>




>
|
|














>
>
>



>
|
<
>
>
>
>

<
|
|
>
|
<
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
<

>
>
>
|



|
<
<
|
<
<
<
|
>
>






>
>
>
>
>
>
>


|

<
<
<

<
<
<
|










|


|







22452
22453
22454
22455
22456
22457
22458
22459
22460
22461

22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505

22506
22507
22508
22509
22510

22511
22512
22513
22514

22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532

22533
22534
22535
22536
22537
22538
22539
22540
22541


22542



22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562



22563



22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
}

/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
  void *p;
  testcase( db==0 );
  p = sqlite3DbMallocRaw(db, n);

  if( p ) memset(p, 0, (size_t)n);
  return p;
}


/* Finish the work of sqlite3DbMallocRawNN for the unusual and
** slower case when the allocation cannot be fulfilled using lookaside.
*/
static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
  void *p;
  assert( db!=0 );
  p = sqlite3Malloc(n);
  if( !p ) sqlite3OomFault(db);
  sqlite3MemdebugSetType(p, 
         (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
  return p;
}

/*
** Allocate memory, either lookaside (if possible) or heap.  
** If the allocation fails, set the mallocFailed flag in
** the connection pointer.
**
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
** failure on the same database connection) then always return 0.
** Hence for a particular database connection, once malloc starts
** failing, it fails consistently until mallocFailed is reset.
** This is an important assumption.  There are many places in the
** code that do things like this:
**
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.
**
** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
** not a NULL pointer.
*/
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
  void *p;
  if( db ) return sqlite3DbMallocRawNN(db, n);
  p = sqlite3Malloc(n);

  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  return p;
}
SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
#ifndef SQLITE_OMIT_LOOKASIDE

  LookasideSlot *pBuf;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( db->pnBytesFreed==0 );

  if( db->lookaside.bDisable==0 ){
    assert( db->mallocFailed==0 );
    if( n>db->lookaside.sz ){
      db->lookaside.anStat[1]++;
    }else if( (pBuf = db->lookaside.pFree)==0 ){
      db->lookaside.anStat[2]++;
    }else{
      db->lookaside.pFree = pBuf->pNext;
      db->lookaside.nOut++;
      db->lookaside.anStat[0]++;
      if( db->lookaside.nOut>db->lookaside.mxOut ){
        db->lookaside.mxOut = db->lookaside.nOut;
      }
      return (void*)pBuf;
    }
  }else if( db->mallocFailed ){
    return 0;
  }

#else
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( db->pnBytesFreed==0 );
  if( db->mallocFailed ){
    return 0;
  }
#endif
  return dbMallocRawFinish(db, n);


}




/* Forward declaration */
static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);

/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
  assert( db!=0 );
  if( p==0 ) return sqlite3DbMallocRawNN(db, n);
  assert( sqlite3_mutex_held(db->mutex) );
  if( isLookaside(db,p) && n<=db->lookaside.sz ) return p;
  return dbReallocFinish(db, p, n);
}
static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
  void *pNew = 0;
  assert( db!=0 );
  assert( p!=0 );
  if( db->mallocFailed==0 ){



    if( isLookaside(db, p) ){



      pNew = sqlite3DbMallocRawNN(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        sqlite3OomFault(db);
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}

/*
** Attempt to reallocate p.  If the reallocation fails, then free p
22415
22416
22417
22418
22419
22420
22421

22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
































22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
  if( zNew ){
    memcpy(zNew, z, n);
  }
  return zNew;
}
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
  char *zNew;

  if( z==0 ){
    return 0;
  }
  assert( (n&0x7fffffff)==n );
  zNew = sqlite3DbMallocRaw(db, n+1);
  if( zNew ){
    memcpy(zNew, z, (size_t)n);
    zNew[n] = 0;
  }
  return zNew;
}

/*
** Free any prior content in *pz and replace it with a copy of zNew.
*/
SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
  sqlite3DbFree(db, *pz);
  *pz = sqlite3DbStrDup(db, zNew);
}

































/*
** Take actions at the end of an API call to indicate an OOM error
*/
static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
  db->mallocFailed = 0;
  sqlite3Error(db, SQLITE_NOMEM);
  return SQLITE_NOMEM;
}

/*
** This function must be called before exiting any API function (i.e. 
** returning control to the user) that has called sqlite3_malloc or







>




|














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|







22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
  if( zNew ){
    memcpy(zNew, z, n);
  }
  return zNew;
}
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
  char *zNew;
  assert( db!=0 );
  if( z==0 ){
    return 0;
  }
  assert( (n&0x7fffffff)==n );
  zNew = sqlite3DbMallocRawNN(db, n+1);
  if( zNew ){
    memcpy(zNew, z, (size_t)n);
    zNew[n] = 0;
  }
  return zNew;
}

/*
** Free any prior content in *pz and replace it with a copy of zNew.
*/
SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
  sqlite3DbFree(db, *pz);
  *pz = sqlite3DbStrDup(db, zNew);
}

/*
** Call this routine to record the fact that an OOM (out-of-memory) error
** has happened.  This routine will set db->mallocFailed, and also
** temporarily disable the lookaside memory allocator and interrupt
** any running VDBEs.
*/
SQLITE_PRIVATE void sqlite3OomFault(sqlite3 *db){
  if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
    db->mallocFailed = 1;
    if( db->nVdbeExec>0 ){
      db->u1.isInterrupted = 1;
    }
    db->lookaside.bDisable++;
  }
}

/*
** This routine reactivates the memory allocator and clears the
** db->mallocFailed flag as necessary.
**
** The memory allocator is not restarted if there are running
** VDBEs.
*/
SQLITE_PRIVATE void sqlite3OomClear(sqlite3 *db){
  if( db->mallocFailed && db->nVdbeExec==0 ){
    db->mallocFailed = 0;
    db->u1.isInterrupted = 0;
    assert( db->lookaside.bDisable>0 );
    db->lookaside.bDisable--;
  }
}

/*
** Take actions at the end of an API call to indicate an OOM error
*/
static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
  sqlite3OomClear(db);
  sqlite3Error(db, SQLITE_NOMEM);
  return SQLITE_NOMEM;
}

/*
** This function must be called before exiting any API function (i.e. 
** returning control to the user) that has called sqlite3_malloc or
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE  /* Size of the output buffer */

/*
** Render a string given by "fmt" into the StrAccum object.
*/
SQLITE_PRIVATE void sqlite3VXPrintf(
  StrAccum *pAccum,          /* Accumulate results here */
  u32 bFlags,                /* SQLITE_PRINTF_* flags */
  const char *fmt,           /* Format string */
  va_list ap                 /* arguments */
){
  int c;                     /* Next character in the format string */
  char *bufpt;               /* Pointer to the conversion buffer */
  int precision;             /* Precision of the current field */
  int length;                /* Length of the field */







<







22875
22876
22877
22878
22879
22880
22881

22882
22883
22884
22885
22886
22887
22888
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE  /* Size of the output buffer */

/*
** Render a string given by "fmt" into the StrAccum object.
*/
SQLITE_PRIVATE void sqlite3VXPrintf(
  StrAccum *pAccum,          /* Accumulate results here */

  const char *fmt,           /* Format string */
  va_list ap                 /* arguments */
){
  int c;                     /* Next character in the format string */
  char *bufpt;               /* Pointer to the conversion buffer */
  int precision;             /* Precision of the current field */
  int length;                /* Length of the field */
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */

  bufpt = 0;
  if( bFlags ){
    if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL







|
|


|







22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */

  bufpt = 0;
  if( pAccum->printfFlags ){
    if( (bArgList = (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = pAccum->printfFlags & SQLITE_PRINTF_INTERNAL;
  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = p->bMalloced ? p->zText : 0;
    i64 szNew = p->nChar;
    assert( (p->zText==0 || p->zText==p->zBase)==(p->bMalloced==0) );
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->db ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc64(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( !p->bMalloced && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
      p->bMalloced = 1;
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N copies of character c to the given string buffer.
*/
SQLITE_PRIVATE void sqlite3AppendChar(StrAccum *p, int N, char c){
  testcase( p->nChar + (i64)N > 0x7fffffff );
  if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
    return;
  }
  assert( (p->zText==p->zBase)==(p->bMalloced==0) );
  while( (N--)>0 ) p->zText[p->nChar++] = c;
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }
  assert( (p->zText==0 || p->zText==p->zBase)==(p->bMalloced==0) );
}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){







|

|




















|


|

















|

















|







23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = isMalloced(p) ? p->zText : 0;
    i64 szNew = p->nChar;
    assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) );
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->db ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc64(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
      p->printfFlags |= SQLITE_PRINTF_MALLOCED;
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N copies of character c to the given string buffer.
*/
SQLITE_PRIVATE void sqlite3AppendChar(StrAccum *p, int N, char c){
  testcase( p->nChar + (i64)N > 0x7fffffff );
  if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
    return;
  }
  assert( (p->zText==p->zBase)==!isMalloced(p) );
  while( (N--)>0 ) p->zText[p->nChar++] = c;
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }
  assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) );
}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
*/
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
  if( p->zText ){
    assert( (p->zText==p->zBase)==(p->bMalloced==0) );
    p->zText[p->nChar] = 0;
    if( p->mxAlloc>0 && p->bMalloced==0 ){
      p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
        p->bMalloced = 1;
      }else{
        setStrAccumError(p, STRACCUM_NOMEM);
      }
    }
  }
  return p->zText;
}

/*
** Reset an StrAccum string.  Reclaim all malloced memory.
*/
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
  assert( (p->zText==0 || p->zText==p->zBase)==(p->bMalloced==0) );
  if( p->bMalloced ){
    sqlite3DbFree(p->db, p->zText);
    p->bMalloced = 0;
  }
  p->zText = 0;
}

/*
** Initialize a string accumulator.
**







|

|



|












|
|

|







23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
*/
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
  if( p->zText ){
    assert( (p->zText==p->zBase)==!isMalloced(p) );
    p->zText[p->nChar] = 0;
    if( p->mxAlloc>0 && !isMalloced(p) ){
      p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
        p->printfFlags |= SQLITE_PRINTF_MALLOCED;
      }else{
        setStrAccumError(p, STRACCUM_NOMEM);
      }
    }
  }
  return p->zText;
}

/*
** Reset an StrAccum string.  Reclaim all malloced memory.
*/
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
  assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) );
  if( isMalloced(p) ){
    sqlite3DbFree(p->db, p->zText);
    p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
  }
  p->zText = 0;
}

/*
** Initialize a string accumulator.
**
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405

23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = db;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->accError = 0;
  p->bMalloced = 0;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);

  sqlite3VXPrintf(&acc, SQLITE_PRINTF_INTERNAL, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.accError==STRACCUM_NOMEM ){
    db->mallocFailed = 1;
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.







|













>
|


|







23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = db;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->accError = 0;
  p->printfFlags = 0;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.printfFlags = SQLITE_PRINTF_INTERNAL;
  sqlite3VXPrintf(&acc, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.accError==STRACCUM_NOMEM ){
    sqlite3OomFault(db);
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
    return 0;
  }
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc()().  Omit the internal
** %-conversion extensions.







|







23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
    return 0;
  }
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
  sqlite3VXPrintf(&acc, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc()().  Omit the internal
** %-conversion extensions.
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  return sqlite3StrAccumFinish(&acc);
}
SQLITE_API char *SQLITE_CDECL sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;
  va_start(ap,zFormat);
  z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);







|







23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
  sqlite3VXPrintf(&acc, zFormat, ap);
  return sqlite3StrAccumFinish(&acc);
}
SQLITE_API char *SQLITE_CDECL sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;
  va_start(ap,zFormat);
  z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
** memory mutex is held do not use these mechanisms.
*/
static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
  StrAccum acc;                          /* String accumulator */
  char zMsg[SQLITE_PRINT_BUF_SIZE*3];    /* Complete log message */

  sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
                           sqlite3StrAccumFinish(&acc));
}

/*
** Format and write a message to the log if logging is enabled.
*/







|







23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
** memory mutex is held do not use these mechanisms.
*/
static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
  StrAccum acc;                          /* String accumulator */
  char zMsg[SQLITE_PRINT_BUF_SIZE*3];    /* Complete log message */

  sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
  sqlite3VXPrintf(&acc, zFormat, ap);
  sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
                           sqlite3StrAccumFinish(&acc));
}

/*
** Format and write a message to the log if logging is enabled.
*/
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
*/
SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
  va_list ap;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  va_start(ap,zFormat);
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  va_end(ap);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}
#endif


/*
** variable-argument wrapper around sqlite3VXPrintf().  The bFlags argument
** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
*/
SQLITE_PRIVATE void sqlite3XPrintf(StrAccum *p, u32 bFlags, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3VXPrintf(p, bFlags, zFormat, ap);
  va_end(ap);
}

/************** End of printf.c **********************************************/
/************** Begin file treeview.c ****************************************/
/*
** 2015-06-08







|












|


|







23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
*/
SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
  va_list ap;
  StrAccum acc;
  char zBuf[500];
  sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
  va_start(ap,zFormat);
  sqlite3VXPrintf(&acc, zFormat, ap);
  va_end(ap);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}
#endif


/*
** variable-argument wrapper around sqlite3VXPrintf().  The bFlags argument
** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
*/
SQLITE_PRIVATE void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3VXPrintf(p, zFormat, ap);
  va_end(ap);
}

/************** End of printf.c **********************************************/
/************** Begin file treeview.c ****************************************/
/*
** 2015-06-08
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }
  va_start(ap, zFormat);
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  va_end(ap);
  if( zBuf[acc.nChar-1]!='\n' ) sqlite3StrAccumAppend(&acc, "\n", 1);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}








|







23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
  if( p ){
    for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){
      sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|   " : "    ", 4);
    }
    sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
  }
  va_start(ap, zFormat);
  sqlite3VXPrintf(&acc, zFormat, ap);
  va_end(ap);
  if( zBuf[acc.nChar-1]!='\n' ) sqlite3StrAccumAppend(&acc, "\n", 1);
  sqlite3StrAccumFinish(&acc);
  fprintf(stdout,"%s", zBuf);
  fflush(stdout);
}

23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
  if( pWith->nCte>0 ){
    pView = sqlite3TreeViewPush(pView, 1);
    for(i=0; i<pWith->nCte; i++){
      StrAccum x;
      char zLine[1000];
      const struct Cte *pCte = &pWith->a[i];
      sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
      sqlite3XPrintf(&x, 0, "%s", pCte->zName);
      if( pCte->pCols && pCte->pCols->nExpr>0 ){
        char cSep = '(';
        int j;
        for(j=0; j<pCte->pCols->nExpr; j++){
          sqlite3XPrintf(&x, 0, "%c%s", cSep, pCte->pCols->a[j].zName);
          cSep = ',';
        }
        sqlite3XPrintf(&x, 0, ")");
      }
      sqlite3XPrintf(&x, 0, " AS");
      sqlite3StrAccumFinish(&x);
      sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }







|




|


|

|







23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
  if( pWith->nCte>0 ){
    pView = sqlite3TreeViewPush(pView, 1);
    for(i=0; i<pWith->nCte; i++){
      StrAccum x;
      char zLine[1000];
      const struct Cte *pCte = &pWith->a[i];
      sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
      sqlite3XPrintf(&x, "%s", pCte->zName);
      if( pCte->pCols && pCte->pCols->nExpr>0 ){
        char cSep = '(';
        int j;
        for(j=0; j<pCte->pCols->nExpr; j++){
          sqlite3XPrintf(&x, "%c%s", cSep, pCte->pCols->a[j].zName);
          cSep = ',';
        }
        sqlite3XPrintf(&x, ")");
      }
      sqlite3XPrintf(&x, " AS");
      sqlite3StrAccumFinish(&x);
      sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
      pView = sqlite3TreeViewPush(pView, (n--)>0);
      sqlite3TreeViewLine(pView, "FROM");
      for(i=0; i<p->pSrc->nSrc; i++){
        struct SrcList_item *pItem = &p->pSrc->a[i];
        StrAccum x;
        char zLine[100];
        sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
        sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
        if( pItem->zDatabase ){
          sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
        }else if( pItem->zName ){
          sqlite3XPrintf(&x, 0, " %s", pItem->zName);
        }
        if( pItem->pTab ){
          sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
        }
        if( pItem->zAlias ){
          sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
        }
        if( pItem->fg.jointype & JT_LEFT ){
          sqlite3XPrintf(&x, 0, " LEFT-JOIN");
        }
        sqlite3StrAccumFinish(&x);
        sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 
        if( pItem->pSelect ){
          sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
        }
        if( pItem->fg.isTabFunc ){







|

|

|


|


|


|







23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
      pView = sqlite3TreeViewPush(pView, (n--)>0);
      sqlite3TreeViewLine(pView, "FROM");
      for(i=0; i<p->pSrc->nSrc; i++){
        struct SrcList_item *pItem = &p->pSrc->a[i];
        StrAccum x;
        char zLine[100];
        sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
        sqlite3XPrintf(&x, "{%d,*}", pItem->iCursor);
        if( pItem->zDatabase ){
          sqlite3XPrintf(&x, " %s.%s", pItem->zDatabase, pItem->zName);
        }else if( pItem->zName ){
          sqlite3XPrintf(&x, " %s", pItem->zName);
        }
        if( pItem->pTab ){
          sqlite3XPrintf(&x, " tabname=%Q", pItem->pTab->zName);
        }
        if( pItem->zAlias ){
          sqlite3XPrintf(&x, " (AS %s)", pItem->zAlias);
        }
        if( pItem->fg.jointype & JT_LEFT ){
          sqlite3XPrintf(&x, " LEFT-JOIN");
        }
        sqlite3StrAccumFinish(&x);
        sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 
        if( pItem->pSelect ){
          sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
        }
        if( pItem->fg.isTabFunc ){
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
    pMem->n = (int)(z - zOut);
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;
  pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)







|







25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
    pMem->n = (int)(z - zOut);
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&(MEM_AffMask|MEM_Subtype));
  pMem->enc = desiredEnc;
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;
  pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
25237
25238
25239
25240
25241
25242
25243








25244
25245
25246
25247
25248
25249
25250
    }else{
      z[j++] = z[i];
    }
  }
  z[j] = 0;
  return j;
}









/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower

/*
** Some systems have stricmp().  Others have strcasecmp().  Because
** there is no consistency, we will define our own.







>
>
>
>
>
>
>
>







25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
    }else{
      z[j++] = z[i];
    }
  }
  z[j] = 0;
  return j;
}

/*
** Generate a Token object from a string
*/
SQLITE_PRIVATE void sqlite3TokenInit(Token *p, char *z){
  p->z = z;
  p->n = sqlite3Strlen30(z);
}

/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower

/*
** Some systems have stricmp().  Others have strcasecmp().  Because
** there is no consistency, we will define our own.
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
  char *zBlob;
  int i;

  zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
  n--;
  if( zBlob ){
    for(i=0; i<n; i+=2){
      zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
    }
    zBlob[i/2] = 0;
  }







|







26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
  char *zBlob;
  int i;

  zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
  n--;
  if( zBlob ){
    for(i=0; i<n; i+=2){
      zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
    }
    zBlob[i/2] = 0;
  }
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709

26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761


26762
26763
26764
26765
26766


26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804

26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823

26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
 || defined(SQLITE_DEBUG)
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
# define OpHelp(X) "\0" X
#else
# define OpHelp(X)
#endif
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 static const char *const azName[] = { "?",
    /*   1 */ "Savepoint"        OpHelp(""),
    /*   2 */ "AutoCommit"       OpHelp(""),
    /*   3 */ "Transaction"      OpHelp(""),
    /*   4 */ "SorterNext"       OpHelp(""),
    /*   5 */ "PrevIfOpen"       OpHelp(""),
    /*   6 */ "NextIfOpen"       OpHelp(""),
    /*   7 */ "Prev"             OpHelp(""),
    /*   8 */ "Next"             OpHelp(""),
    /*   9 */ "Checkpoint"       OpHelp(""),
    /*  10 */ "JournalMode"      OpHelp(""),
    /*  11 */ "Vacuum"           OpHelp(""),
    /*  12 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
    /*  13 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
    /*  14 */ "Goto"             OpHelp(""),
    /*  15 */ "Gosub"            OpHelp(""),
    /*  16 */ "Return"           OpHelp(""),
    /*  17 */ "InitCoroutine"    OpHelp(""),
    /*  18 */ "EndCoroutine"     OpHelp(""),

    /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
    /*  20 */ "Yield"            OpHelp(""),
    /*  21 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
    /*  22 */ "Halt"             OpHelp(""),
    /*  23 */ "Integer"          OpHelp("r[P2]=P1"),
    /*  24 */ "Int64"            OpHelp("r[P2]=P4"),
    /*  25 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
    /*  26 */ "Null"             OpHelp("r[P2..P3]=NULL"),
    /*  27 */ "SoftNull"         OpHelp("r[P1]=NULL"),
    /*  28 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
    /*  29 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
    /*  30 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
    /*  31 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
    /*  32 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
    /*  33 */ "IntCopy"          OpHelp("r[P2]=r[P1]"),
    /*  34 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
    /*  35 */ "CollSeq"          OpHelp(""),
    /*  36 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),
    /*  37 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
    /*  38 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
    /*  39 */ "MustBeInt"        OpHelp(""),
    /*  40 */ "RealAffinity"     OpHelp(""),
    /*  41 */ "Cast"             OpHelp("affinity(r[P1])"),
    /*  42 */ "Permutation"      OpHelp(""),
    /*  43 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
    /*  44 */ "Jump"             OpHelp(""),
    /*  45 */ "Once"             OpHelp(""),
    /*  46 */ "If"               OpHelp(""),
    /*  47 */ "IfNot"            OpHelp(""),
    /*  48 */ "Column"           OpHelp("r[P3]=PX"),
    /*  49 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
    /*  50 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
    /*  51 */ "Count"            OpHelp("r[P2]=count()"),
    /*  52 */ "ReadCookie"       OpHelp(""),
    /*  53 */ "SetCookie"        OpHelp(""),
    /*  54 */ "ReopenIdx"        OpHelp("root=P2 iDb=P3"),
    /*  55 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
    /*  56 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),
    /*  57 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
    /*  58 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
    /*  59 */ "SorterOpen"       OpHelp(""),
    /*  60 */ "SequenceTest"     OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
    /*  61 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
    /*  62 */ "Close"            OpHelp(""),
    /*  63 */ "ColumnsUsed"      OpHelp(""),
    /*  64 */ "SeekLT"           OpHelp("key=r[P3@P4]"),
    /*  65 */ "SeekLE"           OpHelp("key=r[P3@P4]"),
    /*  66 */ "SeekGE"           OpHelp("key=r[P3@P4]"),
    /*  67 */ "SeekGT"           OpHelp("key=r[P3@P4]"),
    /*  68 */ "Seek"             OpHelp("intkey=r[P2]"),
    /*  69 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  70 */ "NotFound"         OpHelp("key=r[P3@P4]"),


    /*  71 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
    /*  72 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),
    /*  73 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  74 */ "NotExists"        OpHelp("intkey=r[P3]"),
    /*  75 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),


    /*  76 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
    /*  77 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
    /*  78 */ "Ne"               OpHelp("if r[P1]!=r[P3] goto P2"),
    /*  79 */ "Eq"               OpHelp("if r[P1]==r[P3] goto P2"),
    /*  80 */ "Gt"               OpHelp("if r[P1]>r[P3] goto P2"),
    /*  81 */ "Le"               OpHelp("if r[P1]<=r[P3] goto P2"),
    /*  82 */ "Lt"               OpHelp("if r[P1]<r[P3] goto P2"),
    /*  83 */ "Ge"               OpHelp("if r[P1]>=r[P3] goto P2"),
    /*  84 */ "NewRowid"         OpHelp("r[P2]=rowid"),
    /*  85 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
    /*  86 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
    /*  87 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
    /*  88 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
    /*  89 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
    /*  90 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
    /*  91 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
    /*  92 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
    /*  93 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
    /*  94 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
    /*  95 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
    /*  96 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
    /*  97 */ "String8"          OpHelp("r[P2]='P4'"),
    /*  98 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
    /*  99 */ "Delete"           OpHelp(""),
    /* 100 */ "ResetCount"       OpHelp(""),
    /* 101 */ "SorterCompare"    OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
    /* 102 */ "SorterData"       OpHelp("r[P2]=data"),
    /* 103 */ "RowKey"           OpHelp("r[P2]=key"),
    /* 104 */ "RowData"          OpHelp("r[P2]=data"),
    /* 105 */ "Rowid"            OpHelp("r[P2]=rowid"),
    /* 106 */ "NullRow"          OpHelp(""),
    /* 107 */ "Last"             OpHelp(""),
    /* 108 */ "SorterSort"       OpHelp(""),
    /* 109 */ "Sort"             OpHelp(""),
    /* 110 */ "Rewind"           OpHelp(""),
    /* 111 */ "SorterInsert"     OpHelp(""),
    /* 112 */ "IdxInsert"        OpHelp("key=r[P2]"),
    /* 113 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),

    /* 114 */ "IdxRowid"         OpHelp("r[P2]=rowid"),
    /* 115 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
    /* 116 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
    /* 117 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
    /* 118 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
    /* 119 */ "Destroy"          OpHelp(""),
    /* 120 */ "Clear"            OpHelp(""),
    /* 121 */ "ResetSorter"      OpHelp(""),
    /* 122 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
    /* 123 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
    /* 124 */ "ParseSchema"      OpHelp(""),
    /* 125 */ "LoadAnalysis"     OpHelp(""),
    /* 126 */ "DropTable"        OpHelp(""),
    /* 127 */ "DropIndex"        OpHelp(""),
    /* 128 */ "DropTrigger"      OpHelp(""),
    /* 129 */ "IntegrityCk"      OpHelp(""),
    /* 130 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
    /* 131 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
    /* 132 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),

    /* 133 */ "Real"             OpHelp("r[P2]=P4"),
    /* 134 */ "Program"          OpHelp(""),
    /* 135 */ "Param"            OpHelp(""),
    /* 136 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
    /* 137 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
    /* 138 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
    /* 139 */ "IfPos"            OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
    /* 140 */ "SetIfNotPos"      OpHelp("if r[P1]<=0 then r[P2]=P3"),
    /* 141 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]-=P3, goto P2"),
    /* 142 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
    /* 143 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),
    /* 144 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 145 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 146 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
    /* 147 */ "IncrVacuum"       OpHelp(""),
    /* 148 */ "Expire"           OpHelp(""),
    /* 149 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
    /* 150 */ "VBegin"           OpHelp(""),
    /* 151 */ "VCreate"          OpHelp(""),
    /* 152 */ "VDestroy"         OpHelp(""),
    /* 153 */ "VOpen"            OpHelp(""),
    /* 154 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
    /* 155 */ "VNext"            OpHelp(""),
    /* 156 */ "VRename"          OpHelp(""),
    /* 157 */ "Pagecount"        OpHelp(""),
    /* 158 */ "MaxPgcnt"         OpHelp(""),
    /* 159 */ "Init"             OpHelp("Start at P2"),
    /* 160 */ "CursorHint"       OpHelp(""),
    /* 161 */ "Noop"             OpHelp(""),
    /* 162 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>

<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
>
>


<
<
|
>
>








|










|


<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>

<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950

26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997

26998
26999
27000
27001
27002
27003


27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028


27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064

27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
 || defined(SQLITE_DEBUG)
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
# define OpHelp(X) "\0" X
#else
# define OpHelp(X)
#endif
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 static const char *const azName[] = {
    /*   0 */ "Savepoint"        OpHelp(""),
    /*   1 */ "AutoCommit"       OpHelp(""),
    /*   2 */ "Transaction"      OpHelp(""),
    /*   3 */ "SorterNext"       OpHelp(""),
    /*   4 */ "PrevIfOpen"       OpHelp(""),
    /*   5 */ "NextIfOpen"       OpHelp(""),
    /*   6 */ "Prev"             OpHelp(""),
    /*   7 */ "Next"             OpHelp(""),
    /*   8 */ "Checkpoint"       OpHelp(""),
    /*   9 */ "JournalMode"      OpHelp(""),
    /*  10 */ "Vacuum"           OpHelp(""),
    /*  11 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
    /*  12 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
    /*  13 */ "Goto"             OpHelp(""),
    /*  14 */ "Gosub"            OpHelp(""),
    /*  15 */ "Return"           OpHelp(""),
    /*  16 */ "InitCoroutine"    OpHelp(""),
    /*  17 */ "EndCoroutine"     OpHelp(""),
    /*  18 */ "Yield"            OpHelp(""),
    /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),

    /*  20 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
    /*  21 */ "Halt"             OpHelp(""),
    /*  22 */ "Integer"          OpHelp("r[P2]=P1"),
    /*  23 */ "Int64"            OpHelp("r[P2]=P4"),
    /*  24 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
    /*  25 */ "Null"             OpHelp("r[P2..P3]=NULL"),
    /*  26 */ "SoftNull"         OpHelp("r[P1]=NULL"),
    /*  27 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
    /*  28 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
    /*  29 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
    /*  30 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
    /*  31 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
    /*  32 */ "IntCopy"          OpHelp("r[P2]=r[P1]"),
    /*  33 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
    /*  34 */ "CollSeq"          OpHelp(""),
    /*  35 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),
    /*  36 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
    /*  37 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
    /*  38 */ "MustBeInt"        OpHelp(""),
    /*  39 */ "RealAffinity"     OpHelp(""),
    /*  40 */ "Cast"             OpHelp("affinity(r[P1])"),
    /*  41 */ "Permutation"      OpHelp(""),
    /*  42 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
    /*  43 */ "Jump"             OpHelp(""),
    /*  44 */ "Once"             OpHelp(""),
    /*  45 */ "If"               OpHelp(""),
    /*  46 */ "IfNot"            OpHelp(""),
    /*  47 */ "Column"           OpHelp("r[P3]=PX"),
    /*  48 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
    /*  49 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
    /*  50 */ "Count"            OpHelp("r[P2]=count()"),
    /*  51 */ "ReadCookie"       OpHelp(""),
    /*  52 */ "SetCookie"        OpHelp(""),
    /*  53 */ "ReopenIdx"        OpHelp("root=P2 iDb=P3"),
    /*  54 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
    /*  55 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),
    /*  56 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
    /*  57 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
    /*  58 */ "SorterOpen"       OpHelp(""),
    /*  59 */ "SequenceTest"     OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
    /*  60 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
    /*  61 */ "Close"            OpHelp(""),
    /*  62 */ "ColumnsUsed"      OpHelp(""),
    /*  63 */ "SeekLT"           OpHelp("key=r[P3@P4]"),
    /*  64 */ "SeekLE"           OpHelp("key=r[P3@P4]"),
    /*  65 */ "SeekGE"           OpHelp("key=r[P3@P4]"),
    /*  66 */ "SeekGT"           OpHelp("key=r[P3@P4]"),

    /*  67 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  68 */ "NotFound"         OpHelp("key=r[P3@P4]"),
    /*  69 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  70 */ "NotExists"        OpHelp("intkey=r[P3]"),
    /*  71 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
    /*  72 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),


    /*  73 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),
    /*  74 */ "NewRowid"         OpHelp("r[P2]=rowid"),
    /*  75 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
    /*  76 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
    /*  77 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
    /*  78 */ "Ne"               OpHelp("if r[P1]!=r[P3] goto P2"),
    /*  79 */ "Eq"               OpHelp("if r[P1]==r[P3] goto P2"),
    /*  80 */ "Gt"               OpHelp("if r[P1]>r[P3] goto P2"),
    /*  81 */ "Le"               OpHelp("if r[P1]<=r[P3] goto P2"),
    /*  82 */ "Lt"               OpHelp("if r[P1]<r[P3] goto P2"),
    /*  83 */ "Ge"               OpHelp("if r[P1]>=r[P3] goto P2"),
    /*  84 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
    /*  85 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
    /*  86 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
    /*  87 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
    /*  88 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
    /*  89 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
    /*  90 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
    /*  91 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
    /*  92 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
    /*  93 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
    /*  94 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
    /*  95 */ "Delete"           OpHelp(""),
    /*  96 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
    /*  97 */ "String8"          OpHelp("r[P2]='P4'"),


    /*  98 */ "ResetCount"       OpHelp(""),
    /*  99 */ "SorterCompare"    OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
    /* 100 */ "SorterData"       OpHelp("r[P2]=data"),
    /* 101 */ "RowKey"           OpHelp("r[P2]=key"),
    /* 102 */ "RowData"          OpHelp("r[P2]=data"),
    /* 103 */ "Rowid"            OpHelp("r[P2]=rowid"),
    /* 104 */ "NullRow"          OpHelp(""),
    /* 105 */ "Last"             OpHelp(""),
    /* 106 */ "SorterSort"       OpHelp(""),
    /* 107 */ "Sort"             OpHelp(""),
    /* 108 */ "Rewind"           OpHelp(""),
    /* 109 */ "SorterInsert"     OpHelp(""),
    /* 110 */ "IdxInsert"        OpHelp("key=r[P2]"),
    /* 111 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),
    /* 112 */ "Seek"             OpHelp("Move P3 to P1.rowid"),
    /* 113 */ "IdxRowid"         OpHelp("r[P2]=rowid"),
    /* 114 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
    /* 115 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
    /* 116 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
    /* 117 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
    /* 118 */ "Destroy"          OpHelp(""),
    /* 119 */ "Clear"            OpHelp(""),
    /* 120 */ "ResetSorter"      OpHelp(""),
    /* 121 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
    /* 122 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
    /* 123 */ "ParseSchema"      OpHelp(""),
    /* 124 */ "LoadAnalysis"     OpHelp(""),
    /* 125 */ "DropTable"        OpHelp(""),
    /* 126 */ "DropIndex"        OpHelp(""),
    /* 127 */ "DropTrigger"      OpHelp(""),
    /* 128 */ "IntegrityCk"      OpHelp(""),
    /* 129 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
    /* 130 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
    /* 131 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),
    /* 132 */ "Program"          OpHelp(""),
    /* 133 */ "Real"             OpHelp("r[P2]=P4"),

    /* 134 */ "Param"            OpHelp(""),
    /* 135 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
    /* 136 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
    /* 137 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
    /* 138 */ "IfPos"            OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
    /* 139 */ "OffsetLimit"      OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"),
    /* 140 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]-=P3, goto P2"),
    /* 141 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
    /* 142 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),
    /* 143 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 144 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 145 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
    /* 146 */ "IncrVacuum"       OpHelp(""),
    /* 147 */ "Expire"           OpHelp(""),
    /* 148 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
    /* 149 */ "VBegin"           OpHelp(""),
    /* 150 */ "VCreate"          OpHelp(""),
    /* 151 */ "VDestroy"         OpHelp(""),
    /* 152 */ "VOpen"            OpHelp(""),
    /* 153 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
    /* 154 */ "VNext"            OpHelp(""),
    /* 155 */ "VRename"          OpHelp(""),
    /* 156 */ "Pagecount"        OpHelp(""),
    /* 157 */ "MaxPgcnt"         OpHelp(""),
    /* 158 */ "Init"             OpHelp("Start at P2"),
    /* 159 */ "CursorHint"       OpHelp(""),
    /* 160 */ "Noop"             OpHelp(""),
    /* 161 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/
27005
27006
27007
27008
27009
27010
27011





27012
27013
27014
27015
27016
27017
27018
#endif

/*
** Maximum supported path-length.
*/
#define MAX_PATHNAME 512






/* Always cast the getpid() return type for compatibility with
** kernel modules in VxWorks. */
#define osGetpid(X) (pid_t)getpid()

/*
** Only set the lastErrno if the error code is a real error and not 
** a normal expected return code of SQLITE_BUSY or SQLITE_OK







>
>
>
>
>







27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
#endif

/*
** Maximum supported path-length.
*/
#define MAX_PATHNAME 512

/*
** Maximum supported symbolic links
*/
#define SQLITE_MAX_SYMLINKS 100

/* Always cast the getpid() return type for compatibility with
** kernel modules in VxWorks. */
#define osGetpid(X) (pid_t)getpid()

/*
** Only set the lastErrno if the error code is a real error and not 
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/* 
** hwtime.h contains inline assembler code for implementing 
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**







|
|







27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/*
** hwtime.h contains inline assembler code for implementing
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));







|
|
|
|
|
|
|
|







27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#if defined(SQLITE_TEST)
SQLITE_API extern int sqlite3_io_error_hit;
SQLITE_API extern int sqlite3_io_error_hardhit;
SQLITE_API extern int sqlite3_io_error_pending;
SQLITE_API extern int sqlite3_io_error_persist;
SQLITE_API extern int sqlite3_io_error_benign;
SQLITE_API extern int sqlite3_diskfull_pending;
SQLITE_API extern int sqlite3_diskfull;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif

/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_unix.c ********************/

/*







|




|
|



|







27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif /* defined(SQLITE_TEST) */

/*
** When testing, keep a count of the number of open files.
*/
#if defined(SQLITE_TEST)
SQLITE_API extern int sqlite3_open_file_count;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif /* defined(SQLITE_TEST) */

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_unix.c ********************/

/*
27484
27485
27486
27487
27488
27489
27490

27491



27492
27493
27494
27495
27496
27497
27498



27499
27500

27501



27502
27503
27504
27505
27506
27507
27508
27509
27510

27511



27512
27513

27514



27515
27516




27517

27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538

  { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
#define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)


  { "fchown",       (sqlite3_syscall_ptr)fchown,          0 },



#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
#define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },



#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)


  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },



#define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent)

#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)


  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },



#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)


  { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },



#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)





#endif


}; /* End of the overrideable system calls */


/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes.  So avoid calling fchown() if
** we are not running as root.
*/
static int robustFchown(int fd, uid_t uid, gid_t gid){
#if OS_VXWORKS
  return 0;
#else
  return osGeteuid() ? 0 : osFchown(fd,uid,gid);
#endif
}

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable







>

>
>
>






|
>
>
>


>

>
>
>


|






>

>
>
>


>

>
>
>


>
>
>
>

>










|
|

|







27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806

  { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
#define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

#if defined(HAVE_FCHOWN)
  { "fchown",       (sqlite3_syscall_ptr)fchown,          0 },
#else
  { "fchown",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
#define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",         (sqlite3_syscall_ptr)mmap,            0 },
#else
  { "mmap",         (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
#else
  { "munmap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent)

#if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
#else
  { "getpagesize",  (sqlite3_syscall_ptr)0,               0 },
#endif
#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)

#if defined(HAVE_READLINK)
  { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },
#else
  { "readlink",     (sqlite3_syscall_ptr)0,               0 },
#endif
#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)

#if defined(HAVE_LSTAT)
  { "lstat",         (sqlite3_syscall_ptr)lstat,          0 },
#else
  { "lstat",         (sqlite3_syscall_ptr)0,              0 },
#endif
#define osLstat      ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)

}; /* End of the overrideable system calls */


/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes.  So avoid calling fchown() if
** we are not running as root.
*/
static int robustFchown(int fd, uid_t uid, gid_t gid){
#if defined(HAVE_FCHOWN)
  return osGeteuid() ? 0 : osFchown(fd,uid,gid);
#else
  return 0;
#endif
}

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
    return rc;
  }
#ifndef SQLITE_DISABLE_DIRSYNC
  if( (dirSync & 1)!=0 ){
    int fd;
    rc = osOpenDirectory(zPath, &fd);
    if( rc==SQLITE_OK ){
#if OS_VXWORKS
      if( fsync(fd)==-1 )
#else
      if( fsync(fd) )
#endif
      {
        rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
      }
      robust_close(0, fd, __LINE__);
    }else{
      assert( rc==SQLITE_CANTOPEN );
      rc = SQLITE_OK;
    }







<
<
<
|
<
<







33180
33181
33182
33183
33184
33185
33186



33187


33188
33189
33190
33191
33192
33193
33194
    return rc;
  }
#ifndef SQLITE_DISABLE_DIRSYNC
  if( (dirSync & 1)!=0 ){
    int fd;
    rc = osOpenDirectory(zPath, &fd);
    if( rc==SQLITE_OK ){



      if( full_fsync(fd,0,0) ){


        rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
      }
      robust_close(0, fd, __LINE__);
    }else{
      assert( rc==SQLITE_CANTOPEN );
      rc = SQLITE_OK;
    }
32963
32964
32965
32966
32967
32968
32969


























32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985




32986






32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003

33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022

33023




33024
33025
33026
33027
33028

33029
33030

33031
33032
33033

33034


33035




33036


33037
33038

33039
33040
33041
33042
33043

33044



33045

33046

33047
33048
33049
33050
33051
33052
33053
    *pResOut = (0==osStat(zPath, &buf) && buf.st_size>0);
  }else{
    *pResOut = osAccess(zPath, W_OK|R_OK)==0;
  }
  return SQLITE_OK;
}




























/*
** Turn a relative pathname into a full pathname. The relative path
** is stored as a nul-terminated string in the buffer pointed to by
** zPath. 
**
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
** (in this case, MAX_PATHNAME bytes). The full-path is written to
** this buffer before returning.
*/
static int unixFullPathname(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zPath,            /* Possibly relative input path */
  int nOut,                     /* Size of output buffer in bytes */
  char *zOut                    /* Output buffer */
){




  int nByte;







  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. This function could fail if, for example, the
  ** current working directory has been unlinked.
  */
  SimulateIOError( return SQLITE_ERROR );

  assert( pVfs->mxPathname==MAX_PATHNAME );
  UNUSED_PARAMETER(pVfs);

  /* Attempt to resolve the path as if it were a symbolic link. If it is
  ** a symbolic link, the resolved path is stored in buffer zOut[]. Or, if
  ** the identified file is not a symbolic link or does not exist, then
  ** zPath is copied directly into zOut. Either way, nByte is left set to
  ** the size of the string copied into zOut[] in bytes.  */
  nByte = osReadlink(zPath, zOut, nOut-1);

  if( nByte<0 ){
    if( errno!=EINVAL && errno!=ENOENT ){
      return unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zPath);
    }
    sqlite3_snprintf(nOut, zOut, "%s", zPath);
    nByte = sqlite3Strlen30(zOut);
  }else{
    zOut[nByte] = '\0';
  }

  /* If buffer zOut[] now contains an absolute path there is nothing more
  ** to do. If it contains a relative path, do the following:
  **
  **   * move the relative path string so that it is at the end of th
  **     zOut[] buffer.
  **   * Call getcwd() to read the path of the current working directory 
  **     into the start of the zOut[] buffer.
  **   * Append a '/' character to the cwd string and move the 
  **     relative path back within the buffer so that it immediately 

  **     follows the '/'.




  **
  ** This code is written so that if the combination of the CWD and relative
  ** path are larger than the allocated size of zOut[] the CWD is silently
  ** truncated to make it fit. This is Ok, as SQLite refuses to open any
  ** file for which this function returns a full path larger than (nOut-8)

  ** bytes in size.  */
  testcase( nByte==nOut-5 );

  testcase( nByte==nOut-4 );
  if( zOut[0]!='/' && nByte<nOut-4 ){
    int nCwd;

    int nRem = nOut-nByte-1;


    memmove(&zOut[nRem], zOut, nByte+1);




    zOut[nRem-1] = '\0';


    if( osGetcwd(zOut, nRem-1)==0 ){
      return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);

    }
    nCwd = sqlite3Strlen30(zOut);
    assert( nCwd<=nRem-1 );
    zOut[nCwd] = '/';
    memmove(&zOut[nCwd+1], &zOut[nRem], nByte+1);

  }





  return SQLITE_OK;

}


#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>
>
>
>

>
>
>
>
>
>








|
<

|
|
<
<
<
|
>
|
|
|
|
<
<
|
|
|

<
<
<
<
|
<
<
<
<
>
|
>
>
>
>
|
<
<
<
<
>
|
|
>
|
|
|
>
|
>
>
|
>
>
>
>
|
>
>
|
<
>

|
|
|
<
>
|
>
>
>

>
|
>







33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294

33295
33296
33297



33298
33299
33300
33301
33302
33303


33304
33305
33306
33307




33308




33309
33310
33311
33312
33313
33314
33315




33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335

33336
33337
33338
33339
33340

33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
    *pResOut = (0==osStat(zPath, &buf) && buf.st_size>0);
  }else{
    *pResOut = osAccess(zPath, W_OK|R_OK)==0;
  }
  return SQLITE_OK;
}

/*
**
*/
static int mkFullPathname(
  const char *zPath,              /* Input path */
  char *zOut,                     /* Output buffer */
  int nOut                        /* Allocated size of buffer zOut */
){
  int nPath = sqlite3Strlen30(zPath);
  int iOff = 0;
  if( zPath[0]!='/' ){
    if( osGetcwd(zOut, nOut-2)==0 ){
      return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
    }
    iOff = sqlite3Strlen30(zOut);
    zOut[iOff++] = '/';
  }
  if( (iOff+nPath+1)>nOut ){
    /* SQLite assumes that xFullPathname() nul-terminates the output buffer
    ** even if it returns an error.  */
    zOut[iOff] = '\0';
    return SQLITE_CANTOPEN_BKPT;
  }
  sqlite3_snprintf(nOut-iOff, &zOut[iOff], "%s", zPath);
  return SQLITE_OK;
}

/*
** Turn a relative pathname into a full pathname. The relative path
** is stored as a nul-terminated string in the buffer pointed to by
** zPath. 
**
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
** (in this case, MAX_PATHNAME bytes). The full-path is written to
** this buffer before returning.
*/
static int unixFullPathname(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zPath,            /* Possibly relative input path */
  int nOut,                     /* Size of output buffer in bytes */
  char *zOut                    /* Output buffer */
){
#if !defined(HAVE_READLINK) || !defined(HAVE_LSTAT)
  return mkFullPathname(zPath, zOut, nOut);
#else
  int rc = SQLITE_OK;
  int nByte;
  int nLink = 1;                /* Number of symbolic links followed so far */
  const char *zIn = zPath;      /* Input path for each iteration of loop */
  char *zDel = 0;

  assert( pVfs->mxPathname==MAX_PATHNAME );
  UNUSED_PARAMETER(pVfs);

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. This function could fail if, for example, the
  ** current working directory has been unlinked.
  */
  SimulateIOError( return SQLITE_ERROR );

  do {


    /* Call stat() on path zIn. Set bLink to true if the path is a symbolic
    ** link, or false otherwise.  */



    int bLink = 0;
    struct stat buf;
    if( osLstat(zIn, &buf)!=0 ){
      if( errno!=ENOENT ){
        rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
      }


    }else{
      bLink = S_ISLNK(buf.st_mode);
    }





    if( bLink ){




      if( zDel==0 ){
        zDel = sqlite3_malloc(nOut);
        if( zDel==0 ) rc = SQLITE_NOMEM;
      }else if( ++nLink>SQLITE_MAX_SYMLINKS ){
        rc = SQLITE_CANTOPEN_BKPT;
      }





      if( rc==SQLITE_OK ){
        nByte = osReadlink(zIn, zDel, nOut-1);
        if( nByte<0 ){
          rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
        }else{
          if( zDel[0]!='/' ){
            int n;
            for(n = sqlite3Strlen30(zIn); n>0 && zIn[n-1]!='/'; n--);
            if( nByte+n+1>nOut ){
              rc = SQLITE_CANTOPEN_BKPT;
            }else{
              memmove(&zDel[n], zDel, nByte+1);
              memcpy(zDel, zIn, n);
              nByte += n;
            }
          }
          zDel[nByte] = '\0';
        }
      }


      zIn = zDel;
    }

    assert( rc!=SQLITE_OK || zIn!=zOut || zIn[0]=='/' );
    if( rc==SQLITE_OK && zIn!=zOut ){

      rc = mkFullPathname(zIn, zOut, nOut);
    }
    if( bLink==0 ) break;
    zIn = zOut;
  }while( rc==SQLITE_OK );

  sqlite3_free(zDel);
  return rc;
#endif   /* HAVE_READLINK && HAVE_LSTAT */
}


#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
    *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
  }
#endif
  UNUSED_PARAMETER(NotUsed);
  return rc;
}

#if 0 /* Not used */
/*
** Find the current time (in Universal Coordinated Time).  Write the
** current time and date as a Julian Day number into *prNow and
** return 0.  Return 1 if the time and date cannot be found.
*/
static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
  sqlite3_int64 i = 0;
  int rc;
  UNUSED_PARAMETER(NotUsed);
  rc = unixCurrentTimeInt64(0, &i);
  *prNow = i/86400000.0;
  return rc;
}
#else
# define unixCurrentTime 0
#endif

#if 0  /* Not used */
/*
** We added the xGetLastError() method with the intention of providing
** better low-level error messages when operating-system problems come up
** during SQLite operation.  But so far, none of that has been implemented
** in the core.  So this routine is never called.  For now, it is merely
** a place-holder.
*/







|

















|







33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
    *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
  }
#endif
  UNUSED_PARAMETER(NotUsed);
  return rc;
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Find the current time (in Universal Coordinated Time).  Write the
** current time and date as a Julian Day number into *prNow and
** return 0.  Return 1 if the time and date cannot be found.
*/
static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
  sqlite3_int64 i = 0;
  int rc;
  UNUSED_PARAMETER(NotUsed);
  rc = unixCurrentTimeInt64(0, &i);
  *prNow = i/86400000.0;
  return rc;
}
#else
# define unixCurrentTime 0
#endif

#ifndef SQLITE_OMIT_DEPRECATED
/*
** We added the xGetLastError() method with the intention of providing
** better low-level error messages when operating-system problems come up
** during SQLite operation.  But so far, none of that has been implemented
** in the core.  So this routine is never called.  For now, it is merely
** a place-holder.
*/
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
                  MAXPATHLEN);
        }else{
          strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
        }
        writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
        robust_ftruncate(conchFile->h, writeSize);
        rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
        fsync(conchFile->h);
        /* If we created a new conch file (not just updated the contents of a 
         ** valid conch file), try to match the permissions of the database 
         */
        if( rc==SQLITE_OK && createConch ){
          struct stat buf;
          int err = osFstat(pFile->h, &buf);
          if( err==0 ){







|







34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
                  MAXPATHLEN);
        }else{
          strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
        }
        writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
        robust_ftruncate(conchFile->h, writeSize);
        rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
        full_fsync(conchFile->h,0,0);
        /* If we created a new conch file (not just updated the contents of a 
         ** valid conch file), try to match the permissions of the database 
         */
        if( rc==SQLITE_OK && createConch ){
          struct stat buf;
          int err = osFstat(pFile->h, &buf);
          if( err==0 ){
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==27 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}







|







34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==28 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/* 
** hwtime.h contains inline assembler code for implementing 
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**







|
|







34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/*
** hwtime.h contains inline assembler code for implementing
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));







|
|
|
|
|
|
|
|







35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#if defined(SQLITE_TEST)
SQLITE_API extern int sqlite3_io_error_hit;
SQLITE_API extern int sqlite3_io_error_hardhit;
SQLITE_API extern int sqlite3_io_error_pending;
SQLITE_API extern int sqlite3_io_error_persist;
SQLITE_API extern int sqlite3_io_error_benign;
SQLITE_API extern int sqlite3_diskfull_pending;
SQLITE_API extern int sqlite3_diskfull;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif

/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_win.c *********************/

/*







|




|
|



|







35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif /* defined(SQLITE_TEST) */

/*
** When testing, keep a count of the number of open files.
*/
#if defined(SQLITE_TEST)
SQLITE_API extern int sqlite3_open_file_count;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif /* defined(SQLITE_TEST) */

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_win.c *********************/

/*
34838
34839
34840
34841
34842
34843
34844




34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856













34857
34858
34859
34860
34861
34862
34863
#  define NTDDI_WIN8                        0x06020000
#endif

#ifndef NTDDI_WINBLUE
#  define NTDDI_WINBLUE                     0x06030000
#endif





/*
** Check to see if the GetVersionEx[AW] functions are deprecated on the
** target system.  GetVersionEx was first deprecated in Win8.1.
*/
#ifndef SQLITE_WIN32_GETVERSIONEX
#  if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE
#    define SQLITE_WIN32_GETVERSIONEX   0   /* GetVersionEx() is deprecated */
#  else
#    define SQLITE_WIN32_GETVERSIONEX   1   /* GetVersionEx() is current */
#  endif
#endif














/*
** This constant should already be defined (in the "WinDef.h" SDK file).
*/
#ifndef MAX_PATH
#  define MAX_PATH                      (260)
#endif








>
>
>
>












>
>
>
>
>
>
>
>
>
>
>
>
>







35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
#  define NTDDI_WIN8                        0x06020000
#endif

#ifndef NTDDI_WINBLUE
#  define NTDDI_WINBLUE                     0x06030000
#endif

#ifndef NTDDI_WINTHRESHOLD
#  define NTDDI_WINTHRESHOLD                0x06040000
#endif

/*
** Check to see if the GetVersionEx[AW] functions are deprecated on the
** target system.  GetVersionEx was first deprecated in Win8.1.
*/
#ifndef SQLITE_WIN32_GETVERSIONEX
#  if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE
#    define SQLITE_WIN32_GETVERSIONEX   0   /* GetVersionEx() is deprecated */
#  else
#    define SQLITE_WIN32_GETVERSIONEX   1   /* GetVersionEx() is current */
#  endif
#endif

/*
** Check to see if the CreateFileMappingA function is supported on the
** target system.  It is unavailable when using "mincore.lib" on Win10.
** When compiling for Windows 10, always assume "mincore.lib" is in use.
*/
#ifndef SQLITE_WIN32_CREATEFILEMAPPINGA
#  if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINTHRESHOLD
#    define SQLITE_WIN32_CREATEFILEMAPPINGA   0
#  else
#    define SQLITE_WIN32_CREATEFILEMAPPINGA   1
#  endif
#endif

/*
** This constant should already be defined (in the "WinDef.h" SDK file).
*/
#ifndef MAX_PATH
#  define MAX_PATH                      (260)
#endif

35256
35257
35258
35259
35260
35261
35262
35263
35264

35265
35266
35267
35268
35269
35270
35271
#else
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))

  { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
#else
  { "CreateFileMappingA",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)







|
|
>







35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
#else
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) && \
        SQLITE_WIN32_CREATEFILEMAPPINGA
  { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
#else
  { "CreateFileMappingA",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
  { "GetTickCount",            (SYSCALL)GetTickCount,            0 },
#else
  { "GetTickCount",            (SYSCALL)0,                       0 },
#endif

#define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent)

#if defined(SQLITE_WIN32_HAS_ANSI) && defined(SQLITE_WIN32_GETVERSIONEX) && \
        SQLITE_WIN32_GETVERSIONEX
  { "GetVersionExA",           (SYSCALL)GetVersionExA,           0 },
#else
  { "GetVersionExA",           (SYSCALL)0,                       0 },
#endif

#define osGetVersionExA ((BOOL(WINAPI*)( \
        LPOSVERSIONINFOA))aSyscall[34].pCurrent)

#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        defined(SQLITE_WIN32_GETVERSIONEX) && SQLITE_WIN32_GETVERSIONEX
  { "GetVersionExW",           (SYSCALL)GetVersionExW,           0 },
#else
  { "GetVersionExW",           (SYSCALL)0,                       0 },
#endif

#define osGetVersionExW ((BOOL(WINAPI*)( \
        LPOSVERSIONINFOW))aSyscall[35].pCurrent)







|
<









|







35808
35809
35810
35811
35812
35813
35814
35815

35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
  { "GetTickCount",            (SYSCALL)GetTickCount,            0 },
#else
  { "GetTickCount",            (SYSCALL)0,                       0 },
#endif

#define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent)

#if defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_GETVERSIONEX

  { "GetVersionExA",           (SYSCALL)GetVersionExA,           0 },
#else
  { "GetVersionExA",           (SYSCALL)0,                       0 },
#endif

#define osGetVersionExA ((BOOL(WINAPI*)( \
        LPOSVERSIONINFOA))aSyscall[34].pCurrent)

#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        SQLITE_WIN32_GETVERSIONEX
  { "GetVersionExW",           (SYSCALL)GetVersionExW,           0 },
#else
  { "GetVersionExW",           (SYSCALL)0,                       0 },
#endif

#define osGetVersionExW ((BOOL(WINAPI*)( \
        LPOSVERSIONINFOW))aSyscall[35].pCurrent)
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
** the LockFileEx() API.  But we can still statically link against that
** API as long as we don't call it when running Win95/98/ME.  A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/

#if !defined(SQLITE_WIN32_GETVERSIONEX) || !SQLITE_WIN32_GETVERSIONEX
# define osIsNT()  (1)
#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
# define osIsNT()  (1)
#elif !defined(SQLITE_WIN32_HAS_WIDE)
# define osIsNT()  (0)
#else
# define osIsNT()  ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
#endif

/*
** This function determines if the machine is running a version of Windows
** based on the NT kernel.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_win32_is_nt(void){
#if SQLITE_OS_WINRT
  /*
  ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
  **       kernel.
  */
  return 1;
#elif defined(SQLITE_WIN32_GETVERSIONEX) && SQLITE_WIN32_GETVERSIONEX
  if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){
#if defined(SQLITE_WIN32_HAS_ANSI)
    OSVERSIONINFOA sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    osGetVersionExA(&sInfo);
    osInterlockedCompareExchange(&sqlite3_os_type,
        (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);







|




















|







36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
** the LockFileEx() API.  But we can still statically link against that
** API as long as we don't call it when running Win95/98/ME.  A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/

#if !SQLITE_WIN32_GETVERSIONEX
# define osIsNT()  (1)
#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
# define osIsNT()  (1)
#elif !defined(SQLITE_WIN32_HAS_WIDE)
# define osIsNT()  (0)
#else
# define osIsNT()  ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
#endif

/*
** This function determines if the machine is running a version of Windows
** based on the NT kernel.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_win32_is_nt(void){
#if SQLITE_OS_WINRT
  /*
  ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
  **       kernel.
  */
  return 1;
#elif SQLITE_WIN32_GETVERSIONEX
  if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){
#if defined(SQLITE_WIN32_HAS_ANSI)
    OSVERSIONINFOA sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    osGetVersionExA(&sInfo);
    osInterlockedCompareExchange(&sqlite3_os_type,
        (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
      hMap = osCreateFileMappingFromApp(pShmNode->hFile.h,
          NULL, PAGE_READWRITE, nByte, NULL
      );
#elif defined(SQLITE_WIN32_HAS_WIDE)
      hMap = osCreateFileMappingW(pShmNode->hFile.h,
          NULL, PAGE_READWRITE, 0, nByte, NULL
      );
#elif defined(SQLITE_WIN32_HAS_ANSI)
      hMap = osCreateFileMappingA(pShmNode->hFile.h,
          NULL, PAGE_READWRITE, 0, nByte, NULL
      );
#endif
      OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n",
               osGetCurrentProcessId(), pShmNode->nRegion, nByte,
               hMap ? "ok" : "failed"));







|







39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
      hMap = osCreateFileMappingFromApp(pShmNode->hFile.h,
          NULL, PAGE_READWRITE, nByte, NULL
      );
#elif defined(SQLITE_WIN32_HAS_WIDE)
      hMap = osCreateFileMappingW(pShmNode->hFile.h,
          NULL, PAGE_READWRITE, 0, nByte, NULL
      );
#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
      hMap = osCreateFileMappingA(pShmNode->hFile.h,
          NULL, PAGE_READWRITE, 0, nByte, NULL
      );
#endif
      OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n",
               osGetCurrentProcessId(), pShmNode->nRegion, nByte,
               hMap ? "ok" : "failed"));
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
#endif
#if SQLITE_OS_WINRT
    pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
#elif defined(SQLITE_WIN32_HAS_WIDE)
    pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#elif defined(SQLITE_WIN32_HAS_ANSI)
    pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#endif
    if( pFd->hMap==NULL ){
      pFd->lastErrno = osGetLastError();
      rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,







|







39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
#endif
#if SQLITE_OS_WINRT
    pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
#elif defined(SQLITE_WIN32_HAS_WIDE)
    pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
    pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#endif
    if( pFd->hMap==NULL ){
      pFd->lastErrno = osGetLastError();
      rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
** routine returns NULL.
*/
static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
  assert( p!=0 );
  if( p->nFresh==0 ){
    struct RowSetChunk *pNew;
    pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
    if( pNew==0 ){
      return 0;
    }
    pNew->pNextChunk = p->pChunk;
    p->pChunk = pNew;
    p->pFresh = pNew->aEntry;
    p->nFresh = ROWSET_ENTRY_PER_CHUNK;







|







43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
** routine returns NULL.
*/
static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
  assert( p!=0 );
  if( p->nFresh==0 ){
    struct RowSetChunk *pNew;
    pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
    if( pNew==0 ){
      return 0;
    }
    pNew->pNextChunk = p->pChunk;
    p->pChunk = pNew;
    p->pFresh = pNew->aEntry;
    p->nFresh = ROWSET_ENTRY_PER_CHUNK;
43841
43842
43843
43844
43845
43846
43847














43848
43849
43850
43851
43852
43853
43854
/*
** The maximum allowed sector size. 64KiB. If the xSectorsize() method 
** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
** This could conceivably cause corruption following a power failure on
** such a system. This is currently an undocumented limit.
*/
#define MAX_SECTOR_SIZE 0x10000















/*
** An instance of the following structure is allocated for each active
** savepoint and statement transaction in the system. All such structures
** are stored in the Pager.aSavepoint[] array, which is allocated and
** resized using sqlite3Realloc().
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>







44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
/*
** The maximum allowed sector size. 64KiB. If the xSectorsize() method 
** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
** This could conceivably cause corruption following a power failure on
** such a system. This is currently an undocumented limit.
*/
#define MAX_SECTOR_SIZE 0x10000

/*
** If the option SQLITE_EXTRA_DURABLE option is set at compile-time, then
** SQLite will do extra fsync() operations when synchronous==FULL to help
** ensure that transactions are durable across a power failure.  Most
** applications are happy as long as transactions are consistent across
** a power failure, and are perfectly willing to lose the last transaction
** in exchange for the extra performance of avoiding directory syncs.
** And so the default SQLITE_EXTRA_DURABLE setting is off.
*/
#ifndef SQLITE_EXTRA_DURABLE
# define SQLITE_EXTRA_DURABLE 0
#endif


/*
** An instance of the following structure is allocated for each active
** savepoint and statement transaction in the system. All such structures
** are stored in the Pager.aSavepoint[] array, which is allocated and
** resized using sqlite3Realloc().
**
44037
44038
44039
44040
44041
44042
44043

44044
44045
44046
44047
44048
44049
44050
struct Pager {
  sqlite3_vfs *pVfs;          /* OS functions to use for IO */
  u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
  u8 journalMode;             /* One of the PAGER_JOURNALMODE_* values */
  u8 useJournal;              /* Use a rollback journal on this file */
  u8 noSync;                  /* Do not sync the journal if true */
  u8 fullSync;                /* Do extra syncs of the journal for robustness */

  u8 ckptSyncFlags;           /* SYNC_NORMAL or SYNC_FULL for checkpoint */
  u8 walSyncFlags;            /* SYNC_NORMAL or SYNC_FULL for wal writes */
  u8 syncFlags;               /* SYNC_NORMAL or SYNC_FULL otherwise */
  u8 tempFile;                /* zFilename is a temporary or immutable file */
  u8 noLock;                  /* Do not lock (except in WAL mode) */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */







>







44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
struct Pager {
  sqlite3_vfs *pVfs;          /* OS functions to use for IO */
  u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
  u8 journalMode;             /* One of the PAGER_JOURNALMODE_* values */
  u8 useJournal;              /* Use a rollback journal on this file */
  u8 noSync;                  /* Do not sync the journal if true */
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 extraSync;               /* sync directory after journal delete */
  u8 ckptSyncFlags;           /* SYNC_NORMAL or SYNC_FULL for checkpoint */
  u8 walSyncFlags;            /* SYNC_NORMAL or SYNC_FULL for wal writes */
  u8 syncFlags;               /* SYNC_NORMAL or SYNC_FULL otherwise */
  u8 tempFile;                /* zFilename is a temporary or immutable file */
  u8 noLock;                  /* Do not lock (except in WAL mode) */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
      int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd));
      assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 
           || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 
           || pPager->journalMode==PAGER_JOURNALMODE_WAL 
      );
      sqlite3OsClose(pPager->jfd);
      if( bDelete ){
        rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
      }
    }
  }

#ifdef SQLITE_CHECK_PAGES
  sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
  if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){







|







45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
      int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd));
      assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 
           || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 
           || pPager->journalMode==PAGER_JOURNALMODE_WAL 
      );
      sqlite3OsClose(pPager->jfd);
      if( bDelete ){
        rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync);
      }
    }
  }

#ifdef SQLITE_CHECK_PAGES
  sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
  if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912






46913
46914
46915
46916
46917
46918
46919
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
SQLITE_PRIVATE void sqlite3PagerSetFlags(
  Pager *pPager,        /* The pager to set safety level for */
  unsigned pgFlags      /* Various flags */
){
  unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
  assert( level>=1 && level<=3 );
  pPager->noSync =  (level==1 || pPager->tempFile) ?1:0;
  pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;






  if( pPager->noSync ){
    pPager->syncFlags = 0;
    pPager->ckptSyncFlags = 0;
  }else if( pgFlags & PAGER_FULLFSYNC ){
    pPager->syncFlags = SQLITE_SYNC_FULL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else if( pgFlags & PAGER_CKPT_FULLFSYNC ){







|
|
|
>
>
>
>
>
>







47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
SQLITE_PRIVATE void sqlite3PagerSetFlags(
  Pager *pPager,        /* The pager to set safety level for */
  unsigned pgFlags      /* Various flags */
){
  unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
  if( pPager->tempFile ){
    pPager->noSync = 1;
    pPager->fullSync = 0;
    pPager->extraSync = 0;
  }else{
    pPager->noSync =  level==PAGER_SYNCHRONOUS_OFF ?1:0;
    pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0;
    pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0;
  }
  if( pPager->noSync ){
    pPager->syncFlags = 0;
    pPager->ckptSyncFlags = 0;
  }else if( pgFlags & PAGER_FULLFSYNC ){
    pPager->syncFlags = SQLITE_SYNC_FULL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else if( pgFlags & PAGER_CKPT_FULLFSYNC ){
48210
48211
48212
48213
48214
48215
48216

48217
48218
48219
48220
48221





48222
48223
48224
48225
48226
48227
48228
  pPager->changeCountDone = pPager->tempFile;
  pPager->memDb = (u8)memDb;
  pPager->readOnly = (u8)readOnly;
  assert( useJournal || pPager->tempFile );
  pPager->noSync = pPager->tempFile;
  if( pPager->noSync ){
    assert( pPager->fullSync==0 );

    assert( pPager->syncFlags==0 );
    assert( pPager->walSyncFlags==0 );
    assert( pPager->ckptSyncFlags==0 );
  }else{
    pPager->fullSync = 1;





    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS;
    pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
  }
  /* pPager->pFirst = 0; */
  /* pPager->pFirstSynced = 0; */
  /* pPager->pLast = 0; */







>





>
>
>
>
>







48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
  pPager->changeCountDone = pPager->tempFile;
  pPager->memDb = (u8)memDb;
  pPager->readOnly = (u8)readOnly;
  assert( useJournal || pPager->tempFile );
  pPager->noSync = pPager->tempFile;
  if( pPager->noSync ){
    assert( pPager->fullSync==0 );
    assert( pPager->extraSync==0 );
    assert( pPager->syncFlags==0 );
    assert( pPager->walSyncFlags==0 );
    assert( pPager->ckptSyncFlags==0 );
  }else{
    pPager->fullSync = 1;
#if SQLITE_EXTRA_DURABLE
    pPager->extraSync = 1;
#else
    pPager->extraSync = 0;
#endif
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS;
    pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
  }
  /* pPager->pFirst = 0; */
  /* pPager->pFirstSynced = 0; */
  /* pPager->pLast = 0; */
51223
51224
51225
51226
51227
51228
51229

51230
51231
51232
51233
51234
51235
51236
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  u8 syncHeader;             /* Fsync the WAL header if true */
  u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */

  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */







>







51570
51571
51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  u8 syncHeader;             /* Fsync the WAL header if true */
  u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */
  u32 iReCksum;              /* On commit, recalculate checksums from here */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
51476
51477
51478
51479
51480
51481
51482

51483
51484
51485
51486
51487
51488
51489
51490



51491
51492
51493
51494
51495
51496
51497
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);

  memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

  nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

  sqlite3Put4byte(&aFrame[16], aCksum[0]);
  sqlite3Put4byte(&aFrame[20], aCksum[1]);



}

/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/







>
|

|
|
|

|
|
>
>
>







51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
51841
51842
51843
51844
51845
51846
51847
51848
51849
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);
  if( pWal->iReCksum==0 ){
    memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

    nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
    walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
    walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

    sqlite3Put4byte(&aFrame[16], aCksum[0]);
    sqlite3Put4byte(&aFrame[20], aCksum[1]);
  }else{
    memset(&aFrame[8], 0, 16);
  }
}

/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/
53410
53411
53412
53413
53414
53415
53416

53417
53418
53419
53420
53421
53422
53423
*/
SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc;

  /* Cannot start a write transaction without first holding a read
  ** transaction. */
  assert( pWal->readLock>=0 );


  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.







>







53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773
53774
53775
53776
*/
SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc;

  /* Cannot start a write transaction without first holding a read
  ** transaction. */
  assert( pWal->readLock>=0 );
  assert( pWal->writeLock==0 && pWal->iReCksum==0 );

  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
53445
53446
53447
53448
53449
53450
53451

53452
53453
53454
53455
53456
53457
53458
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
  if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;

    pWal->truncateOnCommit = 0;
  }
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this







>







53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
  if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
    pWal->iReCksum = 0;
    pWal->truncateOnCommit = 0;
  }
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this
53662
53663
53664
53665
53666
53667
53668





















































53669
53670
53671
53672
53673
53674
53675
  walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
  rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
  if( rc ) return rc;
  /* Write the page data */
  rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
  return rc;
}






















































/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
SQLITE_PRIVATE int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







54016
54017
54018
54019
54020
54021
54022
54023
54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
  walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
  rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
  if( rc ) return rc;
  /* Write the page data */
  rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
  return rc;
}

/*
** This function is called as part of committing a transaction within which
** one or more frames have been overwritten. It updates the checksums for
** all frames written to the wal file by the current transaction starting
** with the earliest to have been overwritten.
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
static int walRewriteChecksums(Wal *pWal, u32 iLast){
  const int szPage = pWal->szPage;/* Database page size */
  int rc = SQLITE_OK;             /* Return code */
  u8 *aBuf;                       /* Buffer to load data from wal file into */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
  u32 iRead;                      /* Next frame to read from wal file */
  i64 iCksumOff;

  aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
  if( aBuf==0 ) return SQLITE_NOMEM;

  /* Find the checksum values to use as input for the recalculating the
  ** first checksum. If the first frame is frame 1 (implying that the current
  ** transaction restarted the wal file), these values must be read from the
  ** wal-file header. Otherwise, read them from the frame header of the
  ** previous frame.  */
  assert( pWal->iReCksum>0 );
  if( pWal->iReCksum==1 ){
    iCksumOff = 24;
  }else{
    iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
  }
  rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
  pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
  pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);

  iRead = pWal->iReCksum;
  pWal->iReCksum = 0;
  for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
    i64 iOff = walFrameOffset(iRead, szPage);
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
    if( rc==SQLITE_OK ){
      u32 iPgno, nDbSize;
      iPgno = sqlite3Get4byte(aBuf);
      nDbSize = sqlite3Get4byte(&aBuf[4]);

      walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
      rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
    }
  }

  sqlite3_free(aBuf);
  return rc;
}

/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
SQLITE_PRIVATE int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */
53683
53684
53685
53686
53687
53688
53689


53690
53691
53692
53693
53694
53695
53696
53697
53698
53699
53700
53701
53702
53703





53704
53705
53706
53707
53708
53709
53710
  u32 iFrame;                     /* Next frame address */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nExtra = 0;                 /* Number of extra copies of last page */
  int szFrame;                    /* The size of a single frame */
  i64 iOffset;                    /* Next byte to write in WAL file */
  WalWriter w;                    /* The writer */



  assert( pList );
  assert( pWal->writeLock );

  /* If this frame set completes a transaction, then nTruncate>0.  If
  ** nTruncate==0 then this frame set does not complete the transaction. */
  assert( (isCommit!=0)==(nTruncate!=0) );

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
    WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
              pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
  }
#endif






  /* See if it is possible to write these frames into the start of the
  ** log file, instead of appending to it at pWal->hdr.mxFrame.
  */
  if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
    return rc;
  }







>
>














>
>
>
>
>







54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
  u32 iFrame;                     /* Next frame address */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nExtra = 0;                 /* Number of extra copies of last page */
  int szFrame;                    /* The size of a single frame */
  i64 iOffset;                    /* Next byte to write in WAL file */
  WalWriter w;                    /* The writer */
  u32 iFirst = 0;                 /* First frame that may be overwritten */
  WalIndexHdr *pLive;             /* Pointer to shared header */

  assert( pList );
  assert( pWal->writeLock );

  /* If this frame set completes a transaction, then nTruncate>0.  If
  ** nTruncate==0 then this frame set does not complete the transaction. */
  assert( (isCommit!=0)==(nTruncate!=0) );

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
    WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
              pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
  }
#endif

  pLive = (WalIndexHdr*)walIndexHdr(pWal);
  if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
    iFirst = pLive->mxFrame+1;
  }

  /* See if it is possible to write these frames into the start of the
  ** log file, instead of appending to it at pWal->hdr.mxFrame.
  */
  if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
    return rc;
  }
53762
53763
53764
53765
53766
53767
53768





















53769
53770
53771
53772
53773
53774
53775







53776
53777
53778
53779
53780
53781
53782
  w.szPage = szPage;
  iOffset = walFrameOffset(iFrame+1, szPage);
  szFrame = szPage + WAL_FRAME_HDRSIZE;

  /* Write all frames into the log file exactly once */
  for(p=pList; p; p=p->pDirty){
    int nDbSize;   /* 0 normally.  Positive == commit flag */





















    iFrame++;
    assert( iOffset==walFrameOffset(iFrame, szPage) );
    nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
    if( rc ) return rc;
    pLast = p;
    iOffset += szFrame;







  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







>
>
>
>
>
>
>







54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
  w.szPage = szPage;
  iOffset = walFrameOffset(iFrame+1, szPage);
  szFrame = szPage + WAL_FRAME_HDRSIZE;

  /* Write all frames into the log file exactly once */
  for(p=pList; p; p=p->pDirty){
    int nDbSize;   /* 0 normally.  Positive == commit flag */

    /* Check if this page has already been written into the wal file by
    ** the current transaction. If so, overwrite the existing frame and
    ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 
    ** checksums must be recomputed when the transaction is committed.  */
    if( iFirst && (p->pDirty || isCommit==0) ){
      u32 iWrite = 0;
      VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
      assert( rc==SQLITE_OK || iWrite==0 );
      if( iWrite>=iFirst ){
        i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
        if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
          pWal->iReCksum = iWrite;
        }
        rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOff);
        if( rc ) return rc;
        p->flags &= ~PGHDR_WAL_APPEND;
        continue;
      }
    }

    iFrame++;
    assert( iOffset==walFrameOffset(iFrame, szPage) );
    nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
    if( rc ) return rc;
    pLast = p;
    iOffset += szFrame;
    p->flags |= PGHDR_WAL_APPEND;
  }

  /* Recalculate checksums within the wal file if required. */
  if( isCommit && pWal->iReCksum ){
    rc = walRewriteChecksums(pWal, iFrame);
    if( rc ) return rc;
  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
53820
53821
53822
53823
53824
53825
53826

53827
53828
53829
53830
53831
53832
53833
  /* Append data to the wal-index. It is not necessary to lock the 
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pWal->hdr.mxFrame;
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){

    iFrame++;
    rc = walIndexAppend(pWal, iFrame, p->pgno);
  }
  while( rc==SQLITE_OK && nExtra>0 ){
    iFrame++;
    nExtra--;
    rc = walIndexAppend(pWal, iFrame, pLast->pgno);







>







54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
  /* Append data to the wal-index. It is not necessary to lock the 
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pWal->hdr.mxFrame;
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
    if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
    iFrame++;
    rc = walIndexAppend(pWal, iFrame, p->pgno);
  }
  while( rc==SQLITE_OK && nExtra>0 ){
    iFrame++;
    nExtra--;
    rc = walIndexAppend(pWal, iFrame, pLast->pgno);
53932
53933
53934
53935
53936
53937
53938

53939
53940
53941
53942
53943
53944
53945
    if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
      sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
    }
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){

    if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */







>







54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
    if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
      sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
    }
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){

    if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
** stored in MemPage.pBt->mutex.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if table b-trees.  False for index b-trees */
  u8 intKeyLeaf;       /* True if the leaf of an intKey table */
  u8 noPayload;        /* True if internal intKey page (thus w/o data) */
  u8 leaf;             /* True if a leaf page */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u8 bBusy;            /* Prevent endless loops on corrupt database files */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */







<







54839
54840
54841
54842
54843
54844
54845

54846
54847
54848
54849
54850
54851
54852
** stored in MemPage.pBt->mutex.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if table b-trees.  False for index b-trees */
  u8 intKeyLeaf;       /* True if the leaf of an intKey table */

  u8 leaf;             /* True if a leaf page */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u8 bBusy;            /* Prevent endless loops on corrupt database files */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );

  return (p->sharable==0 || p->locked);
}
#endif


#ifndef SQLITE_OMIT_INCRBLOB
/*
** Enter and leave a mutex on a Btree given a cursor owned by that
** Btree.  These entry points are used by incremental I/O and can be
** omitted if that module is not used.
*/
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
  sqlite3BtreeEnter(pCur->pBtree);
}
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
  sqlite3BtreeLeave(pCur->pBtree);
}
#endif /* SQLITE_OMIT_INCRBLOB */


/*
** Enter the mutex on every Btree associated with a database
** connection.  This is needed (for example) prior to parsing
** a statement since we will be comparing table and column names
** against all schemas and we do not want those schemas being
** reset out from under us.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







55425
55426
55427
55428
55429
55430
55431















55432
55433
55434
55435
55436
55437
55438
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );

  return (p->sharable==0 || p->locked);
}
#endif

















/*
** Enter the mutex on every Btree associated with a database
** connection.  This is needed (for example) prior to parsing
** a statement since we will be comparing table and column names
** against all schemas and we do not want those schemas being
** reset out from under us.
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}

/*
** Return true if a particular Btree requires a lock.  Return FALSE if
** no lock is ever required since it is not sharable.
*/
SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){
  return p->sharable;
}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
** This routine is used inside assert() statements only.
*/







<
<
<
<
<
<
<
<







55459
55460
55461
55462
55463
55464
55465








55466
55467
55468
55469
55470
55471
55472
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}









#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
** This routine is used inside assert() statements only.
*/
55112
55113
55114
55115
55116
55117
55118



















55119
55120
55121
55122
55123
55124
55125
    Btree *p = db->aDb[i].pBt;
    if( p ){
      p->pBt->db = p->db;
    }
  }
}
#endif /* if SQLITE_THREADSAFE */



















#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */

/************** End of btmutex.c *********************************************/
/************** Begin file btree.c *******************************************/
/*
** 2004 April 6
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
    Btree *p = db->aDb[i].pBt;
    if( p ){
      p->pBt->db = p->db;
    }
  }
}
#endif /* if SQLITE_THREADSAFE */

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Enter a mutex on a Btree given a cursor owned by that Btree. 
**
** These entry points are used by incremental I/O only. Enter() is required 
** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not 
** the build is threadsafe. Leave() is only required by threadsafe builds.
*/
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
  sqlite3BtreeEnter(pCur->pBtree);
}
# if SQLITE_THREADSAFE
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
  sqlite3BtreeLeave(pCur->pBtree);
}
# endif
#endif /* ifndef SQLITE_OMIT_INCRBLOB */

#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */

/************** End of btmutex.c *********************************************/
/************** Begin file btree.c *******************************************/
/*
** 2004 April 6
**
55568
55569
55570
55571
55572
55573
55574




55575
55576
55577
55578
55579
55580
55581
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}




#endif

/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)







>
>
>
>







56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}
static int cursorOwnsBtShared(BtCursor *p){
  assert( cursorHoldsMutex(p) );
  return (p->pBtree->db==p->pBt->db);
}
#endif

/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
55904
55905
55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
55917
55918
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){







|







56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
56361
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){
56193
56194
56195
56196
56197
56198
56199
56200
56201
56202
56203
56204
56205
56206
56207
static void btreeParseCellPtrNoPayload(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 );
  assert( pPage->noPayload );
  assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER(pPage);
#endif
  pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
  pInfo->nPayload = 0;
  pInfo->nLocal = 0;







<







56636
56637
56638
56639
56640
56641
56642

56643
56644
56645
56646
56647
56648
56649
static void btreeParseCellPtrNoPayload(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 );

  assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER(pPage);
#endif
  pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
  pInfo->nPayload = 0;
  pInfo->nLocal = 0;
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */
  u64 iKey;               /* Extracted Key value */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf || pPage->noPayload );
  assert( pPage->noPayload==0 );
  assert( pPage->intKeyLeaf );
  assert( pPage->childPtrSize==0 );
  pIter = pCell;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint32(pIter, nPayload);







<
<







56657
56658
56659
56660
56661
56662
56663


56664
56665
56666
56667
56668
56669
56670
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */
  u64 iKey;               /* Extracted Key value */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );


  assert( pPage->intKeyLeaf );
  assert( pPage->childPtrSize==0 );
  pIter = pCell;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint32(pIter, nPayload);
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf==0 );
  assert( pPage->noPayload==0 );
  pIter = pCell + pPage->childPtrSize;
  nPayload = *pIter;
  if( nPayload>=0x80 ){
    u8 *pEnd = &pIter[8];
    nPayload &= 0x7f;
    do{
      nPayload = (nPayload<<7) | (*++pIter & 0x7f);







<







56725
56726
56727
56728
56729
56730
56731

56732
56733
56734
56735
56736
56737
56738
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf==0 );

  pIter = pCell + pPage->childPtrSize;
  nPayload = *pIter;
  if( nPayload>=0x80 ){
    u8 *pEnd = &pIter[8];
    nPayload &= 0x7f;
    do{
      nPayload = (nPayload<<7) | (*++pIter & 0x7f);
56346
56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  pPage->xParseCell(pPage, pCell, &debuginfo);
#endif

  assert( pPage->noPayload==0 );
  nSize = *pIter;
  if( nSize>=0x80 ){
    pEnd = &pIter[8];
    nSize &= 0x7f;
    do{
      nSize = (nSize<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );







<







56785
56786
56787
56788
56789
56790
56791

56792
56793
56794
56795
56796
56797
56798
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  pPage->xParseCell(pPage, pCell, &debuginfo);
#endif


  nSize = *pIter;
  if( nSize>=0x80 ){
    pEnd = &pIter[8];
    nSize &= 0x7f;
    do{
      nSize = (nSize<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
56837
    assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
    /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
    ** table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
    pPage->intKey = 1;
    if( pPage->leaf ){
      pPage->intKeyLeaf = 1;
      pPage->noPayload = 0;
      pPage->xParseCell = btreeParseCellPtr;
    }else{
      pPage->intKeyLeaf = 0;
      pPage->noPayload = 1;
      pPage->xCellSize = cellSizePtrNoPayload;
      pPage->xParseCell = btreeParseCellPtrNoPayload;
    }
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
    ** index b-tree page. */
    assert( (PTF_ZERODATA)==2 );
    /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
    ** index b-tree page. */
    assert( (PTF_ZERODATA|PTF_LEAF)==10 );
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->noPayload = 0;
    pPage->xParseCell = btreeParseCellPtrIndex;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_BKPT;







<



<














<







57242
57243
57244
57245
57246
57247
57248

57249
57250
57251

57252
57253
57254
57255
57256
57257
57258
57259
57260
57261
57262
57263
57264
57265

57266
57267
57268
57269
57270
57271
57272
    assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
    /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
    ** table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
    pPage->intKey = 1;
    if( pPage->leaf ){
      pPage->intKeyLeaf = 1;

      pPage->xParseCell = btreeParseCellPtr;
    }else{
      pPage->intKeyLeaf = 0;

      pPage->xCellSize = cellSizePtrNoPayload;
      pPage->xParseCell = btreeParseCellPtrNoPayload;
    }
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
    ** index b-tree page. */
    assert( (PTF_ZERODATA)==2 );
    /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
    ** index b-tree page. */
    assert( (PTF_ZERODATA|PTF_LEAF)==10 );
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;

    pPage->xParseCell = btreeParseCellPtrIndex;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_BKPT;
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
57472
57473
57474
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
      pBt->nRef = 1;
      MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
      if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
        pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
        if( pBt->mutex==0 ){
          rc = SQLITE_NOMEM;
          db->mallocFailed = 0;
          goto btree_open_out;
        }
      }
      sqlite3_mutex_enter(mutexShared);
      pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
      sqlite3_mutex_leave(mutexShared);







<







57895
57896
57897
57898
57899
57900
57901

57902
57903
57904
57905
57906
57907
57908
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
      pBt->nRef = 1;
      MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
      if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
        pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
        if( pBt->mutex==0 ){
          rc = SQLITE_NOMEM;

          goto btree_open_out;
        }
      }
      sqlite3_mutex_enter(mutexShared);
      pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
      sqlite3_mutex_leave(mutexShared);
58244
58245
58246
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  sqlite3 *pBlock = 0;
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it







<







58678
58679
58680
58681
58682
58683
58684

58685
58686
58687
58688
58689
58690
58691
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){

  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
58267
58268
58269
58270
58271
58272
58273


58274
58275
58276
58277
58278
58279
58280
58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
58291
58292
58293
58294

58295
58296
58297
58298
58299
58300
58301
  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE


  /* If another database handle has already opened a write transaction 
  ** on this shared-btree structure and a second write transaction is
  ** requested, return SQLITE_LOCKED.
  */
  if( (wrflag && pBt->inTransaction==TRANS_WRITE)
   || (pBt->btsFlags & BTS_PENDING)!=0
  ){
    pBlock = pBt->pWriter->db;
  }else if( wrflag>1 ){
    BtLock *pIter;
    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
      if( pIter->pBtree!=p ){
        pBlock = pIter->pBtree->db;
        break;
      }
    }
  }
  if( pBlock ){
    sqlite3ConnectionBlocked(p->db, pBlock);
    rc = SQLITE_LOCKED_SHAREDCACHE;
    goto trans_begun;

  }
#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);







>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
58716
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  {
    sqlite3 *pBlock = 0;
    /* If another database handle has already opened a write transaction 
    ** on this shared-btree structure and a second write transaction is
    ** requested, return SQLITE_LOCKED.
    */
    if( (wrflag && pBt->inTransaction==TRANS_WRITE)
     || (pBt->btsFlags & BTS_PENDING)!=0
    ){
      pBlock = pBt->pWriter->db;
    }else if( wrflag>1 ){
      BtLock *pIter;
      for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
        if( pIter->pBtree!=p ){
          pBlock = pIter->pBtree->db;
          break;
        }
      }
    }
    if( pBlock ){
      sqlite3ConnectionBlocked(p->db, pBlock);
      rc = SQLITE_LOCKED_SHAREDCACHE;
      goto trans_begun;
    }
  }
#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
59169
59170
59171
59172
59173
59174
59175
59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192










59193
59194
59195
59196
59197
59198
59199
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. If a read-only cursor is requested, it is assumed that
** the caller already has at least a read-only transaction open
** on the database already. If a write-cursor is requested, then
** the caller is assumed to have an open write transaction.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met.  These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1:  The cursor must have been opened with wrFlag==1
**
** 2:  Other database connections that share the same pager cache
**     but which are not in the READ_UNCOMMITTED state may not have
**     cursors open with wrFlag==0 on the same table.  Otherwise
**     the changes made by this write cursor would be visible to
**     the read cursors in the other database connection.
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.










**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.







|
|
|
|
|

|










>
>
>
>
>
>
>
>
>
>







59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616
59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. If a read-only cursor is requested, it is assumed that
** the caller already has at least a read-only transaction open
** on the database already. If a write-cursor is requested, then
** the caller is assumed to have an open write transaction.
**
** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
** can be used for reading or for writing if other conditions for writing
** are also met.  These are the conditions that must be met in order
** for writing to be allowed:
**
** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
**
** 2:  Other database connections that share the same pager cache
**     but which are not in the READ_UNCOMMITTED state may not have
**     cursors open with wrFlag==0 on the same table.  Otherwise
**     the changes made by this write cursor would be visible to
**     the read cursors in the other database connection.
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.
**
** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
** is set.  If FORDELETE is set, that is a hint to the implementation that
** this cursor will only be used to seek to and delete entries of an index
** as part of a larger DELETE statement.  The FORDELETE hint is not used by
** this implementation.  But in a hypothetical alternative storage engine 
** in which index entries are automatically deleted when corresponding table
** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
** operations on this cursor can be no-ops and all READ operations can 
** return a null row (2-bytes: 0x01 0x00).
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
59404
59405
59406
59407
59408
59409
59410
59411
59412
59413
59414
59415
59416
59417
59418
** that the cursor has Cursor.eState==CURSOR_VALID.
**
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;







|







59850
59851
59852
59853
59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
** that the cursor has Cursor.eState==CURSOR_VALID.
**
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorHoldsMutex(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }







|







60230
60231
60232
60233
60234
60235
60236
60237
60238
60239
60240
60241
60242
60243
60244

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorOwnsBtShared(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831
59832
59833
59834
59835
59836
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;







|







60268
60269
60270
60271
60272
60273
60274
60275
60276
60277
60278
60279
60280
60281
60282
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;
59868
59869
59870
59871
59872
59873
59874
59875
59876
59877
59878
59879
59880
59881
59882
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  BtShared *pBt = pCur->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;







|







60314
60315
60316
60317
60318
60319
60320
60321
60322
60323
60324
60325
60326
60327
60328
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  BtShared *pBt = pCur->pBt;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
59914
59915
59916
59917
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno







|







60360
60361
60362
60363
60364
60365
60366
60367
60368
60369
60370
60371
60372
60373
60374
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
59954
59955
59956
59957
59958
59959
59960
59961
59962
59963
59964
59965
59966
59967
59968
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;

  assert( cursorHoldsMutex(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;







|







60400
60401
60402
60403
60404
60405
60406
60407
60408
60409
60410
60411
60412
60413
60414
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;

  assert( cursorOwnsBtShared(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;







|







60479
60480
60481
60482
60483
60484
60485
60486
60487
60488
60489
60490
60491
60492
60493
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
60058
60059
60060
60061
60062
60063
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
  assert( pCur->info.nSize==0 );
  assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{







|




















|







60504
60505
60506
60507
60508
60509
60510
60511
60512
60513
60514
60515
60516
60517
60518
60519
60520
60521
60522
60523
60524
60525
60526
60527
60528
60529
60530
60531
60532
60533
60534
60535
60536
60537
60538
60539
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
  assert( pCur->info.nSize==0 );
  assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */







|







60548
60549
60550
60551
60552
60553
60554
60555
60556
60557
60558
60559
60560
60561
60562
/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0







|







60626
60627
60628
60629
60630
60631
60632
60633
60634
60635
60636
60637
60638
60639
60640
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
60428
60429
60430
60431
60432
60433
60434
60435
60436
60437
60438
60439
60440
60441
60442
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( *pRes==0 );
  if( pCur->eState!=CURSOR_VALID ){
    assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;







|







60874
60875
60876
60877
60878
60879
60880
60881
60882
60883
60884
60885
60886
60887
60888
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( *pRes==0 );
  if( pCur->eState!=CURSOR_VALID ){
    assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
60503
60504
60505
60506
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  MemPage *pPage;
  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);







|







60938
60939
60940
60941
60942
60943
60944
60945
60946
60947
60948
60949
60950
60951
60952
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  MemPage *pPage;
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
60537
60538
60539
60540
60541
60542
60543
60544
60545
60546
60547
60548
60549
60550
60551
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);







|







60983
60984
60985
60986
60987
60988
60989
60990
60991
60992
60993
60994
60995
60996
60997
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
60604
60605
60606
60607
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID







|







61039
61040
61041
61042
61043
61044
61045
61046
61047
61048
61049
61050
61051
61052
61053
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
61259
61260
61261
61262
61263
61264
61265
61266
61267
61268
61269
61270
61271
61272
61273
  ** Use a call to btreeParseCellPtr() to verify that the values above
  ** were computed correctly.
  */
#if SQLITE_DEBUG
  {
    CellInfo info;
    pPage->xParseCell(pPage, pCell, &info);
    assert( nHeader=(int)(info.pPayload - pCell) );
    assert( info.nKey==nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );
  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */







|







61705
61706
61707
61708
61709
61710
61711
61712
61713
61714
61715
61716
61717
61718
61719
  ** Use a call to btreeParseCellPtr() to verify that the values above
  ** were computed correctly.
  */
#if SQLITE_DEBUG
  {
    CellInfo info;
    pPage->xParseCell(pPage, pCell, &info);
    assert( nHeader==(int)(info.pPayload - pCell) );
    assert( info.nKey==nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );
  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */
62306
62307
62308
62309
62310
62311
62312
62313
62314
62315
62316
62317
62318
62319
62320
62321
62322
    ** invariant.
    **
    ** This must be done in advance.  Once the balance starts, the cell
    ** offset section of the btree page will be overwritten and we will no
    ** long be able to find the cells if a pointer to each cell is not saved
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
    if( pOld->nOverflow>0 ){
      memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;
      }
      for(k=0; k<pOld->nOverflow; k++){







|

<







62752
62753
62754
62755
62756
62757
62758
62759
62760

62761
62762
62763
62764
62765
62766
62767
    ** invariant.
    **
    ** This must be done in advance.  Once the balance starts, the cell
    ** offset section of the btree page will be overwritten and we will no
    ** long be able to find the cells if a pointer to each cell is not saved
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
    if( pOld->nOverflow>0 ){

      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;
      }
      for(k=0; k<pOld->nOverflow; k++){
62919
62920
62921
62922
62923
62924
62925
62926
62927
62928
62929
62930
62931
62932
62933
62934
62935
62936
62937
62938
62939

62940
62941
62942
62943
62944
62945
62946
62947
*/
static int balance(BtCursor *pCur){
  int rc = SQLITE_OK;
  const int nMin = pCur->pBt->usableSize * 2 / 3;
  u8 aBalanceQuickSpace[13];
  u8 *pFree = 0;

  TESTONLY( int balance_quick_called = 0 );
  TESTONLY( int balance_deeper_called = 0 );

  do {
    int iPage = pCur->iPage;
    MemPage *pPage = pCur->apPage[iPage];

    if( iPage==0 ){
      if( pPage->nOverflow ){
        /* The root page of the b-tree is overfull. In this case call the
        ** balance_deeper() function to create a new child for the root-page
        ** and copy the current contents of the root-page to it. The
        ** next iteration of the do-loop will balance the child page.
        */ 

        assert( (balance_deeper_called++)==0 );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->aiIdx[0] = 0;
          pCur->aiIdx[1] = 0;
          assert( pCur->apPage[1]->nOverflow );
        }







|
|












>
|







63364
63365
63366
63367
63368
63369
63370
63371
63372
63373
63374
63375
63376
63377
63378
63379
63380
63381
63382
63383
63384
63385
63386
63387
63388
63389
63390
63391
63392
63393
*/
static int balance(BtCursor *pCur){
  int rc = SQLITE_OK;
  const int nMin = pCur->pBt->usableSize * 2 / 3;
  u8 aBalanceQuickSpace[13];
  u8 *pFree = 0;

  VVA_ONLY( int balance_quick_called = 0 );
  VVA_ONLY( int balance_deeper_called = 0 );

  do {
    int iPage = pCur->iPage;
    MemPage *pPage = pCur->apPage[iPage];

    if( iPage==0 ){
      if( pPage->nOverflow ){
        /* The root page of the b-tree is overfull. In this case call the
        ** balance_deeper() function to create a new child for the root-page
        ** and copy the current contents of the root-page to it. The
        ** next iteration of the do-loop will balance the child page.
        */ 
        assert( balance_deeper_called==0 );
        VVA_ONLY( balance_deeper_called++ );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->aiIdx[0] = 0;
          pCur->aiIdx[1] = 0;
          assert( pCur->apPage[1]->nOverflow );
        }
62972
62973
62974
62975
62976
62977
62978

62979
62980
62981
62982
62983
62984
62985
62986
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse
          ** of the aBalanceQuickSpace[] might sneak in.
          */

          assert( (balance_quick_called++)==0 );
          rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
        }else
#endif
        {
          /* In this case, call balance_nonroot() to redistribute cells
          ** between pPage and up to 2 of its sibling pages. This involves
          ** modifying the contents of pParent, which may cause pParent to







>
|







63418
63419
63420
63421
63422
63423
63424
63425
63426
63427
63428
63429
63430
63431
63432
63433
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse
          ** of the aBalanceQuickSpace[] might sneak in.
          */
          assert( balance_quick_called==0 ); 
          VVA_ONLY( balance_quick_called++ );
          rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
        }else
#endif
        {
          /* In this case, call balance_nonroot() to redistribute cells
          ** between pPage and up to 2 of its sibling pages. This involves
          ** modifying the contents of pParent, which may cause pParent to
63073
63074
63075
63076
63077
63078
63079
63080
63081
63082
63083
63084
63085
63086
63087
  unsigned char *newCell = 0;

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorHoldsMutex(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob







|







63520
63521
63522
63523
63524
63525
63526
63527
63528
63529
63530
63531
63532
63533
63534
  unsigned char *newCell = 0;

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorOwnsBtShared(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
63203
63204
63205
63206
63207
63208
63209
63210
63211

63212
63213
63214







63215
63216
63217
63218
63219
63220
63221
63222
63223
63224
63225

63226
63227
63228
63229
63230
63231
63232
63233
63234

63235
63236
63237
63238
63239
63240
63241
end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to. 
**
** If the second parameter is zero, then the cursor is left pointing at an
** arbitrary location after the delete. If it is non-zero, then the cursor 

** is left in a state such that the next call to BtreeNext() or BtreePrev()
** moves it to the same row as it would if the call to BtreeDelete() had
** been omitted.







*/
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */


  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );


  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the page containing the entry to delete is not a leaf page, move







|
|
>
|
|
|
>
>
>
>
>
>
>

|









>

|







>







63650
63651
63652
63653
63654
63655
63656
63657
63658
63659
63660
63661
63662
63663
63664
63665
63666
63667
63668
63669
63670
63671
63672
63673
63674
63675
63676
63677
63678
63679
63680
63681
63682
63683
63684
63685
63686
63687
63688
63689
63690
63691
63692
63693
63694
63695
63696
63697
63698
end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to. 
**
** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
** the cursor is left pointing at an arbitrary location after the delete.
** But if that bit is set, then the cursor is left in a state such that
** the next call to BtreeNext() or BtreePrev() moves it to the same row
** as it would have been on if the call to BtreeDelete() had been omitted.
**
** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
** associated with a single table entry and its indexes.  Only one of those
** deletes is considered the "primary" delete.  The primary delete occurs
** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
** but which might be used by alternative storage engines.
*/
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
  u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the page containing the entry to delete is not a leaf page, move
63340
63341
63342
63343
63344
63345
63346
63347
63348
63349
63350
63351
63352
63353
63354
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->apPage[pCur->iPage] );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;







|







63797
63798
63799
63800
63801
63802
63803
63804
63805
63806
63807
63808
63809
63810
63811
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;
63660
63661
63662
63663
63664
63665
63666








63667
63668
63669
63670
63671
63672
63673
63674
63675
63676
63677
63678
63679
63680
63681
63682
63683
63684
63685
63686
63687
63688
63689
63690
63691
63692
63693
63694
63695
63696
63697
63698
63699
63700
63701
63702
63703
63704
63705
63706
63707
63708
63709
63710
63711
63712
63713
63714
63715
63716
63717
63718
63719
63720
63721
63722
63723
63724
63725
63726
63727
63728
63729
63730
63731
63732
63733
63734
63735
63736
63737
63738
63739
63740
63741
63742
63743
63744
63745
63746
63747
63748
63749
63750
63751
63752
63753
63754
  **
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }









  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

  *piMoved = 0;

  if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
    freePage(pPage, &rc);
    releasePage(pPage);
#else
    if( pBt->autoVacuum ){
      Pgno maxRootPgno;
      sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

      if( iTable==maxRootPgno ){
        /* If the table being dropped is the table with the largest root-page
        ** number in the database, put the root page on the free list. 
        */
        freePage(pPage, &rc);
        releasePage(pPage);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pMove = 0;
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }

      /* Set the new 'max-root-page' value in the database header. This
      ** is the old value less one, less one more if that happens to
      ** be a root-page number, less one again if that is the
      ** PENDING_BYTE_PAGE.
      */
      maxRootPgno--;
      while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
             || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
        maxRootPgno--;
      }
      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

      rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
    }else{
      freePage(pPage, &rc);
      releasePage(pPage);
    }
#endif
  }else{
    /* If sqlite3BtreeDropTable was called on page 1.
    ** This really never should happen except in a corrupt
    ** database. 
    */
    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
    releasePage(pPage);
  }
  return rc;  
}
SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeDropTable(p, iTable, piMoved);
  sqlite3BtreeLeave(p);







>
>
>
>
>
>
>
>











<

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

<
<
<
<
<
<
<
<







64117
64118
64119
64120
64121
64122
64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142

64143
64144
64145
64146
64147
64148
64149
64150
64151
64152
64153
64154
64155
64156
64157
64158
64159
64160
64161
64162
64163
64164
64165
64166
64167
64168
64169
64170
64171
64172
64173
64174
64175
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
64192
64193
64194
64195
64196
64197
64198
64199
64200
64201
64202
64203








64204
64205
64206
64207
64208
64209
64210
  **
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  /*
  ** It is illegal to drop the sqlite_master table on page 1.  But again,
  ** this error is caught long before reaching this point.
  */
  if( NEVER(iTable<2) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

  *piMoved = 0;


#ifdef SQLITE_OMIT_AUTOVACUUM
  freePage(pPage, &rc);
  releasePage(pPage);
#else
  if( pBt->autoVacuum ){
    Pgno maxRootPgno;
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

    if( iTable==maxRootPgno ){
      /* If the table being dropped is the table with the largest root-page
      ** number in the database, put the root page on the free list. 
      */
      freePage(pPage, &rc);
      releasePage(pPage);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }else{
      /* The table being dropped does not have the largest root-page
      ** number in the database. So move the page that does into the 
      ** gap left by the deleted root-page.
      */
      MemPage *pMove;
      releasePage(pPage);
      rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
      releasePage(pMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      pMove = 0;
      rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
      freePage(pMove, &rc);
      releasePage(pMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      *piMoved = maxRootPgno;
    }

    /* Set the new 'max-root-page' value in the database header. This
    ** is the old value less one, less one more if that happens to
    ** be a root-page number, less one again if that is the
    ** PENDING_BYTE_PAGE.
    */
    maxRootPgno--;
    while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
           || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
      maxRootPgno--;
    }
    assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

    rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
  }else{
    freePage(pPage, &rc);
    releasePage(pPage);
  }
#endif








  return rc;  
}
SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeDropTable(p, iTable, piMoved);
  sqlite3BtreeLeave(p);
63927
63928
63929
63930
63931
63932
63933
63934
63935
63936
63937
63938
63939
63940
63941
63942
63943
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */








|

|







64383
64384
64385
64386
64387
64388
64389
64390
64391
64392
64393
64394
64395
64396
64397
64398
64399
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
  }
  sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

64430
64431
64432
64433
64434
64435
64436
64437

64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449

64450
64451
64452
64453
64454
64455
64456
  BtShared *pBt = p->pBt;
  int savedDbFlags = pBt->db->flags;
  char zErr[100];
  VVA_ONLY( int nRef );

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );

  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;
  sCheck.aPgRef = 0;
  sCheck.heap = 0;
  sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);

  if( sCheck.nPage==0 ){
    goto integrity_ck_cleanup;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    sCheck.mallocFailed = 1;







|
>












>







64886
64887
64888
64889
64890
64891
64892
64893
64894
64895
64896
64897
64898
64899
64900
64901
64902
64903
64904
64905
64906
64907
64908
64909
64910
64911
64912
64913
64914
  BtShared *pBt = p->pBt;
  int savedDbFlags = pBt->db->flags;
  char zErr[100];
  VVA_ONLY( int nRef );

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
  assert( nRef>=0 );
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;
  sCheck.aPgRef = 0;
  sCheck.heap = 0;
  sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
  if( sCheck.nPage==0 ){
    goto integrity_ck_cleanup;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    sCheck.mallocFailed = 1;
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorHoldsMutex(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->curFlags & BTCF_Incrblob );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }







|







65140
65141
65142
65143
65144
65145
65146
65147
65148
65149
65150
65151
65152
65153
65154
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorOwnsBtShared(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->curFlags & BTCF_Incrblob );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
64789
64790
64791
64792
64793
64794
64795









64796
64797
64798
64799
64800
64801
64802
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }










/************** End of btree.c ***********************************************/
/************** Begin file backup.c ******************************************/
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of







>
>
>
>
>
>
>
>
>







65247
65248
65249
65250
65251
65252
65253
65254
65255
65256
65257
65258
65259
65260
65261
65262
65263
65264
65265
65266
65267
65268
65269
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }

#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Return true if the Btree passed as the only argument is sharable.
*/
SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){
  return p->sharable;
}
#endif

/************** End of btree.c ***********************************************/
/************** Begin file backup.c ******************************************/
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of
65710
65711
65712
65713
65714
65715
65716

65717
65718
65719
65720
65721
65722
65723
** pMem->z into the new allocation.  pMem must be either a string or
** blob if bPreserve is true.  If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
  assert( sqlite3VdbeCheckMemInvariants(pMem) );
  assert( (pMem->flags&MEM_RowSet)==0 );


  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0







>







66177
66178
66179
66180
66181
66182
66183
66184
66185
66186
66187
66188
66189
66190
66191
** pMem->z into the new allocation.  pMem must be either a string or
** blob if bPreserve is true.  If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
  assert( sqlite3VdbeCheckMemInvariants(pMem) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  testcase( pMem->db==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
66313
66314
66315
66316
66317
66318
66319
66320
66321
66322
66323
66324
66325
66326
66327
** empty boolean index.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem *pMem){
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;
    pMem->szMalloc = 0;
  }else{
    assert( pMem->zMalloc );
    pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);







|







66781
66782
66783
66784
66785
66786
66787
66788
66789
66790
66791
66792
66793
66794
66795
** empty boolean index.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem *pMem){
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;
    pMem->szMalloc = 0;
  }else{
    assert( pMem->zMalloc );
    pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
66818
66819
66820
66821
66822
66823
66824
66825
66826
66827
66828
66829
66830
66831
66832
    goto value_from_function_out;
  }

  assert( pCtx->pParse->rc==SQLITE_OK );
  memset(&ctx, 0, sizeof(ctx));
  ctx.pOut = pVal;
  ctx.pFunc = pFunc;
  pFunc->xFunc(&ctx, nVal, apVal);
  if( ctx.isError ){
    rc = ctx.isError;
    sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
  }else{
    sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
    assert( rc==SQLITE_OK );
    rc = sqlite3VdbeChangeEncoding(pVal, enc);







|







67286
67287
67288
67289
67290
67291
67292
67293
67294
67295
67296
67297
67298
67299
67300
    goto value_from_function_out;
  }

  assert( pCtx->pParse->rc==SQLITE_OK );
  memset(&ctx, 0, sizeof(ctx));
  ctx.pOut = pVal;
  ctx.pFunc = pFunc;
  pFunc->xSFunc(&ctx, nVal, apVal);
  if( ctx.isError ){
    rc = ctx.isError;
    sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
  }else{
    sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
    assert( rc==SQLITE_OK );
    rc = sqlite3VdbeChangeEncoding(pVal, enc);
66975
66976
66977
66978
66979
66980
66981
66982
66983
66984
66985
66986
66987
66988
66989
  }
#endif

  *ppVal = pVal;
  return rc;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);
  assert( *ppVal==0 );
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx==0 ) sqlite3ValueFree(pVal);
#else
  assert( pCtx==0 ); sqlite3ValueFree(pVal);
#endif







|







67443
67444
67445
67446
67447
67448
67449
67450
67451
67452
67453
67454
67455
67456
67457
  }
#endif

  *ppVal = pVal;
  return rc;

no_mem:
  sqlite3OomFault(db);
  sqlite3DbFree(db, zVal);
  assert( *ppVal==0 );
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx==0 ) sqlite3ValueFree(pVal);
#else
  assert( pCtx==0 ); sqlite3ValueFree(pVal);
#endif
67034
67035
67036
67037
67038
67039
67040
67041
67042
67043
67044
67045
67046
67047
67048

  UNUSED_PARAMETER( argc );
  iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
  nSerial = sqlite3VarintLen(iSerial);
  db = sqlite3_context_db_handle(context);

  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    putVarint32(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);







|







67502
67503
67504
67505
67506
67507
67508
67509
67510
67511
67512
67513
67514
67515
67516

  UNUSED_PARAMETER( argc );
  iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
  nSerial = sqlite3VarintLen(iSerial);
  db = sqlite3_context_db_handle(context);

  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRawNN(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    putVarint32(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
67486
67487
67488
67489
67490
67491
67492
67493
67494
67495
67496
67497
67498
67499
67500
}
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( op>0 && op<0xff );
  if( p->pParse->nOpAlloc<=i ){
    return growOp3(p, op, p1, p2, p3);
  }
  p->nOp++;
  pOp = &p->aOp[i];
  pOp->opcode = (u8)op;
  pOp->p5 = 0;







|







67954
67955
67956
67957
67958
67959
67960
67961
67962
67963
67964
67965
67966
67967
67968
}
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( op>=0 && op<0xff );
  if( p->pParse->nOpAlloc<=i ){
    return growOp3(p, op, p1, p2, p3);
  }
  p->nOp++;
  pOp = &p->aOp[i];
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
67565
67566
67567
67568
67569
67570
67571
67572
67573
67574
67575
67576
67577
67578
67579
67580
  va_list ap;
  int i;
  char c;
  va_start(ap, zTypes);
  for(i=0; (c = zTypes[i])!=0; i++){
    if( c=='s' ){
      const char *z = va_arg(ap, const char*);
      int addr = sqlite3VdbeAddOp2(p, z==0 ? OP_Null : OP_String8, 0, iDest++);
      if( z ) sqlite3VdbeChangeP4(p, addr, z, 0);
    }else{
      assert( c=='i' );
      sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
    }
  }
  va_end(ap);
}







|
<







68033
68034
68035
68036
68037
68038
68039
68040

68041
68042
68043
68044
68045
68046
68047
  va_list ap;
  int i;
  char c;
  va_start(ap, zTypes);
  for(i=0; (c = zTypes[i])!=0; i++){
    if( c=='s' ){
      const char *z = va_arg(ap, const char*);
      sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);

    }else{
      assert( c=='i' );
      sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
    }
  }
  va_end(ap);
}
67605
67606
67607
67608
67609
67610
67611
67612
67613
67614
67615
67616
67617
67618
67619
67620
67621
67622
67623
67624
67625
67626
67627
67628
67629
67630
67631
67632
67633
67634
67635
67636
67637
67638
67639
67640
67641
67642
67643
67644
67645
67646















67647
67648
67649
67650
67651
67652
67653
  int op,             /* The new opcode */
  int p1,             /* The P1 operand */
  int p2,             /* The P2 operand */
  int p3,             /* The P3 operand */
  const u8 *zP4,      /* The P4 operand */
  int p4type          /* P4 operand type */
){
  char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8);
  if( p4copy ) memcpy(p4copy, zP4, 8);
  return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}

/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
*/
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
  int j;
  int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
  sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
  for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
}

/*
** Add an opcode that includes the p4 value as an integer.
*/
SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */
  int p1,             /* The P1 operand */
  int p2,             /* The P2 operand */
  int p3,             /* The P3 operand */
  int p4              /* The P4 operand as an integer */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
  sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
  return addr;
}
















/*
** Create a new symbolic label for an instruction that has yet to be
** coded.  The symbolic label is really just a negative number.  The
** label can be used as the P2 value of an operation.  Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match







|














|
<


















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







68072
68073
68074
68075
68076
68077
68078
68079
68080
68081
68082
68083
68084
68085
68086
68087
68088
68089
68090
68091
68092
68093
68094

68095
68096
68097
68098
68099
68100
68101
68102
68103
68104
68105
68106
68107
68108
68109
68110
68111
68112
68113
68114
68115
68116
68117
68118
68119
68120
68121
68122
68123
68124
68125
68126
68127
68128
68129
68130
68131
68132
68133
68134
  int op,             /* The new opcode */
  int p1,             /* The P1 operand */
  int p2,             /* The P2 operand */
  int p3,             /* The P3 operand */
  const u8 *zP4,      /* The P4 operand */
  int p4type          /* P4 operand type */
){
  char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
  if( p4copy ) memcpy(p4copy, zP4, 8);
  return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}

/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
*/
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
  int j;
  sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);

  for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
}

/*
** Add an opcode that includes the p4 value as an integer.
*/
SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */
  int p1,             /* The P1 operand */
  int p2,             /* The P2 operand */
  int p3,             /* The P3 operand */
  int p4              /* The P4 operand as an integer */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
  sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
  return addr;
}

/* Insert the end of a co-routine
*/
SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
  sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);

  /* Clear the temporary register cache, thereby ensuring that each
  ** co-routine has its own independent set of registers, because co-routines
  ** might expect their registers to be preserved across an OP_Yield, and
  ** that could cause problems if two or more co-routines are using the same
  ** temporary register.
  */
  v->pParse->nTempReg = 0;
  v->pParse->nRangeReg = 0;
}

/*
** Create a new symbolic label for an instruction that has yet to be
** coded.  The symbolic label is really just a negative number.  The
** label can be used as the P2 value of an operation.  Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match
67851
67852
67853
67854
67855
67856
67857
67858
67859
67860
67861
67862
67863
67864
67865
  Parse *pParse = p->pParse;
  int *aLabel = pParse->aLabel;
  p->readOnly = 1;
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
    ** cases from this switch! */
    switch( opcode ){
      case OP_Transaction: {
        if( pOp->p2!=0 ) p->readOnly = 0;
        /* fall thru */
      }
      case OP_AutoCommit:







|







68332
68333
68334
68335
68336
68337
68338
68339
68340
68341
68342
68343
68344
68345
68346
  Parse *pParse = p->pParse;
  int *aLabel = pParse->aLabel;
  p->readOnly = 1;
  p->bIsReader = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
    ** cases from this switch! */
    switch( opcode ){
      case OP_Transaction: {
        if( pOp->p2!=0 ) p->readOnly = 0;
        /* fall thru */
      }
      case OP_AutoCommit:
67922
67923
67924
67925
67926
67927
67928














67929
67930
67931
67932
67933
67934
67935
** Return the address of the next instruction to be inserted.
*/
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
  return p->nOp;
}















/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the 
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned







>
>
>
>
>
>
>
>
>
>
>
>
>
>







68403
68404
68405
68406
68407
68408
68409
68410
68411
68412
68413
68414
68415
68416
68417
68418
68419
68420
68421
68422
68423
68424
68425
68426
68427
68428
68429
68430
** Return the address of the next instruction to be inserted.
*/
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
  return p->nOp;
}

/*
** Verify that at least N opcode slots are available in p without
** having to malloc for more space (except when compiled using
** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
** to verify that certain calls to sqlite3VdbeAddOpList() can never
** fail due to a OOM fault and hence that the return value from
** sqlite3VdbeAddOpList() will always be non-NULL.
*/
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
  assert( p->nOp + N <= p->pParse->nOpAlloc );
}
#endif

/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the 
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned
67947
67948
67949
67950
67951
67952
67953
67954
67955



67956
67957





67958
67959
67960
67961
67962
67963
67964
67965
67966
67967
67968
67969
67970
67971



67972
67973
67974
67975
67976
67977
67978
67979
67980
67981
67982
67983
67984
67985
67986
67987
67988
67989
67990
67991
67992
67993
67994
67995
67996
67997
67998
  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}

/*
** Add a whole list of operations to the operation stack.  Return the
** address of the first operation added.



*/
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){





  int addr, i;
  VdbeOp *pOut;
  assert( nOp>0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
    return 0;
  }
  addr = p->nOp;
  pOut = &p->aOp[addr];
  for(i=0; i<nOp; i++, aOp++, pOut++){
    pOut->opcode = aOp->opcode;
    pOut->p1 = aOp->p1;
    pOut->p2 = aOp->p2;
    assert( aOp->p2>=0 );



    pOut->p3 = aOp->p3;
    pOut->p4type = P4_NOTUSED;
    pOut->p4.p = 0;
    pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
    pOut->zComment = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
    pOut->iSrcLine = iLineno+i;
#else
    (void)iLineno;
#endif
#ifdef SQLITE_DEBUG
    if( p->db->flags & SQLITE_VdbeAddopTrace ){
      sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
    }
#endif
  }
  p->nOp += nOp;
  return addr;
}

#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
/*
** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
*/
SQLITE_PRIVATE void sqlite3VdbeScanStatus(







|
|
>
>
>

|
>
>
>
>
>
|
|





<
|





>
>
>














|




|







68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
68456
68457
68458
68459
68460
68461
68462
68463
68464
68465
68466
68467

68468
68469
68470
68471
68472
68473
68474
68475
68476
68477
68478
68479
68480
68481
68482
68483
68484
68485
68486
68487
68488
68489
68490
68491
68492
68493
68494
68495
68496
68497
68498
68499
68500
68501
68502
68503
  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}

/*
** Add a whole list of operations to the operation stack.  Return a
** pointer to the first operation inserted.
**
** Non-zero P2 arguments to jump instructions are automatically adjusted
** so that the jump target is relative to the first operation inserted.
*/
SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(
  Vdbe *p,                     /* Add opcodes to the prepared statement */
  int nOp,                     /* Number of opcodes to add */
  VdbeOpList const *aOp,       /* The opcodes to be added */
  int iLineno                  /* Source-file line number of first opcode */
){
  int i;
  VdbeOp *pOut, *pFirst;
  assert( nOp>0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
    return 0;
  }

  pFirst = pOut = &p->aOp[p->nOp];
  for(i=0; i<nOp; i++, aOp++, pOut++){
    pOut->opcode = aOp->opcode;
    pOut->p1 = aOp->p1;
    pOut->p2 = aOp->p2;
    assert( aOp->p2>=0 );
    if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
      pOut->p2 += p->nOp;
    }
    pOut->p3 = aOp->p3;
    pOut->p4type = P4_NOTUSED;
    pOut->p4.p = 0;
    pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
    pOut->zComment = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
    pOut->iSrcLine = iLineno+i;
#else
    (void)iLineno;
#endif
#ifdef SQLITE_DEBUG
    if( p->db->flags & SQLITE_VdbeAddopTrace ){
      sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
    }
#endif
  }
  p->nOp += nOp;
  return pFirst;
}

#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
/*
** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
*/
SQLITE_PRIVATE void sqlite3VdbeScanStatus(
68032
68033
68034
68035
68036
68037
68038
68039
68040
68041
68042
68043
68044
68045
68046
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p2 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p3 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
  sqlite3VdbeGetOp(p,-1)->p5 = p5;
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){







|







68537
68538
68539
68540
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p2 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p3 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
  if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5;
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
68120
68121
68122
68123
68124
68125
68126
68127
68128
68129
68130
68131
68132
68133
68134
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
      freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
  }
  sqlite3DbFree(db, aOp);
}







|







68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
      if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
  }
  sqlite3DbFree(db, aOp);
}
68142
68143
68144
68145
68146
68147
68148
68149


68150
68151
68152
68153

68154
68155
68156

68157
68158
68159
68160
68161
68162
68163
68164
68165
68166
68167
68168
68169
68170
68171
68172
68173
  p->pNext = pVdbe->pProgram;
  pVdbe->pProgram = p;
}

/*
** Change the opcode at addr into OP_Noop
*/
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){


  if( addr<p->nOp ){
    VdbeOp *pOp = &p->aOp[addr];
    sqlite3 *db = p->db;
    freeP4(db, pOp->p4type, pOp->p4.p);

    memset(pOp, 0, sizeof(pOp[0]));
    pOp->opcode = OP_Noop;
  }

}

/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it.  Return true if and only if an opcode was removed.
*/
SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
  if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
    sqlite3VdbeChangeToNoop(p, p->nOp-1);
    return 1;
  }else{
    return 0;
  }
}

/*
** Change the value of the P4 operand for a specific instruction.







|
>
>
|
|
<
|
>
|
|
<
>








|
<







68647
68648
68649
68650
68651
68652
68653
68654
68655
68656
68657
68658

68659
68660
68661
68662

68663
68664
68665
68666
68667
68668
68669
68670
68671
68672

68673
68674
68675
68676
68677
68678
68679
  p->pNext = pVdbe->pProgram;
  pVdbe->pProgram = p;
}

/*
** Change the opcode at addr into OP_Noop
*/
SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
  VdbeOp *pOp;
  if( p->db->mallocFailed ) return 0;
  assert( addr>=0 && addr<p->nOp );
  pOp = &p->aOp[addr];

  freeP4(p->db, pOp->p4type, pOp->p4.p);
  pOp->p4type = P4_NOTUSED;
  pOp->p4.z = 0;
  pOp->opcode = OP_Noop;

  return 1;
}

/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it.  Return true if and only if an opcode was removed.
*/
SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
  if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
    return sqlite3VdbeChangeToNoop(p, p->nOp-1);

  }else{
    return 0;
  }
}

/*
** Change the value of the P4 operand for a specific instruction.
68182
68183
68184
68185
68186
68187
68188



















68189
68190
68191
68192
68193
68194
68195
68196
68197
68198
68199
68200
68201
68202
68203
68204
68205
68206
68207
68208
68209
68210
68211

68212
68213
68214
68215
68216
68217
68218
68219
68220
68221
68222
68223
68224
68225
68226
68227
68228
68229
68230
68231
68232
68233
68234
68235
68236
68237
68238
68239
68240
68241
68242
68243
68244
68245
68246
68247
68248
68249
68250
** 
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P4 on the most recently inserted instruction.
*/



















SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
  Op *pOp;
  sqlite3 *db;
  assert( p!=0 );
  db = p->db;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->aOp==0 || db->mallocFailed ){
    if( n!=P4_VTAB ){
      freeP4(db, n, (void*)*(char**)&zP4);
    }
    return;
  }
  assert( p->nOp>0 );
  assert( addr<p->nOp );
  if( addr<0 ){
    addr = p->nOp - 1;
  }
  pOp = &p->aOp[addr];
  assert( pOp->p4type==P4_NOTUSED
       || pOp->p4type==P4_INT32
       || pOp->p4type==P4_KEYINFO );
  freeP4(db, pOp->p4type, pOp->p4.p);
  pOp->p4.p = 0;

  if( n==P4_INT32 ){
    /* Note: this cast is safe, because the origin data point was an int
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = P4_KEYINFO;
#ifdef SQLITE_ENABLE_CURSOR_HINTS
  }else if( n==P4_EXPR ){
    /* Responsibility for deleting the Expr tree is handed over to the
    ** VDBE by this operation.  The caller should have already invoked
    ** sqlite3ExprDup() or whatever other routine is needed to make a 
    ** private copy of the tree. */
    pOp->p4.pExpr = (Expr*)zP4;
    pOp->p4type = P4_EXPR;
#endif
  }else if( n==P4_VTAB ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = P4_VTAB;
    sqlite3VtabLock((VTable *)zP4);
    assert( ((VTable *)zP4)->db==p->db );
  }else if( n<0 ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = (signed char)n;
  }else{
    if( n==0 ) n = sqlite3Strlen30(zP4);
    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
    pOp->p4type = P4_DYNAMIC;
  }
}

/*
** Set the P4 on the most recently added opcode to the KeyInfo for the
** index given.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
|
|
<








<
|
|
|
<
>





|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<


<
|
<
<







68688
68689
68690
68691
68692
68693
68694
68695
68696
68697
68698
68699
68700
68701
68702
68703
68704
68705
68706
68707
68708
68709
68710
68711
68712
68713
68714
68715
68716
68717
68718
68719
68720
68721
68722

68723
68724
68725
68726
68727
68728
68729
68730

68731
68732
68733

68734
68735
68736
68737
68738
68739
68740


















68741

68742
68743

68744


68745
68746
68747
68748
68749
68750
68751
** 
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P4 on the most recently inserted instruction.
*/
static void SQLITE_NOINLINE vdbeChangeP4Full(
  Vdbe *p,
  Op *pOp,
  const char *zP4,
  int n
){
  if( pOp->p4type ){
    freeP4(p->db, pOp->p4type, pOp->p4.p);
    pOp->p4type = 0;
    pOp->p4.p = 0;
  }
  if( n<0 ){
    sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
  }else{
    if( n==0 ) n = sqlite3Strlen30(zP4);
    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
    pOp->p4type = P4_DYNAMIC;
  }
}
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
  Op *pOp;
  sqlite3 *db;
  assert( p!=0 );
  db = p->db;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( p->aOp!=0 || db->mallocFailed );
  if( db->mallocFailed ){
    if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);

    return;
  }
  assert( p->nOp>0 );
  assert( addr<p->nOp );
  if( addr<0 ){
    addr = p->nOp - 1;
  }
  pOp = &p->aOp[addr];

  if( n>=0 || pOp->p4type ){
    vdbeChangeP4Full(p, pOp, zP4, n);
    return;

  }
  if( n==P4_INT32 ){
    /* Note: this cast is safe, because the origin data point was an int
    ** that was cast to a (const char *). */
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    pOp->p4type = P4_INT32;
  }else if( zP4!=0 ){


















    assert( n<0 );

    pOp->p4.p = (void*)zP4;
    pOp->p4type = (signed char)n;

    if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);


  }
}

/*
** Set the P4 on the most recently added opcode to the KeyInfo for the
** index given.
*/
68420
68421
68422
68423
68424
68425
68426
68427
68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
#endif /* SQLITE_DEBUG */

#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
/*
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
  const char *zOp = 0;
  int n;
  switch( pExpr->op ){
    case TK_STRING:
      sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken);
      break;
    case TK_INTEGER:
      sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue);
      break;
    case TK_NULL:
      sqlite3_snprintf(nTemp, zTemp, "NULL");
      break;
    case TK_REGISTER: {
      sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iColumn<0 ){
        sqlite3_snprintf(nTemp, zTemp, "rowid");
      }else{
        sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn);
      }
      break;
    }
    case TK_LT:      zOp = "LT";      break;
    case TK_LE:      zOp = "LE";      break;
    case TK_GT:      zOp = "GT";      break;
    case TK_GE:      zOp = "GE";      break;







|

<


|


|


|


|




|

|







68921
68922
68923
68924
68925
68926
68927
68928
68929

68930
68931
68932
68933
68934
68935
68936
68937
68938
68939
68940
68941
68942
68943
68944
68945
68946
68947
68948
68949
68950
68951
68952
68953
68954
68955
#endif /* SQLITE_DEBUG */

#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
/*
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static void displayP4Expr(StrAccum *p, Expr *pExpr){
  const char *zOp = 0;

  switch( pExpr->op ){
    case TK_STRING:
      sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
      break;
    case TK_INTEGER:
      sqlite3XPrintf(p, "%d", pExpr->u.iValue);
      break;
    case TK_NULL:
      sqlite3XPrintf(p, "NULL");
      break;
    case TK_REGISTER: {
      sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iColumn<0 ){
        sqlite3XPrintf(p, "rowid");
      }else{
        sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
      }
      break;
    }
    case TK_LT:      zOp = "LT";      break;
    case TK_LE:      zOp = "LE";      break;
    case TK_GT:      zOp = "GT";      break;
    case TK_GE:      zOp = "GE";      break;
68473
68474
68475
68476
68477
68478
68479
68480
68481
68482
68483
68484
68485
68486
68487
68488
68489

68490
68491
68492
68493
68494
68495
68496
68497
68498
68499
68500
68501
68502
68503
68504
68505

68506

68507
68508
68509
68510
68511
68512
68513
68514
68515
68516
68517
68518
68519
68520
68521
68522
68523
68524
68525
68526
68527
68528
68529
68530
68531
68532
68533
68534
68535
68536

68537
68538
68539
68540
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
68552
68553
68554
68555
68556
68557
68558
68559
68560
68561
68562
68563
68564
68565
68566
68567
68568
68569
68570
68571
68572
68573
68574
68575
68576
68577
68578
68579
68580
68581
68582
68583
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597





68598



68599
68600
68601
68602
68603
68604
68605
68606
68607
68608
68609
68610
68611
68612
68613
68614
68615
68616

68617
68618
68619
68620
68621
68622
68623
    case TK_UPLUS:   zOp = "PLUS";    break;
    case TK_BITNOT:  zOp = "BITNOT";  break;
    case TK_NOT:     zOp = "NOT";     break;
    case TK_ISNULL:  zOp = "ISNULL";  break;
    case TK_NOTNULL: zOp = "NOTNULL"; break;

    default:
      sqlite3_snprintf(nTemp, zTemp, "%s", "expr");
      break;
  }

  if( zOp ){
    sqlite3_snprintf(nTemp, zTemp, "%s(", zOp);
    n = sqlite3Strlen30(zTemp);
    n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft);
    if( n<nTemp-1 && pExpr->pRight ){
      zTemp[n++] = ',';

      n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight);
    }
    sqlite3_snprintf(nTemp-n, zTemp+n, ")");
  }
  return sqlite3Strlen30(zTemp);
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */


#if VDBE_DISPLAY_P4
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
  char *zP4 = zTemp;

  assert( nTemp>=20 );

  switch( pOp->p4type ){
    case P4_KEYINFO: {
      int i, j;
      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
      assert( pKeyInfo->aSortOrder!=0 );
      sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
      i = sqlite3Strlen30(zTemp);
      for(j=0; j<pKeyInfo->nField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        const char *zColl = pColl ? pColl->zName : "nil";
        int n = sqlite3Strlen30(zColl);
        if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
          zColl = "B";
          n = 1;
        }
        if( i+n>nTemp-7 ){
          memcpy(&zTemp[i],",...",4);
          i += 4;
          break;
        }
        zTemp[i++] = ',';
        if( pKeyInfo->aSortOrder[j] ){
          zTemp[i++] = '-';
        }
        memcpy(&zTemp[i], zColl, n+1);
        i += n;
      }
      zTemp[i++] = ')';
      zTemp[i] = 0;
      assert( i<nTemp );

      break;
    }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    case P4_EXPR: {
      displayP4Expr(nTemp, zTemp, pOp->p4.pExpr);
      break;
    }
#endif
    case P4_COLLSEQ: {
      CollSeq *pColl = pOp->p4.pColl;
      sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#ifdef SQLITE_DEBUG
    case P4_FUNCCTX: {
      FuncDef *pDef = pOp->p4.pCtx->pFunc;
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#endif
    case P4_INT64: {
      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
      break;
    }
    case P4_INT32: {
      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
      break;
    }
    case P4_REAL: {
      sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
      break;
    }
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {





      sqlite3_snprintf(nTemp, zTemp, "intarray");



      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_snprintf(nTemp, zTemp, "program");
      break;
    }
    case P4_ADVANCE: {
      zTemp[0] = 0;
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
    }
  }

  assert( zP4!=0 );
  return zP4;
}
#endif /* VDBE_DISPLAY_P4 */

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.







|




|
<
|
|
<
>
|

|

<











>

>


|


|
<


|
<
<
|
<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
>




|





|




|





|




|



|



|







|

|

|









|




>
>
>
>
>
|
>
>
>



|














>







68973
68974
68975
68976
68977
68978
68979
68980
68981
68982
68983
68984
68985

68986
68987

68988
68989
68990
68991
68992

68993
68994
68995
68996
68997
68998
68999
69000
69001
69002
69003
69004
69005
69006
69007
69008
69009
69010
69011
69012

69013
69014
69015


69016








69017

69018






69019
69020
69021
69022
69023
69024
69025
69026
69027
69028
69029
69030
69031
69032
69033
69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045
69046
69047
69048
69049
69050
69051
69052
69053
69054
69055
69056
69057
69058
69059
69060
69061
69062
69063
69064
69065
69066
69067
69068
69069
69070
69071
69072
69073
69074
69075
69076
69077
69078
69079
69080
69081
69082
69083
69084
69085
69086
69087
69088
69089
69090
69091
69092
69093
69094
69095
69096
69097
69098
69099
69100
69101
69102
69103
69104
69105
69106
69107
69108
69109
69110
69111
69112
69113
69114
69115
    case TK_UPLUS:   zOp = "PLUS";    break;
    case TK_BITNOT:  zOp = "BITNOT";  break;
    case TK_NOT:     zOp = "NOT";     break;
    case TK_ISNULL:  zOp = "ISNULL";  break;
    case TK_NOTNULL: zOp = "NOTNULL"; break;

    default:
      sqlite3XPrintf(p, "%s", "expr");
      break;
  }

  if( zOp ){
    sqlite3XPrintf(p, "%s(", zOp);

    displayP4Expr(p, pExpr->pLeft);
    if( pExpr->pRight ){

      sqlite3StrAccumAppend(p, ",", 1);
      displayP4Expr(p, pExpr->pRight);
    }
    sqlite3StrAccumAppend(p, ")", 1);
  }

}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */


#if VDBE_DISPLAY_P4
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
  char *zP4 = zTemp;
  StrAccum x;
  assert( nTemp>=20 );
  sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
  switch( pOp->p4type ){
    case P4_KEYINFO: {
      int j;
      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
      assert( pKeyInfo->aSortOrder!=0 );
      sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);

      for(j=0; j<pKeyInfo->nField; j++){
        CollSeq *pColl = pKeyInfo->aColl[j];
        const char *zColl = pColl ? pColl->zName : "";


        if( strcmp(zColl, "BINARY")==0 ) zColl = "B";








        sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);

      }






      sqlite3StrAccumAppend(&x, ")", 1);
      break;
    }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    case P4_EXPR: {
      displayP4Expr(&x, pOp->p4.pExpr);
      break;
    }
#endif
    case P4_COLLSEQ: {
      CollSeq *pColl = pOp->p4.pColl;
      sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
      sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#ifdef SQLITE_DEBUG
    case P4_FUNCCTX: {
      FuncDef *pDef = pOp->p4.pCtx->pFunc;
      sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
      break;
    }
#endif
    case P4_INT64: {
      sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
      break;
    }
    case P4_INT32: {
      sqlite3XPrintf(&x, "%d", pOp->p4.i);
      break;
    }
    case P4_REAL: {
      sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
      break;
    }
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3XPrintf(&x, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3XPrintf(&x, "%.16g", pMem->u.r);
      }else if( pMem->flags & MEM_Null ){
        zP4 = "NULL";
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3XPrintf(&x, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {
      int i;
      int *ai = pOp->p4.ai;
      int n = ai[0];   /* The first element of an INTARRAY is always the
                       ** count of the number of elements to follow */
      for(i=1; i<n; i++){
        sqlite3XPrintf(&x, ",%d", ai[i]);
      }
      zTemp[0] = '[';
      sqlite3StrAccumAppend(&x, "]", 1);
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3XPrintf(&x, "program");
      break;
    }
    case P4_ADVANCE: {
      zTemp[0] = 0;
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
    }
  }
  sqlite3StrAccumFinish(&x);
  assert( zP4!=0 );
  return zP4;
}
#endif /* VDBE_DISPLAY_P4 */

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643
68644
68645
68646
  assert( i<(int)sizeof(p->btreeMask)*8 );
  DbMaskSet(p->btreeMask, i);
  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    DbMaskSet(p->lockMask, i);
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**







|







69124
69125
69126
69127
69128
69129
69130
69131
69132
69133
69134
69135
69136
69137
69138
  assert( i<(int)sizeof(p->btreeMask)*8 );
  DbMaskSet(p->btreeMask, i);
  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    DbMaskSet(p->lockMask, i);
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**
68729
68730
68731
68732
68733
68734
68735
68736
68737
68738
68739
68740
68741
68742
68743
/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd = &p[N];
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      do{
        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
      }while( (++p)<pEnd );
      return;
    }
    do{







<







69221
69222
69223
69224
69225
69226
69227

69228
69229
69230
69231
69232
69233
69234
/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd = &p[N];
    sqlite3 *db = p->db;

    if( db->pnBytesFreed ){
      do{
        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
      }while( (++p)<pEnd );
      return;
    }
    do{
68765
68766
68767
68768
68769
68770
68771
68772
68773
68774
68775
68776
68777
68778
68779
      }else if( p->szMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }while( (++p)<pEnd );
    db->mallocFailed = malloc_failed;
  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
*/







<







69256
69257
69258
69259
69260
69261
69262

69263
69264
69265
69266
69267
69268
69269
      }else if( p->szMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }while( (++p)<pEnd );

  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
*/
68826
68827
68828
68829
68830
68831
68832
68833
68834
68835
68836
68837
68838
68839
68840
  */
  releaseMemArray(pMem, 8);
  p->pResultSet = 0;

  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    db->mallocFailed = 1;
    return SQLITE_ERROR;
  }

  /* When the number of output rows reaches nRow, that means the
  ** listing has finished and sqlite3_step() should return SQLITE_DONE.
  ** nRow is the sum of the number of rows in the main program, plus
  ** the sum of the number of rows in all trigger subprograms encountered







|







69316
69317
69318
69319
69320
69321
69322
69323
69324
69325
69326
69327
69328
69329
69330
  */
  releaseMemArray(pMem, 8);
  p->pResultSet = 0;

  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    sqlite3OomFault(db);
    return SQLITE_ERROR;
  }

  /* When the number of output rows reaches nRow, that means the
  ** listing has finished and sqlite3_step() should return SQLITE_DONE.
  ** nRow is the sum of the number of rows in the main program, plus
  ** the sum of the number of rows in all trigger subprograms encountered
69024
69025
69026
69027
69028
69029
69030



69031





69032


69033


69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045

69046
69047
69048
69049
69050
69051
69052
69053
69054
69055
69056

69057
69058
69059
69060
69061
69062
69063
69064
69065
69066
69067
69068
69069
69070
69071
69072
    }
    z[j] = 0;
    sqlite3IoTrace("SQL %s\n", z);
  }
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */




/*





** Allocate space from a fixed size buffer and return a pointer to


** that space.  If insufficient space is available, return NULL.


**
** The pBuf parameter is the initial value of a pointer which will
** receive the new memory.  pBuf is normally NULL.  If pBuf is not
** NULL, it means that memory space has already been allocated and that
** this routine should not allocate any new memory.  When pBuf is not
** NULL simply return pBuf.  Only allocate new memory space when pBuf
** is NULL.
**
** nByte is the number of bytes of space needed.
**
** pFrom points to *pnFrom bytes of available space.  New space is allocated
** from the end of the pFrom buffer and *pnFrom is decremented.

**
** *pnNeeded is a counter of the number of bytes of space that have failed
** to allocate.  If there is insufficient space in pFrom to satisfy the
** request, then increment *pnNeeded by the amount of the request.
*/
static void *allocSpace(
  void *pBuf,          /* Where return pointer will be stored */
  int nByte,           /* Number of bytes to allocate */
  u8 *pFrom,           /* Memory available for allocation */
  int *pnFrom,         /* IN/OUT: Space available at pFrom */
  int *pnNeeded        /* If allocation cannot be made, increment *pnByte */

){
  assert( EIGHT_BYTE_ALIGNMENT(pFrom) );
  if( pBuf==0 ){
    nByte = ROUND8(nByte);
    if( nByte <= *pnFrom ){
      *pnFrom -= nByte;
      pBuf = &pFrom[*pnFrom];
    }else{
      *pnNeeded += nByte;
    }
  }
  assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
  return pBuf;
}

/*







>
>
>
|
>
>
>
>
>
|
>
>
|
>
>

<
|
|
<
<
|

<
<
|
<
>
|
<
<
<


<
<
|
|
<
>

|


|
|
|

|







69514
69515
69516
69517
69518
69519
69520
69521
69522
69523
69524
69525
69526
69527
69528
69529
69530
69531
69532
69533
69534
69535
69536

69537
69538


69539
69540


69541

69542
69543



69544
69545


69546
69547

69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
    }
    z[j] = 0;
    sqlite3IoTrace("SQL %s\n", z);
  }
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */

/* An instance of this object describes bulk memory available for use
** by subcomponents of a prepared statement.  Space is allocated out
** of a ReusableSpace object by the allocSpace() routine below.
*/
struct ReusableSpace {
  u8 *pSpace;          /* Available memory */
  int nFree;           /* Bytes of available memory */
  int nNeeded;         /* Total bytes that could not be allocated */
};

/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
** from the ReusableSpace object.  Return a pointer to the allocated
** memory on success.  If insufficient memory is available in the
** ReusableSpace object, increase the ReusableSpace.nNeeded
** value by the amount needed and return NULL.
**

** If pBuf is not initially NULL, that means that the memory has already
** been allocated by a prior call to this routine, so just return a copy


** of pBuf and leave ReusableSpace unchanged.
**


** This allocator is employed to repurpose unused slots at the end of the

** opcode array of prepared state for other memory needs of the prepared
** statement.



*/
static void *allocSpace(


  struct ReusableSpace *p,  /* Bulk memory available for allocation */
  void *pBuf,               /* Pointer to a prior allocation */

  int nByte                 /* Bytes of memory needed */
){
  assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
  if( pBuf==0 ){
    nByte = ROUND8(nByte);
    if( nByte <= p->nFree ){
      p->nFree -= nByte;
      pBuf = &p->pSpace[p->nFree];
    }else{
      p->nNeeded += nByte;
    }
  }
  assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
  return pBuf;
}

/*
69091
69092
69093
69094
69095
69096
69097
69098
69099
69100
69101
69102
69103
69104
69105
  for(i=1; i<p->nMem; i++){
    assert( p->aMem[i].db==p->db );
  }
#endif
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  for(i=0; i<p->nOp; i++){







<







69583
69584
69585
69586
69587
69588
69589

69590
69591
69592
69593
69594
69595
69596
  for(i=1; i<p->nMem; i++){
    assert( p->aMem[i].db==p->db );
  }
#endif
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;

  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  for(i=0; i<p->nOp; i++){
69134
69135
69136
69137
69138
69139
69140
69141
69142
69143
69144
69145
69146
69147
69148
69149
69150
69151
69152
69153
69154
69155
69156
69157
69158
69159
69160
69161
69162
69163
69164
69165
69166
69167
69168
69169
69170
69171
69172
69173
69174
69175
69176
69177
69178
69179
69180
69181
69182
69183
69184
69185
69186
69187
69188
69189
69190
69191
69192
69193
69194
69195
69196
69197
69198
69199
69200
69201
69202
69203
69204
69205
69206
69207
69208
69209
69210
69211
69212
69213
69214
69215
69216
69217
69218
69219
69220
69221
69222
69223
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233

69234
69235
69236
69237
69238
69239
69240
69241
69242
  sqlite3 *db;                   /* The database connection */
  int nVar;                      /* Number of parameters */
  int nMem;                      /* Number of VM memory registers */
  int nCursor;                   /* Number of cursors required */
  int nArg;                      /* Number of arguments in subprograms */
  int nOnce;                     /* Number of OP_Once instructions */
  int n;                         /* Loop counter */
  int nFree;                     /* Available free space */
  u8 *zCsr;                      /* Memory available for allocation */
  int nByte;                     /* How much extra memory is needed */

  assert( p!=0 );
  assert( p->nOp>0 );
  assert( pParse!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( pParse==p->pParse );
  db = p->db;
  assert( db->mallocFailed==0 );
  nVar = pParse->nVar;
  nMem = pParse->nMem;
  nCursor = pParse->nTab;
  nArg = pParse->nMaxArg;
  nOnce = pParse->nOnce;
  if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
  
  /* For each cursor required, also allocate a memory cell. Memory
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  ** the vdbe program. Instead they are used to allocate space for
  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  ** stores the blob of memory associated with cursor 1, etc.
  **
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* zCsr will initially point to nFree bytes of unused space at the
  ** end of the opcode array, p->aOp.  The computation of nFree is
  ** conservative - it might be smaller than the true number of free
  ** bytes, but never larger.  nFree must be a multiple of 8 - it is
  ** rounded down if is not.
  */
  n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode space used */
  zCsr = &((u8*)p->aOp)[n];                   /* Unused opcode space */
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
  nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused space */
  assert( nFree>=0 );
  if( nFree>0 ){
    memset(zCsr, 0, nFree);
    assert( EIGHT_BYTE_ALIGNMENT(&zCsr[nFree]) );
  }

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **
  ** This two-pass approach that reuses as much memory as possible from
  ** the leftover space at the end of the opcode array can significantly
  ** reduce the amount of memory held by a prepared statement.
  */
  do {
    nByte = 0;
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), zCsr, &nFree, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), zCsr, &nFree, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), zCsr, &nFree, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), zCsr, &nFree, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          zCsr, &nFree, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, zCsr, &nFree, &nByte);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), zCsr, &nFree, &nByte);
#endif
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    nFree = nByte;
  }while( nByte && !db->mallocFailed );

  p->nCursor = nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar && pParse->nzVar>0 ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));

    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
    for(n=1; n<=nMem; n++){
      p->aMem[n].flags = MEM_Undefined;
      p->aMem[n].db = db;
    }







|
<
<

















|








|
|
<
<
|

|
|
|
|
|
|
|
|









|
|


|


|



|
|
|
|
<
|
<
|

|

|
|
<
<
|
|










<
|
|
>
|
<







69625
69626
69627
69628
69629
69630
69631
69632


69633
69634
69635
69636
69637
69638
69639
69640
69641
69642
69643
69644
69645
69646
69647
69648
69649
69650
69651
69652
69653
69654
69655
69656
69657
69658
69659
69660


69661
69662
69663
69664
69665
69666
69667
69668
69669
69670
69671
69672
69673
69674
69675
69676
69677
69678
69679
69680
69681
69682
69683
69684
69685
69686
69687
69688
69689
69690
69691
69692
69693
69694

69695

69696
69697
69698
69699
69700
69701


69702
69703
69704
69705
69706
69707
69708
69709
69710
69711
69712
69713

69714
69715
69716
69717

69718
69719
69720
69721
69722
69723
69724
  sqlite3 *db;                   /* The database connection */
  int nVar;                      /* Number of parameters */
  int nMem;                      /* Number of VM memory registers */
  int nCursor;                   /* Number of cursors required */
  int nArg;                      /* Number of arguments in subprograms */
  int nOnce;                     /* Number of OP_Once instructions */
  int n;                         /* Loop counter */
  struct ReusableSpace x;        /* Reusable bulk memory */



  assert( p!=0 );
  assert( p->nOp>0 );
  assert( pParse!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( pParse==p->pParse );
  db = p->db;
  assert( db->mallocFailed==0 );
  nVar = pParse->nVar;
  nMem = pParse->nMem;
  nCursor = pParse->nTab;
  nArg = pParse->nMaxArg;
  nOnce = pParse->nOnce;
  if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
  
  /* For each cursor required, also allocate a memory cell. Memory
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  ** the vdbe program. Instead they are used to allocate memory for
  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  ** stores the blob of memory associated with cursor 1, etc.
  **
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Figure out how much reusable memory is available at the end of the
  ** opcode array.  This extra memory will be reallocated for other elements


  ** of the prepared statement.
  */
  n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
  x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
  assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
  x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
  assert( x.nFree>=0 );
  if( x.nFree>0 ){
    memset(x.pSpace, 0, x.nFree);
    assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
  }

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in one or two
  ** passes.  On the first pass, we try to reuse unused memory at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the remainder using a fresh memory allocation.  
  **
  ** This two-pass approach that reuses as much memory as possible from
  ** the leftover memory at the end of the opcode array.  This can significantly
  ** reduce the amount of memory held by a prepared statement.
  */
  do {
    x.nNeeded = 0;
    p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
    p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
    p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));

    p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));

    p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
#endif
    if( x.nNeeded==0 ) break;
    x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded);


    x.nFree = x.nNeeded;
  }while( !db->mallocFailed );

  p->nCursor = nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }

  p->nzVar = pParse->nzVar;
  p->azVar = pParse->azVar;
  pParse->nzVar =  0;
  pParse->azVar = 0;

  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
    for(n=1; n<=nMem; n++){
      p->aMem[n].flags = MEM_Undefined;
      p->aMem[n].db = db;
    }
69827
69828
69829
69830
69831
69832
69833
69834
69835
69836
69837
69838
69839
69840
69841
  **     SQLITE_INTERRUPT
  **
  ** Then the internal cache might have been left in an inconsistent
  ** state.  We need to rollback the statement transaction, if there is
  ** one, or the complete transaction if there is no statement transaction.
  */

  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }
  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
  closeAllCursors(p);
  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_OK;
  }







|







70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
  **     SQLITE_INTERRUPT
  **
  ** Then the internal cache might have been left in an inconsistent
  ** state.  We need to rollback the statement transaction, if there is
  ** one, or the complete transaction if there is no statement transaction.
  */

  if( db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }
  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
  closeAllCursors(p);
  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_OK;
  }
69988
69989
69990
69991
69992
69993
69994
69995
69996
69997
69998
69999
70000
70001
70002
    if( p->bIsReader ) db->nVdbeRead--;
    assert( db->nVdbeActive>=db->nVdbeRead );
    assert( db->nVdbeRead>=db->nVdbeWrite );
    assert( db->nVdbeWrite>=0 );
  }
  p->magic = VDBE_MAGIC_HALT;
  checkActiveVdbeCnt(db);
  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }

  /* If the auto-commit flag is set to true, then any locks that were held
  ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
  ** to invoke any required unlock-notify callbacks.
  */







|







70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
    if( p->bIsReader ) db->nVdbeRead--;
    assert( db->nVdbeActive>=db->nVdbeRead );
    assert( db->nVdbeRead>=db->nVdbeWrite );
    assert( db->nVdbeWrite>=0 );
  }
  p->magic = VDBE_MAGIC_HALT;
  checkActiveVdbeCnt(db);
  if( db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }

  /* If the auto-commit flag is set to true, then any locks that were held
  ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
  ** to invoke any required unlock-notify callbacks.
  */
70025
70026
70027
70028
70029
70030
70031
70032
70033
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
** This function does not clear the VDBE error code or message, just
** copies them to the database handle.
*/
SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){
  sqlite3 *db = p->db;
  int rc = p->rc;
  if( p->zErrMsg ){
    u8 mallocFailed = db->mallocFailed;
    sqlite3BeginBenignMalloc();
    if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
    sqlite3EndBenignMalloc();
    db->mallocFailed = mallocFailed;
    db->errCode = rc;
  }else{
    sqlite3Error(db, rc);
  }
  return rc;
}








|




|







70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
** This function does not clear the VDBE error code or message, just
** copies them to the database handle.
*/
SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){
  sqlite3 *db = p->db;
  int rc = p->rc;
  if( p->zErrMsg ){
    db->bBenignMalloc++;
    sqlite3BeginBenignMalloc();
    if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
    sqlite3EndBenignMalloc();
    db->bBenignMalloc--;
    db->errCode = rc;
  }else{
    sqlite3Error(db, rc);
  }
  return rc;
}

70215
70216
70217
70218
70219
70220
70221

70222
70223
70224
70225
70226
70227
70228
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);

  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  for(i=0; i<p->nScan; i++){
    sqlite3DbFree(db, p->aScan[i].zName);







>







70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  sqlite3DbFree(db, p->azVar);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  for(i=0; i<p->nScan; i++){
    sqlite3DbFree(db, p->aScan[i].zName);
70318
70319
70320
70321
70322
70323
70324
70325

70326
70327






70328
70329
70330
70331
70332
70333
70334
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){

  if( p->eCurType==CURTYPE_BTREE ){
    if( p->deferredMoveto ){






      return handleDeferredMoveto(p);
    }
    if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
      return handleMovedCursor(p);
    }
  }
  return SQLITE_OK;







|
>


>
>
>
>
>
>







70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
  VdbeCursor *p = *pp;
  if( p->eCurType==CURTYPE_BTREE ){
    if( p->deferredMoveto ){
      int iMap;
      if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
        *pp = p->pAltCursor;
        *piCol = iMap - 1;
        return SQLITE_OK;
      }
      return handleDeferredMoveto(p);
    }
    if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
      return handleMovedCursor(p);
    }
  }
  return SQLITE_OK;
70959
70960
70961
70962
70963
70964
70965

70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);

    sqlite3VdbeMemRelease(&c1);
    sqlite3VdbeMemRelease(&c2);
    if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
    return rc;
  }
}

/*
** Compare two blobs.  Return negative, zero, or positive if the first
** is less than, equal to, or greater than the second, respectively.







>


<







71449
71450
71451
71452
71453
71454
71455
71456
71457
71458

71459
71460
71461
71462
71463
71464
71465
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
    if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
    sqlite3VdbeMemRelease(&c1);
    sqlite3VdbeMemRelease(&c2);

    return rc;
  }
}

/*
** Compare two blobs.  Return negative, zero, or positive if the first
** is less than, equal to, or greater than the second, respectively.
71749
71750
71751
71752
71753
71754
71755

71756
71757
71758
71759
71760

71761
71762
71763
71764
71765
71766
71767
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){

  sqlite3 *db = p->db;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;

}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/************** End of vdbeaux.c *********************************************/
/************** Begin file vdbeapi.c *****************************************/
/*
** 2004 May 26







>
|
|
|
|
|
>







72239
72240
72241
72242
72243
72244
72245
72246
72247
72248
72249
72250
72251
72252
72253
72254
72255
72256
72257
72258
72259
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
  if( pVtab->zErrMsg ){
    sqlite3 *db = p->db;
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
    sqlite3_free(pVtab->zErrMsg);
    pVtab->zErrMsg = 0;
  }
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/************** End of vdbeaux.c *********************************************/
/************** Begin file vdbeapi.c *****************************************/
/*
** 2004 May 26
71949
71950
71951
71952
71953
71954
71955
71956

71957
71958
71959
71960
71961
71962
71963
SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value *pVal){
  return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API sqlite_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API unsigned int SQLITE_STDCALL sqlite3_value_subtype(sqlite3_value *pVal){
  return ((Mem*)pVal)->eSubtype;

}
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);







|
>







72441
72442
72443
72444
72445
72446
72447
72448
72449
72450
72451
72452
72453
72454
72455
72456
SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value *pVal){
  return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API sqlite_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API unsigned int SQLITE_STDCALL sqlite3_value_subtype(sqlite3_value *pVal){
  Mem *pMem = (Mem*)pVal;
  return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
}
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
72130
72131
72132
72133
72134
72135
72136

72137
72138

72139
72140
72141
72142
72143
72144
72145
  sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_null(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->pOut->eSubtype = eSubtype & 0xff;

}
SQLITE_API void SQLITE_STDCALL sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){







>
|
|
>







72623
72624
72625
72626
72627
72628
72629
72630
72631
72632
72633
72634
72635
72636
72637
72638
72639
72640
  sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_null(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
  Mem *pOut = pCtx->pOut;
  assert( sqlite3_mutex_held(pOut->db->mutex) );
  pOut->eSubtype = eSubtype & 0xff;
  pOut->flags |= MEM_Subtype;
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
72231
72232
72233
72234
72235
72236
72237
72238
72239
72240
72241
72242
72243
72244
72245

/* An SQLITE_NOMEM error. */
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_nomem(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->fErrorOrAux = 1;
  pCtx->pOut->db->mallocFailed = 1;
}

/*
** This function is called after a transaction has been committed. It 
** invokes callbacks registered with sqlite3_wal_hook() as required.
*/
static int doWalCallbacks(sqlite3 *db){







|







72726
72727
72728
72729
72730
72731
72732
72733
72734
72735
72736
72737
72738
72739
72740

/* An SQLITE_NOMEM error. */
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_nomem(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->fErrorOrAux = 1;
  sqlite3OomFault(pCtx->pOut->db);
}

/*
** This function is called after a transaction has been committed. It 
** invokes callbacks registered with sqlite3_wal_hook() as required.
*/
static int doWalCallbacks(sqlite3 *db){
72540
72541
72542
72543
72544
72545
72546
72547
72548
72549
72550
72551
72552
72553
72554

/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  assert( p && p->pFunc && p->pFunc->xStep );
  assert( sqlite3_mutex_held(p->pOut->db->mutex) );
  testcase( nByte<0 );
  if( (p->pMem->flags & MEM_Agg)==0 ){
    return createAggContext(p, nByte);
  }else{
    return (void*)p->pMem->z;
  }







|







73035
73036
73037
73038
73039
73040
73041
73042
73043
73044
73045
73046
73047
73048
73049

/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  assert( p && p->pFunc && p->pFunc->xFinalize );
  assert( sqlite3_mutex_held(p->pOut->db->mutex) );
  testcase( nByte<0 );
  if( (p->pMem->flags & MEM_Agg)==0 ){
    return createAggContext(p, nByte);
  }else{
    return (void*)p->pMem->z;
  }
72631
72632
72633
72634
72635
72636
72637
72638
72639
72640
72641
72642
72643
72644
72645
**
** This function is deprecated.  Do not use it for new code.  It is
** provide only to avoid breaking legacy code.  New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_aggregate_count(sqlite3_context *p){
  assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
  return p->pMem->n;
}
#endif

/*
** Return the number of columns in the result set for the statement pStmt.
*/







|







73126
73127
73128
73129
73130
73131
73132
73133
73134
73135
73136
73137
73138
73139
73140
**
** This function is deprecated.  Do not use it for new code.  It is
** provide only to avoid breaking legacy code.  New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_aggregate_count(sqlite3_context *p){
  assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
  return p->pMem->n;
}
#endif

/*
** Return the number of columns in the result set for the statement pStmt.
*/
72859
72860
72861
72862
72863
72864
72865
72866
72867
72868
72869
72870
72871
72872
72873
    sqlite3_mutex_enter(db->mutex);
    assert( db->mallocFailed==0 );
    ret = xFunc(&p->aColName[N]);
     /* A malloc may have failed inside of the xFunc() call. If this
    ** is the case, clear the mallocFailed flag and return NULL.
    */
    if( db->mallocFailed ){
      db->mallocFailed = 0;
      ret = 0;
    }
    sqlite3_mutex_leave(db->mutex);
  }
  return ret;
}








|







73354
73355
73356
73357
73358
73359
73360
73361
73362
73363
73364
73365
73366
73367
73368
    sqlite3_mutex_enter(db->mutex);
    assert( db->mallocFailed==0 );
    ret = xFunc(&p->aColName[N]);
     /* A malloc may have failed inside of the xFunc() call. If this
    ** is the case, clear the mallocFailed flag and return NULL.
    */
    if( db->mallocFailed ){
      sqlite3OomClear(db);
      ret = 0;
    }
    sqlite3_mutex_leave(db->mutex);
  }
  return ret;
}

73560
73561
73562
73563
73564
73565
73566
73567
73568
73569
73570
73571
73572
73573
73574
73575
73576
73577
73578
73579
73580
73581
73582
73583
73584
73585
73586
73587
73588
73589
73590
73591
73592
73593
73594
73595
73596
73597
73598
73599
73600
73601
73602
73603
73604
73605
73606
73607
73608
73609
73610
73611
73612
73613
73614
73615
73616
73617
73618
73619
73620
73621
73622
      zRawSql += nToken;
      nextIndex = idx + 1;
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, 0, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, 0, "%!.15g", pVar->u.r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        Mem utf8;
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
          utf8.db = db;
          sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
          sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8);
          pVar = &utf8;
        }
#endif
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
          nOut = SQLITE_TRACE_SIZE_LIMIT;
          while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
        }
#endif    
        sqlite3XPrintf(&out, 0, "'%.*q'", nOut, pVar->z);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3XPrintf(&out, 0, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
#ifndef SQLITE_OMIT_UTF16
        if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
#endif
      }else if( pVar->flags & MEM_Zero ){
        sqlite3XPrintf(&out, 0, "zeroblob(%d)", pVar->u.nZero);
      }else{
        int nOut;  /* Number of bytes of the blob to include in output */
        assert( pVar->flags & MEM_Blob );
        sqlite3StrAccumAppend(&out, "x'", 2);
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
#endif
        for(i=0; i<nOut; i++){
          sqlite3XPrintf(&out, 0, "%02x", pVar->z[i]&0xff);
        }
        sqlite3StrAccumAppend(&out, "'", 1);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3XPrintf(&out, 0, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
      }
    }
  }
  return sqlite3StrAccumFinish(&out);
}







|

|




















|


|






|









|




|







74055
74056
74057
74058
74059
74060
74061
74062
74063
74064
74065
74066
74067
74068
74069
74070
74071
74072
74073
74074
74075
74076
74077
74078
74079
74080
74081
74082
74083
74084
74085
74086
74087
74088
74089
74090
74091
74092
74093
74094
74095
74096
74097
74098
74099
74100
74101
74102
74103
74104
74105
74106
74107
74108
74109
74110
74111
74112
74113
74114
74115
74116
74117
      zRawSql += nToken;
      nextIndex = idx + 1;
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, "%!.15g", pVar->u.r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        Mem utf8;
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
          utf8.db = db;
          sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
          sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8);
          pVar = &utf8;
        }
#endif
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
          nOut = SQLITE_TRACE_SIZE_LIMIT;
          while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
        }
#endif    
        sqlite3XPrintf(&out, "'%.*q'", nOut, pVar->z);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3XPrintf(&out, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
#ifndef SQLITE_OMIT_UTF16
        if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
#endif
      }else if( pVar->flags & MEM_Zero ){
        sqlite3XPrintf(&out, "zeroblob(%d)", pVar->u.nZero);
      }else{
        int nOut;  /* Number of bytes of the blob to include in output */
        assert( pVar->flags & MEM_Blob );
        sqlite3StrAccumAppend(&out, "x'", 2);
        nOut = pVar->n;
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
#endif
        for(i=0; i<nOut; i++){
          sqlite3XPrintf(&out, "%02x", pVar->z[i]&0xff);
        }
        sqlite3StrAccumAppend(&out, "'", 1);
#ifdef SQLITE_TRACE_SIZE_LIMIT
        if( nOut<pVar->n ){
          sqlite3XPrintf(&out, "/*+%d bytes*/", pVar->n-nOut);
        }
#endif
      }
    }
  }
  return sqlite3StrAccumFinish(&out);
}
74094
74095
74096
74097
74098
74099
74100

74101
74102
74103
74104
74105
74106
74107
  }else if( p->flags & MEM_RowSet ){
    printf(" (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    printf(" %s", zBuf);
  }

}
static void registerTrace(int iReg, Mem *p){
  printf("REG[%d] = ", iReg);
  memTracePrint(p);
  printf("\n");
}
#endif







>







74589
74590
74591
74592
74593
74594
74595
74596
74597
74598
74599
74600
74601
74602
74603
  }else if( p->flags & MEM_RowSet ){
    printf(" (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    printf(" %s", zBuf);
  }
  if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
  printf("REG[%d] = ", iReg);
  memTracePrint(p);
  printf("\n");
}
#endif
74264
74265
74266
74267
74268
74269
74270



74271
74272
74273
74274
74275
74276
74277
  Vdbe *p                    /* The VDBE */
){
  Op *aOp = p->aOp;          /* Copy of p->aOp */
  Op *pOp = aOp;             /* Current operation */
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
  Op *pOrigOp;               /* Value of pOp at the top of the loop */
#endif



  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK







>
>
>







74760
74761
74762
74763
74764
74765
74766
74767
74768
74769
74770
74771
74772
74773
74774
74775
74776
  Vdbe *p                    /* The VDBE */
){
  Op *aOp = p->aOp;          /* Copy of p->aOp */
  Op *pOp = aOp;             /* Current operation */
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
  Op *pOrigOp;               /* Value of pOp at the top of the loop */
#endif
#ifdef SQLITE_DEBUG
  int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
#endif
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  unsigned nVmStep = 0;      /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
74337
74338
74339
74340
74341
74342
74343
74344
74345
74346
74347
74348
74349
74350
74351
    }
    if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
  }
  sqlite3EndBenignMalloc();
#endif
  for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
    assert( pOp>=aOp && pOp<&aOp[p->nOp]);
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    start = sqlite3Hwtime();
#endif
    nVmStep++;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
#endif







<







74836
74837
74838
74839
74840
74841
74842

74843
74844
74845
74846
74847
74848
74849
    }
    if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
  }
  sqlite3EndBenignMalloc();
#endif
  for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
    assert( pOp>=aOp && pOp<&aOp[p->nOp]);

#ifdef VDBE_PROFILE
    start = sqlite3Hwtime();
#endif
    nVmStep++;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
#endif
75335
75336
75337
75338
75339
75340
75341
75342
75343
75344
75345
75346
75347
75348
75349
  sqlite3_context *pCtx;

  assert( pOp->p4type==P4_FUNCDEF );
  n = pOp->p5;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
  if( pCtx==0 ) goto no_mem;
  pCtx->pOut = 0;
  pCtx->pFunc = pOp->p4.pFunc;
  pCtx->iOp = (int)(pOp - aOp);
  pCtx->pVdbe = p;
  pCtx->argc = n;
  pOp->p4type = P4_FUNCCTX;







|







75833
75834
75835
75836
75837
75838
75839
75840
75841
75842
75843
75844
75845
75846
75847
  sqlite3_context *pCtx;

  assert( pOp->p4type==P4_FUNCDEF );
  n = pOp->p5;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
  if( pCtx==0 ) goto no_mem;
  pCtx->pOut = 0;
  pCtx->pFunc = pOp->p4.pFunc;
  pCtx->iOp = (int)(pOp - aOp);
  pCtx->pVdbe = p;
  pCtx->argc = n;
  pOp->p4type = P4_FUNCCTX;
75374
75375
75376
75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388
75389
    assert( memIsValid(pCtx->argv[i]) );
    REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
  }
#endif
  MemSetTypeFlag(pCtx->pOut, MEM_Null);
  pCtx->fErrorOrAux = 0;
  db->lastRowid = lastRowid;
  (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */

  /* If the function returned an error, throw an exception */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
      rc = pCtx->isError;
    }







|
|







75872
75873
75874
75875
75876
75877
75878
75879
75880
75881
75882
75883
75884
75885
75886
75887
    assert( memIsValid(pCtx->argv[i]) );
    REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
  }
#endif
  MemSetTypeFlag(pCtx->pOut, MEM_Null);
  pCtx->fErrorOrAux = 0;
  db->lastRowid = lastRowid;
  (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;  /* Remember rowid changes made by xSFunc */

  /* If the function returned an error, throw an exception */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
      rc = pCtx->isError;
    }
75779
75780
75781
75782
75783
75784
75785



75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
75796
75797
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
**
** The permutation is only valid until the next OP_Compare that has
** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
** occur immediately prior to the OP_Compare.



*/
case OP_Permutation: {
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  aPermute = pOp->p4.ai;
  break;
}

/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this







>
>
>




|







76277
76278
76279
76280
76281
76282
76283
76284
76285
76286
76287
76288
76289
76290
76291
76292
76293
76294
76295
76296
76297
76298
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
**
** The permutation is only valid until the next OP_Compare that has
** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
** occur immediately prior to the OP_Compare.
**
** The first integer in the P4 integer array is the length of the array
** and does not become part of the permutation.
*/
case OP_Permutation: {
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  aPermute = pOp->p4.ai + 1;
  break;
}

/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
76086
76087
76088
76089
76090
76091
76092
76093
76094
76095

76096




76097
76098
76099
76100
76101
76102
76103
76104
76105
76106
76107
76108
76109
76110
76111
76112
76113
76114
76115
76116
76117
76118
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u64 offset64;      /* 64-bit offset */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  u16 fx;            /* pDest->flags value */
  Mem *pReg;         /* PseudoTable input register */


  p2 = pOp->p2;




  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );
  aOffset = pC->aOffset;
  assert( pC->eCurType!=CURTYPE_VTAB );
  assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
  assert( pC->eCurType!=CURTYPE_SORTER );
  pCrsr = pC->uc.pCursor;

  /* If the cursor cache is stale, bring it up-to-date */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->cacheStatus!=p->cacheCtr ){
    if( pC->nullRow ){
      if( pC->eCurType==CURTYPE_PSEUDO ){
        assert( pC->uc.pseudoTableReg>0 );
        pReg = &aMem[pC->uc.pseudoTableReg];
        assert( pReg->flags & MEM_Blob );







<


>

>
>
>
>




<








<
<







76587
76588
76589
76590
76591
76592
76593

76594
76595
76596
76597
76598
76599
76600
76601
76602
76603
76604
76605

76606
76607
76608
76609
76610
76611
76612
76613


76614
76615
76616
76617
76618
76619
76620
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u64 offset64;      /* 64-bit offset */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */

  Mem *pReg;         /* PseudoTable input register */

  pC = p->apCsr[pOp->p1];
  p2 = pOp->p2;

  /* If the cursor cache is stale, bring it up-to-date */
  rc = sqlite3VdbeCursorMoveto(&pC, &p2);

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  assert( pC!=0 );
  assert( p2<pC->nField );
  aOffset = pC->aOffset;
  assert( pC->eCurType!=CURTYPE_VTAB );
  assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
  assert( pC->eCurType!=CURTYPE_SORTER );
  pCrsr = pC->uc.pCursor;



  if( rc ) goto abort_due_to_error;
  if( pC->cacheStatus!=p->cacheCtr ){
    if( pC->nullRow ){
      if( pC->eCurType==CURTYPE_PSEUDO ){
        assert( pC->uc.pseudoTableReg>0 );
        pReg = &aMem[pC->uc.pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
76264
76265
76266
76267
76268
76269
76270

76271
76272
76273


76274


















76275
76276
76277
76278
76279
76280
76281
76282
76283
76284
76285
76286
76287
76288
76289
76290
76291
76292
76293
76294
76295
76296
76297
76298
76299
76300
76301
76302
76303
76304
76305
76306
76307
76308
76309
76310
76311
76312
76313
76314
76315
76316
76317

76318
76319
76320
76321
76322
76323
76324
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  assert( t==pC->aType[p2] );

  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */


    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);


















  }else{
    /* This branch happens only when content is on overflow pages */
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for
      **    1. the typeof() function,
      **    2. the length(X) function if X is a blob, and
      **    3. if the content length is zero.
      ** So we might as well use bogus content rather than reading
      ** content from disk.  NULL will work for the value for strings
      ** and blobs and whatever is in the payloadSize64 variable
      ** will work for everything else. */
      sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
    }else{
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
                                   pDest);
      if( rc!=SQLITE_OK ){
        goto op_column_error;
      }
      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
      pDest->flags &= ~MEM_Ephem;
    }
  }
  pDest->enc = encoding;

op_column_out:
  /* If the column value is an ephemeral string, go ahead and persist
  ** that string in case the cursor moves before the column value is
  ** used.  The following code does the equivalent of Deephemeralize()
  ** but does it faster. */
  if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
    fx = pDest->flags & (MEM_Str|MEM_Blob);
    assert( fx!=0 );
    zData = (const u8*)pDest->z;
    len = pDest->n;
    if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
    memcpy(pDest->z, zData, len);
    pDest->z[len] = 0;
    pDest->z[len+1] = 0;
    pDest->flags = fx|MEM_Term;
  }

op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *







>



>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











|
|
<
|



|
<
<
|
|
|
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
>







76766
76767
76768
76769
76770
76771
76772
76773
76774
76775
76776
76777
76778
76779
76780
76781
76782
76783
76784
76785
76786
76787
76788
76789
76790
76791
76792
76793
76794
76795
76796
76797
76798
76799
76800
76801
76802
76803
76804
76805
76806
76807
76808
76809
76810

76811
76812
76813
76814
76815


76816
76817
76818
76819

76820















76821
76822
76823
76824
76825
76826
76827
76828
76829
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  assert( t==pC->aType[p2] );
  pDest->enc = encoding;
  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    zData = pC->aRow + aOffset[p2];
    if( t<12 ){
      sqlite3VdbeSerialGet(zData, t, pDest);
    }else{
      /* If the column value is a string, we need a persistent value, not
      ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
      ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
      */
      static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
      pDest->n = len = (t-12)/2;
      if( pDest->szMalloc < len+2 ){
        pDest->flags = MEM_Null;
        if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
      }else{
        pDest->z = pDest->zMalloc;
      }
      memcpy(pDest->z, zData, len);
      pDest->z[len] = 0;
      pDest->z[len+1] = 0;
      pDest->flags = aFlag[t&1];
    }
  }else{
    /* This branch happens only when content is on overflow pages */
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for
      **    1. the typeof() function,
      **    2. the length(X) function if X is a blob, and
      **    3. if the content length is zero.
      ** So we might as well use bogus content rather than reading
      ** content from disk. */
      static u8 aZero[8];  /* This is the bogus content */

      sqlite3VdbeSerialGet(aZero, t, pDest);
    }else{
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
                                   pDest);
      if( rc==SQLITE_OK ){


        sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
        pDest->flags &= ~MEM_Ephem;
      }
    }

  }
















op_column_out:
op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
76572
76573
76574
76575
76576
76577
76578
76579
76580
76581
76582
76583
76584
76585
76586
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif

      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    
        /* If there is no open transaction, then mark this as a special
        ** "transaction savepoint". */
        if( db->autoCommit ){







|







77077
77078
77079
77080
77081
77082
77083
77084
77085
77086
77087
77088
77089
77090
77091
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif

      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    
        /* If there is no open transaction, then mark this as a special
        ** "transaction savepoint". */
        if( db->autoCommit ){
76709
76710
76711
76712
76713
76714
76715
76716
76717
76718
76719
76720
76721
76722
76723
76724
76725
76726
76727
76728
76729
76730
76731
76732
76733
76734
76735
76736
76737








76738
76739
76740
76741
76742
76743
76744
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  int desiredAutoCommit;
  int iRollback;
  int turnOnAC;

  desiredAutoCommit = pOp->p1;
  iRollback = pOp->p2;
  turnOnAC = desiredAutoCommit && !db->autoCommit;
  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || iRollback==0 );
  assert( db->nVdbeActive>0 );  /* At least this one VM is active */
  assert( p->bIsReader );

  if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first. 
    */
    sqlite3VdbeError(p, "cannot commit transaction - "
                        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( desiredAutoCommit!=db->autoCommit ){
    if( iRollback ){
      assert( desiredAutoCommit==1 );
      sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
      db->autoCommit = 1;








    }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
      goto vdbe_return;
    }else{
      db->autoCommit = (u8)desiredAutoCommit;
    }
    if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
      p->pc = (int)(pOp - aOp);







<



<





<
<
<
<
<
<
<
|




>
>
>
>
>
>
>
>







77214
77215
77216
77217
77218
77219
77220

77221
77222
77223

77224
77225
77226
77227
77228







77229
77230
77231
77232
77233
77234
77235
77236
77237
77238
77239
77240
77241
77242
77243
77244
77245
77246
77247
77248
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  int desiredAutoCommit;
  int iRollback;


  desiredAutoCommit = pOp->p1;
  iRollback = pOp->p2;

  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || iRollback==0 );
  assert( db->nVdbeActive>0 );  /* At least this one VM is active */
  assert( p->bIsReader );








  if( desiredAutoCommit!=db->autoCommit ){
    if( iRollback ){
      assert( desiredAutoCommit==1 );
      sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
      db->autoCommit = 1;
    }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
      /* If this instruction implements a COMMIT and other VMs are writing
      ** return an error indicating that the other VMs must complete first. 
      */
      sqlite3VdbeError(p, "cannot commit transaction - "
                          "SQL statements in progress");
      rc = SQLITE_BUSY;
      break;
    }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
      goto vdbe_return;
    }else{
      db->autoCommit = (u8)desiredAutoCommit;
    }
    if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
      p->pc = (int)(pOp - aOp);
76915
76916
76917
76918
76919
76920
76921
76922
76923
76924
76925
76926
76927
76928
76929
76930
76931
76932
76933
76934
76935
76936
76937
76938
76939
76940
76941
76942
76943
76944
76945
76946
76947
76948
76949
76950
76951
76952
76953
76954
76955
76956
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = (int)pIn3->u.i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = (u8)pIn3->u.i;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite3ExpirePreparedStatements(db);
    p->expired = 0;
  }







|
|
|





|








<
<

|


|



|







77419
77420
77421
77422
77423
77424
77425
77426
77427
77428
77429
77430
77431
77432
77433
77434
77435
77436
77437
77438
77439
77440
77441
77442


77443
77444
77445
77446
77447
77448
77449
77450
77451
77452
77453
77454
77455
77456
77457
77458
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the integer value P3 into cookie number P2 of database P1.
** P2==1 is the schema version.  P2==2 is the database format.
** P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );


  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = pOp->p3;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = pOp->p3;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite3ExpirePreparedStatements(db);
    p->expired = 0;
  }
77102
77103
77104
77105
77106
77107
77108



77109
77110
77111
77112
77113
77114
77115
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;



  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
  pCur->pKeyInfo = pKeyInfo;
  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;







>
>
>







77604
77605
77606
77607
77608
77609
77610
77611
77612
77613
77614
77615
77616
77617
77618
77619
77620
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
#ifdef SQLITE_DEBUG
  pCur->wrFlag = wrFlag;
#endif
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
  pCur->pKeyInfo = pKeyInfo;
  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
77555
77556
77557
77558
77559
77560
77561
77562
77563
77564
77565
77566
77567
77568
77569
77570
77571
77572
77573
77574
77575
77576
77577
77578
77579
77580
77581
77582
77583
77584
77585
77586
77587
77588
77589
77590
77591
77592
77593
77594
    goto jump_to_p2;
  }else if( eqOnly ){
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
** Synopsis:  intkey=r[P2]
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->isTable );
  pC->nullRow = 0;
  pIn2 = &aMem[pOp->p2];
  pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
  pC->deferredMoveto = 1;
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







78060
78061
78062
78063
78064
78065
78066


























78067
78068
78069
78070
78071
78072
78073
    goto jump_to_p2;
  }else if( eqOnly ){
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
  }
  break;
}


























  

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
78051
78052
78053
78054
78055
78056
78057

78058
78059
78060
78061

78062
78063






78064
78065
78066
78067
78068
78069
78070
78071
78072
  break;
}

/* Opcode: Delete P1 P2 * P4 P5
**
** Delete the record at which the P1 cursor is currently pointing.
**

** If the P5 parameter is non-zero, the cursor will be left pointing at 
** either the next or the previous record in the table. If it is left 
** pointing at the next record, then the next Next instruction will be a 
** no-op. As a result, in this case it is OK to delete a record from within a

** Next loop. If P5 is zero, then the cursor is left in an undefined state.
**






** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned







>
|
|
|
|
>
|

>
>
>
>
>
>
|
|







78530
78531
78532
78533
78534
78535
78536
78537
78538
78539
78540
78541
78542
78543
78544
78545
78546
78547
78548
78549
78550
78551
78552
78553
78554
78555
78556
78557
78558
78559
  break;
}

/* Opcode: Delete P1 P2 * P4 P5
**
** Delete the record at which the P1 cursor is currently pointing.
**
** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
** the cursor will be left pointing at  either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. As a result, in this case
** it is ok to delete a record from within a Next loop. If 
** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
** left in an undefined state.
**
** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
** delete one of several associated with deleting a table row and all its
** associated index entries.  Exactly one of those deletes is the "primary"
** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
** marked with the AUXDELETE flag.
**
** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
** change count is incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
78094
78095
78096
78097
78098
78099
78100
78101



















78102
78103
78104
78105
78106
78107
78108
  ** is being deleted */
  if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
    i64 iKey = 0;
    sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 
  }
#endif
 



















  rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && hasUpdateCallback ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







78581
78582
78583
78584
78585
78586
78587
78588
78589
78590
78591
78592
78593
78594
78595
78596
78597
78598
78599
78600
78601
78602
78603
78604
78605
78606
78607
78608
78609
78610
78611
78612
78613
78614
  ** is being deleted */
  if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
    i64 iKey = 0;
    sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 
  }
#endif

  /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 
  assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
  assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
  assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );

#ifdef SQLITE_DEBUG
  if( p->pFrame==0 ){
    if( pC->isEphemeral==0
        && (pOp->p5 & OPFLAG_AUXDELETE)==0
        && (pC->wrFlag & OPFLAG_FORDELETE)==0
      ){
      nExtraDelete++;
    }
    if( pOp->p2 & OPFLAG_NCHANGE ){
      nExtraDelete--;
    }
  }
#endif

  rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && hasUpdateCallback ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
78639
78640
78641
78642
78643
78644
78645
78646
78647
78648
78649
78650
78651
78652
78653
78654
78655
78656
78657



















78658
78659
78660
78661
78662
78663
78664
78665
78666

78667
78668
78669
78670
78671
78672
78673
78674
78675
78676
78677
78678
78679
78680
78681

78682




78683
78684
78685
78686
78687
78688
78689
78690
78691
78692
78693
78694
78695















78696
78697




78698
78699
78700
78701
78702
78703
78704
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  if( rc==SQLITE_OK && res==0 ){
    rc = sqlite3BtreeDelete(pCrsr, 0);
  }
  assert( pC->deferredMoveto==0 );
  pC->cacheStatus = CACHE_STALE;
  break;
}




















/* Opcode: IdxRowid P1 P2 * * *
** Synopsis: r[P2]=rowid
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/

case OP_IdxRowid: {              /* out2 */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;
  assert( pC->isTable==0 );
  assert( pC->deferredMoveto==0 );






  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
  ** out from under the cursor.  That will never happend for an IdxRowid
  ** opcode, hence the NEVER() arround the check of the return value.
  */
  rc = sqlite3VdbeCursorRestore(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( !pC->nullRow ){
    rowid = 0;  /* Not needed.  Only used to silence a warning. */
    rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }















    pOut->u.i = rowid;
    pOut->flags = MEM_Int;




  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**







<
<
<


|






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>

|
|
|

<




<
|
<


>

>
>
>
>

|
|
<
<




|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>







79145
79146
79147
79148
79149
79150
79151



79152
79153
79154
79155
79156
79157
79158
79159
79160
79161
79162
79163
79164
79165
79166
79167
79168
79169
79170
79171
79172
79173
79174
79175
79176
79177
79178
79179
79180
79181
79182
79183
79184
79185
79186
79187
79188
79189
79190
79191
79192
79193
79194

79195
79196
79197
79198

79199

79200
79201
79202
79203
79204
79205
79206
79207
79208
79209
79210


79211
79212
79213
79214
79215
79216
79217
79218
79219
79220
79221
79222
79223
79224
79225
79226
79227
79228
79229
79230
79231
79232
79233
79234
79235
79236
79237
79238
79239
79240
79241
79242
79243
79244
79245
79246
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];



  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  if( rc==SQLITE_OK && res==0 ){
    rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
  }
  assert( pC->deferredMoveto==0 );
  pC->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: Seek P1 * P3 P4 *
** Synopsis:  Move P3 to P1.rowid
**
** P1 is an open index cursor and P3 is a cursor on the corresponding
** table.  This opcode does a deferred seek of the P3 table cursor
** to the row that corresponds to the current row of P1.
**
** This is a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
**
** P4 may be an array of integers (type P4_INTARRAY) containing
** one entry for each column in the P3 table.  If array entry a(i)
** is non-zero, then reading column a(i)-1 from cursor P3 is 
** equivalent to performing the deferred seek and then reading column i 
** from P1.  This information is stored in P3 and used to redirect
** reads against P3 over to P1, thus possibly avoiding the need to
** seek and read cursor P3.
*/
/* Opcode: IdxRowid P1 P2 * * *
** Synopsis: r[P2]=rowid
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_Seek:
case OP_IdxRowid: {              /* out2 */
  VdbeCursor *pC;                /* The P1 index cursor */
  VdbeCursor *pTabCur;           /* The P2 table cursor (OP_Seek only) */
  i64 rowid;                     /* Rowid that P1 current points to */


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );

  assert( pC->uc.pCursor!=0 );

  assert( pC->isTable==0 );
  assert( pC->deferredMoveto==0 );
  assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );

  /* The IdxRowid and Seek opcodes are combined because of the commonality
  ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
  rc = sqlite3VdbeCursorRestore(pC);

  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
  ** out from under the cursor.  That will never happens for an IdxRowid
  ** or Seek opcode */


  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( !pC->nullRow ){
    rowid = 0;  /* Not needed.  Only used to silence a warning. */
    rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( pOp->opcode==OP_Seek ){
      assert( pOp->p3>=0 && pOp->p3<p->nCursor );
      pTabCur = p->apCsr[pOp->p3];
      assert( pTabCur!=0 );
      assert( pTabCur->eCurType==CURTYPE_BTREE );
      assert( pTabCur->uc.pCursor!=0 );
      assert( pTabCur->isTable );
      pTabCur->nullRow = 0;
      pTabCur->movetoTarget = rowid;
      pTabCur->deferredMoveto = 1;
      assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
      pTabCur->aAltMap = pOp->p4.ai;
      pTabCur->pAltCursor = pC;
    }else{
      pOut = out2Prerelease(p, pOp);
      pOut->u.i = rowid;
      pOut->flags = MEM_Int;
    }
  }else{
    assert( pOp->opcode==OP_IdxRowid );
    sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
78809
78810
78811
78812
78813
78814
78815

78816
78817
78818
78819
78820
78821
78822
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;

  assert( p->readOnly==0 );

  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;







>







79351
79352
79353
79354
79355
79356
79357
79358
79359
79360
79361
79362
79363
79364
79365
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;

  assert( p->readOnly==0 );
  assert( pOp->p1>1 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
79084
79085
79086
79087
79088
79089
79090
79091
79092
79093
79094
79095
79096
79097
79098
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){







|







79627
79628
79629
79630
79631
79632
79633
79634
79635
79636
79637
79638
79639
79640
79641
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
79466
79467
79468
79469
79470
79471
79472
79473
79474
79475
79476



79477



79478





79479
79480
79481
79482
79483
79484


79485
79486
79487
79488
79489
79490
79491
79492
79493
  if( pIn1->u.i>0 ){
    pIn1->u.i -= pOp->p3;
    goto jump_to_p2;
  }
  break;
}

/* Opcode: SetIfNotPos P1 P2 P3 * *
** Synopsis: if r[P1]<=0 then r[P2]=P3
**
** Register P1 must contain an integer.



** If the value of register P1 is not positive (if it is less than 1) then



** set the value of register P2 to be the integer P3.





*/
case OP_SetIfNotPos: {        /* in1, in2 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  if( pIn1->u.i<=0 ){
    pOut = out2Prerelease(p, pOp);


    pOut->u.i = pOp->p3;
  }
  break;
}

/* Opcode: IfNotZero P1 P2 P3 * *
** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
**
** Register P1 must contain an integer.  If the content of register P1 is







|
|

|
>
>
>
|
>
>
>
|
>
>
>
>
>

|

<
|
|
>
>
|
<







80009
80010
80011
80012
80013
80014
80015
80016
80017
80018
80019
80020
80021
80022
80023
80024
80025
80026
80027
80028
80029
80030
80031
80032
80033
80034
80035

80036
80037
80038
80039
80040

80041
80042
80043
80044
80045
80046
80047
  if( pIn1->u.i>0 ){
    pIn1->u.i -= pOp->p3;
    goto jump_to_p2;
  }
  break;
}

/* Opcode: OffsetLimit P1 P2 P3 * *
** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
**
** This opcode performs a commonly used computation associated with
** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
** holds the offset counter.  The opcode computes the combined value
** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
** value computed is the total number of rows that will need to be
** visited in order to complete the query.
**
** If r[P3] is zero or negative, that means there is no OFFSET
** and r[P2] is set to be the value of the LIMIT, r[P1].
**
** if r[P1] is zero or negative, that means there is no LIMIT
** and r[P2] is set to -1. 
**
** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
*/
case OP_OffsetLimit: {    /* in1, out2, in3 */
  pIn1 = &aMem[pOp->p1];

  pIn3 = &aMem[pOp->p3];
  pOut = out2Prerelease(p, pOp);
  assert( pIn1->flags & MEM_Int );
  assert( pIn3->flags & MEM_Int );
  pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);

  break;
}

/* Opcode: IfNotZero P1 P2 P3 * *
** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
**
** Register P1 must contain an integer.  If the content of register P1 is
79570
79571
79572
79573
79574
79575
79576
79577
79578
79579
79580
79581
79582
79583
79584
  sqlite3_context *pCtx;

  assert( pOp->p4type==P4_FUNCDEF );
  n = pOp->p5;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
  if( pCtx==0 ) goto no_mem;
  pCtx->pMem = 0;
  pCtx->pFunc = pOp->p4.pFunc;
  pCtx->iOp = (int)(pOp - aOp);
  pCtx->pVdbe = p;
  pCtx->argc = n;
  pOp->p4type = P4_FUNCCTX;







|







80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
  sqlite3_context *pCtx;

  assert( pOp->p4type==P4_FUNCDEF );
  n = pOp->p5;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
  if( pCtx==0 ) goto no_mem;
  pCtx->pMem = 0;
  pCtx->pFunc = pOp->p4.pFunc;
  pCtx->iOp = (int)(pOp - aOp);
  pCtx->pVdbe = p;
  pCtx->argc = n;
  pOp->p4type = P4_FUNCCTX;
79613
79614
79615
79616
79617
79618
79619
79620
79621
79622
79623
79624
79625
79626
79627
#endif

  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);
  pCtx->pOut = &t;
  pCtx->fErrorOrAux = 0;
  pCtx->skipFlag = 0;
  (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
      rc = pCtx->isError;
    }
    sqlite3VdbeMemRelease(&t);
  }else{







|







80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
#endif

  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);
  pCtx->pOut = &t;
  pCtx->fErrorOrAux = 0;
  pCtx->skipFlag = 0;
  (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
      rc = pCtx->isError;
    }
    sqlite3VdbeMemRelease(&t);
  }else{
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457



80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
vdbe_error_halt:
  assert( rc );
  p->rc = rc;
  testcase( sqlite3GlobalConfig.xLog!=0 );
  sqlite3_log(rc, "statement aborts at %d: [%s] %s", 
                   (int)(pOp - aOp), p->zSql, p->zErrMsg);
  sqlite3VdbeHalt(p);
  if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
  rc = SQLITE_ERROR;
  if( resetSchemaOnFault>0 ){
    sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;
  testcase( nVmStep>0 );
  p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
  sqlite3VdbeLeave(p);



  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
  sqlite3VdbeError(p, "string or blob too big");
  rc = SQLITE_TOOBIG;
  goto vdbe_error_halt;

  /* Jump to here if a malloc() fails.
  */
no_mem:
  db->mallocFailed = 1;
  sqlite3VdbeError(p, "out of memory");
  rc = SQLITE_NOMEM;
  goto vdbe_error_halt;

  /* Jump to here for any other kind of fatal error.  The "rc" variable
  ** should hold the error number.
  */
abort_due_to_error:
  assert( p->zErrMsg==0 );
  if( db->mallocFailed ) rc = SQLITE_NOMEM;
  if( rc!=SQLITE_IOERR_NOMEM ){
    sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
  }
  goto vdbe_error_halt;

  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
  ** flag.
  */
abort_due_to_interrupt:
  assert( db->u1.isInterrupted );
  rc = SQLITE_INTERRUPT;
  p->rc = rc;
  sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
  goto vdbe_error_halt;
}


/************** End of vdbe.c ************************************************/







|













>
>
>













|




















|







80991
80992
80993
80994
80995
80996
80997
80998
80999
81000
81001
81002
81003
81004
81005
81006
81007
81008
81009
81010
81011
81012
81013
81014
81015
81016
81017
81018
81019
81020
81021
81022
81023
81024
81025
81026
81027
81028
81029
81030
81031
81032
81033
81034
81035
81036
81037
81038
81039
81040
81041
81042
81043
81044
81045
81046
81047
81048
81049
81050
81051
81052
81053
81054
81055
81056
vdbe_error_halt:
  assert( rc );
  p->rc = rc;
  testcase( sqlite3GlobalConfig.xLog!=0 );
  sqlite3_log(rc, "statement aborts at %d: [%s] %s", 
                   (int)(pOp - aOp), p->zSql, p->zErrMsg);
  sqlite3VdbeHalt(p);
  if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
  rc = SQLITE_ERROR;
  if( resetSchemaOnFault>0 ){
    sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;
  testcase( nVmStep>0 );
  p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
  sqlite3VdbeLeave(p);
  assert( rc!=SQLITE_OK || nExtraDelete==0 
       || sqlite3_strlike("DELETE%",p->zSql,0)!=0 
  );
  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
  sqlite3VdbeError(p, "string or blob too big");
  rc = SQLITE_TOOBIG;
  goto vdbe_error_halt;

  /* Jump to here if a malloc() fails.
  */
no_mem:
  sqlite3OomFault(db);
  sqlite3VdbeError(p, "out of memory");
  rc = SQLITE_NOMEM;
  goto vdbe_error_halt;

  /* Jump to here for any other kind of fatal error.  The "rc" variable
  ** should hold the error number.
  */
abort_due_to_error:
  assert( p->zErrMsg==0 );
  if( db->mallocFailed ) rc = SQLITE_NOMEM;
  if( rc!=SQLITE_IOERR_NOMEM ){
    sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
  }
  goto vdbe_error_halt;

  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
  ** flag.
  */
abort_due_to_interrupt:
  assert( db->u1.isInterrupted );
  rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_INTERRUPT;
  p->rc = rc;
  sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
  goto vdbe_error_halt;
}


/************** End of vdbe.c ************************************************/
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int flags,              /* True -> read/write access, false -> read-only */
  sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
){
  int nAttempt = 0;
  int iCol;               /* Index of zColumn in row-record */

  /* This VDBE program seeks a btree cursor to the identified 
  ** db/table/row entry. The reason for using a vdbe program instead
  ** of writing code to use the b-tree layer directly is that the
  ** vdbe program will take advantage of the various transaction,
  ** locking and error handling infrastructure built into the vdbe.
  **
  ** After seeking the cursor, the vdbe executes an OP_ResultRow.
  ** Code external to the Vdbe then "borrows" the b-tree cursor and
  ** uses it to implement the blob_read(), blob_write() and 
  ** blob_bytes() functions.
  **
  ** The sqlite3_blob_close() function finalizes the vdbe program,
  ** which closes the b-tree cursor and (possibly) commits the 
  ** transaction.
  */
  static const int iLn = VDBE_OFFSET_LINENO(4);
  static const VdbeOpList openBlob[] = {
    /* {OP_Transaction, 0, 0, 0},  // 0: Inserted separately */
    {OP_TableLock, 0, 0, 0},       /* 1: Acquire a read or write lock */
    /* One of the following two instructions is replaced by an OP_Noop. */
    {OP_OpenRead, 0, 0, 0},        /* 2: Open cursor 0 for reading */
    {OP_OpenWrite, 0, 0, 0},       /* 3: Open cursor 0 for read/write */
    {OP_Variable, 1, 1, 1},        /* 4: Push the rowid to the stack */
    {OP_NotExists, 0, 10, 1},      /* 5: Seek the cursor */
    {OP_Column, 0, 0, 1},          /* 6  */
    {OP_ResultRow, 1, 0, 0},       /* 7  */
    {OP_Goto, 0, 4, 0},            /* 8  */
    {OP_Close, 0, 0, 0},           /* 9  */
    {OP_Halt, 0, 0, 0},            /* 10 */
  };

  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;

#ifdef SQLITE_ENABLE_API_ARMOR







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







81168
81169
81170
81171
81172
81173
81174
































81175
81176
81177
81178
81179
81180
81181
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int flags,              /* True -> read/write access, false -> read-only */
  sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
){
  int nAttempt = 0;
  int iCol;               /* Index of zColumn in row-record */
































  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
80761
80762
80763
80764
80765
80766
80767




























80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780


80781
80782
80783
80784
80785
80786
80787
80788


80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803

80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
        goto blob_open_out;
      }
    }

    pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(pParse);
    assert( pBlob->pStmt || db->mallocFailed );
    if( pBlob->pStmt ){




























      Vdbe *v = (Vdbe *)pBlob->pStmt;
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);


      sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags, 
                           pTab->pSchema->schema_cookie,
                           pTab->pSchema->iGeneration);
      sqlite3VdbeChangeP5(v, 1);     
      sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);

      /* Make sure a mutex is held on the table to be accessed */
      sqlite3VdbeUsesBtree(v, iDb); 



      /* Configure the OP_TableLock instruction */
#ifdef SQLITE_OMIT_SHARED_CACHE
      sqlite3VdbeChangeToNoop(v, 1);
#else
      sqlite3VdbeChangeP1(v, 1, iDb);
      sqlite3VdbeChangeP2(v, 1, pTab->tnum);
      sqlite3VdbeChangeP3(v, 1, flags);
      sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT);


#endif

      /* Remove either the OP_OpenWrite or OpenRead. Set the P2 
      ** parameter of the other to pTab->tnum.  */
      sqlite3VdbeChangeToNoop(v, 3 - flags);
      sqlite3VdbeChangeP2(v, 2 + flags, pTab->tnum);
      sqlite3VdbeChangeP3(v, 2 + flags, iDb);

      /* Configure the number of columns. Configure the cursor to
      ** think that the table has one more column than it really
      ** does. An OP_Column to retrieve this imaginary column will
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */

      sqlite3VdbeChangeP4(v, 2+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 6, pTab->nCol);
      if( !db->mallocFailed ){
        pParse->nVar = 1;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite3VdbeMakeReady(v, pParse);
      }
    }
   







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|





|




>
>
|

|

|
|
|
|
>
>


|
|
|
|
|

|
|
|
|
|
|
|
>
|
|
|







81286
81287
81288
81289
81290
81291
81292
81293
81294
81295
81296
81297
81298
81299
81300
81301
81302
81303
81304
81305
81306
81307
81308
81309
81310
81311
81312
81313
81314
81315
81316
81317
81318
81319
81320
81321
81322
81323
81324
81325
81326
81327
81328
81329
81330
81331
81332
81333
81334
81335
81336
81337
81338
81339
81340
81341
81342
81343
81344
81345
81346
81347
81348
81349
81350
81351
81352
81353
81354
81355
81356
81357
81358
81359
81360
81361
81362
81363
81364
81365
81366
81367
81368
81369
81370
81371
        goto blob_open_out;
      }
    }

    pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(pParse);
    assert( pBlob->pStmt || db->mallocFailed );
    if( pBlob->pStmt ){
      
      /* This VDBE program seeks a btree cursor to the identified 
      ** db/table/row entry. The reason for using a vdbe program instead
      ** of writing code to use the b-tree layer directly is that the
      ** vdbe program will take advantage of the various transaction,
      ** locking and error handling infrastructure built into the vdbe.
      **
      ** After seeking the cursor, the vdbe executes an OP_ResultRow.
      ** Code external to the Vdbe then "borrows" the b-tree cursor and
      ** uses it to implement the blob_read(), blob_write() and 
      ** blob_bytes() functions.
      **
      ** The sqlite3_blob_close() function finalizes the vdbe program,
      ** which closes the b-tree cursor and (possibly) commits the 
      ** transaction.
      */
      static const int iLn = VDBE_OFFSET_LINENO(2);
      static const VdbeOpList openBlob[] = {
        {OP_TableLock,      0, 0, 0},  /* 0: Acquire a read or write lock */
        {OP_OpenRead,       0, 0, 0},  /* 1: Open a cursor */
        {OP_Variable,       1, 1, 0},  /* 2: Move ?1 into reg[1] */
        {OP_NotExists,      0, 7, 1},  /* 3: Seek the cursor */
        {OP_Column,         0, 0, 1},  /* 4  */
        {OP_ResultRow,      1, 0, 0},  /* 5  */
        {OP_Goto,           0, 2, 0},  /* 6  */
        {OP_Close,          0, 0, 0},  /* 7  */
        {OP_Halt,           0, 0, 0},  /* 8  */
      };
      Vdbe *v = (Vdbe *)pBlob->pStmt;
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      VdbeOp *aOp;

      sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags, 
                           pTab->pSchema->schema_cookie,
                           pTab->pSchema->iGeneration);
      sqlite3VdbeChangeP5(v, 1);     
      aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);

      /* Make sure a mutex is held on the table to be accessed */
      sqlite3VdbeUsesBtree(v, iDb); 

      if( db->mallocFailed==0 ){
        assert( aOp!=0 );
        /* Configure the OP_TableLock instruction */
#ifdef SQLITE_OMIT_SHARED_CACHE
        aOp[0].opcode = OP_Noop;
#else
        aOp[0].p1 = iDb;
        aOp[0].p2 = pTab->tnum;
        aOp[0].p3 = flags;
        sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT);
      }
      if( db->mallocFailed==0 ){
#endif

        /* Remove either the OP_OpenWrite or OpenRead. Set the P2 
        ** parameter of the other to pTab->tnum.  */
        if( flags ) aOp[1].opcode = OP_OpenWrite;
        aOp[1].p2 = pTab->tnum;
        aOp[1].p3 = iDb;   

        /* Configure the number of columns. Configure the cursor to
        ** think that the table has one more column than it really
        ** does. An OP_Column to retrieve this imaginary column will
        ** always return an SQL NULL. This is useful because it means
        ** we can invoke OP_Column to fill in the vdbe cursors type 
        ** and offset cache without causing any IO.
        */
        aOp[1].p4type = P4_INT32;
        aOp[1].p4.i = pTab->nCol+1;
        aOp[4].p2 = pTab->nCol;

        pParse->nVar = 1;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite3VdbeMakeReady(v, pParse);
      }
    }
   
81712
81713
81714
81715
81716
81717
81718
81719
81720
81721
81722
81723
81724
81725
81726
  assert( pFile->iEof>iStart );
  assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
  assert( pReadr->aBuffer==0 );
  assert( pReadr->aMap==0 );

  rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
  if( rc==SQLITE_OK ){
    u64 nByte;                    /* Size of PMA in bytes */
    rc = vdbePmaReadVarint(pReadr, &nByte);
    pReadr->iEof = pReadr->iReadOff + nByte;
    *pnByte += nByte;
  }

  if( rc==SQLITE_OK ){
    rc = vdbePmaReaderNext(pReadr);







|







82270
82271
82272
82273
82274
82275
82276
82277
82278
82279
82280
82281
82282
82283
82284
  assert( pFile->iEof>iStart );
  assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
  assert( pReadr->aBuffer==0 );
  assert( pReadr->aMap==0 );

  rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
  if( rc==SQLITE_OK ){
    u64 nByte = 0;                 /* Size of PMA in bytes */
    rc = vdbePmaReadVarint(pReadr, &nByte);
    pReadr->iEof = pReadr->iReadOff + nByte;
    *pnByte += nByte;
  }

  if( rc==SQLITE_OK ){
    rc = vdbePmaReaderNext(pReadr);
82796
82797
82798
82799
82800
82801
82802

82803
82804
82805
82806
82807
82808
82809
82810
82811
82812
82813
82814
82815
82816
82817
82818

82819

82820
82821
82822
82823
82824
82825
82826
  }

  if( pSorter->list.aMemory ){
    int nMin = pSorter->iMemory + nReq;

    if( nMin>pSorter->nMemory ){
      u8 *aNew;

      int nNew = pSorter->nMemory * 2;
      while( nNew < nMin ) nNew = nNew*2;
      if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
      if( nNew < nMin ) nNew = nMin;

      aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
      if( !aNew ) return SQLITE_NOMEM;
      pSorter->list.pList = (SorterRecord*)(
          aNew + ((u8*)pSorter->list.pList - pSorter->list.aMemory)
      );
      pSorter->list.aMemory = aNew;
      pSorter->nMemory = nNew;
    }

    pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
    pSorter->iMemory += ROUND8(nReq);

    pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);

  }else{
    pNew = (SorterRecord *)sqlite3Malloc(nReq);
    if( pNew==0 ){
      return SQLITE_NOMEM;
    }
    pNew->u.pNext = pSorter->list.pList;
  }







>







|
<
<






>
|
>







83354
83355
83356
83357
83358
83359
83360
83361
83362
83363
83364
83365
83366
83367
83368
83369


83370
83371
83372
83373
83374
83375
83376
83377
83378
83379
83380
83381
83382
83383
83384
83385
  }

  if( pSorter->list.aMemory ){
    int nMin = pSorter->iMemory + nReq;

    if( nMin>pSorter->nMemory ){
      u8 *aNew;
      int iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory;
      int nNew = pSorter->nMemory * 2;
      while( nNew < nMin ) nNew = nNew*2;
      if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
      if( nNew < nMin ) nNew = nMin;

      aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
      if( !aNew ) return SQLITE_NOMEM;
      pSorter->list.pList = (SorterRecord*)&aNew[iListOff];


      pSorter->list.aMemory = aNew;
      pSorter->nMemory = nNew;
    }

    pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
    pSorter->iMemory += ROUND8(nReq);
    if( pSorter->list.pList ){
      pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);
    }
  }else{
    pNew = (SorterRecord *)sqlite3Malloc(nReq);
    if( pNew==0 ){
      return SQLITE_NOMEM;
    }
    pNew->u.pNext = pSorter->list.pList;
  }
84270
84271
84272
84273
84274
84275
84276
84277
84278
84279
84280
84281
84282
84283
84284
84285
84286
84287
84288
84289
84290
84291
84292
84293



84294
84295
84296
84297
84298
84299
84300
**
**    WRC_Abort         Do no more callbacks.  Unwind the stack and
**                      return the top-level walk call.
**
** The return value from this routine is WRC_Abort to abandon the tree walk
** and WRC_Continue to continue.
*/
SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
  int rc;
  if( pExpr==0 ) return WRC_Continue;
  testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
  testcase( ExprHasProperty(pExpr, EP_Reduced) );
  rc = pWalker->xExprCallback(pWalker, pExpr);
  if( rc==WRC_Continue
              && !ExprHasProperty(pExpr,EP_TokenOnly) ){
    if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
    if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
    }else{
      if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
    }
  }
  return rc & WRC_Abort;



}

/*
** Call sqlite3WalkExpr() for every expression in list p or until
** an abort request is seen.
*/
SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){







|

<














>
>
>







84829
84830
84831
84832
84833
84834
84835
84836
84837

84838
84839
84840
84841
84842
84843
84844
84845
84846
84847
84848
84849
84850
84851
84852
84853
84854
84855
84856
84857
84858
84859
84860
84861
**
**    WRC_Abort         Do no more callbacks.  Unwind the stack and
**                      return the top-level walk call.
**
** The return value from this routine is WRC_Abort to abandon the tree walk
** and WRC_Continue to continue.
*/
static SQLITE_NOINLINE int walkExpr(Walker *pWalker, Expr *pExpr){
  int rc;

  testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
  testcase( ExprHasProperty(pExpr, EP_Reduced) );
  rc = pWalker->xExprCallback(pWalker, pExpr);
  if( rc==WRC_Continue
              && !ExprHasProperty(pExpr,EP_TokenOnly) ){
    if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
    if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
    }else{
      if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
    }
  }
  return rc & WRC_Abort;
}
SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
  return pExpr ? walkExpr(pWalker,pExpr) : WRC_Continue;
}

/*
** Call sqlite3WalkExpr() for every expression in list p or until
** an abort request is seen.
*/
SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
85061
85062
85063
85064
85065
85066
85067
85068
85069
85070
85071
85072
85073
85074
85075
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
        if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
          ExprSetProperty(pExpr, EP_Unlikely|EP_Skip);
          if( n==2 ){
            pExpr->iTable = exprProbability(pList->a[1].pExpr);
            if( pExpr->iTable<0 ){
              sqlite3ErrorMsg(pParse,
                "second argument to likelihood() must be a "







|







85622
85623
85624
85625
85626
85627
85628
85629
85630
85631
85632
85633
85634
85635
85636
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFinalize!=0;
        if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
          ExprSetProperty(pExpr, EP_Unlikely|EP_Skip);
          if( n==2 ){
            pExpr->iTable = exprProbability(pList->a[1].pExpr);
            if( pExpr->iTable<0 ){
              sqlite3ErrorMsg(pParse,
                "second argument to likelihood() must be a "
85789
85790
85791
85792
85793
85794
85795
85796
85797
85798


85799
85800
85801
85802
85803
85804
85805
85806
      return 1;
    }
    pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg);
  pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg);
  memset(&w, 0, sizeof(w));
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;


  w.pParse = pNC->pParse;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 || w.pParse->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);







|


>
>
|







86350
86351
86352
86353
86354
86355
86356
86357
86358
86359
86360
86361
86362
86363
86364
86365
86366
86367
86368
86369
      return 1;
    }
    pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg);
  pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg);
  w.pParse = pNC->pParse;
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.xSelectCallback2 = 0;
  w.walkerDepth = 0;
  w.eCode = 0;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 || w.pParse->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
85978
85979
85980
85981
85982
85983
85984
85985
85986
85987
85988
85989
85990
85991
85992
85993
    }
  }
  return pExpr;
}
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
  Token s;
  assert( zC!=0 );
  s.z = zC;
  s.n = sqlite3Strlen30(s.z);
  return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
}

/*
** Skip over any TK_COLLATE operators and any unlikely()
** or likelihood() function at the root of an expression.
*/







<
|







86541
86542
86543
86544
86545
86546
86547

86548
86549
86550
86551
86552
86553
86554
86555
    }
  }
  return pExpr;
}
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
  Token s;
  assert( zC!=0 );

  sqlite3TokenInit(&s, (char*)zC);
  return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
}

/*
** Skip over any TK_COLLATE operators and any unlikely()
** or likelihood() function at the root of an expression.
*/
86347
86348
86349
86350
86351
86352
86353

86354
86355
86356
86357
86358
86359
86360
86361
86362

86363
86364
86365
86366
86367
86368
86369
  const Token *pToken,    /* Token argument.  Might be NULL */
  int dequote             /* True to dequote */
){
  Expr *pNew;
  int nExtra = 0;
  int iValue = 0;


  if( pToken ){
    if( op!=TK_INTEGER || pToken->z==0
          || sqlite3GetInt32(pToken->z, &iValue)==0 ){
      nExtra = pToken->n+1;
      assert( iValue>=0 );
    }
  }
  pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
  if( pNew ){

    pNew->op = (u8)op;
    pNew->iAgg = -1;
    if( pToken ){
      if( nExtra==0 ){
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = iValue;
      }else{







>







|

>







86909
86910
86911
86912
86913
86914
86915
86916
86917
86918
86919
86920
86921
86922
86923
86924
86925
86926
86927
86928
86929
86930
86931
86932
86933
  const Token *pToken,    /* Token argument.  Might be NULL */
  int dequote             /* True to dequote */
){
  Expr *pNew;
  int nExtra = 0;
  int iValue = 0;

  assert( db!=0 );
  if( pToken ){
    if( op!=TK_INTEGER || pToken->z==0
          || sqlite3GetInt32(pToken->z, &iValue)==0 ){
      nExtra = pToken->n+1;
      assert( iValue>=0 );
    }
  }
  pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
  if( pNew ){
    memset(pNew, 0, sizeof(Expr));
    pNew->op = (u8)op;
    pNew->iAgg = -1;
    if( pToken ){
      if( nExtra==0 ){
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = iValue;
      }else{
86592
86593
86594
86595
86596
86597
86598
86599



86600
86601
86602
86603
86604
86605
86606
      }
      if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
    }
    if( x>0 ){
      if( x>pParse->nzVar ){
        char **a;
        a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
        if( a==0 ) return;  /* Error reported through db->mallocFailed */



        pParse->azVar = a;
        memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
        pParse->nzVar = x;
      }
      if( z[0]!='?' || pParse->azVar[x-1]==0 ){
        sqlite3DbFree(db, pParse->azVar[x-1]);
        pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);







|
>
>
>







87156
87157
87158
87159
87160
87161
87162
87163
87164
87165
87166
87167
87168
87169
87170
87171
87172
87173
      }
      if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
    }
    if( x>0 ){
      if( x>pParse->nzVar ){
        char **a;
        a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
        if( a==0 ){
          assert( db->mallocFailed ); /* Error reported through mallocFailed */
          return;
        }
        pParse->azVar = a;
        memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
        pParse->nzVar = x;
      }
      if( z[0]!='?' || pParse->azVar[x-1]==0 ){
        sqlite3DbFree(db, pParse->azVar[x-1]);
        pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
86747
86748
86749
86750
86751
86752
86753

86754
86755
86756
86757
86758
86759
86760
86761
86762
86763
86764
86765
86766
86767
86768
86769
86770
86771
86772
86773
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
** if any. Before returning, *pzBuffer is set to the first byte past the
** portion of the buffer copied into by this function.
*/
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  Expr *pNew = 0;                      /* Value to return */
  assert( flags==0 || flags==EXPRDUP_REDUCE );

  if( p ){
    const int isReduced = (flags&EXPRDUP_REDUCE);
    u8 *zAlloc;
    u32 staticFlag = 0;

    assert( pzBuffer==0 || isReduced );

    /* Figure out where to write the new Expr structure. */
    if( pzBuffer ){
      zAlloc = *pzBuffer;
      staticFlag = EP_Static;
    }else{
      zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
    }
    pNew = (Expr *)zAlloc;

    if( pNew ){
      /* Set nNewSize to the size allocated for the structure pointed to
      ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
      ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed







>












|







87314
87315
87316
87317
87318
87319
87320
87321
87322
87323
87324
87325
87326
87327
87328
87329
87330
87331
87332
87333
87334
87335
87336
87337
87338
87339
87340
87341
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
** if any. Before returning, *pzBuffer is set to the first byte past the
** portion of the buffer copied into by this function.
*/
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  Expr *pNew = 0;                      /* Value to return */
  assert( flags==0 || flags==EXPRDUP_REDUCE );
  assert( db!=0 );
  if( p ){
    const int isReduced = (flags&EXPRDUP_REDUCE);
    u8 *zAlloc;
    u32 staticFlag = 0;

    assert( pzBuffer==0 || isReduced );

    /* Figure out where to write the new Expr structure. */
    if( pzBuffer ){
      zAlloc = *pzBuffer;
      staticFlag = EP_Static;
    }else{
      zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, flags));
    }
    pNew = (Expr *)zAlloc;

    if( pNew ){
      /* Set nNewSize to the size allocated for the structure pointed to
      ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
      ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
86882
86883
86884
86885
86886
86887
86888

86889
86890
86891
86892
86893
86894
86895
86896
86897
86898
86899
86900
86901
  assert( flags==0 || flags==EXPRDUP_REDUCE );
  return exprDup(db, p, flags, 0);
}
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;

  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nExpr = i = p->nExpr;
  if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
  pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
  if( pItem==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  } 
  pOldItem = p->a;
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;







>

|



|







87450
87451
87452
87453
87454
87455
87456
87457
87458
87459
87460
87461
87462
87463
87464
87465
87466
87467
87468
87469
87470
  assert( flags==0 || flags==EXPRDUP_REDUCE );
  return exprDup(db, p, flags, 0);
}
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nExpr = i = p->nExpr;
  if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
  pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
  if( pItem==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  } 
  pOldItem = p->a;
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
86918
86919
86920
86921
86922
86923
86924

86925
86926
86927
86928
86929
86930
86931
86932
86933
86934
*/
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
 || !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
  SrcList *pNew;
  int i;
  int nByte;

  if( p==0 ) return 0;
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
  pNew = sqlite3DbMallocRaw(db, nByte );
  if( pNew==0 ) return 0;
  pNew->nSrc = pNew->nAlloc = p->nSrc;
  for(i=0; i<p->nSrc; i++){
    struct SrcList_item *pNewItem = &pNew->a[i];
    struct SrcList_item *pOldItem = &p->a[i];
    Table *pTab;
    pNewItem->pSchema = pOldItem->pSchema;







>


|







87487
87488
87489
87490
87491
87492
87493
87494
87495
87496
87497
87498
87499
87500
87501
87502
87503
87504
*/
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
 || !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
  SrcList *pNew;
  int i;
  int nByte;
  assert( db!=0 );
  if( p==0 ) return 0;
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
  pNew = sqlite3DbMallocRawNN(db, nByte );
  if( pNew==0 ) return 0;
  pNew->nSrc = pNew->nAlloc = p->nSrc;
  for(i=0; i<p->nSrc; i++){
    struct SrcList_item *pNewItem = &pNew->a[i];
    struct SrcList_item *pOldItem = &p->a[i];
    Table *pTab;
    pNewItem->pSchema = pOldItem->pSchema;
86957
86958
86959
86960
86961
86962
86963

86964
86965
86966
86967
86968
86969
86970
86971
86972
86973
86974
86975
86976
86977
86978
86979
86980
86981
86982
86983
86984
86985

86986
86987
86988
86989
86990
86991
86992
86993
86994
    pNewItem->colUsed = pOldItem->colUsed;
  }
  return pNew;
}
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
  IdList *pNew;
  int i;

  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nId = p->nId;
  pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
  if( pNew->a==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  }
  /* Note that because the size of the allocation for p->a[] is not
  ** necessarily a power of two, sqlite3IdListAppend() may not be called
  ** on the duplicate created by this function. */
  for(i=0; i<p->nId; i++){
    struct IdList_item *pNewItem = &pNew->a[i];
    struct IdList_item *pOldItem = &p->a[i];
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pNewItem->idx = pOldItem->idx;
  }
  return pNew;
}
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  Select *pNew, *pPrior;

  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
  if( pNew==0 ) return 0;
  pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);







>

|


|

















>

|







87527
87528
87529
87530
87531
87532
87533
87534
87535
87536
87537
87538
87539
87540
87541
87542
87543
87544
87545
87546
87547
87548
87549
87550
87551
87552
87553
87554
87555
87556
87557
87558
87559
87560
87561
87562
87563
87564
87565
87566
    pNewItem->colUsed = pOldItem->colUsed;
  }
  return pNew;
}
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
  IdList *pNew;
  int i;
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nId = p->nId;
  pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
  if( pNew->a==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  }
  /* Note that because the size of the allocation for p->a[] is not
  ** necessarily a power of two, sqlite3IdListAppend() may not be called
  ** on the duplicate created by this function. */
  for(i=0; i<p->nId; i++){
    struct IdList_item *pNewItem = &pNew->a[i];
    struct IdList_item *pOldItem = &p->a[i];
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pNewItem->idx = pOldItem->idx;
  }
  return pNew;
}
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  Select *pNew, *pPrior;
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
  if( pNew==0 ) return 0;
  pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
87026
87027
87028
87029
87030
87031
87032

87033
87034
87035
87036
87037

87038
87039
87040
87041
87042
87043
87044
87045
*/
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
  Parse *pParse,          /* Parsing context */
  ExprList *pList,        /* List to which to append. Might be NULL */
  Expr *pExpr             /* Expression to be appended. Might be NULL */
){
  sqlite3 *db = pParse->db;

  if( pList==0 ){
    pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
    if( pList==0 ){
      goto no_mem;
    }

    pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
    if( pList->a==0 ) goto no_mem;
  }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
    struct ExprList_item *a;
    assert( pList->nExpr>0 );
    a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
    if( a==0 ){
      goto no_mem;







>

|



>
|







87598
87599
87600
87601
87602
87603
87604
87605
87606
87607
87608
87609
87610
87611
87612
87613
87614
87615
87616
87617
87618
87619
*/
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
  Parse *pParse,          /* Parsing context */
  ExprList *pList,        /* List to which to append. Might be NULL */
  Expr *pExpr             /* Expression to be appended. Might be NULL */
){
  sqlite3 *db = pParse->db;
  assert( db!=0 );
  if( pList==0 ){
    pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
    if( pList==0 ){
      goto no_mem;
    }
    pList->nExpr = 0;
    pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
    if( pList->a==0 ) goto no_mem;
  }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
    struct ExprList_item *a;
    assert( pList->nExpr>0 );
    a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
    if( a==0 ){
      goto no_mem;
88788
88789
88790
88791
88792
88793
88794
88795
88796
88797
88798
88799
88800
88801
88802
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 || pDef->xFunc==0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evaluation of
      ** arguments past the first non-NULL argument.







|







89362
89363
89364
89365
89366
89367
89368
89369
89370
89371
89372
89373
89374
89375
89376
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 || pDef->xFinalize!=0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evaluation of
      ** arguments past the first non-NULL argument.
90735
90736
90737
90738
90739
90740
90741
90742
90743
90744
90745
90746
90747
90748
90749
90750
90751
90752
90753
90754
90755
90756
90757
90758
90759
90760
90761
90762
90763
90764
90765
90766
90767
90768
90769
90770
90771
90772
90773
90774
90775
90776
90777
90778
90779
90780
90781
90782
90783
90784
90785
90786

90787
90788
90789

90790
90791
90792
90793
90794
90795
90796

exit_rename_table:
  sqlite3SrcListDelete(db, pSrc);
  sqlite3DbFree(db, zName);
  db->flags = savedDbFlags;
}


/*
** Generate code to make sure the file format number is at least minFormat.
** The generated code will increase the file format number if necessary.
*/
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
  Vdbe *v;
  v = sqlite3GetVdbe(pParse);
  /* The VDBE should have been allocated before this routine is called.
  ** If that allocation failed, we would have quit before reaching this
  ** point */
  if( ALWAYS(v) ){
    int r1 = sqlite3GetTempReg(pParse);
    int r2 = sqlite3GetTempReg(pParse);
    int addr1;
    sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
    sqlite3VdbeUsesBtree(v, iDb);
    sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
    addr1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
    sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v);
    sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3ReleaseTempReg(pParse, r1);
    sqlite3ReleaseTempReg(pParse, r2);
  }
}

/*
** This function is called after an "ALTER TABLE ... ADD" statement
** has been parsed. Argument pColDef contains the text of the new
** column definition.
**
** The Table structure pParse->pNewTable was extended to include
** the new column during parsing.
*/
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
  Table *pNew;              /* Copy of pParse->pNewTable */
  Table *pTab;              /* Table being altered */
  int iDb;                  /* Database number */
  const char *zDb;          /* Database name */
  const char *zTab;         /* Table name */
  char *zCol;               /* Null-terminated column definition */
  Column *pCol;             /* The new column */
  Expr *pDflt;              /* Default value for the new column */
  sqlite3 *db;              /* The database connection; */


  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ) return;

  pNew = pParse->pNewTable;
  assert( pNew );

  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
  zDb = db->aDb[iDb].zName;
  zTab = &pNew->zName[16];  /* Skip the "sqlite_altertab_" prefix on the name */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


















>



>







91309
91310
91311
91312
91313
91314
91315



























91316
91317
91318
91319
91320
91321
91322
91323
91324
91325
91326
91327
91328
91329
91330
91331
91332
91333
91334
91335
91336
91337
91338
91339
91340
91341
91342
91343
91344
91345

exit_rename_table:
  sqlite3SrcListDelete(db, pSrc);
  sqlite3DbFree(db, zName);
  db->flags = savedDbFlags;
}




























/*
** This function is called after an "ALTER TABLE ... ADD" statement
** has been parsed. Argument pColDef contains the text of the new
** column definition.
**
** The Table structure pParse->pNewTable was extended to include
** the new column during parsing.
*/
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
  Table *pNew;              /* Copy of pParse->pNewTable */
  Table *pTab;              /* Table being altered */
  int iDb;                  /* Database number */
  const char *zDb;          /* Database name */
  const char *zTab;         /* Table name */
  char *zCol;               /* Null-terminated column definition */
  Column *pCol;             /* The new column */
  Expr *pDflt;              /* Default value for the new column */
  sqlite3 *db;              /* The database connection; */
  Vdbe *v = pParse->pVdbe;  /* The prepared statement under construction */

  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ) return;
  assert( v!=0 );
  pNew = pParse->pNewTable;
  assert( pNew );

  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
  zDb = db->aDb[iDb].zName;
  zTab = &pNew->zName[16];  /* Skip the "sqlite_altertab_" prefix on the name */
90842
90843
90844
90845
90846
90847
90848
90849
90850
90851
90852
90853
90854
90855
90856
  */
  if( pDflt ){
    sqlite3_value *pVal = 0;
    int rc;
    rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal);
    assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
    if( rc!=SQLITE_OK ){
      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;
    }
    sqlite3ValueFree(pVal);







|







91391
91392
91393
91394
91395
91396
91397
91398
91399
91400
91401
91402
91403
91404
91405
  */
  if( pDflt ){
    sqlite3_value *pVal = 0;
    int rc;
    rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal);
    assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
    if( rc!=SQLITE_OK ){
      assert( db->mallocFailed == 1 );
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;
    }
    sqlite3ValueFree(pVal);
90872
90873
90874
90875
90876
90877
90878
90879
90880
90881




90882
90883

90884
90885
90886
90887
90888
90889
90890
      zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
      zTab
    );
    sqlite3DbFree(db, zCol);
    db->flags = savedDbFlags;
  }

  /* If the default value of the new column is NULL, then set the file
  ** format to 2. If the default value of the new column is not NULL,
  ** the file format becomes 3.




  */
  sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);


  /* Reload the schema of the modified table. */
  reloadTableSchema(pParse, pTab, pTab->zName);
}

/*
** This function is called by the parser after the table-name in







|

|
>
>
>
>

|
>







91421
91422
91423
91424
91425
91426
91427
91428
91429
91430
91431
91432
91433
91434
91435
91436
91437
91438
91439
91440
91441
91442
91443
91444
      zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
      zTab
    );
    sqlite3DbFree(db, zCol);
    db->flags = savedDbFlags;
  }

  /* If the default value of the new column is NULL, then the file
  ** format to 2. If the default value of the new column is not NULL,
  ** the file format be 3.  Back when this feature was first added
  ** in 2006, we went to the trouble to upgrade the file format to the
  ** minimum support values.  But 10-years on, we can assume that all
  ** extent versions of SQLite support file-format 4, so we always and
  ** unconditionally upgrade to 4.
  */
  sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, 
                    SQLITE_MAX_FILE_FORMAT);

  /* Reload the schema of the modified table. */
  reloadTableSchema(pParse, pTab, pTab->zName);
}

/*
** This function is called by the parser after the table-name in
90950
90951
90952
90953
90954
90955
90956
90957
90958
90959
90960
90961
90962
90963
90964
  pNew->nCol = pTab->nCol;
  assert( pNew->nCol>0 );
  nAlloc = (((pNew->nCol-1)/8)*8)+8;
  assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
  pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
  pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
  if( !pNew->aCol || !pNew->zName ){
    db->mallocFailed = 1;
    goto exit_begin_add_column;
  }
  memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
  for(i=0; i<pNew->nCol; i++){
    Column *pCol = &pNew->aCol[i];
    pCol->zName = sqlite3DbStrDup(db, pCol->zName);
    pCol->zColl = 0;







|







91504
91505
91506
91507
91508
91509
91510
91511
91512
91513
91514
91515
91516
91517
91518
  pNew->nCol = pTab->nCol;
  assert( pNew->nCol>0 );
  nAlloc = (((pNew->nCol-1)/8)*8)+8;
  assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
  pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
  pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
  if( !pNew->aCol || !pNew->zName ){
    assert( db->mallocFailed );
    goto exit_begin_add_column;
  }
  memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
  for(i=0; i<pNew->nCol; i++){
    Column *pCol = &pNew->aCol[i];
    pCol->zName = sqlite3DbStrDup(db, pCol->zName);
    pCol->zColl = 0;
91295
91296
91297
91298
91299
91300
91301
91302
91303
91304
91305
91306
91307
91308
91309

/* Initialize the BLOB value of a ROWID
*/
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
  assert( db!=0 );
  if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
  p->u.aRowid = sqlite3DbMallocRaw(db, n);
  if( p->u.aRowid ){
    p->nRowid = n;
    memcpy(p->u.aRowid, pData, n);
  }else{
    p->nRowid = 0;
  }
}







|







91849
91850
91851
91852
91853
91854
91855
91856
91857
91858
91859
91860
91861
91862
91863

/* Initialize the BLOB value of a ROWID
*/
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
  assert( db!=0 );
  if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
  p->u.aRowid = sqlite3DbMallocRawNN(db, n);
  if( p->u.aRowid ){
    p->nRowid = n;
    memcpy(p->u.aRowid, pData, n);
  }else{
    p->nRowid = 0;
  }
}
91460
91461
91462
91463
91464
91465
91466
91467
91468
91469
91470
91471
91472
91473
91474
91475
  sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
}
static const FuncDef statInitFuncdef = {
  2+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statInit,        /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_init",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#ifdef SQLITE_ENABLE_STAT4







|
<







92014
92015
92016
92017
92018
92019
92020
92021

92022
92023
92024
92025
92026
92027
92028
  sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
}
static const FuncDef statInitFuncdef = {
  2+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statInit,        /* xSFunc */

  0,               /* xFinalize */
  "stat_init",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#ifdef SQLITE_ENABLE_STAT4
91761
91762
91763
91764
91765
91766
91767
91768
91769
91770
91771
91772
91773
91774
91775
91776
#endif
}
static const FuncDef statPushFuncdef = {
  2+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statPush,        /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_push",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#define STAT_GET_STAT1 0          /* "stat" column of stat1 table */







|
<







92314
92315
92316
92317
92318
92319
92320
92321

92322
92323
92324
92325
92326
92327
92328
#endif
}
static const FuncDef statPushFuncdef = {
  2+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statPush,        /* xSFunc */

  0,               /* xFinalize */
  "stat_push",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
91908
91909
91910
91911
91912
91913
91914
91915
91916
91917
91918
91919
91920
91921
91922
91923
91924
91925
91926
91927
91928
91929
91930
91931
91932
91933
91934
91935
91936
91937
91938
91939
91940
#endif
}
static const FuncDef statGetFuncdef = {
  1+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statGet,         /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_get",      /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
  assert( regOut!=regStat4 && regOut!=regStat4+1 );
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
#elif SQLITE_DEBUG
  assert( iParam==STAT_GET_STAT1 );
#else
  UNUSED_PARAMETER( iParam );
#endif
  sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4, regOut);
  sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
  sqlite3VdbeChangeP5(v, 1 + IsStat34);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/







|
<















|
|







92460
92461
92462
92463
92464
92465
92466
92467

92468
92469
92470
92471
92472
92473
92474
92475
92476
92477
92478
92479
92480
92481
92482
92483
92484
92485
92486
92487
92488
92489
92490
92491
#endif
}
static const FuncDef statGetFuncdef = {
  1+IsStat34,      /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statGet,         /* xSFunc */

  0,               /* xFinalize */
  "stat_get",      /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
  assert( regOut!=regStat4 && regOut!=regStat4+1 );
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
#elif SQLITE_DEBUG
  assert( iParam==STAT_GET_STAT1 );
#else
  UNUSED_PARAMETER( iParam );
#endif
  sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut,
                    (char*)&statGetFuncdef, P4_FUNCDEF);
  sqlite3VdbeChangeP5(v, 1 + IsStat34);
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
92080
92081
92082
92083
92084
92085
92086
92087
92088
92089
92090
92091
92092
92093
92094
92095
92096
92097
92098
92099
92100
92101
92102
92103
92104
92105
92106
92107
92108
92109
92110
92111
92112
92113
92114
    ** The third argument is only used for STAT3 and STAT4
    */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
#endif
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
    sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);

    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0
    **   goto next_push_0;
    **
    */
    addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrNextRow = sqlite3VdbeCurrentAddr(v);

    if( nColTest>0 ){
      int endDistinctTest = sqlite3VdbeMakeLabel(v);
      int *aGotoChng;               /* Array of jump instruction addresses */
      aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest);
      if( aGotoChng==0 ) continue;

      /*
      **  next_row:
      **   regChng = 0
      **   if( idx(0) != regPrev(0) ) goto chng_addr_0
      **   regChng = 1







|
|


















|







92631
92632
92633
92634
92635
92636
92637
92638
92639
92640
92641
92642
92643
92644
92645
92646
92647
92648
92649
92650
92651
92652
92653
92654
92655
92656
92657
92658
92659
92660
92661
92662
92663
92664
92665
    ** The third argument is only used for STAT3 and STAT4
    */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
#endif
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
    sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4,
                     (char*)&statInitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);

    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0
    **   goto next_push_0;
    **
    */
    addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrNextRow = sqlite3VdbeCurrentAddr(v);

    if( nColTest>0 ){
      int endDistinctTest = sqlite3VdbeMakeLabel(v);
      int *aGotoChng;               /* Array of jump instruction addresses */
      aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
      if( aGotoChng==0 ) continue;

      /*
      **  next_row:
      **   regChng = 0
      **   if( idx(0) != regPrev(0) ) goto chng_addr_0
      **   regChng = 1
92177
92178
92179
92180
92181
92182
92183
92184
92185
92186
92187
92188
92189
92190
92191
92192
        VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
      sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
    }
#endif
    assert( regChng==(regStat4+1) );
    sqlite3VdbeAddOp3(v, OP_Function0, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);







|
|







92728
92729
92730
92731
92732
92733
92734
92735
92736
92737
92738
92739
92740
92741
92742
92743
        VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
      sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
    }
#endif
    assert( regChng==(regStat4+1) );
    sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp,
                     (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
92508
92509
92510
92511
92512
92513
92514
92515
92516
92517
92518
92519
92520
92521
92522
    int nCol = pIndex->nKeyCol+1;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    /* Index.aiRowEst may already be set here if there are duplicate 
    ** sqlite_stat1 entries for this index. In that case just clobber
    ** the old data with the new instead of allocating a new array.  */
    if( pIndex->aiRowEst==0 ){
      pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
      if( pIndex->aiRowEst==0 ) pInfo->db->mallocFailed = 1;
    }
    aiRowEst = pIndex->aiRowEst;
#endif
    pIndex->bUnordered = 0;
    decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
  }else{







|







93059
93060
93061
93062
93063
93064
93065
93066
93067
93068
93069
93070
93071
93072
93073
    int nCol = pIndex->nKeyCol+1;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    /* Index.aiRowEst may already be set here if there are duplicate 
    ** sqlite_stat1 entries for this index. In that case just clobber
    ** the old data with the new instead of allocating a new array.  */
    if( pIndex->aiRowEst==0 ){
      pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
      if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
    }
    aiRowEst = pIndex->aiRowEst;
#endif
    pIndex->bUnordered = 0;
    decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
  }else{
92655
92656
92657
92658
92659
92660
92661
92662
92663
92664
92665
92666
92667
92668
92669
){
  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bEnabled==0 );
  zSql = sqlite3MPrintf(db, zSql1, zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;







|







93206
93207
93208
93209
93210
93211
93212
93213
93214
93215
93216
93217
93218
93219
93220
){
  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bDisable );
  zSql = sqlite3MPrintf(db, zSql1, zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;
92769
92770
92771
92772
92773
92774
92775
92776
92777
92778
92779
92780
92781
92782
92783
/*
** Load content from the sqlite_stat4 and sqlite_stat3 tables into 
** the Index.aSample[] arrays of all indices.
*/
static int loadStat4(sqlite3 *db, const char *zDb){
  int rc = SQLITE_OK;             /* Result codes from subroutines */

  assert( db->lookaside.bEnabled==0 );
  if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
    rc = loadStatTbl(db, 0,
      "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
      zDb
    );
  }







|







93320
93321
93322
93323
93324
93325
93326
93327
93328
93329
93330
93331
93332
93333
93334
/*
** Load content from the sqlite_stat4 and sqlite_stat3 tables into 
** the Index.aSample[] arrays of all indices.
*/
static int loadStat4(sqlite3 *db, const char *zDb){
  int rc = SQLITE_OK;             /* Result codes from subroutines */

  assert( db->lookaside.bDisable );
  if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
    rc = loadStatTbl(db, 0,
      "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
      zDb
    );
  }
92851
92852
92853
92854
92855
92856
92857
92858
92859
92860
92861
92862
92863
92864
92865
92866
92867
92868
92869
92870
92871
92872
92873
92874
92875
92876
92877
92878
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3_free(pIdx->aiRowEst);
    pIdx->aiRowEst = 0;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */








<
|

|









|







93402
93403
93404
93405
93406
93407
93408

93409
93410
93411
93412
93413
93414
93415
93416
93417
93418
93419
93420
93421
93422
93423
93424
93425
93426
93427
93428
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){

    db->lookaside.bDisable++;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bDisable--;
  }
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3_free(pIdx->aiRowEst);
    pIdx->aiRowEst = 0;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    sqlite3OomFault(db);
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */

92985
92986
92987
92988
92989
92990
92991
92992
92993
92994
92995
92996
92997
92998
92999
93000
93001
93002
93003
93004
93005
93006
93007
93008
93009
93010
93011
93012
93013
93014
93015
93016
93017
    }
  }

  /* Allocate the new entry in the db->aDb[] array and initialize the schema
  ** hash tables.
  */
  if( db->aDb==db->aDbStatic ){
    aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
    if( aNew==0 ) return;
    memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
  }else{
    aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
    if( aNew==0 ) return;
  }
  db->aDb = aNew;
  aNew = &db->aDb[db->nDb];
  memset(aNew, 0, sizeof(*aNew));

  /* Open the database file. If the btree is successfully opened, use
  ** it to obtain the database schema. At this point the schema may
  ** or may not be initialized.
  */
  flags = db->openFlags;
  rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite3_result_error(context, zErr, -1);
    sqlite3_free(zErr);
    return;
  }
  assert( pVfs );
  flags |= SQLITE_OPEN_MAIN_DB;
  rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags);







|

















|







93535
93536
93537
93538
93539
93540
93541
93542
93543
93544
93545
93546
93547
93548
93549
93550
93551
93552
93553
93554
93555
93556
93557
93558
93559
93560
93561
93562
93563
93564
93565
93566
93567
    }
  }

  /* Allocate the new entry in the db->aDb[] array and initialize the schema
  ** hash tables.
  */
  if( db->aDb==db->aDbStatic ){
    aNew = sqlite3DbMallocRawNN(db, sizeof(db->aDb[0])*3 );
    if( aNew==0 ) return;
    memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
  }else{
    aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
    if( aNew==0 ) return;
  }
  db->aDb = aNew;
  aNew = &db->aDb[db->nDb];
  memset(aNew, 0, sizeof(*aNew));

  /* Open the database file. If the btree is successfully opened, use
  ** it to obtain the database schema. At this point the schema may
  ** or may not be initialized.
  */
  flags = db->openFlags;
  rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
    sqlite3_result_error(context, zErr, -1);
    sqlite3_free(zErr);
    return;
  }
  assert( pVfs );
  flags |= SQLITE_OPEN_MAIN_DB;
  rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags);
93032
93033
93034
93035
93036
93037
93038
93039

93040
93041
93042
93043
93044
93045
93046
    }
    sqlite3BtreeEnter(aNew->pBt);
    pPager = sqlite3BtreePager(aNew->pBt);
    sqlite3PagerLockingMode(pPager, db->dfltLockMode);
    sqlite3BtreeSecureDelete(aNew->pBt,
                             sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    sqlite3BtreeSetPagerFlags(aNew->pBt, 3 | (db->flags & PAGER_FLAGS_MASK));

#endif
    sqlite3BtreeLeave(aNew->pBt);
  }
  aNew->safety_level = 3;
  aNew->zName = sqlite3DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;







|
>







93582
93583
93584
93585
93586
93587
93588
93589
93590
93591
93592
93593
93594
93595
93596
93597
    }
    sqlite3BtreeEnter(aNew->pBt);
    pPager = sqlite3BtreePager(aNew->pBt);
    sqlite3PagerLockingMode(pPager, db->dfltLockMode);
    sqlite3BtreeSecureDelete(aNew->pBt,
                             sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    sqlite3BtreeSetPagerFlags(aNew->pBt,
                      PAGER_SYNCHRONOUS_FULL | (db->flags & PAGER_FLAGS_MASK));
#endif
    sqlite3BtreeLeave(aNew->pBt);
  }
  aNew->safety_level = 3;
  aNew->zName = sqlite3DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
93105
93106
93107
93108
93109
93110
93111
93112
93113
93114
93115
93116
93117
93118
93119
      sqlite3BtreeClose(db->aDb[iDb].pBt);
      db->aDb[iDb].pBt = 0;
      db->aDb[iDb].pSchema = 0;
    }
    sqlite3ResetAllSchemasOfConnection(db);
    db->nDb = iDb;
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
      db->mallocFailed = 1;
      sqlite3DbFree(db, zErrDyn);
      zErrDyn = sqlite3MPrintf(db, "out of memory");
    }else if( zErrDyn==0 ){
      zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
    }
    goto attach_error;
  }







|







93656
93657
93658
93659
93660
93661
93662
93663
93664
93665
93666
93667
93668
93669
93670
      sqlite3BtreeClose(db->aDb[iDb].pBt);
      db->aDb[iDb].pBt = 0;
      db->aDb[iDb].pSchema = 0;
    }
    sqlite3ResetAllSchemasOfConnection(db);
    db->nDb = iDb;
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
      sqlite3OomFault(db);
      sqlite3DbFree(db, zErrDyn);
      zErrDyn = sqlite3MPrintf(db, "out of memory");
    }else if( zErrDyn==0 ){
      zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
    }
    goto attach_error;
  }
93235
93236
93237
93238
93239
93240
93241
93242

93243
93244
93245
93246
93247
93248
93249
93250
93251
93252
93253
  regArgs = sqlite3GetTempRange(pParse, 4);
  sqlite3ExprCode(pParse, pFilename, regArgs);
  sqlite3ExprCode(pParse, pDbname, regArgs+1);
  sqlite3ExprCode(pParse, pKey, regArgs+2);

  assert( v || db->mallocFailed );
  if( v ){
    sqlite3VdbeAddOp3(v, OP_Function0, 0, regArgs+3-pFunc->nArg, regArgs+3);

    assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
    sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
    sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);

    /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
    ** statement only). For DETACH, set it to false (expire all existing
    ** statements).
    */
    sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
  }
  







|
>


<
|







93786
93787
93788
93789
93790
93791
93792
93793
93794
93795
93796

93797
93798
93799
93800
93801
93802
93803
93804
  regArgs = sqlite3GetTempRange(pParse, 4);
  sqlite3ExprCode(pParse, pFilename, regArgs);
  sqlite3ExprCode(pParse, pDbname, regArgs+1);
  sqlite3ExprCode(pParse, pKey, regArgs+2);

  assert( v || db->mallocFailed );
  if( v ){
    sqlite3VdbeAddOp4(v, OP_Function0, 0, regArgs+3-pFunc->nArg, regArgs+3,
                      (char *)pFunc, P4_FUNCDEF);
    assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
    sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));

 
    /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
    ** statement only). For DETACH, set it to false (expire all existing
    ** statements).
    */
    sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
  }
  
93264
93265
93266
93267
93268
93269
93270
93271
93272
93273
93274
93275
93276
93277
93278
93279
93280
93281
93282
93283
93284
93285
93286
93287
93288
93289
93290
93291
93292
93293
93294
93295
93296
93297
93298
93299
93300
*/
SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
  static const FuncDef detach_func = {
    1,                /* nArg */
    SQLITE_UTF8,      /* funcFlags */
    0,                /* pUserData */
    0,                /* pNext */
    detachFunc,       /* xFunc */
    0,                /* xStep */
    0,                /* xFinalize */
    "sqlite_detach",  /* zName */
    0,                /* pHash */
    0                 /* pDestructor */
  };
  codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
}

/*
** Called by the parser to compile an ATTACH statement.
**
**     ATTACH p AS pDbname KEY pKey
*/
SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
  static const FuncDef attach_func = {
    3,                /* nArg */
    SQLITE_UTF8,      /* funcFlags */
    0,                /* pUserData */
    0,                /* pNext */
    attachFunc,       /* xFunc */
    0,                /* xStep */
    0,                /* xFinalize */
    "sqlite_attach",  /* zName */
    0,                /* pHash */
    0                 /* pDestructor */
  };
  codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
}







|
<



















|
<







93815
93816
93817
93818
93819
93820
93821
93822

93823
93824
93825
93826
93827
93828
93829
93830
93831
93832
93833
93834
93835
93836
93837
93838
93839
93840
93841
93842

93843
93844
93845
93846
93847
93848
93849
*/
SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
  static const FuncDef detach_func = {
    1,                /* nArg */
    SQLITE_UTF8,      /* funcFlags */
    0,                /* pUserData */
    0,                /* pNext */
    detachFunc,       /* xSFunc */

    0,                /* xFinalize */
    "sqlite_detach",  /* zName */
    0,                /* pHash */
    0                 /* pDestructor */
  };
  codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
}

/*
** Called by the parser to compile an ATTACH statement.
**
**     ATTACH p AS pDbname KEY pKey
*/
SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
  static const FuncDef attach_func = {
    3,                /* nArg */
    SQLITE_UTF8,      /* funcFlags */
    0,                /* pUserData */
    0,                /* pNext */
    attachFunc,       /* xSFunc */

    0,                /* xFinalize */
    "sqlite_attach",  /* zName */
    0,                /* pHash */
    0                 /* pDestructor */
  };
  codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
}
93750
93751
93752
93753
93754
93755
93756
93757
93758
93759
93760
93761
93762
93763
93764
93765
93766
93767
93768
93769
93770
93771
93772
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
*/
/* #include "sqliteInt.h" */

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
*/
SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
  pParse->explain = (u8)explainFlag;
  pParse->nVar = 0;
}

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock {
  int iDb;             /* The database containing the table to be locked */







<
<
<
<
<
<
<
<
<







94299
94300
94301
94302
94303
94304
94305









94306
94307
94308
94309
94310
94311
94312
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
*/
/* #include "sqliteInt.h" */










#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock {
  int iDb;             /* The database containing the table to be locked */
93813
93814
93815
93816
93817
93818
93819
93820
93821
93822
93823
93824
93825
93826
93827
    p = &pToplevel->aTableLock[pToplevel->nTableLock++];
    p->iDb = iDb;
    p->iTab = iTab;
    p->isWriteLock = isWriteLock;
    p->zName = zName;
  }else{
    pToplevel->nTableLock = 0;
    pToplevel->db->mallocFailed = 1;
  }
}

/*
** Code an OP_TableLock instruction for each table locked by the
** statement (configured by calls to sqlite3TableLock()).
*/







|







94353
94354
94355
94356
94357
94358
94359
94360
94361
94362
94363
94364
94365
94366
94367
    p = &pToplevel->aTableLock[pToplevel->nTableLock++];
    p->iDb = iDb;
    p->iTab = iTab;
    p->isWriteLock = isWriteLock;
    p->zName = zName;
  }else{
    pToplevel->nTableLock = 0;
    sqlite3OomFault(pToplevel->db);
  }
}

/*
** Code an OP_TableLock instruction for each table locked by the
** statement (configured by calls to sqlite3TableLock()).
*/
93963
93964
93965
93966
93967
93968
93969
93970
93971
93972
93973




93974
93975
93976
93977
93978

93979
93980
93981
93982
93983
93984
93985
  if( v && pParse->nErr==0 && !db->mallocFailed ){
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    /* A minimum of one cursor is required if autoincrement is used
    *  See ticket [a696379c1f08866] */
    if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    sqlite3VdbeMakeReady(v, pParse);
    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else{
    pParse->rc = SQLITE_ERROR;
  }




  pParse->nTab = 0;
  pParse->nMem = 0;
  pParse->nSet = 0;
  pParse->nVar = 0;
  DbMaskZero(pParse->cookieMask);

}

/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction.  When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization







<



>
>
>
>





>







94503
94504
94505
94506
94507
94508
94509

94510
94511
94512
94513
94514
94515
94516
94517
94518
94519
94520
94521
94522
94523
94524
94525
94526
94527
94528
94529
  if( v && pParse->nErr==0 && !db->mallocFailed ){
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    /* A minimum of one cursor is required if autoincrement is used
    *  See ticket [a696379c1f08866] */
    if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    sqlite3VdbeMakeReady(v, pParse);
    pParse->rc = SQLITE_DONE;

  }else{
    pParse->rc = SQLITE_ERROR;
  }

  /* We are done with this Parse object. There is no need to de-initialize it */
#if 0
  pParse->colNamesSet = 0;
  pParse->nTab = 0;
  pParse->nMem = 0;
  pParse->nSet = 0;
  pParse->nVar = 0;
  DbMaskZero(pParse->cookieMask);
#endif
}

/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction.  When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization
94230
94231
94232
94233
94234
94235
94236
94237
94238
94239
94240
94241
94242
94243
94244
      continue;
    }
    if( j<i ){
      db->aDb[j] = db->aDb[i];
    }
    j++;
  }
  memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
  db->nDb = j;
  if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
    memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
    sqlite3DbFree(db, db->aDb);
    db->aDb = db->aDbStatic;
  }
}







<







94774
94775
94776
94777
94778
94779
94780

94781
94782
94783
94784
94785
94786
94787
      continue;
    }
    if( j<i ){
      db->aDb[j] = db->aDb[i];
    }
    j++;
  }

  db->nDb = j;
  if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
    memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
    sqlite3DbFree(db, db->aDb);
    db->aDb = db->aDbStatic;
  }
}
94493
94494
94495
94496
94497
94498
94499

94500
94501
94502
94503
94504
94505
94506
94507
  Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
  Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
  Token **pUnqual     /* Write the unqualified object name here */
){
  int iDb;                    /* Database holding the object */
  sqlite3 *db = pParse->db;


  if( ALWAYS(pName2!=0) && pName2->n>0 ){
    if( db->init.busy ) {
      sqlite3ErrorMsg(pParse, "corrupt database");
      return -1;
    }
    *pUnqual = pName2;
    iDb = sqlite3FindDb(db, pName1);
    if( iDb<0 ){







>
|







95036
95037
95038
95039
95040
95041
95042
95043
95044
95045
95046
95047
95048
95049
95050
95051
  Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
  Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
  Token **pUnqual     /* Write the unqualified object name here */
){
  int iDb;                    /* Database holding the object */
  sqlite3 *db = pParse->db;

  assert( pName2!=0 );
  if( pName2->n>0 ){
    if( db->init.busy ) {
      sqlite3ErrorMsg(pParse, "corrupt database");
      return -1;
    }
    *pUnqual = pName2;
    iDb = sqlite3FindDb(db, pName1);
    if( iDb<0 ){
94582
94583
94584
94585
94586
94587
94588
94589
94590
94591
94592
94593
94594
94595
94596

94597
94598
94599
94600

94601
94602
94603
94604
94605
94606
94607
94608
94609
94610
94611
94612
94613
94614

94615
94616
94617
94618
94619
94620
94621
94622
94623
94624

94625
94626





94627
94628
94629
94630
94631
94632
94633
94634
94635
94636
94637
94638
94639
94640
94641
94642
94643
94644

94645
94646
94647
94648
94649
94650
94651
  Table *pTable;
  char *zName = 0; /* The name of the new table */
  sqlite3 *db = pParse->db;
  Vdbe *v;
  int iDb;         /* Database number to create the table in */
  Token *pName;    /* Unqualified name of the table to create */

  /* The table or view name to create is passed to this routine via tokens
  ** pName1 and pName2. If the table name was fully qualified, for example:
  **
  ** CREATE TABLE xxx.yyy (...);
  ** 
  ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
  ** the table name is not fully qualified, i.e.:
  **

  ** CREATE TABLE yyy(...);
  **
  ** Then pName1 is set to "yyy" and pName2 is "".
  **

  ** The call below sets the pName pointer to point at the token (pName1 or
  ** pName2) that stores the unqualified table name. The variable iDb is
  ** set to the index of the database that the table or view is to be
  ** created in.
  */
  iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
  if( iDb<0 ) return;
  if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
    /* If creating a temp table, the name may not be qualified. Unless 
    ** the database name is "temp" anyway.  */
    sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
    return;
  }
  if( !OMIT_TEMPDB && isTemp ) iDb = 1;


  pParse->sNameToken = *pName;
  zName = sqlite3NameFromToken(db, pName);
  if( zName==0 ) return;
  if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    goto begin_table_error;
  }
  if( db->init.iDb==1 ) isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
  assert( (isTemp & 1)==isTemp );

  {
    int code;





    char *zDb = db->aDb[iDb].zName;
    if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
      goto begin_table_error;
    }
    if( isView ){
      if( !OMIT_TEMPDB && isTemp ){
        code = SQLITE_CREATE_TEMP_VIEW;
      }else{
        code = SQLITE_CREATE_VIEW;
      }
    }else{
      if( !OMIT_TEMPDB && isTemp ){
        code = SQLITE_CREATE_TEMP_TABLE;
      }else{
        code = SQLITE_CREATE_TABLE;
      }
    }
    if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){

      goto begin_table_error;
    }
  }
#endif

  /* Make sure the new table name does not collide with an existing
  ** index or table name in the same database.  Issue an error message if







|
|
<
<
<
<
<
<
>
|
<
|
<
>
|
<
<
<
<
|
|
|
|
|
|
|
|
|
>
|

<






|
>

|
>
>
>
>
>




<
<
<
<
<
<
<
<
<
<
<
<
<
|
>







95126
95127
95128
95129
95130
95131
95132
95133
95134






95135
95136

95137

95138
95139




95140
95141
95142
95143
95144
95145
95146
95147
95148
95149
95150
95151

95152
95153
95154
95155
95156
95157
95158
95159
95160
95161
95162
95163
95164
95165
95166
95167
95168
95169
95170













95171
95172
95173
95174
95175
95176
95177
95178
95179
  Table *pTable;
  char *zName = 0; /* The name of the new table */
  sqlite3 *db = pParse->db;
  Vdbe *v;
  int iDb;         /* Database number to create the table in */
  Token *pName;    /* Unqualified name of the table to create */

  if( db->init.busy && db->init.newTnum==1 ){
    /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */






    iDb = db->init.iDb;
    zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));

    pName = pName1;

  }else{
    /* The common case */




    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ) return;
    if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
      /* If creating a temp table, the name may not be qualified. Unless 
      ** the database name is "temp" anyway.  */
      sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
      return;
    }
    if( !OMIT_TEMPDB && isTemp ) iDb = 1;
    zName = sqlite3NameFromToken(db, pName);
  }
  pParse->sNameToken = *pName;

  if( zName==0 ) return;
  if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    goto begin_table_error;
  }
  if( db->init.iDb==1 ) isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
  assert( isTemp==0 || isTemp==1 );
  assert( isView==0 || isView==1 );
  {
    static const u8 aCode[] = {
       SQLITE_CREATE_TABLE,
       SQLITE_CREATE_TEMP_TABLE,
       SQLITE_CREATE_VIEW,
       SQLITE_CREATE_TEMP_VIEW
    };
    char *zDb = db->aDb[iDb].zName;
    if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
      goto begin_table_error;
    }













    if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
                                       zName, 0, zDb) ){
      goto begin_table_error;
    }
  }
#endif

  /* Make sure the new table name does not collide with an existing
  ** index or table name in the same database.  Issue an error message if
94673
94674
94675
94676
94677
94678
94679
94680
94681
94682
94683
94684
94685
94686
94687
      sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
      goto begin_table_error;
    }
  }

  pTable = sqlite3DbMallocZero(db, sizeof(Table));
  if( pTable==0 ){
    db->mallocFailed = 1;
    pParse->rc = SQLITE_NOMEM;
    pParse->nErr++;
    goto begin_table_error;
  }
  pTable->zName = zName;
  pTable->iPKey = -1;
  pTable->pSchema = db->aDb[iDb].pSchema;







|







95201
95202
95203
95204
95205
95206
95207
95208
95209
95210
95211
95212
95213
95214
95215
      sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
      goto begin_table_error;
    }
  }

  pTable = sqlite3DbMallocZero(db, sizeof(Table));
  if( pTable==0 ){
    assert( db->mallocFailed );
    pParse->rc = SQLITE_NOMEM;
    pParse->nErr++;
    goto begin_table_error;
  }
  pTable->zName = zName;
  pTable->iPKey = -1;
  pTable->pSchema = db->aDb[iDb].pSchema;
94730
94731
94732
94733
94734
94735
94736
94737
94738
94739
94740
94741
94742
94743
94744
94745
94746
94747
    reg2 = pParse->regRoot = ++pParse->nMem;
    reg3 = ++pParse->nMem;
    sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
    sqlite3VdbeUsesBtree(v, iDb);
    addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
    fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
                  1 : SQLITE_MAX_FILE_FORMAT;
    sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
    sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
    sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
    sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
    sqlite3VdbeJumpHere(v, addr1);

    /* This just creates a place-holder record in the sqlite_master table.
    ** The record created does not contain anything yet.  It will be replaced
    ** by the real entry in code generated at sqlite3EndTable().
    **
    ** The rowid for the new entry is left in register pParse->regRowid.







<
|
<
|







95258
95259
95260
95261
95262
95263
95264

95265

95266
95267
95268
95269
95270
95271
95272
95273
    reg2 = pParse->regRoot = ++pParse->nMem;
    reg3 = ++pParse->nMem;
    sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
    sqlite3VdbeUsesBtree(v, iDb);
    addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
    fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
                  1 : SQLITE_MAX_FILE_FORMAT;

    sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);

    sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
    sqlite3VdbeJumpHere(v, addr1);

    /* This just creates a place-holder record in the sqlite_master table.
    ** The record created does not contain anything yet.  It will be replaced
    ** by the real entry in code generated at sqlite3EndTable().
    **
    ** The rowid for the new entry is left in register pParse->regRowid.
95218
95219
95220
95221
95222
95223
95224
95225
95226
95227
95228
95229
95230
95231

95232
95233
95234
95235
95236
95237
95238
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
  int r1 = sqlite3GetTempReg(pParse);
  sqlite3 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
  sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
  sqlite3ReleaseTempReg(pParse, r1);

}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
**







<



<
|
<
>







95744
95745
95746
95747
95748
95749
95750

95751
95752
95753

95754

95755
95756
95757
95758
95759
95760
95761
95762
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){

  sqlite3 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );

  sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 

                    db->aDb[iDb].pSchema->schema_cookie+1);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
**
95306
95307
95308
95309
95310
95311
95312
95313
95314
95315
95316
95317
95318
95319
95320
    zSep = "\n  ";
    zSep2 = ",\n  ";
    zEnd = "\n)";
  }
  n += 35 + 6*p->nCol;
  zStmt = sqlite3DbMallocRaw(0, n);
  if( zStmt==0 ){
    db->mallocFailed = 1;
    return 0;
  }
  sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
  k = sqlite3Strlen30(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){







|







95830
95831
95832
95833
95834
95835
95836
95837
95838
95839
95840
95841
95842
95843
95844
    zSep = "\n  ";
    zSep2 = ",\n  ";
    zEnd = "\n)";
  }
  n += 35 + 6*p->nCol;
  zStmt = sqlite3DbMallocRaw(0, n);
  if( zStmt==0 ){
    sqlite3OomFault(db);
    return 0;
  }
  sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
  k = sqlite3Strlen30(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
95455
95456
95457
95458
95459
95460
95461
95462
95463
95464
95465
95466
95467
95468
95469
95470

  /* Locate the PRIMARY KEY index.  Or, if this table was originally
  ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 
  */
  if( pTab->iPKey>=0 ){
    ExprList *pList;
    Token ipkToken;
    ipkToken.z = pTab->aCol[pTab->iPKey].zName;
    ipkToken.n = sqlite3Strlen30(ipkToken.z);
    pList = sqlite3ExprListAppend(pParse, 0, 
                  sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
    if( pList==0 ) return;
    pList->a[0].sortOrder = pParse->iPkSortOrder;
    assert( pParse->pNewTable==pTab );
    pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
    if( pPk==0 ) return;







|
<







95979
95980
95981
95982
95983
95984
95985
95986

95987
95988
95989
95990
95991
95992
95993

  /* Locate the PRIMARY KEY index.  Or, if this table was originally
  ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 
  */
  if( pTab->iPKey>=0 ){
    ExprList *pList;
    Token ipkToken;
    sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);

    pList = sqlite3ExprListAppend(pParse, 0, 
                  sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
    if( pList==0 ) return;
    pList->a[0].sortOrder = pParse->iPkSortOrder;
    assert( pParse->pNewTable==pTab );
    pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
    if( pPk==0 ) return;
95599
95600
95601
95602
95603
95604
95605



95606
95607
95608

95609
95610
95611
95612
95613
95614
95615
  assert( !db->init.busy || !pSelect );

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
  ** should have been put there by the sqliteOpenCb routine.)



  */
  if( db->init.busy ){
    p->tnum = db->init.newTnum;

  }

  /* Special processing for WITHOUT ROWID Tables */
  if( tabOpts & TF_WithoutRowid ){
    if( (p->tabFlags & TF_Autoincrement) ){
      sqlite3ErrorMsg(pParse,
          "AUTOINCREMENT not allowed on WITHOUT ROWID tables");







>
>
>



>







96122
96123
96124
96125
96126
96127
96128
96129
96130
96131
96132
96133
96134
96135
96136
96137
96138
96139
96140
96141
96142
  assert( !db->init.busy || !pSelect );

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
  ** should have been put there by the sqliteOpenCb routine.)
  **
  ** If the root page number is 1, that means this is the sqlite_master
  ** table itself.  So mark it read-only.
  */
  if( db->init.busy ){
    p->tnum = db->init.newTnum;
    if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
  }

  /* Special processing for WITHOUT ROWID Tables */
  if( tabOpts & TF_WithoutRowid ){
    if( (p->tabFlags & TF_Autoincrement) ){
      sqlite3ErrorMsg(pParse,
          "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
95702
95703
95704
95705
95706
95707
95708
95709
95710
95711
95712
95713
95714
95715
95716
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;
      addrTop = sqlite3VdbeCurrentAddr(v) + 1;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
      sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
      sqlite3VdbeJumpHere(v, addrTop - 1);
      if( pParse->nErr ) return;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
      if( pSelTab==0 ) return;
      assert( p->aCol==0 );
      p->nCol = pSelTab->nCol;
      p->aCol = pSelTab->aCol;







|







96229
96230
96231
96232
96233
96234
96235
96236
96237
96238
96239
96240
96241
96242
96243
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;
      addrTop = sqlite3VdbeCurrentAddr(v) + 1;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
      sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeEndCoroutine(v, regYield);
      sqlite3VdbeJumpHere(v, addrTop - 1);
      if( pParse->nErr ) return;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
      if( pSelTab==0 ) return;
      assert( p->aCol==0 );
      p->nCol = pSelTab->nCol;
      p->aCol = pSelTab->aCol;
95786
95787
95788
95789
95790
95791
95792
95793
95794
95795
95796
95797
95798
95799
95800
  if( db->init.busy ){
    Table *pOld;
    Schema *pSchema = p->pSchema;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      db->mallocFailed = 1;
      return;
    }
    pParse->pNewTable = 0;
    db->flags |= SQLITE_InternChanges;

#ifndef SQLITE_OMIT_ALTERTABLE
    if( !p->pSelect ){







|







96313
96314
96315
96316
96317
96318
96319
96320
96321
96322
96323
96324
96325
96326
96327
  if( db->init.busy ){
    Table *pOld;
    Schema *pSchema = p->pSchema;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      sqlite3OomFault(db);
      return;
    }
    pParse->pNewTable = 0;
    db->flags |= SQLITE_InternChanges;

#ifndef SQLITE_OMIT_ALTERTABLE
    if( !p->pSelect ){
95890
95891
95892
95893
95894
95895
95896
95897
95898
95899
95900
95901
95902
95903
95904
SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
  Table *pSelTab;   /* A fake table from which we get the result set */
  Select *pSel;     /* Copy of the SELECT that implements the view */
  int nErr = 0;     /* Number of errors encountered */
  int n;            /* Temporarily holds the number of cursors assigned */
  sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
  sqlite3_xauth xAuth;       /* Saved xAuth pointer */
  u8 bEnabledLA;             /* Saved db->lookaside.bEnabled state */

  assert( pTable );

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( sqlite3VtabCallConnect(pParse, pTable) ){
    return SQLITE_ERROR;
  }







<







96417
96418
96419
96420
96421
96422
96423

96424
96425
96426
96427
96428
96429
96430
SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
  Table *pSelTab;   /* A fake table from which we get the result set */
  Select *pSel;     /* Copy of the SELECT that implements the view */
  int nErr = 0;     /* Number of errors encountered */
  int n;            /* Temporarily holds the number of cursors assigned */
  sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
  sqlite3_xauth xAuth;       /* Saved xAuth pointer */


  assert( pTable );

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( sqlite3VtabCallConnect(pParse, pTable) ){
    return SQLITE_ERROR;
  }
95936
95937
95938
95939
95940
95941
95942
95943
95944
95945
95946
95947

95948
95949
95950
95951
95952
95953
95954
95955
95956
95957
95958
95959
95960
95961
95962

95963
95964
95965
95966
95967
95968
95969
95970
95971
95972
95973
95974
95975
95976
95977
95978
95979
95980
95981
95982
95983
95984
95985
95986
95987
95988
  ** Note that the call to sqlite3ResultSetOfSelect() will expand any
  ** "*" elements in the results set of the view and will assign cursors
  ** to the elements of the FROM clause.  But we do not want these changes
  ** to be permanent.  So the computation is done on a copy of the SELECT
  ** statement that defines the view.
  */
  assert( pTable->pSelect );
  bEnabledLA = db->lookaside.bEnabled;
  if( pTable->pCheck ){
    db->lookaside.bEnabled = 0;
    sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 
                               &pTable->nCol, &pTable->aCol);

  }else{
    pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
    if( pSel ){
      n = pParse->nTab;
      sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
      pTable->nCol = -1;
      db->lookaside.bEnabled = 0;
#ifndef SQLITE_OMIT_AUTHORIZATION
      xAuth = db->xAuth;
      db->xAuth = 0;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
      db->xAuth = xAuth;
#else
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
#endif

      pParse->nTab = n;
      if( pSelTab ){
        assert( pTable->aCol==0 );
        pTable->nCol = pSelTab->nCol;
        pTable->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(db, pSelTab);
        assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
      }else{
        pTable->nCol = 0;
        nErr++;
      }
      sqlite3SelectDelete(db, pSel);
    } else {
      nErr++;
    }
  }
  db->lookaside.bEnabled = bEnabledLA;
  pTable->pSchema->schemaFlags |= DB_UnresetViews;
#endif /* SQLITE_OMIT_VIEW */
  return nErr;  
}
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifndef SQLITE_OMIT_VIEW







<

|


>






|








>


















<







96462
96463
96464
96465
96466
96467
96468

96469
96470
96471
96472
96473
96474
96475
96476
96477
96478
96479
96480
96481
96482
96483
96484
96485
96486
96487
96488
96489
96490
96491
96492
96493
96494
96495
96496
96497
96498
96499
96500
96501
96502
96503
96504
96505
96506
96507

96508
96509
96510
96511
96512
96513
96514
  ** Note that the call to sqlite3ResultSetOfSelect() will expand any
  ** "*" elements in the results set of the view and will assign cursors
  ** to the elements of the FROM clause.  But we do not want these changes
  ** to be permanent.  So the computation is done on a copy of the SELECT
  ** statement that defines the view.
  */
  assert( pTable->pSelect );

  if( pTable->pCheck ){
    db->lookaside.bDisable++;
    sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 
                               &pTable->nCol, &pTable->aCol);
    db->lookaside.bDisable--;
  }else{
    pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
    if( pSel ){
      n = pParse->nTab;
      sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
      pTable->nCol = -1;
      db->lookaside.bDisable++;
#ifndef SQLITE_OMIT_AUTHORIZATION
      xAuth = db->xAuth;
      db->xAuth = 0;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
      db->xAuth = xAuth;
#else
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
#endif
      db->lookaside.bDisable--;
      pParse->nTab = n;
      if( pSelTab ){
        assert( pTable->aCol==0 );
        pTable->nCol = pSelTab->nCol;
        pTable->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(db, pSelTab);
        assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
      }else{
        pTable->nCol = 0;
        nErr++;
      }
      sqlite3SelectDelete(db, pSel);
    } else {
      nErr++;
    }
  }

  pTable->pSchema->schemaFlags |= DB_UnresetViews;
#endif /* SQLITE_OMIT_VIEW */
  return nErr;  
}
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifndef SQLITE_OMIT_VIEW
96054
96055
96056
96057
96058
96059
96060

96061
96062
96063
96064
96065
96066
96067
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);

  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.







>







96580
96581
96582
96583
96584
96585
96586
96587
96588
96589
96590
96591
96592
96593
96594
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  assert( iTable>1 );
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.
96439
96440
96441
96442
96443
96444
96445
96446
96447
96448
96449
96450
96451
96452
96453
  pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */

  assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
  pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 
      pFKey->zTo, (void *)pFKey
  );
  if( pNextTo==pFKey ){
    db->mallocFailed = 1;
    goto fk_end;
  }
  if( pNextTo ){
    assert( pNextTo->pPrevTo==0 );
    pFKey->pNextTo = pNextTo;
    pNextTo->pPrevTo = pFKey;
  }







|







96966
96967
96968
96969
96970
96971
96972
96973
96974
96975
96976
96977
96978
96979
96980
  pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */

  assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
  pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 
      pFKey->zTo, (void *)pFKey
  );
  if( pNextTo==pFKey ){
    sqlite3OomFault(db);
    goto fk_end;
  }
  if( pNextTo ){
    assert( pNextTo->pPrevTo==0 );
    pFKey->pNextTo = pNextTo;
    pNextTo->pPrevTo = pFKey;
  }
96799
96800
96801
96802
96803
96804
96805
96806
96807
96808
96809
96810
96811
96812
96813
96814

  /* If pList==0, it means this routine was called to make a primary
  ** key out of the last column added to the table under construction.
  ** So create a fake list to simulate this.
  */
  if( pList==0 ){
    Token prevCol;
    prevCol.z = pTab->aCol[pTab->nCol-1].zName;
    prevCol.n = sqlite3Strlen30(prevCol.z);
    pList = sqlite3ExprListAppend(pParse, 0,
              sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
    if( pList==0 ) goto exit_create_index;
    assert( pList->nExpr==1 );
    sqlite3ExprListSetSortOrder(pList, sortOrder);
  }else{
    sqlite3ExprListCheckLength(pParse, pList, "index");







|
<







97326
97327
97328
97329
97330
97331
97332
97333

97334
97335
97336
97337
97338
97339
97340

  /* If pList==0, it means this routine was called to make a primary
  ** key out of the last column added to the table under construction.
  ** So create a fake list to simulate this.
  */
  if( pList==0 ){
    Token prevCol;
    sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);

    pList = sqlite3ExprListAppend(pParse, 0,
              sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
    if( pList==0 ) goto exit_create_index;
    assert( pList->nExpr==1 );
    sqlite3ExprListSetSortOrder(pList, sortOrder);
  }else{
    sqlite3ExprListCheckLength(pParse, pList, "index");
97022
97023
97024
97025
97026
97027
97028
97029
97030
97031
97032
97033
97034
97035
97036
  if( db->init.busy ){
    Index *p;
    assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
    p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
                          pIndex->zName, pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      db->mallocFailed = 1;
      goto exit_create_index;
    }
    db->flags |= SQLITE_InternChanges;
    if( pTblName!=0 ){
      pIndex->tnum = db->init.newTnum;
    }
  }







|







97548
97549
97550
97551
97552
97553
97554
97555
97556
97557
97558
97559
97560
97561
97562
  if( db->init.busy ){
    Index *p;
    assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
    p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
                          pIndex->zName, pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      sqlite3OomFault(db);
      goto exit_create_index;
    }
    db->flags |= SQLITE_InternChanges;
    if( pTblName!=0 ){
      pIndex->tnum = db->init.newTnum;
    }
  }
97451
97452
97453
97454
97455
97456
97457

97458
97459
97460
97461

97462
97463
97464
97465
97466
97467
97468
  sqlite3 *db,        /* Connection to notify of malloc failures */
  SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
  Token *pTable,      /* Table to append */
  Token *pDatabase    /* Database of the table */
){
  struct SrcList_item *pItem;
  assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */

  if( pList==0 ){
    pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 1;

  }
  pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
  if( db->mallocFailed ){
    sqlite3SrcListDelete(db, pList);
    return 0;
  }
  pItem = &pList->a[pList->nSrc-1];







>

|


>







97977
97978
97979
97980
97981
97982
97983
97984
97985
97986
97987
97988
97989
97990
97991
97992
97993
97994
97995
97996
  sqlite3 *db,        /* Connection to notify of malloc failures */
  SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
  Token *pTable,      /* Table to append */
  Token *pDatabase    /* Database of the table */
){
  struct SrcList_item *pItem;
  assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
  assert( db!=0 );
  if( pList==0 ){
    pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 1;
    pList->nSrc = 0;
  }
  pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
  if( db->mallocFailed ){
    sqlite3SrcListDelete(db, pList);
    return 0;
  }
  pItem = &pList->a[pList->nSrc-1];
97635
97636
97637
97638
97639
97640
97641
97642
97643
97644
97645
97646
97647
97648
97649
97650
97651
97652
97653
97654
97655
97656
97657
97658
97659
97660
97661
97662
97663
97664
97665
97666
97667
97668
97669
97670
97671
97672
97673
97674
97675
97676
97677
97678
97679
97680
97681
97682
97683
97684
97685
97686
97687
97688
97689
97690
97691
97692
      p->a[i].fg.jointype = p->a[i-1].fg.jointype;
    }
    p->a[0].fg.jointype = 0;
  }
}

/*
** Begin a transaction
*/
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
  sqlite3 *db;
  Vdbe *v;
  int i;

  assert( pParse!=0 );
  db = pParse->db;
  assert( db!=0 );
/*  if( db->aDb[0].pBt==0 ) return; */
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( !v ) return;
  if( type!=TK_DEFERRED ){
    for(i=0; i<db->nDb; i++){
      sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
      sqlite3VdbeUsesBtree(v, i);
    }
  }
  sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
}

/*
** Commit a transaction
*/
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
  Vdbe *v;

  assert( pParse!=0 );
  assert( pParse->db!=0 );
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
  }
}

/*
** Rollback a transaction
*/
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
  Vdbe *v;

  assert( pParse!=0 );
  assert( pParse->db!=0 );
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){







|









<











|



|











|




|







98163
98164
98165
98166
98167
98168
98169
98170
98171
98172
98173
98174
98175
98176
98177
98178
98179

98180
98181
98182
98183
98184
98185
98186
98187
98188
98189
98190
98191
98192
98193
98194
98195
98196
98197
98198
98199
98200
98201
98202
98203
98204
98205
98206
98207
98208
98209
98210
98211
98212
98213
98214
98215
98216
98217
98218
98219
      p->a[i].fg.jointype = p->a[i-1].fg.jointype;
    }
    p->a[0].fg.jointype = 0;
  }
}

/*
** Generate VDBE code for a BEGIN statement.
*/
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
  sqlite3 *db;
  Vdbe *v;
  int i;

  assert( pParse!=0 );
  db = pParse->db;
  assert( db!=0 );

  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( !v ) return;
  if( type!=TK_DEFERRED ){
    for(i=0; i<db->nDb; i++){
      sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
      sqlite3VdbeUsesBtree(v, i);
    }
  }
  sqlite3VdbeAddOp0(v, OP_AutoCommit);
}

/*
** Generate VDBE code for a COMMIT statement.
*/
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
  Vdbe *v;

  assert( pParse!=0 );
  assert( pParse->db!=0 );
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
    return;
  }
  v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
  }
}

/*
** Generate VDBE code for a ROLLBACK statement.
*/
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
  Vdbe *v;

  assert( pParse!=0 );
  assert( pParse->db!=0 );
  if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
97740
97741
97742
97743
97744
97745
97746
97747
97748
97749
97750
97751
97752
97753
97754
        "file for storing temporary tables");
      pParse->rc = rc;
      return 1;
    }
    db->aDb[1].pBt = pBt;
    assert( db->aDb[1].pSchema );
    if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
      db->mallocFailed = 1;
      return 1;
    }
  }
  return 0;
}

/*







|







98267
98268
98269
98270
98271
98272
98273
98274
98275
98276
98277
98278
98279
98280
98281
        "file for storing temporary tables");
      pParse->rc = rc;
      return 1;
    }
    db->aDb[1].pBt = pBt;
    assert( db->aDb[1].pSchema );
    if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
      sqlite3OomFault(db);
      return 1;
    }
  }
  return 0;
}

/*
97857
97858
97859
97860
97861
97862
97863
97864
97865
97866
97867
97868
97869
97870
97871
97872
97873
97874
97875
97876
97877
97878
97879
97880
97881
97882
97883
97884
97885
97886
97887
97888
97889
97890
97891
97892
97893
97894
97895
97896
){
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( (errCode&0xff)==SQLITE_CONSTRAINT );
  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
  if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
}

/*
** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
*/
SQLITE_PRIVATE void sqlite3UniqueConstraint(
  Parse *pParse,    /* Parsing context */
  int onError,      /* Constraint type */
  Index *pIdx       /* The index that triggers the constraint */
){
  char *zErr;
  int j;
  StrAccum errMsg;
  Table *pTab = pIdx->pTable;

  sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
  if( pIdx->aColExpr ){
    sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName);
  }else{
    for(j=0; j<pIdx->nKeyCol; j++){
      char *zCol;
      assert( pIdx->aiColumn[j]>=0 );
      zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
      if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
      sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol);
    }
  }
  zErr = sqlite3StrAccumFinish(&errMsg);
  sqlite3HaltConstraint(pParse, 
    IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 
                            : SQLITE_CONSTRAINT_UNIQUE,
    onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);







|

















|






|







98384
98385
98386
98387
98388
98389
98390
98391
98392
98393
98394
98395
98396
98397
98398
98399
98400
98401
98402
98403
98404
98405
98406
98407
98408
98409
98410
98411
98412
98413
98414
98415
98416
98417
98418
98419
98420
98421
98422
98423
){
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( (errCode&0xff)==SQLITE_CONSTRAINT );
  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
  sqlite3VdbeChangeP5(v, p5Errmsg);
}

/*
** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
*/
SQLITE_PRIVATE void sqlite3UniqueConstraint(
  Parse *pParse,    /* Parsing context */
  int onError,      /* Constraint type */
  Index *pIdx       /* The index that triggers the constraint */
){
  char *zErr;
  int j;
  StrAccum errMsg;
  Table *pTab = pIdx->pTable;

  sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
  if( pIdx->aColExpr ){
    sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
  }else{
    for(j=0; j<pIdx->nKeyCol; j++){
      char *zCol;
      assert( pIdx->aiColumn[j]>=0 );
      zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
      if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
      sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
    }
  }
  zErr = sqlite3StrAccumFinish(&errMsg);
  sqlite3HaltConstraint(pParse, 
    IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 
                            : SQLITE_CONSTRAINT_UNIQUE,
    onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
98115
98116
98117
98118
98119
98120
98121
98122
98123
98124
98125
98126
98127
98128
98129
98130
98131
98132

  if( pWith ){
    int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
    pNew = sqlite3DbRealloc(db, pWith, nByte);
  }else{
    pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
  }
  assert( zName!=0 || pNew==0 );
  assert( db->mallocFailed==0 || pNew==0 );

  if( pNew==0 ){
    sqlite3ExprListDelete(db, pArglist);
    sqlite3SelectDelete(db, pQuery);
    sqlite3DbFree(db, zName);
    pNew = pWith;
  }else{
    pNew->a[pNew->nCte].pSelect = pQuery;
    pNew->a[pNew->nCte].pCols = pArglist;







<
|

|







98642
98643
98644
98645
98646
98647
98648

98649
98650
98651
98652
98653
98654
98655
98656
98657
98658

  if( pWith ){
    int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
    pNew = sqlite3DbRealloc(db, pWith, nByte);
  }else{
    pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
  }

  assert( (pNew!=0 && zName!=0) || db->mallocFailed );

  if( db->mallocFailed ){
    sqlite3ExprListDelete(db, pArglist);
    sqlite3SelectDelete(db, pQuery);
    sqlite3DbFree(db, zName);
    pNew = pWith;
  }else{
    pNew->a[pNew->nCte].pSelect = pQuery;
    pNew->a[pNew->nCte].pCols = pArglist;
98332
98333
98334
98335
98336
98337
98338
98339
98340
98341
98342
98343
98344
98345
98346

      /* If a malloc() failure occurred in sqlite3HashInsert(), it will 
      ** return the pColl pointer to be deleted (because it wasn't added
      ** to the hash table).
      */
      assert( pDel==0 || pDel==pColl );
      if( pDel!=0 ){
        db->mallocFailed = 1;
        sqlite3DbFree(db, pDel);
        pColl = 0;
      }
    }
  }
  return pColl;
}







|







98858
98859
98860
98861
98862
98863
98864
98865
98866
98867
98868
98869
98870
98871
98872

      /* If a malloc() failure occurred in sqlite3HashInsert(), it will 
      ** return the pColl pointer to be deleted (because it wasn't added
      ** to the hash table).
      */
      assert( pDel==0 || pDel==pColl );
      if( pDel!=0 ){
        sqlite3OomFault(db);
        sqlite3DbFree(db, pDel);
        pColl = 0;
      }
    }
  }
  return pColl;
}
98398
98399
98400
98401
98402
98403
98404
98405
98406
98407
98408
98409
98410
98411
98412
98413
98414
98415
98416
98417
98418
98419
98420
98421
98422
98423
98424
98425
** 1: UTF8/16 conversion required and function takes any number of arguments.
** 2: UTF16 byte order change required and function takes any number of args.
** 3: encoding matches and function takes any number of arguments
** 4: UTF8/16 conversion required - argument count matches exactly
** 5: UTF16 byte order conversion required - argument count matches exactly
** 6: Perfect match:  encoding and argument count match exactly.
**
** If nArg==(-2) then any function with a non-null xStep or xFunc is
** a perfect match and any function with both xStep and xFunc NULL is
** a non-match.
*/
#define FUNC_PERFECT_MATCH 6  /* The score for a perfect match */
static int matchQuality(
  FuncDef *p,     /* The function we are evaluating for match quality */
  int nArg,       /* Desired number of arguments.  (-1)==any */
  u8 enc          /* Desired text encoding */
){
  int match;

  /* nArg of -2 is a special case */
  if( nArg==(-2) ) return (p->xFunc==0 && p->xStep==0) ? 0 : FUNC_PERFECT_MATCH;

  /* Wrong number of arguments means "no match" */
  if( p->nArg!=nArg && p->nArg>=0 ) return 0;

  /* Give a better score to a function with a specific number of arguments
  ** than to function that accepts any number of arguments. */
  if( p->nArg==nArg ){







|
|











|







98924
98925
98926
98927
98928
98929
98930
98931
98932
98933
98934
98935
98936
98937
98938
98939
98940
98941
98942
98943
98944
98945
98946
98947
98948
98949
98950
98951
** 1: UTF8/16 conversion required and function takes any number of arguments.
** 2: UTF16 byte order change required and function takes any number of args.
** 3: encoding matches and function takes any number of arguments
** 4: UTF8/16 conversion required - argument count matches exactly
** 5: UTF16 byte order conversion required - argument count matches exactly
** 6: Perfect match:  encoding and argument count match exactly.
**
** If nArg==(-2) then any function with a non-null xSFunc is
** a perfect match and any function with xSFunc NULL is
** a non-match.
*/
#define FUNC_PERFECT_MATCH 6  /* The score for a perfect match */
static int matchQuality(
  FuncDef *p,     /* The function we are evaluating for match quality */
  int nArg,       /* Desired number of arguments.  (-1)==any */
  u8 enc          /* Desired text encoding */
){
  int match;

  /* nArg of -2 is a special case */
  if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH;

  /* Wrong number of arguments means "no match" */
  if( p->nArg!=nArg && p->nArg>=0 ) return 0;

  /* Give a better score to a function with a specific number of arguments
  ** than to function that accepts any number of arguments. */
  if( p->nArg==nArg ){
98489
98490
98491
98492
98493
98494
98495
98496
98497
98498
98499
98500
98501
98502
98503
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.
**
** If nArg is -2, then the first valid function found is returned.  A
** function is valid if either xFunc or xStep is non-zero.  The nArg==(-2)
** case is used to see if zName is a valid function name for some number
** of arguments.  If nArg is -2, then createFlag must be 0.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/







|







99015
99016
99017
99018
99019
99020
99021
99022
99023
99024
99025
99026
99027
99028
99029
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.
**
** If nArg is -2, then the first valid function found is returned.  A
** function is valid if xSFunc is non-zero.  The nArg==(-2)
** case is used to see if zName is a valid function name for some number
** of arguments.  If nArg is -2, then createFlag must be 0.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
98566
98567
98568
98569
98570
98571
98572
98573
98574
98575
98576
98577
98578
98579
98580
    pBest->nArg = (u16)nArg;
    pBest->funcFlags = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);
  }

  if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
    return pBest;
  }
  return 0;
}

/*
** Free all resources held by the schema structure. The void* argument points







|







99092
99093
99094
99095
99096
99097
99098
99099
99100
99101
99102
99103
99104
99105
99106
    pBest->nArg = (u16)nArg;
    pBest->funcFlags = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);
  }

  if( pBest && (pBest->xSFunc || createFlag) ){
    return pBest;
  }
  return 0;
}

/*
** Free all resources held by the schema structure. The void* argument points
98620
98621
98622
98623
98624
98625
98626
98627
98628
98629
98630
98631
98632
98633
98634
  Schema * p;
  if( pBt ){
    p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
  }else{
    p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
  }
  if( !p ){
    db->mallocFailed = 1;
  }else if ( 0==p->file_format ){
    sqlite3HashInit(&p->tblHash);
    sqlite3HashInit(&p->idxHash);
    sqlite3HashInit(&p->trigHash);
    sqlite3HashInit(&p->fkeyHash);
    p->enc = SQLITE_UTF8;
  }







|







99146
99147
99148
99149
99150
99151
99152
99153
99154
99155
99156
99157
99158
99159
99160
  Schema * p;
  if( pBt ){
    p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
  }else{
    p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
  }
  if( !p ){
    sqlite3OomFault(db);
  }else if ( 0==p->file_format ){
    sqlite3HashInit(&p->tblHash);
    sqlite3HashInit(&p->idxHash);
    sqlite3HashInit(&p->trigHash);
    sqlite3HashInit(&p->fkeyHash);
    p->enc = SQLITE_UTF8;
  }
99074
99075
99076
99077
99078
99079
99080
99081
99082
99083
99084
99085
99086
99087
99088
    }
  
    if( eOnePass!=ONEPASS_OFF ){
      /* For ONEPASS, no need to store the rowid/primary-key. There is only
      ** one, so just keep it in its register(s) and fall through to the
      ** delete code.  */
      nKey = nPk; /* OP_Found will use an unpacked key */
      aToOpen = sqlite3DbMallocRaw(db, nIdx+2);
      if( aToOpen==0 ){
        sqlite3WhereEnd(pWInfo);
        goto delete_from_cleanup;
      }
      memset(aToOpen, 1, nIdx+1);
      aToOpen[nIdx+1] = 0;
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;







|







99600
99601
99602
99603
99604
99605
99606
99607
99608
99609
99610
99611
99612
99613
99614
    }
  
    if( eOnePass!=ONEPASS_OFF ){
      /* For ONEPASS, no need to store the rowid/primary-key. There is only
      ** one, so just keep it in its register(s) and fall through to the
      ** delete code.  */
      nKey = nPk; /* OP_Found will use an unpacked key */
      aToOpen = sqlite3DbMallocRawNN(db, nIdx+2);
      if( aToOpen==0 ){
        sqlite3WhereEnd(pWInfo);
        goto delete_from_cleanup;
      }
      memset(aToOpen, 1, nIdx+1);
      aToOpen[nIdx+1] = 0;
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
99114
99115
99116
99117
99118
99119
99120
99121
99122
99123
99124
99125
99126
99127
99128
99129
99130
99131
99132
99133
99134
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){
      int iAddrOnce = 0;
      u8 p5 = (eOnePass==ONEPASS_OFF ? 0 : OPFLAG_FORDELETE);
      if( eOnePass==ONEPASS_MULTI ){
        iAddrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
      }
      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, p5, iTabCur, 
                                 aToOpen, &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
      if( eOnePass==ONEPASS_MULTI ) sqlite3VdbeJumpHere(v, iAddrOnce);
    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.







<




|
|







99640
99641
99642
99643
99644
99645
99646

99647
99648
99649
99650
99651
99652
99653
99654
99655
99656
99657
99658
99659
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){
      int iAddrOnce = 0;

      if( eOnePass==ONEPASS_MULTI ){
        iAddrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
      }
      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, OPFLAG_FORDELETE,
                                 iTabCur, aToOpen, &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
      if( eOnePass==ONEPASS_MULTI ) sqlite3VdbeJumpHere(v, iAddrOnce);
    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.
99353
99354
99355
99356
99357
99358
99359

99360
99361
99362
99363
99364



99365
99366
99367

99368
99369
99370
99371
99372
99373
99374
99375
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){

    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
    sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
    }



    if( iIdxNoSeek>=0 ){
      sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
    }

    sqlite3VdbeChangeP5(v, eMode==ONEPASS_MULTI);
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
  ** handle rows (possibly in other tables) that refer via a foreign key
  ** to the row just deleted. */ 
  sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);








>





>
>
>



>
|







99878
99879
99880
99881
99882
99883
99884
99885
99886
99887
99888
99889
99890
99891
99892
99893
99894
99895
99896
99897
99898
99899
99900
99901
99902
99903
99904
99905
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){
    u8 p5 = 0;
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
    sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
    }
    if( eMode!=ONEPASS_OFF ){
      sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE);
    }
    if( iIdxNoSeek>=0 ){
      sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
    }
    if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION;
    sqlite3VdbeChangeP5(v, p5);
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
  ** handle rows (possibly in other tables) that refer via a foreign key
  ** to the row just deleted. */ 
  sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);

99771
99772
99773
99774
99775
99776
99777

99778
99779
99780
99781
99782
99783
99784
99785
  sqlite3 *db = sqlite3_context_db_handle(context);

  if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
    x.nArg = argc-1;
    x.nUsed = 0;
    x.apArg = argv+1;
    sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);

    sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x);
    n = str.nChar;
    sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
                        SQLITE_DYNAMIC);
  }
}

/*







>
|







100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
  sqlite3 *db = sqlite3_context_db_handle(context);

  if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
    x.nArg = argc-1;
    x.nUsed = 0;
    x.apArg = argv+1;
    sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
    str.printfFlags = SQLITE_PRINTF_SQLFUNC;
    sqlite3XPrintf(&str, zFormat, &x);
    n = str.nChar;
    sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
                        SQLITE_DYNAMIC);
  }
}

/*
100099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
  sqlite3_result_int(context, sqlite3_total_changes(db));
}

/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo {
  u8 matchAll;
  u8 matchOne;
  u8 matchSet;
  u8 noCase;
};

/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, provde the Utf8Read()
** macro for fast reading of the next character in the common case where
** the next character is ASCII.







|
|
|
|







100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
  sqlite3_result_int(context, sqlite3_total_changes(db));
}

/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo {
  u8 matchAll;          /* "*" or "%" */
  u8 matchOne;          /* "?" or "_" */
  u8 matchSet;          /* "[" or 0 */
  u8 noCase;            /* true to ignore case differences */
};

/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, provde the Utf8Read()
** macro for fast reading of the next character in the common case where
** the next character is ASCII.
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 esc                          /* The escape character */
){
  u32 c, c2;                       /* Next pattern and input string chars */
  u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
  u32 matchAll = pInfo->matchAll;  /* "*" or "%" */
  u32 matchOther;                  /* "[" or the escape character */
  u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
  const u8 *zEscaped = 0;          /* One past the last escaped input char */
  
  /* The GLOB operator does not have an ESCAPE clause.  And LIKE does not
  ** have the matchSet operator.  So we either have to look for one or
  ** the other, never both.  Hence the single variable matchOther is used
  ** to store the one we have to look for.
  */
  matchOther = esc ? esc : pInfo->matchSet;

  while( (c = Utf8Read(zPattern))!=0 ){
    if( c==matchAll ){  /* Match "*" */
      /* Skip over multiple "*" characters in the pattern.  If there
      ** are also "?" characters, skip those as well, but consume a
      ** single character of the input string for each "?" skipped */
      while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
        if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
          return 0;
        }
      }
      if( c==0 ){
        return 1;   /* "*" at the end of the pattern matches */
      }else if( c==matchOther ){
        if( esc ){
          c = sqlite3Utf8Read(&zPattern);
          if( c==0 ) return 0;
        }else{
          /* "[...]" immediately follows the "*".  We have to do a slow
          ** recursive search in this case, but it is an unusual case. */
          assert( matchOther<0x80 );  /* '[' is a single-byte character */
          while( *zString
                 && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
            SQLITE_SKIP_UTF8(zString);
          }
          return *zString!=0;
        }
      }

      /* At this point variable c contains the first character of the







|




<



<
<
<
<
<
<
<













|







|







100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707

100708
100709
100710







100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 matchOther                   /* The escape char (LIKE) or '[' (GLOB) */
){
  u32 c, c2;                       /* Next pattern and input string chars */
  u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
  u32 matchAll = pInfo->matchAll;  /* "*" or "%" */

  u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
  const u8 *zEscaped = 0;          /* One past the last escaped input char */
  







  while( (c = Utf8Read(zPattern))!=0 ){
    if( c==matchAll ){  /* Match "*" */
      /* Skip over multiple "*" characters in the pattern.  If there
      ** are also "?" characters, skip those as well, but consume a
      ** single character of the input string for each "?" skipped */
      while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
        if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
          return 0;
        }
      }
      if( c==0 ){
        return 1;   /* "*" at the end of the pattern matches */
      }else if( c==matchOther ){
        if( pInfo->matchSet==0 ){
          c = sqlite3Utf8Read(&zPattern);
          if( c==0 ) return 0;
        }else{
          /* "[...]" immediately follows the "*".  We have to do a slow
          ** recursive search in this case, but it is an unusual case. */
          assert( matchOther<0x80 );  /* '[' is a single-byte character */
          while( *zString
                 && patternCompare(&zPattern[-1],zString,pInfo,matchOther)==0 ){
            SQLITE_SKIP_UTF8(zString);
          }
          return *zString!=0;
        }
      }

      /* At this point variable c contains the first character of the
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
          cx = sqlite3Toupper(c);
          c = sqlite3Tolower(c);
        }else{
          cx = c;
        }
        while( (c2 = *(zString++))!=0 ){
          if( c2!=c && c2!=cx ) continue;
          if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
        }
      }else{
        while( (c2 = Utf8Read(zString))!=0 ){
          if( c2!=c ) continue;
          if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
        }
      }
      return 0;
    }
    if( c==matchOther ){
      if( esc ){
        c = sqlite3Utf8Read(&zPattern);
        if( c==0 ) return 0;
        zEscaped = zPattern;
      }else{
        u32 prior_c = 0;
        int seen = 0;
        int invert = 0;







|




|





|







100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
          cx = sqlite3Toupper(c);
          c = sqlite3Tolower(c);
        }else{
          cx = c;
        }
        while( (c2 = *(zString++))!=0 ){
          if( c2!=c && c2!=cx ) continue;
          if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
        }
      }else{
        while( (c2 = Utf8Read(zString))!=0 ){
          if( c2!=c ) continue;
          if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
        }
      }
      return 0;
    }
    if( c==matchOther ){
      if( pInfo->matchSet==0 ){
        c = sqlite3Utf8Read(&zPattern);
        if( c==0 ) return 0;
        zEscaped = zPattern;
      }else{
        u32 prior_c = 0;
        int seen = 0;
        int invert = 0;
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
}

/*
** The sqlite3_strlike() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
  return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;







|







100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[')==0;
}

/*
** The sqlite3_strlike() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
  return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339

100340
100341
100342
100343
100344
100345
100346
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape = 0;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);


#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( sqlite3_value_type(argv[0])==SQLITE_BLOB
   || sqlite3_value_type(argv[1])==SQLITE_BLOB
  ){
#ifdef SQLITE_TEST
    sqlite3_like_count++;







|


>







100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);
  struct compareInfo *pInfo = sqlite3_user_data(context);

#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( sqlite3_value_type(argv[0])==SQLITE_BLOB
   || sqlite3_value_type(argv[1])==SQLITE_BLOB
  ){
#ifdef SQLITE_TEST
    sqlite3_like_count++;
100372
100373
100374
100375
100376
100377
100378


100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
    if( zEsc==0 ) return;
    if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
      sqlite3_result_error(context, 
          "ESCAPE expression must be a single character", -1);
      return;
    }
    escape = sqlite3Utf8Read(&zEsc);


  }
  if( zA && zB ){
    struct compareInfo *pInfo = sqlite3_user_data(context);
#ifdef SQLITE_TEST
    sqlite3_like_count++;
#endif
    
    sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
  }
}

/*
** Implementation of the NULLIF(x,y) function.  The result is the first
** argument if the arguments are different.  The result is NULL if the







>
>


<



<







100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906

100907
100908
100909

100910
100911
100912
100913
100914
100915
100916
    if( zEsc==0 ) return;
    if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
      sqlite3_result_error(context, 
          "ESCAPE expression must be a single character", -1);
      return;
    }
    escape = sqlite3Utf8Read(&zEsc);
  }else{
    escape = pInfo->matchSet;
  }
  if( zA && zB ){

#ifdef SQLITE_TEST
    sqlite3_like_count++;
#endif

    sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
  }
}

/*
** Implementation of the NULLIF(x,y) function.  The result is the first
** argument if the arguments are different.  The result is NULL if the
101153
101154
101155
101156
101157
101158
101159
101160
101161
101162
101163
101164
101165
101166
101167
** of the built-in functions above are part of the global function set.
** This routine only deals with those that are not global.
*/
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
  int rc = sqlite3_overload_function(db, "MATCH", 2);
  assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
}

/*
** Set the LIKEOPT flag on the 2-argument function with the given name.
*/
static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){







|







101677
101678
101679
101680
101681
101682
101683
101684
101685
101686
101687
101688
101689
101690
101691
** of the built-in functions above are part of the global function set.
** This routine only deals with those that are not global.
*/
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
  int rc = sqlite3_overload_function(db, "MATCH", 2);
  assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
  if( rc==SQLITE_NOMEM ){
    sqlite3OomFault(db);
  }
}

/*
** Set the LIKEOPT flag on the 2-argument function with the given name.
*/
static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
101568
101569
101570
101571
101572
101573
101574
101575
101576
101577
101578
101579
101580
101581
101582
    */
    if( pParent->iPKey>=0 ){
      if( !zKey ) return 0;
      if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
    }
  }else if( paiCol ){
    assert( nCol>1 );
    aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
    if( !aiCol ) return 1;
    *paiCol = aiCol;
  }

  for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ 
      /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number







|







102092
102093
102094
102095
102096
102097
102098
102099
102100
102101
102102
102103
102104
102105
102106
    */
    if( pParent->iPKey>=0 ){
      if( !zKey ) return 0;
      if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
    }
  }else if( paiCol ){
    assert( nCol>1 );
    aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
    if( !aiCol ) return 1;
    *paiCol = aiCol;
  }

  for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ 
      /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
102514
102515
102516
102517
102518
102519
102520
102521
102522
102523
102524
102525
102526
102527
102528
  Trigger *pTrigger;              /* Trigger definition to return */
  int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */

  action = pFKey->aAction[iAction];
  pTrigger = pFKey->apTrigger[iAction];

  if( action!=OE_None && !pTrigger ){
    u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
    char const *zFrom;            /* Name of child table */
    int nFrom;                    /* Length in bytes of zFrom */
    Index *pIdx = 0;              /* Parent key index for this FK */
    int *aiCol = 0;               /* child table cols -> parent key cols */
    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
    Expr *pWhere = 0;             /* WHERE clause of trigger step */
    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */







<







103038
103039
103040
103041
103042
103043
103044

103045
103046
103047
103048
103049
103050
103051
  Trigger *pTrigger;              /* Trigger definition to return */
  int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */

  action = pFKey->aAction[iAction];
  pTrigger = pFKey->apTrigger[iAction];

  if( action!=OE_None && !pTrigger ){

    char const *zFrom;            /* Name of child table */
    int nFrom;                    /* Length in bytes of zFrom */
    Index *pIdx = 0;              /* Parent key index for this FK */
    int *aiCol = 0;               /* child table cols -> parent key cols */
    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
    Expr *pWhere = 0;             /* WHERE clause of trigger step */
    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
102541
102542
102543
102544
102545
102546
102547

102548
102549
102550
102551
102552
102553
102554
102555
102556
102557
102558
102559
      int iFromCol;               /* Idx of column in child table */
      Expr *pEq;                  /* tFromCol = OLD.tToCol */

      iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
      assert( iFromCol>=0 );
      assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
      assert( pIdx==0 || pIdx->aiColumn[i]>=0 );

      tToCol.z = pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName;
      tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;

      tToCol.n = sqlite3Strlen30(tToCol.z);
      tFromCol.n = sqlite3Strlen30(tFromCol.z);

      /* Create the expression "OLD.zToCol = zFromCol". It is important
      ** that the "OLD.zToCol" term is on the LHS of the = operator, so
      ** that the affinity and collation sequence associated with the
      ** parent table are used for the comparison. */
      pEq = sqlite3PExpr(pParse, TK_EQ,
          sqlite3PExpr(pParse, TK_DOT, 







>
|
|
<
<
<







103064
103065
103066
103067
103068
103069
103070
103071
103072
103073



103074
103075
103076
103077
103078
103079
103080
      int iFromCol;               /* Idx of column in child table */
      Expr *pEq;                  /* tFromCol = OLD.tToCol */

      iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
      assert( iFromCol>=0 );
      assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
      assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
      sqlite3TokenInit(&tToCol,
                   pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
      sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);




      /* Create the expression "OLD.zToCol = zFromCol". It is important
      ** that the "OLD.zToCol" term is on the LHS of the = operator, so
      ** that the affinity and collation sequence associated with the
      ** parent table are used for the comparison. */
      pEq = sqlite3PExpr(pParse, TK_EQ,
          sqlite3PExpr(pParse, TK_DOT, 
102625
102626
102627
102628
102629
102630
102631
102632
102633
102634
102635
102636
102637
102638
102639
102640
          pWhere,
          0, 0, 0, 0, 0, 0
      );
      pWhere = 0;
    }

    /* Disable lookaside memory allocation */
    enableLookaside = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;

    pTrigger = (Trigger *)sqlite3DbMallocZero(db, 
        sizeof(Trigger) +         /* struct Trigger */
        sizeof(TriggerStep) +     /* Single step in trigger program */
        nFrom + 1                 /* Space for pStep->zTarget */
    );
    if( pTrigger ){







<
|







103146
103147
103148
103149
103150
103151
103152

103153
103154
103155
103156
103157
103158
103159
103160
          pWhere,
          0, 0, 0, 0, 0, 0
      );
      pWhere = 0;
    }

    /* Disable lookaside memory allocation */

    db->lookaside.bDisable++;

    pTrigger = (Trigger *)sqlite3DbMallocZero(db, 
        sizeof(Trigger) +         /* struct Trigger */
        sizeof(TriggerStep) +     /* Single step in trigger program */
        nFrom + 1                 /* Space for pStep->zTarget */
    );
    if( pTrigger ){
102648
102649
102650
102651
102652
102653
102654
102655
102656
102657
102658
102659
102660
102661
102662
      if( pWhen ){
        pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
        pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
      }
    }

    /* Re-enable the lookaside buffer, if it was disabled earlier. */
    db->lookaside.bEnabled = enableLookaside;

    sqlite3ExprDelete(db, pWhere);
    sqlite3ExprDelete(db, pWhen);
    sqlite3ExprListDelete(db, pList);
    sqlite3SelectDelete(db, pSelect);
    if( db->mallocFailed==1 ){
      fkTriggerDelete(db, pTrigger);







|







103168
103169
103170
103171
103172
103173
103174
103175
103176
103177
103178
103179
103180
103181
103182
      if( pWhen ){
        pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
        pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
      }
    }

    /* Re-enable the lookaside buffer, if it was disabled earlier. */
    db->lookaside.bDisable--;

    sqlite3ExprDelete(db, pWhere);
    sqlite3ExprDelete(db, pWhen);
    sqlite3ExprListDelete(db, pList);
    sqlite3SelectDelete(db, pSelect);
    if( db->mallocFailed==1 ){
      fkTriggerDelete(db, pTrigger);
102843
102844
102845
102846
102847
102848
102849
102850
102851
102852
102853
102854
102855
102856
102857
    ** sqliteDeleteIndex() when the Index structure itself is cleaned
    ** up.
    */
    int n;
    Table *pTab = pIdx->pTable;
    pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
    if( !pIdx->zColAff ){
      db->mallocFailed = 1;
      return 0;
    }
    for(n=0; n<pIdx->nColumn; n++){
      i16 x = pIdx->aiColumn[n];
      if( x>=0 ){
        pIdx->zColAff[n] = pTab->aCol[x].affinity;
      }else if( x==XN_ROWID ){







|







103363
103364
103365
103366
103367
103368
103369
103370
103371
103372
103373
103374
103375
103376
103377
    ** sqliteDeleteIndex() when the Index structure itself is cleaned
    ** up.
    */
    int n;
    Table *pTab = pIdx->pTable;
    pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
    if( !pIdx->zColAff ){
      sqlite3OomFault(db);
      return 0;
    }
    for(n=0; n<pIdx->nColumn; n++){
      i16 x = pIdx->aiColumn[n];
      if( x>=0 ){
        pIdx->zColAff[n] = pTab->aCol[x].affinity;
      }else if( x==XN_ROWID ){
102894
102895
102896
102897
102898
102899
102900
102901
102902
102903
102904
102905
102906
102907
102908
SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
  int i;
  char *zColAff = pTab->zColAff;
  if( zColAff==0 ){
    sqlite3 *db = sqlite3VdbeDb(v);
    zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
    if( !zColAff ){
      db->mallocFailed = 1;
      return;
    }

    for(i=0; i<pTab->nCol; i++){
      zColAff[i] = pTab->aCol[i].affinity;
    }
    do{







|







103414
103415
103416
103417
103418
103419
103420
103421
103422
103423
103424
103425
103426
103427
103428
SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
  int i;
  char *zColAff = pTab->zColAff;
  if( zColAff==0 ){
    sqlite3 *db = sqlite3VdbeDb(v);
    zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
    if( !zColAff ){
      sqlite3OomFault(db);
      return;
    }

    for(i=0; i<pTab->nCol; i++){
      zColAff[i] = pTab->aCol[i].affinity;
    }
    do{
102990
102991
102992
102993
102994
102995
102996
102997
102998
102999
103000
103001
103002
103003
103004
  if( pTab->tabFlags & TF_Autoincrement ){
    Parse *pToplevel = sqlite3ParseToplevel(pParse);
    AutoincInfo *pInfo;

    pInfo = pToplevel->pAinc;
    while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
    if( pInfo==0 ){
      pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
      if( pInfo==0 ) return 0;
      pInfo->pNext = pToplevel->pAinc;
      pToplevel->pAinc = pInfo;
      pInfo->pTab = pTab;
      pInfo->iDb = iDb;
      pToplevel->nMem++;                  /* Register to hold name of table */
      pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */







|







103510
103511
103512
103513
103514
103515
103516
103517
103518
103519
103520
103521
103522
103523
103524
  if( pTab->tabFlags & TF_Autoincrement ){
    Parse *pToplevel = sqlite3ParseToplevel(pParse);
    AutoincInfo *pInfo;

    pInfo = pToplevel->pAinc;
    while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
    if( pInfo==0 ){
      pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
      if( pInfo==0 ) return 0;
      pInfo->pNext = pToplevel->pAinc;
      pToplevel->pAinc = pInfo;
      pInfo->pTab = pTab;
      pInfo->iDb = iDb;
      pToplevel->nMem++;                  /* Register to hold name of table */
      pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
103014
103015
103016
103017
103018
103019
103020
103021
103022
103023
103024
103025
103026
103027
103028
103029
103030














103031
103032
103033
103034
103035
103036
103037
103038

103039


103040

103041
103042
103043
103044
103045
103046
103047
103048
103049
103050
103051
103052
103053
103054
103055
103056
103057
103058
103059
103060
103061
103062
103063
103064
103065
103066
103067
103068
103069
103070
103071
103072
103073
103074
103075
103076
103077
103078









103079
103080
103081
103082
103083
103084
103085
103086
103087

103088
103089

103090


103091
103092
103093
103094
103095



103096
103097
103098
103099
103100
103101
103102
** register used by the autoincrement tracker.  
*/
SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
  AutoincInfo *p;            /* Information about an AUTOINCREMENT */
  sqlite3 *db = pParse->db;  /* The database connection */
  Db *pDb;                   /* Database only autoinc table */
  int memId;                 /* Register holding max rowid */
  int addr;                  /* A VDBE address */
  Vdbe *v = pParse->pVdbe;   /* VDBE under construction */

  /* This routine is never called during trigger-generation.  It is
  ** only called from the top-level */
  assert( pParse->pTriggerTab==0 );
  assert( sqlite3IsToplevel(pParse) );

  assert( v );   /* We failed long ago if this is not so */
  for(p = pParse->pAinc; p; p = p->pNext){














    pDb = &db->aDb[p->iDb];
    memId = p->regCtr;
    assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
    sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
    addr = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
    sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);

    sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);


    sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);

    sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
    sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
    sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
    sqlite3VdbeGoto(v, addr+9);
    sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
    sqlite3VdbeAddOp0(v, OP_Close);
  }
}

/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted.  If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.  The stack is unchanged.
*/
static void autoIncStep(Parse *pParse, int memId, int regRowid){
  if( memId>0 ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
  }
}

/*
** This routine generates the code needed to write autoincrement
** maximum rowid values back into the sqlite_sequence register.
** Every statement that might do an INSERT into an autoincrement
** table (either directly or through triggers) needs to call this
** routine just before the "exit" code.
*/
SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
  AutoincInfo *p;
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;

  assert( v );
  for(p = pParse->pAinc; p; p = p->pNext){









    Db *pDb = &db->aDb[p->iDb];
    int addr1;
    int iRec;
    int memId = p->regCtr;

    iRec = sqlite3GetTempReg(pParse);
    assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
    sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);

    sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
    sqlite3VdbeJumpHere(v, addr1);

    sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);


    sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeAddOp0(v, OP_Close);
    sqlite3ReleaseTempReg(pParse, iRec);
  }



}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)







<









>
>
>
>
>
>
>
>
>
>
>
>
>
>




<
<

|
>
|
>
>
|
>
|
|
|
<
<
|
<






|


|














|






>
>
>
>
>
>
>
>
>

<






|
>
|
<
>
|
>
>
|
|
<


>
>
>







103534
103535
103536
103537
103538
103539
103540

103541
103542
103543
103544
103545
103546
103547
103548
103549
103550
103551
103552
103553
103554
103555
103556
103557
103558
103559
103560
103561
103562
103563
103564
103565
103566
103567


103568
103569
103570
103571
103572
103573
103574
103575
103576
103577
103578


103579

103580
103581
103582
103583
103584
103585
103586
103587
103588
103589
103590
103591
103592
103593
103594
103595
103596
103597
103598
103599
103600
103601
103602
103603
103604
103605
103606
103607
103608
103609
103610
103611
103612
103613
103614
103615
103616
103617
103618
103619
103620

103621
103622
103623
103624
103625
103626
103627
103628
103629

103630
103631
103632
103633
103634
103635

103636
103637
103638
103639
103640
103641
103642
103643
103644
103645
103646
103647
** register used by the autoincrement tracker.  
*/
SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
  AutoincInfo *p;            /* Information about an AUTOINCREMENT */
  sqlite3 *db = pParse->db;  /* The database connection */
  Db *pDb;                   /* Database only autoinc table */
  int memId;                 /* Register holding max rowid */

  Vdbe *v = pParse->pVdbe;   /* VDBE under construction */

  /* This routine is never called during trigger-generation.  It is
  ** only called from the top-level */
  assert( pParse->pTriggerTab==0 );
  assert( sqlite3IsToplevel(pParse) );

  assert( v );   /* We failed long ago if this is not so */
  for(p = pParse->pAinc; p; p = p->pNext){
    static const int iLn = VDBE_OFFSET_LINENO(2);
    static const VdbeOpList autoInc[] = {
      /* 0  */ {OP_Null,    0,  0, 0},
      /* 1  */ {OP_Rewind,  0,  9, 0},
      /* 2  */ {OP_Column,  0,  0, 0},
      /* 3  */ {OP_Ne,      0,  7, 0},
      /* 4  */ {OP_Rowid,   0,  0, 0},
      /* 5  */ {OP_Column,  0,  1, 0},
      /* 6  */ {OP_Goto,    0,  9, 0},
      /* 7  */ {OP_Next,    0,  2, 0},
      /* 8  */ {OP_Integer, 0,  0, 0},
      /* 9  */ {OP_Close,   0,  0, 0} 
    };
    VdbeOp *aOp;
    pDb = &db->aDb[p->iDb];
    memId = p->regCtr;
    assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
    sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);


    sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
    aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
    if( aOp==0 ) break;
    aOp[0].p2 = memId;
    aOp[0].p3 = memId+1;
    aOp[2].p3 = memId;
    aOp[3].p1 = memId-1;
    aOp[3].p3 = memId;
    aOp[3].p5 = SQLITE_JUMPIFNULL;
    aOp[4].p2 = memId+1;
    aOp[5].p3 = memId;


    aOp[8].p2 = memId;

  }
}

/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the regRowid register holds a
** new rowid that is about to be inserted.  If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated.
*/
static void autoIncStep(Parse *pParse, int memId, int regRowid){
  if( memId>0 ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
  }
}

/*
** This routine generates the code needed to write autoincrement
** maximum rowid values back into the sqlite_sequence register.
** Every statement that might do an INSERT into an autoincrement
** table (either directly or through triggers) needs to call this
** routine just before the "exit" code.
*/
static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
  AutoincInfo *p;
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;

  assert( v );
  for(p = pParse->pAinc; p; p = p->pNext){
    static const int iLn = VDBE_OFFSET_LINENO(2);
    static const VdbeOpList autoIncEnd[] = {
      /* 0 */ {OP_NotNull,     0, 2, 0},
      /* 1 */ {OP_NewRowid,    0, 0, 0},
      /* 2 */ {OP_MakeRecord,  0, 2, 0},
      /* 3 */ {OP_Insert,      0, 0, 0},
      /* 4 */ {OP_Close,       0, 0, 0}
    };
    VdbeOp *aOp;
    Db *pDb = &db->aDb[p->iDb];

    int iRec;
    int memId = p->regCtr;

    iRec = sqlite3GetTempReg(pParse);
    assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
    sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
    if( aOp==0 ) break;
    aOp[0].p1 = memId+1;

    aOp[1].p2 = memId+1;
    aOp[2].p1 = memId-1;
    aOp[2].p3 = iRec;
    aOp[3].p2 = iRec;
    aOp[3].p3 = memId+1;
    aOp[3].p5 = OPFLAG_APPEND;

    sqlite3ReleaseTempReg(pParse, iRec);
  }
}
SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
  if( pParse->pAinc ) autoIncrementEnd(pParse);
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)
103420
103421
103422
103423
103424
103425
103426
103427
103428
103429
103430
103431
103432
103433
103434
    sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
    sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
    dest.iSdst = bIdListInOrder ? regData : 0;
    dest.nSdst = pTab->nCol;
    rc = sqlite3Select(pParse, pSelect, &dest);
    regFromSelect = dest.iSdst;
    if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
    sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
    sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table (template 4).  Set to
    ** FALSE if each output row of the SELECT can be written directly into







|







103965
103966
103967
103968
103969
103970
103971
103972
103973
103974
103975
103976
103977
103978
103979
    sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
    sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
    dest.iSdst = bIdListInOrder ? regData : 0;
    dest.nSdst = pTab->nCol;
    rc = sqlite3Select(pParse, pSelect, &dest);
    regFromSelect = dest.iSdst;
    if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
    sqlite3VdbeEndCoroutine(v, regYield);
    sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table (template 4).  Set to
    ** FALSE if each output row of the SELECT can be written directly into
103522
103523
103524
103525
103526
103527
103528
103529
103530
103531
103532
103533
103534
103535
103536
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    int nIdx;
    nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
                                      &iDataCur, &iIdxCur);
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
    if( aRegIdx==0 ){
      goto insert_cleanup;
    }
    for(i=0; i<nIdx; i++){
      aRegIdx[i] = ++pParse->nMem;
    }
  }







|







104067
104068
104069
104070
104071
104072
104073
104074
104075
104076
104077
104078
104079
104080
104081
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    int nIdx;
    nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
                                      &iDataCur, &iIdxCur);
    aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
    if( aRegIdx==0 ){
      goto insert_cleanup;
    }
    for(i=0; i<nIdx; i++){
      aRegIdx[i] = ++pParse->nMem;
    }
  }
103730
103731
103732
103733
103734
103735
103736
103737
103738
103739
103740
103741
103742
103743
103744
      sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
          regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
      );
      sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
      sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
                               regIns, aRegIdx, 0, appendFlag, isReplace==0);
    }
  }








|







104275
104276
104277
104278
104279
104280
104281
104282
104283
104284
104285
104286
104287
104288
104289
      sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
          regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
      );
      sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
      sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
                               regIns, aRegIdx, 0, appendFlag, isReplace==0);
    }
  }

103811
103812
103813
103814
103815
103816
103817





















































103818
103819
103820
103821
103822
103823
103824
#endif
#ifdef pTrigger
 #undef pTrigger
#endif
#ifdef tmask
 #undef tmask
#endif






















































/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update.  There will be







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







104356
104357
104358
104359
104360
104361
104362
104363
104364
104365
104366
104367
104368
104369
104370
104371
104372
104373
104374
104375
104376
104377
104378
104379
104380
104381
104382
104383
104384
104385
104386
104387
104388
104389
104390
104391
104392
104393
104394
104395
104396
104397
104398
104399
104400
104401
104402
104403
104404
104405
104406
104407
104408
104409
104410
104411
104412
104413
104414
104415
104416
104417
104418
104419
104420
104421
104422
#endif
#ifdef pTrigger
 #undef pTrigger
#endif
#ifdef tmask
 #undef tmask
#endif

/*
** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
*/
#define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
#define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */

/* This is the Walker callback from checkConstraintUnchanged().  Set
** bit 0x01 of pWalker->eCode if
** pWalker->eCode to 0 if this expression node references any of the
** columns that are being modifed by an UPDATE statement.
*/
static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_COLUMN ){
    assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
    if( pExpr->iColumn>=0 ){
      if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
        pWalker->eCode |= CKCNSTRNT_COLUMN;
      }
    }else{
      pWalker->eCode |= CKCNSTRNT_ROWID;
    }
  }
  return WRC_Continue;
}

/*
** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
** only columns that are modified by the UPDATE are those for which
** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
**
** Return true if CHECK constraint pExpr does not use any of the
** changing columns (or the rowid if it is changing).  In other words,
** return true if this CHECK constraint can be skipped when validating
** the new row in the UPDATE statement.
*/
static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = 0;
  w.xExprCallback = checkConstraintExprNode;
  w.u.aiCol = aiChng;
  sqlite3WalkExpr(&w, pExpr);
  if( !chngRowid ){
    testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
    w.eCode &= ~CKCNSTRNT_ROWID;
  }
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return !w.eCode;
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update.  There will be
103906
103907
103908
103909
103910
103911
103912
103913

103914
103915
103916
103917
103918
103919
103920
  int iDataCur,        /* Canonical data cursor (main table or PK index) */
  int iIdxCur,         /* First index cursor */
  int regNewData,      /* First register in a range holding values to insert */
  int regOldData,      /* Previous content.  0 for INSERTs */
  u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
  u8 overrideError,    /* Override onError to this if not OE_Default */
  int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
  int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */

){
  Vdbe *v;             /* VDBE under constrution */
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */







|
>







104504
104505
104506
104507
104508
104509
104510
104511
104512
104513
104514
104515
104516
104517
104518
104519
  int iDataCur,        /* Canonical data cursor (main table or PK index) */
  int iIdxCur,         /* First index cursor */
  int regNewData,      /* First register in a range holding values to insert */
  int regOldData,      /* Previous content.  0 for INSERTs */
  u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
  u8 overrideError,    /* Override onError to this if not OE_Default */
  int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
  int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
  int *aiChng          /* column i is unchanged if aiChng[i]<0 */
){
  Vdbe *v;             /* VDBE under constrution */
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
103952
103953
103954
103955
103956
103957
103958




103959
103960
103961
103962
103963
103964
103965
103966
103967
103968
103969
  VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
                     iDataCur, iIdxCur, regNewData, regOldData, pkChng));

  /* Test all NOT NULL constraints.
  */
  for(i=0; i<nCol; i++){
    if( i==pTab->iPKey ){




      continue;
    }
    onError = pTab->aCol[i].notNull;
    if( onError==OE_None ) continue;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;







>
>
>
>



|







104551
104552
104553
104554
104555
104556
104557
104558
104559
104560
104561
104562
104563
104564
104565
104566
104567
104568
104569
104570
104571
104572
  VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
                     iDataCur, iIdxCur, regNewData, regOldData, pkChng));

  /* Test all NOT NULL constraints.
  */
  for(i=0; i<nCol; i++){
    if( i==pTab->iPKey ){
      continue;        /* ROWID is never NULL */
    }
    if( aiChng && aiChng[i]<0 ){
      /* Don't bother checking for NOT NULL on columns that do not change */
      continue;
    }
    onError = pTab->aCol[i].notNull;
    if( onError==OE_None ) continue;  /* This column is allowed to be NULL */
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
104004
104005
104006
104007
104008
104009
104010



104011
104012
104013
104014
104015
104016
104017
104018
104019
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
    ExprList *pCheck = pTab->pCheck;
    pParse->ckBase = regNewData+1;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){



      int allOk = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeGoto(v, ignoreDest);
      }else{
        char *zName = pCheck->a[i].zName;
        if( zName==0 ) zName = pTab->zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,







>
>
>
|
|







104607
104608
104609
104610
104611
104612
104613
104614
104615
104616
104617
104618
104619
104620
104621
104622
104623
104624
104625
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
    ExprList *pCheck = pTab->pCheck;
    pParse->ckBase = regNewData+1;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk;
      Expr *pExpr = pCheck->a[i].pExpr;
      if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
      allOk = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeGoto(v, ignoreDest);
      }else{
        char *zName = pCheck->a[i].zName;
        if( zName==0 ) zName = pTab->zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
        sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
104355
104356
104357
104358
104359
104360
104361
104362
104363
104364
104365
104366
104367
104368
104369
    sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
    pik_flags = 0;
    if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
      assert( pParse->nested==0 );
      pik_flags |= OPFLAG_NCHANGE;
    }
    if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
  }
  if( !HasRowid(pTab) ) return;
  regData = regNewData + 1;
  regRec = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
  if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
  sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);







|







104961
104962
104963
104964
104965
104966
104967
104968
104969
104970
104971
104972
104973
104974
104975
    sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
    pik_flags = 0;
    if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
      assert( pParse->nested==0 );
      pik_flags |= OPFLAG_NCHANGE;
    }
    sqlite3VdbeChangeP5(v, pik_flags);
  }
  if( !HasRowid(pTab) ) return;
  regData = regNewData + 1;
  regRec = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
  if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
  sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
104407
104408
104409
104410
104411
104412
104413
104414
104415
104416
104417
104418
104419
104420
104421
** If pTab is a virtual table, then this routine is a no-op and the
** *piDataCur and *piIdxCur values are left uninitialized.
*/
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
  Parse *pParse,   /* Parsing context */
  Table *pTab,     /* Table to be opened */
  int op,          /* OP_OpenRead or OP_OpenWrite */
  u8 p5,           /* P5 value for OP_Open* instructions */
  int iBase,       /* Use this for the table cursor, if there is one */
  u8 *aToOpen,     /* If not NULL: boolean for each table and index */
  int *piDataCur,  /* Write the database source cursor number here */
  int *piIdxCur    /* Write the first index cursor number here */
){
  int i;
  int iDb;







|







105013
105014
105015
105016
105017
105018
105019
105020
105021
105022
105023
105024
105025
105026
105027
** If pTab is a virtual table, then this routine is a no-op and the
** *piDataCur and *piIdxCur values are left uninitialized.
*/
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
  Parse *pParse,   /* Parsing context */
  Table *pTab,     /* Table to be opened */
  int op,          /* OP_OpenRead or OP_OpenWrite */
  u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
  int iBase,       /* Use this for the table cursor, if there is one */
  u8 *aToOpen,     /* If not NULL: boolean for each table and index */
  int *piDataCur,  /* Write the database source cursor number here */
  int *piIdxCur    /* Write the first index cursor number here */
){
  int i;
  int iDb;
104442
104443
104444
104445
104446
104447
104448
104449
104450
104451
104452
104453
104454
104455
104456





104457
104458
104459
104460
104461
104462
104463
  }else{
    sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
  }
  if( piIdxCur ) *piIdxCur = iBase;
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    int iIdxCur = iBase++;
    assert( pIdx->pSchema==pTab->pSchema );
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
      *piDataCur = iIdxCur;
    }
    if( aToOpen==0 || aToOpen[i+1] ){
      sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
      sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
      sqlite3VdbeChangeP5(v, p5);
      VdbeComment((v, "%s", pIdx->zName));





    }
  }
  if( iBase>pParse->nTab ) pParse->nTab = iBase;
  return i;
}









<
<
<



<

>
>
>
>
>







105048
105049
105050
105051
105052
105053
105054



105055
105056
105057

105058
105059
105060
105061
105062
105063
105064
105065
105066
105067
105068
105069
105070
  }else{
    sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
  }
  if( piIdxCur ) *piIdxCur = iBase;
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    int iIdxCur = iBase++;
    assert( pIdx->pSchema==pTab->pSchema );



    if( aToOpen==0 || aToOpen[i+1] ){
      sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
      sqlite3VdbeSetP4KeyInfo(pParse, pIdx);

      VdbeComment((v, "%s", pIdx->zName));
    }
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
      if( piDataCur ) *piDataCur = iIdxCur;
    }else{
      sqlite3VdbeChangeP5(v, p5);
    }
  }
  if( iBase>pParse->nTab ) pParse->nTab = iBase;
  return i;
}


104771
104772
104773
104774
104775
104776
104777
104778

104779
104780
104781
104782
104783
104784
104785
104786
104787
    }else if( pDest->pIndex==0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
    }else{
      addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
      assert( (pDest->tabFlags & TF_Autoincrement)==0 );
    }
    sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
    sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);

    sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
    sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
    sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
  }else{
    sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
    sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
  }







|
>

<







105378
105379
105380
105381
105382
105383
105384
105385
105386
105387

105388
105389
105390
105391
105392
105393
105394
    }else if( pDest->pIndex==0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
    }else{
      addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
      assert( (pDest->tabFlags & TF_Autoincrement)==0 );
    }
    sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
    sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
                      pDest->zName, 0);
    sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);

    sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
    sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
  }else{
    sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
    sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
  }
104940
104941
104942
104943
104944
104945
104946
104947
104948
104949
104950
104951
104952
104953
104954
          callbackIsInit = 1;
        }
        if( rc==SQLITE_ROW ){
          azVals = &azCols[nCol];
          for(i=0; i<nCol; i++){
            azVals[i] = (char *)sqlite3_column_text(pStmt, i);
            if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
              db->mallocFailed = 1;
              goto exec_out;
            }
          }
        }
        if( xCallback(pArg, nCol, azVals, azCols) ){
          /* EVIDENCE-OF: R-38229-40159 If the callback function to
          ** sqlite3_exec() returns non-zero, then sqlite3_exec() will







|







105547
105548
105549
105550
105551
105552
105553
105554
105555
105556
105557
105558
105559
105560
105561
          callbackIsInit = 1;
        }
        if( rc==SQLITE_ROW ){
          azVals = &azCols[nCol];
          for(i=0; i<nCol; i++){
            azVals[i] = (char *)sqlite3_column_text(pStmt, i);
            if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
              sqlite3OomFault(db);
              goto exec_out;
            }
          }
        }
        if( xCallback(pArg, nCol, azVals, azCols) ){
          /* EVIDENCE-OF: R-38229-40159 If the callback function to
          ** sqlite3_exec() returns non-zero, then sqlite3_exec() will
106828
106829
106830
106831
106832
106833
106834
106835
106836
106837
106838
106839
106840
106841
106842
106843
106844
106845
106846
106847
106848
106849

106850
106851
106852
106853
106854
106855
106856


106857
106858
106859
106860
106861
106862
106863
/* Number of pragmas: 60 on by default, 73 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.  The FULL option is disallowed
** if the omitFull parameter it 1.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
** to support legacy SQL code.  The safety level used to be boolean
** and older scripts may have used numbers 0 for OFF and 1 for ON.
*/
static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
                             /* 123456789 123456789 */
  static const char zText[] = "onoffalseyestruefull";
  static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
  static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
  static const u8 iValue[] =  {1, 0, 0, 0, 1, 1, 2};

  int i, n;
  if( sqlite3Isdigit(*z) ){
    return (u8)sqlite3Atoi(z);
  }
  n = sqlite3Strlen30(z);
  for(i=0; i<ArraySize(iLength)-omitFull; i++){
    if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){


      return iValue[i];
    }
  }
  return dflt;
}

/*







|
|








|
|
|
|
|
>





|
|
>
>







107435
107436
107437
107438
107439
107440
107441
107442
107443
107444
107445
107446
107447
107448
107449
107450
107451
107452
107453
107454
107455
107456
107457
107458
107459
107460
107461
107462
107463
107464
107465
107466
107467
107468
107469
107470
107471
107472
107473
/* Number of pragmas: 60 on by default, 73 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or 
** unrecognized string argument.  The FULL and EXTRA option is disallowed
** if the omitFull parameter it 1.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
** to support legacy SQL code.  The safety level used to be boolean
** and older scripts may have used numbers 0 for OFF and 1 for ON.
*/
static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
                             /* 123456789 123456789 123 */
  static const char zText[] = "onoffalseyestruextrafull";
  static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20};
  static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4};
  static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2};
                            /* on no off false yes true extra full */
  int i, n;
  if( sqlite3Isdigit(*z) ){
    return (u8)sqlite3Atoi(z);
  }
  n = sqlite3Strlen30(z);
  for(i=0; i<ArraySize(iLength); i++){
    if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
     && (!omitFull || iValue[i]<=1)
    ){
      return iValue[i];
    }
  }
  return dflt;
}

/*
107226
107227
107228
107229
107230
107231
107232
107233
107234
107235
107236
107237

107238

107239
107240
107241
107242
107243
107244
107245
107246
107247
107248
107249
107250
107251
107252
107253
      { OP_Integer,     0, 2,        0},
      { OP_Subtract,    1, 2,        1},
      { OP_IfPos,       1, 8,        0},
      { OP_Integer,     0, 1,        0},                         /* 6 */
      { OP_Noop,        0, 0,        0},
      { OP_ResultRow,   1, 1,        0},
    };
    int addr;
    sqlite3VdbeUsesBtree(v, iDb);
    if( !zRight ){
      setOneColumnName(v, "cache_size");
      pParse->nMem += 2;

      addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize,iLn);

      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+1, iDb);
      sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE);
    }else{
      int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
      sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1);
      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
    break;
  }
#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */







|




>
|
>
|
|
|



<
|







107836
107837
107838
107839
107840
107841
107842
107843
107844
107845
107846
107847
107848
107849
107850
107851
107852
107853
107854
107855
107856

107857
107858
107859
107860
107861
107862
107863
107864
      { OP_Integer,     0, 2,        0},
      { OP_Subtract,    1, 2,        1},
      { OP_IfPos,       1, 8,        0},
      { OP_Integer,     0, 1,        0},                         /* 6 */
      { OP_Noop,        0, 0,        0},
      { OP_ResultRow,   1, 1,        0},
    };
    VdbeOp *aOp;
    sqlite3VdbeUsesBtree(v, iDb);
    if( !zRight ){
      setOneColumnName(v, "cache_size");
      pParse->nMem += 2;
      sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
      aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
      if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
      aOp[0].p1 = iDb;
      aOp[1].p1 = iDb;
      aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
    }else{
      int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
      sqlite3BeginWriteOperation(pParse, 0, iDb);

      sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
    break;
  }
#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
107270
107271
107272
107273
107274
107275
107276
107277
107278
107279
107280
107281
107282
107283
107284
      returnSingleInt(v, "page_size", size);
    }else{
      /* Malloc may fail when setting the page-size, as there is an internal
      ** buffer that the pager module resizes using sqlite3_realloc().
      */
      db->nextPagesize = sqlite3Atoi(zRight);
      if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
        db->mallocFailed = 1;
      }
    }
    break;
  }

  /*
  **  PRAGMA [schema.]secure_delete







|







107881
107882
107883
107884
107885
107886
107887
107888
107889
107890
107891
107892
107893
107894
107895
      returnSingleInt(v, "page_size", size);
    }else{
      /* Malloc may fail when setting the page-size, as there is an internal
      ** buffer that the pager module resizes using sqlite3_realloc().
      */
      db->nextPagesize = sqlite3Atoi(zRight);
      if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
        sqlite3OomFault(db);
      }
    }
    break;
  }

  /*
  **  PRAGMA [schema.]secure_delete
107477
107478
107479
107480
107481
107482
107483
107484
107485
107486

107487

107488

107489
107490
107491

107492
107493
107494
107495
107496
107497
107498
107499
107500
        */
        static const int iLn = VDBE_OFFSET_LINENO(2);
        static const VdbeOpList setMeta6[] = {
          { OP_Transaction,    0,         1,                 0},    /* 0 */
          { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
          { OP_If,             1,         0,                 0},    /* 2 */
          { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
          { OP_Integer,        0,         1,                 0},    /* 4 */
          { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 1},    /* 5 */
        };

        int iAddr;

        iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);

        sqlite3VdbeChangeP1(v, iAddr, iDb);
        sqlite3VdbeChangeP1(v, iAddr+1, iDb);
        sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);

        sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
        sqlite3VdbeChangeP1(v, iAddr+5, iDb);
        sqlite3VdbeUsesBtree(v, iDb);
      }
    }
    break;
  }
#endif








<
|

>
|
>
|
>
|
|
|
>
|
<







108088
108089
108090
108091
108092
108093
108094

108095
108096
108097
108098
108099
108100
108101
108102
108103
108104
108105
108106

108107
108108
108109
108110
108111
108112
108113
        */
        static const int iLn = VDBE_OFFSET_LINENO(2);
        static const VdbeOpList setMeta6[] = {
          { OP_Transaction,    0,         1,                 0},    /* 0 */
          { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
          { OP_If,             1,         0,                 0},    /* 2 */
          { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */

          { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */
        };
        VdbeOp *aOp;
        int iAddr = sqlite3VdbeCurrentAddr(v);
        sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
        aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
        if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
        aOp[0].p1 = iDb;
        aOp[1].p1 = iDb;
        aOp[2].p2 = iAddr+4;
        aOp[4].p1 = iDb;
        aOp[4].p3 = eAuto - 1;

        sqlite3VdbeUsesBtree(v, iDb);
      }
    }
    break;
  }
#endif

107765
107766
107767
107768
107769
107770
107771
107772
107773
107774
107775
107776
107777
107778
107779
    }
    break;
  }
#endif /* SQLITE_ENABLE_LOCKING_STYLE */      
    
  /*
  **   PRAGMA [schema.]synchronous
  **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  case PragTyp_SYNCHRONOUS: {







|







108378
108379
108380
108381
108382
108383
108384
108385
108386
108387
108388
108389
108390
108391
108392
    }
    break;
  }
#endif /* SQLITE_ENABLE_LOCKING_STYLE */      
    
  /*
  **   PRAGMA [schema.]synchronous
  **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  case PragTyp_SYNCHRONOUS: {
108192
108193
108194
108195
108196
108197
108198
108199
108200
108201
108202
108203
108204
108205
108206
108207
108208
108209
108210
108211
108212
108213
108214
108215
108216
108217
  /* Pragma "quick_check" is reduced version of 
  ** integrity_check designed to detect most database corruption
  ** without most of the overhead of a full integrity-check.
  */
  case PragTyp_INTEGRITY_CHECK: {
    int i, j, addr, mxErr;

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const int iLn = VDBE_OFFSET_LINENO(2);
    static const VdbeOpList endCode[] = {
      { OP_AddImm,      1, 0,        0},    /* 0 */
      { OP_If,          1, 0,        0},    /* 1 */
      { OP_String8,     0, 3,        0},    /* 2 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (sqlite3Tolower(zLeft[0])=='q');

    /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
    ** then iDb is set to the index of the database identified by <db>.
    ** In this case, the integrity of database iDb only is verified by
    ** the VDBE created below.
    **







<
<
<
<
<
<
<
<
<
<
<
<







108805
108806
108807
108808
108809
108810
108811












108812
108813
108814
108815
108816
108817
108818
  /* Pragma "quick_check" is reduced version of 
  ** integrity_check designed to detect most database corruption
  ** without most of the overhead of a full integrity-check.
  */
  case PragTyp_INTEGRITY_CHECK: {
    int i, j, addr, mxErr;













    int isQuick = (sqlite3Tolower(zLeft[0])=='q');

    /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
    ** then iDb is set to the index of the database identified by <db>.
    ** In this case, the integrity of database iDb only is verified by
    ** the VDBE created below.
    **
108400
108401
108402
108403
108404
108405
108406










108407

108408
108409
108410



108411
108412
108413
108414
108415
108416
108417
          sqlite3VdbeLoadString(v, 3, pIdx->zName);
          sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
        }
#endif /* SQLITE_OMIT_BTREECOUNT */
      } 
    }










    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);

    sqlite3VdbeChangeP2(v, addr, -mxErr);
    sqlite3VdbeJumpHere(v, addr+1);
    sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);



  }
  break;
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding







>
>
>
>
>
>
>
>
>
>
|
>
|
<
|
>
>
>







109001
109002
109003
109004
109005
109006
109007
109008
109009
109010
109011
109012
109013
109014
109015
109016
109017
109018
109019
109020

109021
109022
109023
109024
109025
109026
109027
109028
109029
109030
109031
          sqlite3VdbeLoadString(v, 3, pIdx->zName);
          sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
        }
#endif /* SQLITE_OMIT_BTREECOUNT */
      } 
    }
    {
      static const int iLn = VDBE_OFFSET_LINENO(2);
      static const VdbeOpList endCode[] = {
        { OP_AddImm,      1, 0,        0},    /* 0 */
        { OP_If,          1, 4,        0},    /* 1 */
        { OP_String8,     0, 3,        0},    /* 2 */
        { OP_ResultRow,   3, 1,        0},    /* 3 */
      };
      VdbeOp *aOp;

      aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
      if( aOp ){
        aOp[0].p2 = -mxErr;

        aOp[2].p4type = P4_STATIC;
        aOp[2].p4.z = "ok";
      }
    }
  }
  break;
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding
108517
108518
108519
108520
108521
108522
108523
108524
108525
108526


108527

108528


108529
108530
108531
108532
108533
108534
108535
108536
108537
108538


108539

108540
108541
108542
108543
108544
108545
108546
108547
108548
108549
  case PragTyp_HEADER_VALUE: {
    int iCookie = pPragma->iArg;  /* Which cookie to read or write */
    sqlite3VdbeUsesBtree(v, iDb);
    if( zRight && (pPragma->mPragFlag & PragFlag_ReadOnly)==0 ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };


      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);

      sqlite3VdbeChangeP1(v, addr, iDb);


      sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight));
      sqlite3VdbeChangeP1(v, addr+2, iDb);
      sqlite3VdbeChangeP2(v, addr+2, iCookie);
    }else{
      /* Read the specified cookie value */
      static const VdbeOpList readCookie[] = {
        { OP_Transaction,     0,  0,  0},    /* 0 */
        { OP_ReadCookie,      0,  1,  0},    /* 1 */
        { OP_ResultRow,       1,  1,  0}
      };


      int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie, 0);

      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+1, iDb);
      sqlite3VdbeChangeP3(v, addr+1, iCookie);
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
    }
  }
  break;
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */








<
|

>
>
|
>
|
>
>
|
<
<







>
>
|
>
|
|
|







109131
109132
109133
109134
109135
109136
109137

109138
109139
109140
109141
109142
109143
109144
109145
109146
109147


109148
109149
109150
109151
109152
109153
109154
109155
109156
109157
109158
109159
109160
109161
109162
109163
109164
109165
109166
109167
109168
  case PragTyp_HEADER_VALUE: {
    int iCookie = pPragma->iArg;  /* Which cookie to read or write */
    sqlite3VdbeUsesBtree(v, iDb);
    if( zRight && (pPragma->mPragFlag & PragFlag_ReadOnly)==0 ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */

        { OP_SetCookie,      0,  0,  0},    /* 1 */
      };
      VdbeOp *aOp;
      sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
      aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
      if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
      aOp[0].p1 = iDb;
      aOp[1].p1 = iDb;
      aOp[1].p2 = iCookie;
      aOp[1].p3 = sqlite3Atoi(zRight);


    }else{
      /* Read the specified cookie value */
      static const VdbeOpList readCookie[] = {
        { OP_Transaction,     0,  0,  0},    /* 0 */
        { OP_ReadCookie,      0,  1,  0},    /* 1 */
        { OP_ResultRow,       1,  1,  0}
      };
      VdbeOp *aOp;
      sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
      aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
      if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
      aOp[0].p1 = iDb;
      aOp[1].p1 = iDb;
      aOp[1].p3 = iCookie;
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
    }
  }
  break;
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */

108793
108794
108795
108796
108797
108798
108799
108800
108801
108802
108803
108804
108805
108806
108807
108808
108809
108810
108811
  const char *zObj,    /* Object being parsed at the point of error */
  const char *zExtra   /* Error information */
){
  sqlite3 *db = pData->db;
  if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
    char *z;
    if( zObj==0 ) zObj = "?";
    z = sqlite3_mprintf("malformed database schema (%s)", zObj);
    if( z && zExtra ) z = sqlite3_mprintf("%z - %s", z, zExtra);
    sqlite3DbFree(db, *pData->pzErrMsg);
    *pData->pzErrMsg = z;
    if( z==0 ) db->mallocFailed = 1;
  }
  pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT;
}

/*
** This is the callback routine for the code that initializes the
** database.  See sqlite3Init() below for additional information.







|
|


<







109412
109413
109414
109415
109416
109417
109418
109419
109420
109421
109422

109423
109424
109425
109426
109427
109428
109429
  const char *zObj,    /* Object being parsed at the point of error */
  const char *zExtra   /* Error information */
){
  sqlite3 *db = pData->db;
  if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
    char *z;
    if( zObj==0 ) zObj = "?";
    z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj);
    if( zExtra ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra);
    sqlite3DbFree(db, *pData->pzErrMsg);
    *pData->pzErrMsg = z;

  }
  pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT;
}

/*
** This is the callback routine for the code that initializes the
** database.  See sqlite3Init() below for additional information.
108856
108857
108858
108859
108860
108861
108862
108863
108864
108865
108866
108867
108868
108869
108870
    db->init.iDb = 0;
    if( SQLITE_OK!=rc ){
      if( db->init.orphanTrigger ){
        assert( iDb==1 );
      }else{
        pData->rc = rc;
        if( rc==SQLITE_NOMEM ){
          db->mallocFailed = 1;
        }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
          corruptSchema(pData, argv[0], sqlite3_errmsg(db));
        }
      }
    }
    sqlite3_finalize(pStmt);
  }else if( argv[0]==0 || (argv[2]!=0 && argv[2][0]!=0) ){







|







109474
109475
109476
109477
109478
109479
109480
109481
109482
109483
109484
109485
109486
109487
109488
    db->init.iDb = 0;
    if( SQLITE_OK!=rc ){
      if( db->init.orphanTrigger ){
        assert( iDb==1 );
      }else{
        pData->rc = rc;
        if( rc==SQLITE_NOMEM ){
          sqlite3OomFault(db);
        }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
          corruptSchema(pData, argv[0], sqlite3_errmsg(db));
        }
      }
    }
    sqlite3_finalize(pStmt);
  }else if( argv[0]==0 || (argv[2]!=0 && argv[2][0]!=0) ){
108902
108903
108904
108905
108906
108907
108908
108909
108910
108911
108912
108913
108914
108915
108916
108917
108918
108919
108920
108921
108922
108923
108924
108925
108926
108927
108928
108929
108930
108931
108932
108933
108934
108935
108936
108937
108938
108939
108940
108941
108942
108943
108944
108945
108946
108947
108948
108949
108950
108951
108952
108953
108954
108955
108956
108957
108958
108959

108960
108961
108962
108963

108964
108965
108966
108967
108968
108969
108970
108971
108972
108973
108974
108975
108976
108977
108978
108979
108980
108981
108982
108983
108984
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
  int rc;
  int i;
#ifndef SQLITE_OMIT_DEPRECATED
  int size;
#endif
  Table *pTab;
  Db *pDb;
  char const *azArg[4];
  int meta[5];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName;
  int openedTransaction = 0;

  /*
  ** The master database table has a structure like this
  */
  static const char master_schema[] = 
     "CREATE TABLE sqlite_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#ifndef SQLITE_OMIT_TEMPDB
  static const char temp_master_schema[] = 
     "CREATE TEMP TABLE sqlite_temp_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialized. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
  }else{
    zMasterSchema = master_schema;
  }
  zMasterName = SCHEMA_TABLE(iDb);


  /* Construct the schema tables.  */
  azArg[0] = zMasterName;
  azArg[1] = "1";
  azArg[2] = zMasterSchema;

  azArg[3] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.rc = SQLITE_OK;
  initData.pzErrMsg = pzErrMsg;
  sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( ALWAYS(pTab) ){
    pTab->tabFlags |= TF_Readonly;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
      DbSetProperty(db, 1, DB_SchemaLoaded);







<




<
|


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<





<
|
<
<
<
|
<
<
<
<
|
>
|
|

|
>










<
<
<
<







109520
109521
109522
109523
109524
109525
109526

109527
109528
109529
109530

109531
109532
109533


























109534
109535
109536
109537
109538

109539



109540




109541
109542
109543
109544
109545
109546
109547
109548
109549
109550
109551
109552
109553
109554
109555
109556
109557




109558
109559
109560
109561
109562
109563
109564
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
  int rc;
  int i;
#ifndef SQLITE_OMIT_DEPRECATED
  int size;
#endif

  Db *pDb;
  char const *azArg[4];
  int meta[5];
  InitData initData;

  const char *zMasterName;
  int openedTransaction = 0;



























  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );


  /* Construct the in-memory representation schema tables (sqlite_master or



  ** sqlite_temp_master) by invoking the parser directly.  The appropriate




  ** table name will be inserted automatically by the parser so we can just
  ** use the abbreviation "x" here.  The parser will also automatically tag
  ** the schema table as read-only. */
  azArg[0] = zMasterName = SCHEMA_TABLE(iDb);
  azArg[1] = "1";
  azArg[2] = "CREATE TABLE x(type text,name text,tbl_name text,"
                            "rootpage integer,sql text)";
  azArg[3] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.rc = SQLITE_OK;
  initData.pzErrMsg = pzErrMsg;
  sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }





  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
      DbSetProperty(db, 1, DB_SchemaLoaded);
109089
109090
109091
109092
109093
109094
109095
109096
109097
109098
109099
109100
109101
109102
109103

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  {
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid",
        db->aDb[iDb].zName, zMasterName);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      sqlite3_xauth xAuth;
      xAuth = db->xAuth;
      db->xAuth = 0;
#endif







|







109669
109670
109671
109672
109673
109674
109675
109676
109677
109678
109679
109680
109681
109682
109683

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  {
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT name, rootpage, sql FROM \"%w\".%s ORDER BY rowid",
        db->aDb[iDb].zName, zMasterName);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      sqlite3_xauth xAuth;
      xAuth = db->xAuth;
      db->xAuth = 0;
#endif
109139
109140
109141
109142
109143
109144
109145
109146
109147
109148
109149
109150
109151
109152
109153
  if( openedTransaction ){
    sqlite3BtreeCommit(pDb->pBt);
  }
  sqlite3BtreeLeave(pDb->pBt);

error_out:
  if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}

/*
** Initialize all database files - the main database file, the file
** used to store temporary tables, and any additional database files







|







109719
109720
109721
109722
109723
109724
109725
109726
109727
109728
109729
109730
109731
109732
109733
  if( openedTransaction ){
    sqlite3BtreeCommit(pDb->pBt);
  }
  sqlite3BtreeLeave(pDb->pBt);

error_out:
  if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
    sqlite3OomFault(db);
  }
  return rc;
}

/*
** Initialize all database files - the main database file, the file
** used to store temporary tables, and any additional database files
109237
109238
109239
109240
109241
109242
109243
109244
109245
109246
109247
109248
109249
109250
109251

    /* If there is not already a read-only (or read-write) transaction opened
    ** on the b-tree database, open one now. If a transaction is opened, it 
    ** will be closed immediately after reading the meta-value. */
    if( !sqlite3BtreeIsInReadTrans(pBt) ){
      rc = sqlite3BtreeBeginTrans(pBt, 0);
      if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
        db->mallocFailed = 1;
      }
      if( rc!=SQLITE_OK ) return;
      openedTransaction = 1;
    }

    /* Read the schema cookie from the database. If it does not match the 
    ** value stored as part of the in-memory schema representation,







|







109817
109818
109819
109820
109821
109822
109823
109824
109825
109826
109827
109828
109829
109830
109831

    /* If there is not already a read-only (or read-write) transaction opened
    ** on the b-tree database, open one now. If a transaction is opened, it 
    ** will be closed immediately after reading the meta-value. */
    if( !sqlite3BtreeIsInReadTrans(pBt) ){
      rc = sqlite3BtreeBeginTrans(pBt, 0);
      if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
        sqlite3OomFault(db);
      }
      if( rc!=SQLITE_OK ) return;
      openedTransaction = 1;
    }

    /* Read the schema cookie from the database. If it does not match the 
    ** value stored as part of the in-memory schema representation,
109300
109301
109302
109303
109304
109305
109306





109307
109308
109309
109310
109311
109312
109313
** Free all memory allocations in the pParse object
*/
SQLITE_PRIVATE void sqlite3ParserReset(Parse *pParse){
  if( pParse ){
    sqlite3 *db = pParse->db;
    sqlite3DbFree(db, pParse->aLabel);
    sqlite3ExprListDelete(db, pParse->pConstExpr);





  }
}

/*
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
*/
static int sqlite3Prepare(







>
>
>
>
>







109880
109881
109882
109883
109884
109885
109886
109887
109888
109889
109890
109891
109892
109893
109894
109895
109896
109897
109898
** Free all memory allocations in the pParse object
*/
SQLITE_PRIVATE void sqlite3ParserReset(Parse *pParse){
  if( pParse ){
    sqlite3 *db = pParse->db;
    sqlite3DbFree(db, pParse->aLabel);
    sqlite3ExprListDelete(db, pParse->pConstExpr);
    if( db ){
      assert( db->lookaside.bDisable >= pParse->disableLookaside );
      db->lookaside.bDisable -= pParse->disableLookaside;
    }
    pParse->disableLookaside = 0;
  }
}

/*
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
*/
static int sqlite3Prepare(
109328
109329
109330
109331
109332
109333
109334
109335
109336
109337
109338
109339
109340
109341
109342
  pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
  if( pParse==0 ){
    rc = SQLITE_NOMEM;
    goto end_prepare;
  }
  pParse->pReprepare = pReprepare;
  assert( ppStmt && *ppStmt==0 );
  assert( !db->mallocFailed );
  assert( sqlite3_mutex_held(db->mutex) );

  /* Check to verify that it is possible to get a read lock on all
  ** database schemas.  The inability to get a read lock indicates that
  ** some other database connection is holding a write-lock, which in
  ** turn means that the other connection has made uncommitted changes
  ** to the schema.







|







109913
109914
109915
109916
109917
109918
109919
109920
109921
109922
109923
109924
109925
109926
109927
  pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
  if( pParse==0 ){
    rc = SQLITE_NOMEM;
    goto end_prepare;
  }
  pParse->pReprepare = pReprepare;
  assert( ppStmt && *ppStmt==0 );
  /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */
  assert( sqlite3_mutex_held(db->mutex) );

  /* Check to verify that it is possible to get a read lock on all
  ** database schemas.  The inability to get a read lock indicates that
  ** some other database connection is holding a write-lock, which in
  ** turn means that the other connection has made uncommitted changes
  ** to the schema.
109385
109386
109387
109388
109389
109390
109391
109392
109393

109394
109395
109396
109397
109398
109399
109400
109401
109402
109403
109404
109405
109406
109407
109408
109409
109410
109411
      sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long");
      rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
      goto end_prepare;
    }
    zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
    if( zSqlCopy ){
      sqlite3RunParser(pParse, zSqlCopy, &zErrMsg);
      sqlite3DbFree(db, zSqlCopy);
      pParse->zTail = &zSql[pParse->zTail-zSqlCopy];

    }else{
      pParse->zTail = &zSql[nBytes];
    }
  }else{
    sqlite3RunParser(pParse, zSql, &zErrMsg);
  }
  assert( 0==pParse->nQueryLoop );

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
  if( pParse->checkSchema ){
    schemaIsValid(pParse);
  }
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }







<

>








<
<
<







109970
109971
109972
109973
109974
109975
109976

109977
109978
109979
109980
109981
109982
109983
109984
109985
109986



109987
109988
109989
109990
109991
109992
109993
      sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long");
      rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
      goto end_prepare;
    }
    zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
    if( zSqlCopy ){
      sqlite3RunParser(pParse, zSqlCopy, &zErrMsg);

      pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
      sqlite3DbFree(db, zSqlCopy);
    }else{
      pParse->zTail = &zSql[nBytes];
    }
  }else{
    sqlite3RunParser(pParse, zSql, &zErrMsg);
  }
  assert( 0==pParse->nQueryLoop );




  if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
  if( pParse->checkSchema ){
    schemaIsValid(pParse);
  }
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
109519
109520
109521
109522
109523
109524
109525
109526
109527
109528
109529
109530
109531
109532
109533
  zSql = sqlite3_sql((sqlite3_stmt *)p);
  assert( zSql!=0 );  /* Reprepare only called for prepare_v2() statements */
  db = sqlite3VdbeDb(p);
  assert( sqlite3_mutex_held(db->mutex) );
  rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0);
  if( rc ){
    if( rc==SQLITE_NOMEM ){
      db->mallocFailed = 1;
    }
    assert( pNew==0 );
    return rc;
  }else{
    assert( pNew!=0 );
  }
  sqlite3VdbeSwap((Vdbe*)pNew, p);







|







110101
110102
110103
110104
110105
110106
110107
110108
110109
110110
110111
110112
110113
110114
110115
  zSql = sqlite3_sql((sqlite3_stmt *)p);
  assert( zSql!=0 );  /* Reprepare only called for prepare_v2() statements */
  db = sqlite3VdbeDb(p);
  assert( sqlite3_mutex_held(db->mutex) );
  rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0);
  if( rc ){
    if( rc==SQLITE_NOMEM ){
      sqlite3OomFault(db);
    }
    assert( pNew==0 );
    return rc;
  }else{
    assert( pNew!=0 );
  }
  sqlite3VdbeSwap((Vdbe*)pNew, p);
109773
109774
109775
109776
109777
109778
109779
109780
109781
109782
109783
109784
109785
109786
109787
109788
109789










109790
109791
109792
109793
109794
109795
109796
109797
109798
109799

109800
109801
109802
109803
109804
109805
109806
109807
109808
109809
  u16 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;
    memset(pNew, 0, sizeof(*pNew));
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;










  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = selFlags;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;

  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );







|



<





>
>
>
>
>
>
>
>
>
>






|
|


>

<
<







110355
110356
110357
110358
110359
110360
110361
110362
110363
110364
110365

110366
110367
110368
110369
110370
110371
110372
110373
110374
110375
110376
110377
110378
110379
110380
110381
110382
110383
110384
110385
110386
110387
110388
110389
110390
110391
110392


110393
110394
110395
110396
110397
110398
110399
  u16 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;

  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
#if SELECTTRACE_ENABLED
  pNew->zSelName[0] = 0;
#endif
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->pWith = 0;
  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );


  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
110658
110659
110660
110661
110662
110663
110664

110665
110666
110667
110668
110669
110670
110671
110672
110673

110674
110675
110676
110677
110678
110679
110680
110681
110682
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
*/
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){

  KeyInfo *p = sqlite3DbMallocZero(0, 
                   sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
  if( p ){
    p->aSortOrder = (u8*)&p->aColl[N+X];
    p->nField = (u16)N;
    p->nXField = (u16)X;
    p->enc = ENC(db);
    p->db = db;
    p->nRef = 1;

  }else{
    db->mallocFailed = 1;
  }
  return p;
}

/*
** Deallocate a KeyInfo object
*/







>
|
<







>

|







111248
111249
111250
111251
111252
111253
111254
111255
111256

111257
111258
111259
111260
111261
111262
111263
111264
111265
111266
111267
111268
111269
111270
111271
111272
111273
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
*/
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
  int nExtra = (N+X)*(sizeof(CollSeq*)+1);
  KeyInfo *p = sqlite3Malloc(sizeof(KeyInfo) + nExtra);

  if( p ){
    p->aSortOrder = (u8*)&p->aColl[N+X];
    p->nField = (u16)N;
    p->nXField = (u16)X;
    p->enc = ENC(db);
    p->db = db;
    p->nRef = 1;
    memset(&p[1], 0, nExtra);
  }else{
    sqlite3OomFault(db);
  }
  return p;
}

/*
** Deallocate a KeyInfo object
*/
111329
111330
111331
111332
111333
111334
111335
111336
111337
111338
111339
111340
111341
111342
111343
      }
      zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
      if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
    }
    pCol->zName = zName;
    sqlite3ColumnPropertiesFromName(0, pCol);
    if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
      db->mallocFailed = 1;
    }
  }
  sqlite3HashClear(&ht);
  if( db->mallocFailed ){
    for(j=0; j<i; j++){
      sqlite3DbFree(db, aCol[j].zName);
    }







|







111920
111921
111922
111923
111924
111925
111926
111927
111928
111929
111930
111931
111932
111933
111934
      }
      zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
      if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
    }
    pCol->zName = zName;
    sqlite3ColumnPropertiesFromName(0, pCol);
    if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
      sqlite3OomFault(db);
    }
  }
  sqlite3HashClear(&ht);
  if( db->mallocFailed ){
    for(j=0; j<i; j++){
      sqlite3DbFree(db, aCol[j].zName);
    }
111416
111417
111418
111419
111420
111421
111422
111423
111424
111425
111426
111427
111428
111429
111430
  db->flags = savedFlags;
  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
  ** is disabled */
  assert( db->lookaside.bEnabled==0 );
  pTab->nRef = 1;
  pTab->zName = 0;
  pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
  sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
  pTab->iPKey = -1;
  if( db->mallocFailed ){







|







112007
112008
112009
112010
112011
112012
112013
112014
112015
112016
112017
112018
112019
112020
112021
  db->flags = savedFlags;
  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
  ** is disabled */
  assert( db->lookaside.bDisable );
  pTab->nRef = 1;
  pTab->zName = 0;
  pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
  sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
  pTab->iPKey = -1;
  if( db->mallocFailed ){
111512
111513
111514
111515
111516
111517
111518
111519
111520
111521
111522
111523
111524
111525
111526
111527
111528
111529
    }
    if( p->pOffset ){
      p->iOffset = iOffset = ++pParse->nMem;
      pParse->nMem++;   /* Allocate an extra register for limit+offset */
      sqlite3ExprCode(pParse, p->pOffset, iOffset);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
      VdbeComment((v, "OFFSET counter"));
      sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iOffset, iOffset, 0);
      sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
      VdbeComment((v, "LIMIT+OFFSET"));
      sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iLimit, iOffset+1, -1);
    }
  }
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of







|
<

<







112103
112104
112105
112106
112107
112108
112109
112110

112111

112112
112113
112114
112115
112116
112117
112118
    }
    if( p->pOffset ){
      p->iOffset = iOffset = ++pParse->nMem;
      pParse->nMem++;   /* Allocate an extra register for limit+offset */
      sqlite3ExprCode(pParse, p->pOffset, iOffset);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
      VdbeComment((v, "OFFSET counter"));
      sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);

      VdbeComment((v, "LIMIT+OFFSET"));

    }
  }
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
111932
111933
111934
111935
111936
111937
111938
111939
111940
111941
111942
111943
111944
111945
111946
111947
111948
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
        if( p->iOffset ){
          sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iOffset, p->iOffset, 0);
          sqlite3VdbeAddOp3(v, OP_Add, p->iLimit, p->iOffset, p->iOffset+1);
          sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iLimit, p->iOffset+1, -1);
        }
      }
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;







|
<
|







112521
112522
112523
112524
112525
112526
112527
112528

112529
112530
112531
112532
112533
112534
112535
112536
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
        if( p->iOffset ){
          sqlite3VdbeAddOp3(v, OP_OffsetLimit,

                            p->iLimit, p->iOffset+1, p->iOffset);
        }
      }
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
112525
112526
112527
112528
112529
112530
112531
112532
112533
112534

112535
112536
112537
112538
112539
112540
112541
112542
  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    struct ExprList_item *pItem;

    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
      assert( pItem->u.x.iOrderByCol>0 );
      assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->u.x.iOrderByCol - 1;
    }
    pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
  }else{
    pKeyMerge = 0;







|


>
|







113113
113114
113115
113116
113117
113118
113119
113120
113121
113122
113123
113124
113125
113126
113127
113128
113129
113130
113131
  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
  if( aPermute ){
    struct ExprList_item *pItem;
    aPermute[0] = nOrderBy;
    for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
      assert( pItem->u.x.iOrderByCol>0 );
      assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->u.x.iOrderByCol - 1;
    }
    pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
  }else{
    pKeyMerge = 0;
112606
112607
112608
112609
112610
112611
112612
112613
112614
112615
112616
112617
112618
112619
112620
112621
112622
112623
112624
112625
112626
112627
112628
112629
112630
112631
112632
112633
112634
112635
112636
112637
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  explainSetInteger(iSub1, pParse->iNextSelectId);
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  explainSetInteger(iSub2, pParse->iNextSelectId);
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
  */
  VdbeNoopComment((v, "Output routine for A"));
  addrOutA = generateOutputSubroutine(pParse,
                 p, &destA, pDest, regOutA,







|
















|







113195
113196
113197
113198
113199
113200
113201
113202
113203
113204
113205
113206
113207
113208
113209
113210
113211
113212
113213
113214
113215
113216
113217
113218
113219
113220
113221
113222
113223
113224
113225
113226
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  explainSetInteger(iSub1, pParse->iNextSelectId);
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeEndCoroutine(v, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  explainSetInteger(iSub2, pParse->iNextSelectId);
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeEndCoroutine(v, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
  */
  VdbeNoopComment((v, "Output routine for A"));
  addrOutA = generateOutputSubroutine(pParse,
                 p, &destA, pDest, regOutA,
114090
114091
114092
114093
114094
114095
114096
114097
114098
114099
114100
114101
114102
114103
114104
114105
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite3Strlen30(zColname);
            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
            if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
              struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
              if( pSub ){
                pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
                testcase( pX->zSpan==0 );
              }else{







|
<







114679
114680
114681
114682
114683
114684
114685
114686

114687
114688
114689
114690
114691
114692
114693
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sqlite3TokenInit(&sColname, zColname);

            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
            if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
              struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
              if( pSub ){
                pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
                testcase( pX->zSpan==0 );
              }else{
114645
114646
114647
114648
114649
114650
114651
114652
114653
114654
114655
114656
114657
114658
114659
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
    }else{
      /* Generate a subroutine that will fill an ephemeral table with
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address







|







115233
115234
115235
115236
115237
115238
115239
115240
115241
115242
115243
115244
115245
115246
115247
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeEndCoroutine(v, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
    }else{
      /* Generate a subroutine that will fill an ephemeral table with
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address
115217
115218
115219
115220
115221
115222
115223

115224
115225
115226
115227
115228
115229
115230
115231
          flag = minMaxQuery(&sAggInfo, &pMinMax);
        }
        assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );

        if( flag ){
          pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
          pDel = pMinMax;

          if( pMinMax && !db->mallocFailed ){
            pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
            pMinMax->a[0].pExpr->op = TK_COLUMN;
          }
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row







>
|







115805
115806
115807
115808
115809
115810
115811
115812
115813
115814
115815
115816
115817
115818
115819
115820
          flag = minMaxQuery(&sAggInfo, &pMinMax);
        }
        assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );

        if( flag ){
          pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
          pDel = pMinMax;
          assert( db->mallocFailed || pMinMax!=0 );
          if( !db->mallocFailed ){
            pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
            pMinMax->a[0].pExpr->op = TK_COLUMN;
          }
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
115790
115791
115792
115793
115794
115795
115796
115797
115798
115799
115800
115801
115802
115803
115804
115805
  zName = pTrig->zName;
  iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
  pTrig->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = pTrig;
    pStepList = pStepList->pNext;
  }
  nameToken.z = pTrig->zName;
  nameToken.n = sqlite3Strlen30(nameToken.z);
  sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken);
  if( sqlite3FixTriggerStep(&sFix, pTrig->step_list) 
   || sqlite3FixExpr(&sFix, pTrig->pWhen) 
  ){
    goto triggerfinish_cleanup;
  }








|
<







116379
116380
116381
116382
116383
116384
116385
116386

116387
116388
116389
116390
116391
116392
116393
  zName = pTrig->zName;
  iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
  pTrig->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = pTrig;
    pStepList = pStepList->pNext;
  }
  sqlite3TokenInit(&nameToken, pTrig->zName);

  sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken);
  if( sqlite3FixTriggerStep(&sFix, pTrig->step_list) 
   || sqlite3FixExpr(&sFix, pTrig->pWhen) 
  ){
    goto triggerfinish_cleanup;
  }

115827
115828
115829
115830
115831
115832
115833
115834
115835
115836
115837
115838
115839
115840
115841

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite3HashInsert(pHash, zName, pTrig);
    if( pTrig ){
      db->mallocFailed = 1;
    }else if( pLink->pSchema==pLink->pTabSchema ){
      Table *pTab;
      pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table);
      assert( pTab!=0 );
      pLink->pNext = pTab->pTrigger;
      pTab->pTrigger = pLink;
    }







|







116415
116416
116417
116418
116419
116420
116421
116422
116423
116424
116425
116426
116427
116428
116429

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite3HashInsert(pHash, zName, pTrig);
    if( pTrig ){
      sqlite3OomFault(db);
    }else if( pLink->pSchema==pLink->pTabSchema ){
      Table *pTab;
      pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table);
      assert( pTab!=0 );
      pLink->pNext = pTab->pTrigger;
      pTab->pTrigger = pLink;
    }
116455
116456
116457
116458
116459
116460
116461
116462
116463
116464
116465
116466
116467
116468
116469
116470
  assert( pPrg || pParse->nErr || pParse->db->mallocFailed );

  /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program 
  ** is a pointer to the sub-vdbe containing the trigger program.  */
  if( pPrg ){
    int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));

    sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem);
    sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM);
    VdbeComment(
        (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));

    /* Set the P5 operand of the OP_Program instruction to non-zero if
    ** recursive invocation of this trigger program is disallowed. Recursive
    ** invocation is disallowed if (a) the sub-program is really a trigger,
    ** not a foreign key action, and (b) the flag to enable recursive triggers







|
|







117043
117044
117045
117046
117047
117048
117049
117050
117051
117052
117053
117054
117055
117056
117057
117058
  assert( pPrg || pParse->nErr || pParse->db->mallocFailed );

  /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program 
  ** is a pointer to the sub-vdbe containing the trigger program.  */
  if( pPrg ){
    int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));

    sqlite3VdbeAddOp4(v, OP_Program, reg, ignoreJump, ++pParse->nMem,
                      (const char *)pPrg->pProgram, P4_SUBPROGRAM);
    VdbeComment(
        (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));

    /* Set the P5 operand of the OP_Program instruction to non-zero if
    ** recursive invocation of this trigger program is disallowed. Recursive
    ** invocation is disallowed if (a) the sub-program is really a trigger,
    ** not a foreign key action, and (b) the flag to enable recursive triggers
116803
116804
116805
116806
116807
116808
116809
116810
116811
116812
116813
116814
116815
116816
116817
    }
    pParse->nTab++;
  }

  /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].  
  ** Initialize aXRef[] and aToOpen[] to their default values.
  */
  aXRef = sqlite3DbMallocRaw(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 );
  if( aXRef==0 ) goto update_cleanup;
  aRegIdx = aXRef+pTab->nCol;
  aToOpen = (u8*)(aRegIdx+nIdx);
  memset(aToOpen, 1, nIdx+1);
  aToOpen[nIdx+1] = 0;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;








|







117391
117392
117393
117394
117395
117396
117397
117398
117399
117400
117401
117402
117403
117404
117405
    }
    pParse->nTab++;
  }

  /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].  
  ** Initialize aXRef[] and aToOpen[] to their default values.
  */
  aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 );
  if( aXRef==0 ) goto update_cleanup;
  aRegIdx = aXRef+pTab->nCol;
  aToOpen = (u8*)(aRegIdx+nIdx);
  memset(aToOpen, 1, nIdx+1);
  aToOpen[nIdx+1] = 0;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;

117178
117179
117180
117181
117182
117183
117184
117185

117186
117187
117188
117189
117190
117191
117192
  if( !isView ){
    int addr1 = 0;        /* Address of jump instruction */
    int bReplace = 0;     /* True if REPLACE conflict resolution might happen */

    /* Do constraint checks. */
    assert( regOldRowid>0 );
    sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
        regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace);


    /* Do FK constraint checks. */
    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
    }

    /* Delete the index entries associated with the current record.  */







|
>







117766
117767
117768
117769
117770
117771
117772
117773
117774
117775
117776
117777
117778
117779
117780
117781
  if( !isView ){
    int addr1 = 0;        /* Address of jump instruction */
    int bReplace = 0;     /* True if REPLACE conflict resolution might happen */

    /* Do constraint checks. */
    assert( regOldRowid>0 );
    sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
        regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
        aXRef);

    /* Do FK constraint checks. */
    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
    }

    /* Delete the index entries associated with the current record.  */
117843
117844
117845
117846
117847
117848
117849
117850
117851
117852
117853
117854
117855
117856
117857
117858
117859
117860
117861
117862
117863
117864
117865
117866
117867
117868
117869
117870

  sqlite3_mutex_enter(db->mutex);
  nName = sqlite3Strlen30(zName);
  if( sqlite3HashFind(&db->aModule, zName) ){
    rc = SQLITE_MISUSE_BKPT;
  }else{
    Module *pMod;
    pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
    if( pMod ){
      Module *pDel;
      char *zCopy = (char *)(&pMod[1]);
      memcpy(zCopy, zName, nName+1);
      pMod->zName = zCopy;
      pMod->pModule = pModule;
      pMod->pAux = pAux;
      pMod->xDestroy = xDestroy;
      pMod->pEpoTab = 0;
      pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
      assert( pDel==0 || pDel==pMod );
      if( pDel ){
        db->mallocFailed = 1;
        sqlite3DbFree(db, pDel);
      }
    }
  }
  rc = sqlite3ApiExit(db, rc);
  if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);








|












|







118432
118433
118434
118435
118436
118437
118438
118439
118440
118441
118442
118443
118444
118445
118446
118447
118448
118449
118450
118451
118452
118453
118454
118455
118456
118457
118458
118459

  sqlite3_mutex_enter(db->mutex);
  nName = sqlite3Strlen30(zName);
  if( sqlite3HashFind(&db->aModule, zName) ){
    rc = SQLITE_MISUSE_BKPT;
  }else{
    Module *pMod;
    pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1);
    if( pMod ){
      Module *pDel;
      char *zCopy = (char *)(&pMod[1]);
      memcpy(zCopy, zName, nName+1);
      pMod->zName = zCopy;
      pMod->pModule = pModule;
      pMod->pAux = pAux;
      pMod->xDestroy = xDestroy;
      pMod->pEpoTab = 0;
      pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
      assert( pDel==0 || pDel==pMod );
      if( pDel ){
        sqlite3OomFault(db);
        sqlite3DbFree(db, pDel);
      }
    }
  }
  rc = sqlite3ApiExit(db, rc);
  if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);

118233
118234
118235
118236
118237
118238
118239
118240
118241
118242
118243
118244
118245
118246
118247
  else {
    Table *pOld;
    Schema *pSchema = pTab->pSchema;
    const char *zName = pTab->zName;
    assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
    pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
    if( pOld ){
      db->mallocFailed = 1;
      assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
    pParse->pNewTable = 0;
  }
}








|







118822
118823
118824
118825
118826
118827
118828
118829
118830
118831
118832
118833
118834
118835
118836
  else {
    Table *pOld;
    Schema *pSchema = pTab->pSchema;
    const char *zName = pTab->zName;
    assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
    pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
    if( pOld ){
      sqlite3OomFault(db);
      assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
    pParse->pNewTable = 0;
  }
}

118324
118325
118326
118327
118328
118329
118330
118331
118332
118333
118334
118335
118336
118337
118338
  sCtx.pTab = pTab;
  sCtx.pVTable = pVTable;
  sCtx.pPrior = db->pVtabCtx;
  sCtx.bDeclared = 0;
  db->pVtabCtx = &sCtx;
  rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
  db->pVtabCtx = sCtx.pPrior;
  if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
  assert( sCtx.pTab==pTab );

  if( SQLITE_OK!=rc ){
    if( zErr==0 ){
      *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
    }else {
      *pzErr = sqlite3MPrintf(db, "%s", zErr);







|







118913
118914
118915
118916
118917
118918
118919
118920
118921
118922
118923
118924
118925
118926
118927
  sCtx.pTab = pTab;
  sCtx.pVTable = pVTable;
  sCtx.pPrior = db->pVtabCtx;
  sCtx.bDeclared = 0;
  db->pVtabCtx = &sCtx;
  rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
  db->pVtabCtx = sCtx.pPrior;
  if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
  assert( sCtx.pTab==pTab );

  if( SQLITE_OK!=rc ){
    if( zErr==0 ){
      *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
    }else {
      *pzErr = sqlite3MPrintf(db, "%s", zErr);
118810
118811
118812
118813
118814
118815
118816
118817
118818
118819
118820
118821
118822
118823
118824
  FuncDef *pDef,  /* Function to possibly overload */
  int nArg,       /* Number of arguments to the function */
  Expr *pExpr     /* First argument to the function */
){
  Table *pTab;
  sqlite3_vtab *pVtab;
  sqlite3_module *pMod;
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
  void *pArg = 0;
  FuncDef *pNew;
  int rc = 0;
  char *zLowerName;
  unsigned char *z;









|







119399
119400
119401
119402
119403
119404
119405
119406
119407
119408
119409
119410
119411
119412
119413
  FuncDef *pDef,  /* Function to possibly overload */
  int nArg,       /* Number of arguments to the function */
  Expr *pExpr     /* First argument to the function */
){
  Table *pTab;
  sqlite3_vtab *pVtab;
  sqlite3_module *pMod;
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
  void *pArg = 0;
  FuncDef *pNew;
  int rc = 0;
  char *zLowerName;
  unsigned char *z;


118838
118839
118840
118841
118842
118843
118844
118845
118846
118847
118848
118849
118850
118851
118852
118853
118854
118855
118856
118857
118858
118859
118860
118861
118862
118863
118864
118865
118866
118867
118868
118869
  ** to see if the implementation wants to overload this function 
  */
  zLowerName = sqlite3DbStrDup(db, pDef->zName);
  if( zLowerName ){
    for(z=(unsigned char*)zLowerName; *z; z++){
      *z = sqlite3UpperToLower[*z];
    }
    rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
    sqlite3DbFree(db, zLowerName);
  }
  if( rc==0 ){
    return pDef;
  }

  /* Create a new ephemeral function definition for the overloaded
  ** function */
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
                             + sqlite3Strlen30(pDef->zName) + 1);
  if( pNew==0 ){
    return pDef;
  }
  *pNew = *pDef;
  pNew->zName = (char *)&pNew[1];
  memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
  pNew->xFunc = xFunc;
  pNew->pUserData = pArg;
  pNew->funcFlags |= SQLITE_FUNC_EPHEM;
  return pNew;
}

/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]







|
















|







119427
119428
119429
119430
119431
119432
119433
119434
119435
119436
119437
119438
119439
119440
119441
119442
119443
119444
119445
119446
119447
119448
119449
119450
119451
119452
119453
119454
119455
119456
119457
119458
  ** to see if the implementation wants to overload this function 
  */
  zLowerName = sqlite3DbStrDup(db, pDef->zName);
  if( zLowerName ){
    for(z=(unsigned char*)zLowerName; *z; z++){
      *z = sqlite3UpperToLower[*z];
    }
    rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg);
    sqlite3DbFree(db, zLowerName);
  }
  if( rc==0 ){
    return pDef;
  }

  /* Create a new ephemeral function definition for the overloaded
  ** function */
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
                             + sqlite3Strlen30(pDef->zName) + 1);
  if( pNew==0 ){
    return pDef;
  }
  *pNew = *pDef;
  pNew->zName = (char *)&pNew[1];
  memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
  pNew->xSFunc = xSFunc;
  pNew->pUserData = pArg;
  pNew->funcFlags |= SQLITE_FUNC_EPHEM;
  return pNew;
}

/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
118882
118883
118884
118885
118886
118887
118888
118889
118890
118891
118892
118893
118894
118895
118896
  }
  n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
  apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n);
  if( apVtabLock ){
    pToplevel->apVtabLock = apVtabLock;
    pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
  }else{
    pToplevel->db->mallocFailed = 1;
  }
}

/*
** Check to see if virtual tale module pMod can be have an eponymous
** virtual table instance.  If it can, create one if one does not already
** exist. Return non-zero if the eponymous virtual table instance exists







|







119471
119472
119473
119474
119475
119476
119477
119478
119479
119480
119481
119482
119483
119484
119485
  }
  n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
  apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n);
  if( apVtabLock ){
    pToplevel->apVtabLock = apVtabLock;
    pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
  }else{
    sqlite3OomFault(pToplevel->db);
  }
}

/*
** Check to see if virtual tale module pMod can be have an eponymous
** virtual table instance.  If it can, create one if one does not already
** exist. Return non-zero if the eponymous virtual table instance exists
119624
119625
119626
119627
119628
119629
119630
119631
119632
119633
119634
119635
119636
119637
119638
  int i, j;

  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
  sqlite3StrAccumAppend(pStr, " (", 2);
  for(i=0; i<nEq; i++){
    const char *z = explainIndexColumnName(pIndex, i);
    if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
    sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    const char *z = explainIndexColumnName(pIndex, i);
    explainAppendTerm(pStr, i++, z, ">");
  }







|







120213
120214
120215
120216
120217
120218
120219
120220
120221
120222
120223
120224
120225
120226
120227
  int i, j;

  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
  sqlite3StrAccumAppend(pStr, " (", 2);
  for(i=0; i<nEq; i++){
    const char *z = explainIndexColumnName(pIndex, i);
    if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
    sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    const char *z = explainIndexColumnName(pIndex, i);
    explainAppendTerm(pStr, i++, z, ">");
  }
119683
119684
119685
119686
119687
119688
119689
119690
119691
119692
119693
119694
119695
119696
119697
119698
119699
119700
119701
119702
119703
    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){
      sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
    }else{
      sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
      const char *zFmt = 0;
      Index *pIdx;

      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;







|

|



|







120272
120273
120274
120275
120276
120277
120278
120279
120280
120281
120282
120283
120284
120285
120286
120287
120288
120289
120290
120291
120292
    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
    if( pItem->pSelect ){
      sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
    }else{
      sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
    }

    if( pItem->zAlias ){
      sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
      const char *zFmt = 0;
      Index *pIdx;

      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;
119713
119714
119715
119716
119717
119718
119719
119720
119721
119722
119723
119724
119725
119726
119727
119728
119729
119730
119731
119732
119733
119734
119735
119736
119737
119738
119739
119740
119741
119742
119743
119744
119745
119746
119747
119748
119749
119750
119751
119752
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{
        zFmt = "INDEX %s";
      }
      if( zFmt ){
        sqlite3StrAccumAppend(&str, " USING ", 7);
        sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
        explainIndexRange(&str, pLoop);
      }
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      const char *zRangeOp;
      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zRangeOp = "=";
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zRangeOp = ">? AND rowid<";
      }else if( flags&WHERE_BTM_LIMIT ){
        zRangeOp = ">";
      }else{
        assert( flags&WHERE_TOP_LIMIT);
        zRangeOp = "<";
      }
      sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif
#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
  }







|














|



|





|







120302
120303
120304
120305
120306
120307
120308
120309
120310
120311
120312
120313
120314
120315
120316
120317
120318
120319
120320
120321
120322
120323
120324
120325
120326
120327
120328
120329
120330
120331
120332
120333
120334
120335
120336
120337
120338
120339
120340
120341
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{
        zFmt = "INDEX %s";
      }
      if( zFmt ){
        sqlite3StrAccumAppend(&str, " USING ", 7);
        sqlite3XPrintf(&str, zFmt, pIdx->zName);
        explainIndexRange(&str, pLoop);
      }
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      const char *zRangeOp;
      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zRangeOp = "=";
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zRangeOp = ">? AND rowid<";
      }else if( flags&WHERE_BTM_LIMIT ){
        zRangeOp = ">";
      }else{
        assert( flags&WHERE_TOP_LIMIT);
        zRangeOp = "<";
      }
      sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif
#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
  }
119875
119876
119877
119878
119879
119880
119881
119882
119883
119884
119885
119886
119887
119888
119889
119890
  }
  while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
    n--;
  }

  /* Code the OP_Affinity opcode if there is anything left to do. */
  if( n>0 ){
    sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
    sqlite3VdbeChangeP4(v, -1, zAff, n);
    sqlite3ExprCacheAffinityChange(pParse, base, n);
  }
}


/*
** Generate code for a single equality term of the WHERE clause.  An equality







|
<







120464
120465
120466
120467
120468
120469
120470
120471

120472
120473
120474
120475
120476
120477
120478
  }
  while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
    n--;
  }

  /* Code the OP_Affinity opcode if there is anything left to do. */
  if( n>0 ){
    sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);

    sqlite3ExprCacheAffinityChange(pParse, base, n);
  }
}


/*
** Generate code for a single equality term of the WHERE clause.  An equality
120044
120045
120046
120047
120048
120049
120050
120051
120052
120053
120054
120055
120056
120057
120058
120059
120060
  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLoop->u.btree.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  if( nSkip ){
    int iIdxCur = pLevel->iIdxCur;
    sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
    VdbeCoverageIf(v, bRev==0);
    VdbeCoverageIf(v, bRev!=0);
    VdbeComment((v, "begin skip-scan on %s", pIdx->zName));







<
|
<







120632
120633
120634
120635
120636
120637
120638

120639

120640
120641
120642
120643
120644
120645
120646
  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLoop->u.btree.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));

  assert( zAff!=0 || pParse->db->mallocFailed );


  if( nSkip ){
    int iIdxCur = pLevel->iIdxCur;
    sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
    VdbeCoverageIf(v, bRev==0);
    VdbeCoverageIf(v, bRev!=0);
    VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
120294
120295
120296
120297
120298
120299
120300
















































120301
120302
120303
120304
120305
120306
120307
                      (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
                      (const char*)pExpr, P4_EXPR);
  }
}
#else
# define codeCursorHint(A,B,C)  /* No-op */
#endif /* SQLITE_ENABLE_CURSOR_HINTS */

















































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







120880
120881
120882
120883
120884
120885
120886
120887
120888
120889
120890
120891
120892
120893
120894
120895
120896
120897
120898
120899
120900
120901
120902
120903
120904
120905
120906
120907
120908
120909
120910
120911
120912
120913
120914
120915
120916
120917
120918
120919
120920
120921
120922
120923
120924
120925
120926
120927
120928
120929
120930
120931
120932
120933
120934
120935
120936
120937
120938
120939
120940
120941
                      (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
                      (const char*)pExpr, P4_EXPR);
  }
}
#else
# define codeCursorHint(A,B,C)  /* No-op */
#endif /* SQLITE_ENABLE_CURSOR_HINTS */

/*
** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
** a rowid value just read from cursor iIdxCur, open on index pIdx. This
** function generates code to do a deferred seek of cursor iCur to the 
** rowid stored in register iRowid.
**
** Normally, this is just:
**
**   OP_Seek $iCur $iRowid
**
** However, if the scan currently being coded is a branch of an OR-loop and
** the statement currently being coded is a SELECT, then P3 of the OP_Seek
** is set to iIdxCur and P4 is set to point to an array of integers
** containing one entry for each column of the table cursor iCur is open 
** on. For each table column, if the column is the i'th column of the 
** index, then the corresponding array entry is set to (i+1). If the column
** does not appear in the index at all, the array entry is set to 0.
*/
static void codeDeferredSeek(
  WhereInfo *pWInfo,              /* Where clause context */
  Index *pIdx,                    /* Index scan is using */
  int iCur,                       /* Cursor for IPK b-tree */
  int iIdxCur                     /* Index cursor */
){
  Parse *pParse = pWInfo->pParse; /* Parse context */
  Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */

  assert( iIdxCur>0 );
  assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
  
  sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur);
  if( (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)
   && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
  ){
    int i;
    Table *pTab = pIdx->pTable;
    int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
    if( ai ){
      ai[0] = pTab->nCol;
      for(i=0; i<pIdx->nColumn-1; i++){
        assert( pIdx->aiColumn[i]<pTab->nCol );
        if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
      }
      sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
    }
  }
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
120774
120775
120776
120777
120778
120779
120780

120781
120782
120783
120784
120785
120786
120787
120788
120789
120790
120791
120792
120793
120794
120795

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
    disableTerm(pLevel, pRangeEnd);
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){

      iRowidReg = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      if( pWInfo->eOnePass!=ONEPASS_OFF ){
        sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
        VdbeCoverage(v);
      }else{
        sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
      }
    }else if( iCur!=iIdxCur ){
      Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
      iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);







>
|
|
|
<



|







121408
121409
121410
121411
121412
121413
121414
121415
121416
121417
121418

121419
121420
121421
121422
121423
121424
121425
121426
121427
121428
121429

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
    disableTerm(pLevel, pRangeEnd);
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      if( pWInfo->eOnePass!=ONEPASS_OFF ){
        iRowidReg = ++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
        sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);

        sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
        VdbeCoverage(v);
      }else{
        codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
      }
    }else if( iCur!=iIdxCur ){
      Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
      iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
120950
120951
120952
120953
120954
120955
120956
120957


120958
120959
120960
120961
120962
120963
120964
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;


        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);







|
>
>







121584
121585
121586
121587
121588
121589
121590
121591
121592
121593
121594
121595
121596
121597
121598
121599
121600
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
        testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
        if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
121290
121291
121292
121293
121294
121295
121296
121297
121298
121299
121300
121301
121302
121303
121304
static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;
    }







|







121926
121927
121928
121929
121930
121931
121932
121933
121934
121935
121936
121937
121938
121939
121940
static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;
    }
121428
121429
121430
121431
121432
121433
121434

121435
121436
121437
121438
121439
121440
121441
  ExprList *pList;           /* List of operands to the LIKE operator */
  int c;                     /* One character in z[] */
  int cnt;                   /* Number of non-wildcard prefix characters */
  char wc[3];                /* Wildcard characters */
  sqlite3 *db = pParse->db;  /* Database connection */
  sqlite3_value *pVal = 0;
  int op;                    /* Opcode of pRight */


  if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
    return 0;
  }
#ifdef SQLITE_EBCDIC
  if( *pnoCase ) return 0;
#endif







>







122064
122065
122066
122067
122068
122069
122070
122071
122072
122073
122074
122075
122076
122077
122078
  ExprList *pList;           /* List of operands to the LIKE operator */
  int c;                     /* One character in z[] */
  int cnt;                   /* Number of non-wildcard prefix characters */
  char wc[3];                /* Wildcard characters */
  sqlite3 *db = pParse->db;  /* Database connection */
  sqlite3_value *pVal = 0;
  int op;                    /* Opcode of pRight */
  int rc;                    /* Result code to return */

  if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
    return 0;
  }
#ifdef SQLITE_EBCDIC
  if( *pnoCase ) return 0;
#endif
121493
121494
121495
121496
121497
121498
121499

121500
121501
121502
121503
121504
121505
121506
121507
121508
        }
      }
    }else{
      z = 0;
    }
  }


  sqlite3ValueFree(pVal);
  return (z!=0);
}
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */


#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Check to see if the given expression is of the form







>

|







122130
122131
122132
122133
122134
122135
122136
122137
122138
122139
122140
122141
122142
122143
122144
122145
122146
        }
      }
    }else{
      z = 0;
    }
  }

  rc = (z!=0);
  sqlite3ValueFree(pVal);
  return rc;
}
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */


#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Check to see if the given expression is of the form
121773
121774
121775
121776
121777
121778
121779
121780
121781
121782
121783
121784
121785
121786
121787
121788
121789
121790
121791
121792
121793
121794
121795
121796
121797
121798
121799
121800
121801
  indexable = ~(Bitmask)0;
  chngToIN = ~(Bitmask)0;
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;
      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
        sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        sqlite3WhereExprAnalyze(pSrc, pAndWC);
        pAndWC->pOuter = pWC;
        testcase( db->mallocFailed );
        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
            }
          }







|













<







122411
122412
122413
122414
122415
122416
122417
122418
122419
122420
122421
122422
122423
122424
122425
122426
122427
122428
122429
122430
122431

122432
122433
122434
122435
122436
122437
122438
  indexable = ~(Bitmask)0;
  chngToIN = ~(Bitmask)0;
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;
      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
        sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        sqlite3WhereExprAnalyze(pSrc, pAndWC);
        pAndWC->pOuter = pWC;

        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
            }
          }
123530
123531
123532
123533
123534
123535
123536
123537
123538
123539
123540
123541
123542
123543
123544

  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      pParse->db->mallocFailed = 1;
    }else if( !pVtab->zErrMsg ){
      sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
    }else{
      sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
    }
  }
  sqlite3_free(pVtab->zErrMsg);







|







124167
124168
124169
124170
124171
124172
124173
124174
124175
124176
124177
124178
124179
124180
124181

  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      sqlite3OomFault(pParse->db);
    }else if( !pVtab->zErrMsg ){
      sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
    }else{
      sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
    }
  }
  sqlite3_free(pVtab->zErrMsg);
124322
124323
124324
124325
124326
124327
124328
124329
124330
124331
124332
124333
124334
124335
124336
/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
  WhereTerm **paNew;
  if( p->nLSlot>=n ) return SQLITE_OK;
  n = (n+7)&~7;
  paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
  if( paNew==0 ) return SQLITE_NOMEM;
  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  p->aLTerm = paNew;
  p->nLSlot = n;
  return SQLITE_OK;
}







|







124959
124960
124961
124962
124963
124964
124965
124966
124967
124968
124969
124970
124971
124972
124973
/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
  WhereTerm **paNew;
  if( p->nLSlot>=n ) return SQLITE_OK;
  n = (n+7)&~7;
  paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
  if( paNew==0 ) return SQLITE_NOMEM;
  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  p->aLTerm = paNew;
  p->nLSlot = n;
  return SQLITE_OK;
}
124619
124620
124621
124622
124623
124624
124625
124626
124627
124628
124629
124630
124631
124632
124633
    }
    sqlite3DebugPrintf("    add: ");
    whereLoopPrint(pTemplate, pBuilder->pWC);
  }
#endif
  if( p==0 ){
    /* Allocate a new WhereLoop to add to the end of the list */
    *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
    if( p==0 ) return SQLITE_NOMEM;
    whereLoopInit(p);
    p->pNextLoop = 0;
  }else{
    /* We will be overwriting WhereLoop p[].  But before we do, first
    ** go through the rest of the list and delete any other entries besides
    ** p[] that are also supplated by pTemplate */







|







125256
125257
125258
125259
125260
125261
125262
125263
125264
125265
125266
125267
125268
125269
125270
    }
    sqlite3DebugPrintf("    add: ");
    whereLoopPrint(pTemplate, pBuilder->pWC);
  }
#endif
  if( p==0 ){
    /* Allocate a new WhereLoop to add to the end of the list */
    *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
    if( p==0 ) return SQLITE_NOMEM;
    whereLoopInit(p);
    p->pNextLoop = 0;
  }else{
    /* We will be overwriting WhereLoop p[].  But before we do, first
    ** go through the rest of the list and delete any other entries besides
    ** p[] that are also supplated by pTemplate */
126025
126026
126027
126028
126029
126030
126031
126032
126033
126034
126035
126036
126037
126038
126039

/*
** Return the cost of sorting nRow rows, assuming that the keys have 
** nOrderby columns and that the first nSorted columns are already in
** order.
*/
static LogEst whereSortingCost(
  WhereInfo *pWInfo,
  LogEst nRow,
  int nOrderBy,
  int nSorted
){
  /* TUNING: Estimated cost of a full external sort, where N is 
  ** the number of rows to sort is:
  **







<







126662
126663
126664
126665
126666
126667
126668

126669
126670
126671
126672
126673
126674
126675

/*
** Return the cost of sorting nRow rows, assuming that the keys have 
** nOrderby columns and that the first nSorted columns are already in
** order.
*/
static LogEst whereSortingCost(

  LogEst nRow,
  int nOrderBy,
  int nSorted
){
  /* TUNING: Estimated cost of a full external sort, where N is 
  ** the number of rows to sort is:
  **
126047
126048
126049
126050
126051
126052
126053
126054
126055
126056
126057
126058
126059
126060
126061
126062
126063
126064
126065
126066
126067
126068
  **
  ** The (Y/X) term is implemented using stack variable rScale
  ** below.  */
  LogEst rScale, rSortCost;
  assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
  rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
  rSortCost = nRow + estLog(nRow) + rScale + 16;

  /* TUNING: The cost of implementing DISTINCT using a B-TREE is
  ** similar but with a larger constant of proportionality. 
  ** Multiply by an additional factor of 3.0.  */
  if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
    rSortCost += 16;
  }

  return rSortCost;
}

/*
** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
** attempts to find the lowest cost path that visits each WhereLoop
** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.







<
<
<
<
<
<
<
<







126683
126684
126685
126686
126687
126688
126689








126690
126691
126692
126693
126694
126695
126696
  **
  ** The (Y/X) term is implemented using stack variable rScale
  ** below.  */
  LogEst rScale, rSortCost;
  assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
  rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
  rSortCost = nRow + estLog(nRow) + rScale + 16;








  return rSortCost;
}

/*
** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
** attempts to find the lowest cost path that visits each WhereLoop
** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
126116
126117
126118
126119
126120
126121
126122
126123
126124
126125
126126
126127
126128
126129
126130
  }else{
    nOrderBy = pWInfo->pOrderBy->nExpr;
  }

  /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
  nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
  nSpace += sizeof(LogEst) * nOrderBy;
  pSpace = sqlite3DbMallocRaw(db, nSpace);
  if( pSpace==0 ) return SQLITE_NOMEM;
  aTo = (WherePath*)pSpace;
  aFrom = aTo+mxChoice;
  memset(aFrom, 0, sizeof(aFrom[0]));
  pX = (WhereLoop**)(aFrom+mxChoice);
  for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
    pFrom->aLoop = pX;







|







126744
126745
126746
126747
126748
126749
126750
126751
126752
126753
126754
126755
126756
126757
126758
  }else{
    nOrderBy = pWInfo->pOrderBy->nExpr;
  }

  /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
  nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
  nSpace += sizeof(LogEst) * nOrderBy;
  pSpace = sqlite3DbMallocRawNN(db, nSpace);
  if( pSpace==0 ) return SQLITE_NOMEM;
  aTo = (WherePath*)pSpace;
  aFrom = aTo+mxChoice;
  memset(aFrom, 0, sizeof(aFrom[0]));
  pX = (WhereLoop**)(aFrom+mxChoice);
  for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
    pFrom->aLoop = pX;
126188
126189
126190
126191
126192
126193
126194
126195
126196
126197
126198
126199
126200
126201
126202
                       iLoop, pWLoop, &revMask);
        }else{
          revMask = pFrom->revLoop;
        }
        if( isOrdered>=0 && isOrdered<nOrderBy ){
          if( aSortCost[isOrdered]==0 ){
            aSortCost[isOrdered] = whereSortingCost(
                pWInfo, nRowEst, nOrderBy, isOrdered
            );
          }
          rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);

          WHERETRACE(0x002,
              ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
               aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 







|







126816
126817
126818
126819
126820
126821
126822
126823
126824
126825
126826
126827
126828
126829
126830
                       iLoop, pWLoop, &revMask);
        }else{
          revMask = pFrom->revLoop;
        }
        if( isOrdered>=0 && isOrdered<nOrderBy ){
          if( aSortCost[isOrdered]==0 ){
            aSortCost[isOrdered] = whereSortingCost(
                nRowEst, nOrderBy, isOrdered
            );
          }
          rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);

          WHERETRACE(0x002,
              ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
               aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 
126601
126602
126603
126604
126605
126606
126607
126608
126609
126610
126611
126612
126613
126614
126615
  WhereLoopBuilder sWLB;     /* The WhereLoop builder */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */
  u8 bFordelete = 0;

  assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
        (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
     && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 
  ));

  /* Variable initialization */







|







127229
127230
127231
127232
127233
127234
127235
127236
127237
127238
127239
127240
127241
127242
127243
  WhereLoopBuilder sWLB;     /* The WhereLoop builder */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */
  u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */

  assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
        (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
     && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 
  ));

  /* Variable initialization */
126846
126847
126848
126849
126850
126851
126852
126853
126854
126855
126856
126857
126858
126859

126860
126861
126862
126863
126864
126865
126866
126867
126868
126869
    }
  }
  WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;

  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constrains
  ** the statement to update or delete a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
    int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
    int bOnerow = (wsFlags & WHERE_ONEROW)!=0;

    if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW)
       && 0==(wsFlags & WHERE_VIRTUALTABLE)
    )){
      pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
      if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
        if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
          bFordelete = OPFLAG_FORDELETE;
        }
        pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
      }







<
<





>
|
|
|







127474
127475
127476
127477
127478
127479
127480


127481
127482
127483
127484
127485
127486
127487
127488
127489
127490
127491
127492
127493
127494
127495
127496
    }
  }
  WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;

  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.


  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
    int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
    int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
    if( bOnerow
     || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
           && 0==(wsFlags & WHERE_VIRTUALTABLE))
    ){
      pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
      if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
        if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
          bFordelete = OPFLAG_FORDELETE;
        }
        pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
      }
126905
126906
126907
126908
126909
126910
126911
126912
126913
126914
126915
126916
126917
126918
126919
126920
      assert( pTabItem->iCursor==pLevel->iTabCur );
      testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
      testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
      if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
      if( pLoop->u.btree.pIndex!=0 ){
        sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
      }else
#endif







<
|







127532
127533
127534
127535
127536
127537
127538

127539
127540
127541
127542
127543
127544
127545
127546
      assert( pTabItem->iCursor==pLevel->iTabCur );
      testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
      testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
      if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}

        sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
      if( pLoop->u.btree.pIndex!=0 ){
        sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
      }else
#endif
127300
127301
127302
127303
127304
127305
127306









127307
127308
127309
127310
127311
127312
127313
struct TrigEvent { int a; IdList * b; };

/*
** An instance of this structure holds the ATTACH key and the key type.
*/
struct AttachKey { int type;  Token key; };











  /*
  ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
  ** all elements in the list.  And make sure list length does not exceed
  ** SQLITE_LIMIT_COMPOUND_SELECT.
  */
  static void parserDoubleLinkSelect(Parse *pParse, Select *p){







>
>
>
>
>
>
>
>
>







127926
127927
127928
127929
127930
127931
127932
127933
127934
127935
127936
127937
127938
127939
127940
127941
127942
127943
127944
127945
127946
127947
127948
struct TrigEvent { int a; IdList * b; };

/*
** An instance of this structure holds the ATTACH key and the key type.
*/
struct AttachKey { int type;  Token key; };

/*
** Disable lookaside memory allocation for objects that might be
** shared across database connections.
*/
static void disableLookaside(Parse *pParse){
  pParse->disableLookaside++;
  pParse->db->lookaside.bDisable++;
}


  /*
  ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
  ** all elements in the list.  And make sure list length does not exceed
  ** SQLITE_LIMIT_COMPOUND_SELECT.
  */
  static void parserDoubleLinkSelect(Parse *pParse, Select *p){
127382
127383
127384
127385
127386
127387
127388
127389
127390
127391
127392
127393
127394
127395
127396
    pOut->zEnd = &pPostOp->z[pPostOp->n];
  }                           

  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pY && pA && pY->op==TK_NULL ){
      pA->op = (u8)op;
      sqlite3ExprDelete(db, pA->pRight);
      pA->pRight = 0;
    }
  }

  /* Construct an expression node for a unary prefix operator







|







128017
128018
128019
128020
128021
128022
128023
128024
128025
128026
128027
128028
128029
128030
128031
    pOut->zEnd = &pPostOp->z[pPostOp->n];
  }                           

  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pA && pY && pY->op==TK_NULL ){
      pA->op = (u8)op;
      sqlite3ExprDelete(db, pA->pRight);
      pA->pRight = 0;
    }
  }

  /* Construct an expression node for a unary prefix operator
129373
129374
129375
129376
129377
129378
129379
129380
129381
129382
129383
129384
129385
129386
129387
129388
129389
129390
129391
129392
129393
129394
  **   case 0:
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */
/********** Begin reduce actions **********************************************/
      case 5: /* explain ::= */
{ sqlite3BeginParse(pParse, 0); }
        break;
      case 6: /* explain ::= EXPLAIN */
{ sqlite3BeginParse(pParse, 1); }
        break;
      case 7: /* explain ::= EXPLAIN QUERY PLAN */
{ sqlite3BeginParse(pParse, 2); }
        break;
      case 8: /* cmdx ::= cmd */
{ sqlite3FinishCoding(pParse); }
        break;
      case 9: /* cmd ::= BEGIN transtype trans_opt */
{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy4);}
        break;







<
<
<

|


|







130008
130009
130010
130011
130012
130013
130014



130015
130016
130017
130018
130019
130020
130021
130022
130023
130024
130025
130026
  **   case 0:
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */
/********** Begin reduce actions **********************************************/



      case 6: /* explain ::= EXPLAIN */
{ pParse->explain = 1; }
        break;
      case 7: /* explain ::= EXPLAIN QUERY PLAN */
{ pParse->explain = 2; }
        break;
      case 8: /* cmdx ::= cmd */
{ sqlite3FinishCoding(pParse); }
        break;
      case 9: /* cmd ::= BEGIN transtype trans_opt */
{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy4);}
        break;
129427
129428
129429
129430
129431
129432
129433
129434
129435
129436
129437
129438
129439
129440
129441
      case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
{
   sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy4,0,0,yymsp[-2].minor.yy4);
}
        break;
      case 27: /* createkw ::= CREATE */
{
  pParse->db->lookaside.bEnabled = 0;
  yygotominor.yy0 = yymsp[0].minor.yy0;
}
        break;
      case 28: /* ifnotexists ::= */
      case 31: /* temp ::= */ yytestcase(yyruleno==31);
      case 34: /* table_options ::= */ yytestcase(yyruleno==34);
      case 68: /* autoinc ::= */ yytestcase(yyruleno==68);







|







130059
130060
130061
130062
130063
130064
130065
130066
130067
130068
130069
130070
130071
130072
130073
      case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
{
   sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy4,0,0,yymsp[-2].minor.yy4);
}
        break;
      case 27: /* createkw ::= CREATE */
{
  disableLookaside(pParse);
  yygotominor.yy0 = yymsp[0].minor.yy0;
}
        break;
      case 28: /* ifnotexists ::= */
      case 31: /* temp ::= */ yytestcase(yyruleno==31);
      case 34: /* table_options ::= */ yytestcase(yyruleno==34);
      case 68: /* autoinc ::= */ yytestcase(yyruleno==68);
130509
130510
130511
130512
130513
130514
130515
130516
130517
130518
130519
130520
130521
130522
130523
      case 306: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
  sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
}
        break;
      case 307: /* add_column_fullname ::= fullname */
{
  pParse->db->lookaside.bEnabled = 0;
  sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy259);
}
        break;
      case 310: /* cmd ::= create_vtab */
{sqlite3VtabFinishParse(pParse,0);}
        break;
      case 311: /* cmd ::= create_vtab LP vtabarglist RP */







|







131141
131142
131143
131144
131145
131146
131147
131148
131149
131150
131151
131152
131153
131154
131155
      case 306: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
  sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
}
        break;
      case 307: /* add_column_fullname ::= fullname */
{
  disableLookaside(pParse);
  sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy259);
}
        break;
      case 310: /* cmd ::= create_vtab */
{sqlite3VtabFinishParse(pParse,0);}
        break;
      case 311: /* cmd ::= create_vtab LP vtabarglist RP */
130555
130556
130557
130558
130559
130560
130561

130562
130563
130564
130565
130566
130567
130568
        break;
      default:
      /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
      /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
      /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
      /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);
      /* (4) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==4);

      /* (10) trans_opt ::= */ yytestcase(yyruleno==10);
      /* (11) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==11);
      /* (12) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==12);
      /* (20) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==20);
      /* (21) savepoint_opt ::= */ yytestcase(yyruleno==21);
      /* (25) cmd ::= create_table create_table_args */ yytestcase(yyruleno==25);
      /* (36) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==36);







>







131187
131188
131189
131190
131191
131192
131193
131194
131195
131196
131197
131198
131199
131200
131201
        break;
      default:
      /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
      /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
      /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
      /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);
      /* (4) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==4);
      /* (5) explain ::= */ yytestcase(yyruleno==5);
      /* (10) trans_opt ::= */ yytestcase(yyruleno==10);
      /* (11) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==11);
      /* (12) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==12);
      /* (20) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==20);
      /* (21) savepoint_opt ::= */ yytestcase(yyruleno==21);
      /* (25) cmd ::= create_table create_table_args */ yytestcase(yyruleno==25);
      /* (36) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==36);
130888
130889
130890
130891
130892
130893
130894














































































130895
130896
130897
130898
130899

130900

130901
130902
130903
130904
130905
130906
130907
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
*/
/* #include "sqliteInt.h" */
/* #include <stdlib.h> */















































































/*
** The charMap() macro maps alphabetic characters into their
** lower-case ASCII equivalent.  On ASCII machines, this is just
** an upper-to-lower case map.  On EBCDIC machines we also need
** to adjust the encoding.  Only alphabetic characters and underscores

** need to be translated.

*/
#ifdef SQLITE_ASCII
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
#endif
#ifdef SQLITE_EBCDIC
# define charMap(X) ebcdicToAscii[(unsigned char)X]
const unsigned char ebcdicToAscii[] = {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|


|
>
|
>







131521
131522
131523
131524
131525
131526
131527
131528
131529
131530
131531
131532
131533
131534
131535
131536
131537
131538
131539
131540
131541
131542
131543
131544
131545
131546
131547
131548
131549
131550
131551
131552
131553
131554
131555
131556
131557
131558
131559
131560
131561
131562
131563
131564
131565
131566
131567
131568
131569
131570
131571
131572
131573
131574
131575
131576
131577
131578
131579
131580
131581
131582
131583
131584
131585
131586
131587
131588
131589
131590
131591
131592
131593
131594
131595
131596
131597
131598
131599
131600
131601
131602
131603
131604
131605
131606
131607
131608
131609
131610
131611
131612
131613
131614
131615
131616
131617
131618
131619
131620
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
*/
/* #include "sqliteInt.h" */
/* #include <stdlib.h> */

/* Character classes for tokenizing
**
** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented
** using a lookup table, whereas a switch() directly on c uses a binary search.
** The lookup table is much faster.  To maximize speed, and to ensure that
** a lookup table is used, all of the classes need to be small integers and
** all of them need to be used within the switch.
*/
#define CC_X          0    /* The letter 'x', or start of BLOB literal */
#define CC_KYWD       1    /* Alphabetics or '_'.  Usable in a keyword */
#define CC_ID         2    /* unicode characters usable in IDs */
#define CC_DIGIT      3    /* Digits */
#define CC_DOLLAR     4    /* '$' */
#define CC_VARALPHA   5    /* '@', '#', ':'.  Alphabetic SQL variables */
#define CC_VARNUM     6    /* '?'.  Numeric SQL variables */
#define CC_SPACE      7    /* Space characters */
#define CC_QUOTE      8    /* '"', '\'', or '`'.  String literals, quoted ids */
#define CC_QUOTE2     9    /* '['.   [...] style quoted ids */
#define CC_PIPE      10    /* '|'.   Bitwise OR or concatenate */
#define CC_MINUS     11    /* '-'.  Minus or SQL-style comment */
#define CC_LT        12    /* '<'.  Part of < or <= or <> */
#define CC_GT        13    /* '>'.  Part of > or >= */
#define CC_EQ        14    /* '='.  Part of = or == */
#define CC_BANG      15    /* '!'.  Part of != */
#define CC_SLASH     16    /* '/'.  / or c-style comment */
#define CC_LP        17    /* '(' */
#define CC_RP        18    /* ')' */
#define CC_SEMI      19    /* ';' */
#define CC_PLUS      20    /* '+' */
#define CC_STAR      21    /* '*' */
#define CC_PERCENT   22    /* '%' */
#define CC_COMMA     23    /* ',' */
#define CC_AND       24    /* '&' */
#define CC_TILDA     25    /* '~' */
#define CC_DOT       26    /* '.' */
#define CC_ILLEGAL   27    /* Illegal character */

static const unsigned char aiClass[] = {
#ifdef SQLITE_ASCII
/*         x0  x1  x2  x3  x4  x5  x6  x7  x8  x9  xa  xb  xc  xd  xe  xf */
/* 0x */   27, 27, 27, 27, 27, 27, 27, 27, 27,  7,  7, 27,  7,  7, 27, 27,
/* 1x */   27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 2x */    7, 15,  8,  5,  4, 22, 24,  8, 17, 18, 21, 20, 23, 11, 26, 16,
/* 3x */    3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  5, 19, 12, 14, 13,  6,
/* 4x */    5,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
/* 5x */    1,  1,  1,  1,  1,  1,  1,  1,  0,  1,  1,  9, 27, 27, 27,  1,
/* 6x */    8,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
/* 7x */    1,  1,  1,  1,  1,  1,  1,  1,  0,  1,  1, 27, 10, 27, 25, 27,
/* 8x */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* 9x */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* Ax */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* Bx */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* Cx */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* Dx */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* Ex */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
/* Fx */    2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2
#endif
#ifdef SQLITE_EBCDIC
/*         x0  x1  x2  x3  x4  x5  x6  x7  x8  x9  xa  xb  xc  xd  xe  xf */
/* 0x */   27, 27, 27, 27, 27,  7, 27, 27, 27, 27, 27, 27,  7,  7, 27, 27,
/* 1x */   27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 2x */   27, 27, 27, 27, 27,  7, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 3x */   27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 4x */    7, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 12, 17, 20, 10,
/* 5x */   24, 27, 27, 27, 27, 27, 27, 27, 27, 27, 15,  4, 21, 18, 19, 27,
/* 6x */   11, 16, 27, 27, 27, 27, 27, 27, 27, 27, 27, 23, 22,  1, 13,  7,
/* 7x */   27, 27, 27, 27, 27, 27, 27, 27, 27,  8,  5,  5,  5,  8, 14,  8,
/* 8x */   27,  1,  1,  1,  1,  1,  1,  1,  1,  1, 27, 27, 27, 27, 27, 27,
/* 9x */   27,  1,  1,  1,  1,  1,  1,  1,  1,  1, 27, 27, 27, 27, 27, 27,
/* 9x */   25,  1,  1,  1,  1,  1,  1,  0,  1,  1, 27, 27, 27, 27, 27, 27,
/* Bx */   27, 27, 27, 27, 27, 27, 27, 27, 27, 27,  9, 27, 27, 27, 27, 27,
/* Cx */   27,  1,  1,  1,  1,  1,  1,  1,  1,  1, 27, 27, 27, 27, 27, 27,
/* Dx */   27,  1,  1,  1,  1,  1,  1,  1,  1,  1, 27, 27, 27, 27, 27, 27,
/* Ex */   27, 27,  1,  1,  1,  1,  1,  0,  1,  1, 27, 27, 27, 27, 27, 27,
/* Fx */    3,  3,  3,  3,  3,  3,  3,  3,  3,  3, 27, 27, 27, 27, 27, 27,
#endif
};

/*
** The charMap() macro maps alphabetic characters (only) into their
** lower-case ASCII equivalent.  On ASCII machines, this is just
** an upper-to-lower case map.  On EBCDIC machines we also need
** to adjust the encoding.  The mapping is only valid for alphabetics
** which are the only characters for which this feature is used. 
**
** Used by keywordhash.h
*/
#ifdef SQLITE_ASCII
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
#endif
#ifdef SQLITE_EBCDIC
# define charMap(X) ebcdicToAscii[(unsigned char)X]
const unsigned char ebcdicToAscii[] = {
130927
130928
130929
130930
130931
130932
130933
130934
130935
130936
130937
130938
130939
130940
130941

/*
** The sqlite3KeywordCode function looks up an identifier to determine if
** it is a keyword.  If it is a keyword, the token code of that keyword is 
** returned.  If the input is not a keyword, TK_ID is returned.
**
** The implementation of this routine was generated by a program,
** mkkeywordhash.h, located in the tool subdirectory of the distribution.
** The output of the mkkeywordhash.c program is written into a file
** named keywordhash.h and then included into this source file by
** the #include below.
*/
/************** Include keywordhash.h in the middle of tokenize.c ************/
/************** Begin file keywordhash.h *************************************/
/***** This file contains automatically generated code ******







|







131640
131641
131642
131643
131644
131645
131646
131647
131648
131649
131650
131651
131652
131653
131654

/*
** The sqlite3KeywordCode function looks up an identifier to determine if
** it is a keyword.  If it is a keyword, the token code of that keyword is 
** returned.  If the input is not a keyword, TK_ID is returned.
**
** The implementation of this routine was generated by a program,
** mkkeywordhash.c, located in the tool subdirectory of the distribution.
** The output of the mkkeywordhash.c program is written into a file
** named keywordhash.h and then included into this source file by
** the #include below.
*/
/************** Include keywordhash.h in the middle of tokenize.c ************/
/************** Begin file keywordhash.h *************************************/
/***** This file contains automatically generated code ******
131068
131069
131070
131071
131072
131073
131074
131075

131076
131077
131078


131079







131080
131081
131082
131083
131084
131085
131086
131087
131088
131089
131090
131091
131092
131093
131094
131095
131096
131097
131098
131099
131100
131101
131102
131103
131104
131105
131106
131107
131108
131109
131110
131111
131112
131113
131114
131115
131116
131117
131118
131119
131120
131121
131122
131123
131124
131125
131126
131127
131128
131129
131130
131131
131132
131133
131134
131135
131136
131137
131138
131139
131140
131141
131142
131143
131144
131145
131146
131147
131148
131149
131150
131151
131152
131153
131154
131155
131156
131157
131158
131159
131160
131161
131162
131163
131164
131165
131166
131167
131168
131169
131170
131171
131172
131173
131174
131175
131176
131177
131178
131179
131180
131181
131182
131183
131184
131185
131186
131187
131188
131189
131190
131191
131192
131193
131194
131195
131196
131197
131198
131199
131200
131201
131202
131203
131204
131205
131206
131207
131208
131209
131210
131211
131212
131213
    TK_COLUMNKW,   TK_COMMIT,     TK_CONFLICT,   TK_JOIN_KW,    TK_CTIME_KW,   
    TK_CTIME_KW,   TK_PRIMARY,    TK_DEFERRED,   TK_DISTINCT,   TK_IS,         
    TK_DROP,       TK_FAIL,       TK_FROM,       TK_JOIN_KW,    TK_LIKE_KW,    
    TK_BY,         TK_IF,         TK_ISNULL,     TK_ORDER,      TK_RESTRICT,   
    TK_JOIN_KW,    TK_ROLLBACK,   TK_ROW,        TK_UNION,      TK_USING,      
    TK_VACUUM,     TK_VIEW,       TK_INITIALLY,  TK_ALL,        
  };
  int h, i;

  if( n>=2 ){
    h = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) % 127;
    for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){


      if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){







        testcase( i==0 ); /* REINDEX */
        testcase( i==1 ); /* INDEXED */
        testcase( i==2 ); /* INDEX */
        testcase( i==3 ); /* DESC */
        testcase( i==4 ); /* ESCAPE */
        testcase( i==5 ); /* EACH */
        testcase( i==6 ); /* CHECK */
        testcase( i==7 ); /* KEY */
        testcase( i==8 ); /* BEFORE */
        testcase( i==9 ); /* FOREIGN */
        testcase( i==10 ); /* FOR */
        testcase( i==11 ); /* IGNORE */
        testcase( i==12 ); /* REGEXP */
        testcase( i==13 ); /* EXPLAIN */
        testcase( i==14 ); /* INSTEAD */
        testcase( i==15 ); /* ADD */
        testcase( i==16 ); /* DATABASE */
        testcase( i==17 ); /* AS */
        testcase( i==18 ); /* SELECT */
        testcase( i==19 ); /* TABLE */
        testcase( i==20 ); /* LEFT */
        testcase( i==21 ); /* THEN */
        testcase( i==22 ); /* END */
        testcase( i==23 ); /* DEFERRABLE */
        testcase( i==24 ); /* ELSE */
        testcase( i==25 ); /* EXCEPT */
        testcase( i==26 ); /* TRANSACTION */
        testcase( i==27 ); /* ACTION */
        testcase( i==28 ); /* ON */
        testcase( i==29 ); /* NATURAL */
        testcase( i==30 ); /* ALTER */
        testcase( i==31 ); /* RAISE */
        testcase( i==32 ); /* EXCLUSIVE */
        testcase( i==33 ); /* EXISTS */
        testcase( i==34 ); /* SAVEPOINT */
        testcase( i==35 ); /* INTERSECT */
        testcase( i==36 ); /* TRIGGER */
        testcase( i==37 ); /* REFERENCES */
        testcase( i==38 ); /* CONSTRAINT */
        testcase( i==39 ); /* INTO */
        testcase( i==40 ); /* OFFSET */
        testcase( i==41 ); /* OF */
        testcase( i==42 ); /* SET */
        testcase( i==43 ); /* TEMPORARY */
        testcase( i==44 ); /* TEMP */
        testcase( i==45 ); /* OR */
        testcase( i==46 ); /* UNIQUE */
        testcase( i==47 ); /* QUERY */
        testcase( i==48 ); /* WITHOUT */
        testcase( i==49 ); /* WITH */
        testcase( i==50 ); /* OUTER */
        testcase( i==51 ); /* RELEASE */
        testcase( i==52 ); /* ATTACH */
        testcase( i==53 ); /* HAVING */
        testcase( i==54 ); /* GROUP */
        testcase( i==55 ); /* UPDATE */
        testcase( i==56 ); /* BEGIN */
        testcase( i==57 ); /* INNER */
        testcase( i==58 ); /* RECURSIVE */
        testcase( i==59 ); /* BETWEEN */
        testcase( i==60 ); /* NOTNULL */
        testcase( i==61 ); /* NOT */
        testcase( i==62 ); /* NO */
        testcase( i==63 ); /* NULL */
        testcase( i==64 ); /* LIKE */
        testcase( i==65 ); /* CASCADE */
        testcase( i==66 ); /* ASC */
        testcase( i==67 ); /* DELETE */
        testcase( i==68 ); /* CASE */
        testcase( i==69 ); /* COLLATE */
        testcase( i==70 ); /* CREATE */
        testcase( i==71 ); /* CURRENT_DATE */
        testcase( i==72 ); /* DETACH */
        testcase( i==73 ); /* IMMEDIATE */
        testcase( i==74 ); /* JOIN */
        testcase( i==75 ); /* INSERT */
        testcase( i==76 ); /* MATCH */
        testcase( i==77 ); /* PLAN */
        testcase( i==78 ); /* ANALYZE */
        testcase( i==79 ); /* PRAGMA */
        testcase( i==80 ); /* ABORT */
        testcase( i==81 ); /* VALUES */
        testcase( i==82 ); /* VIRTUAL */
        testcase( i==83 ); /* LIMIT */
        testcase( i==84 ); /* WHEN */
        testcase( i==85 ); /* WHERE */
        testcase( i==86 ); /* RENAME */
        testcase( i==87 ); /* AFTER */
        testcase( i==88 ); /* REPLACE */
        testcase( i==89 ); /* AND */
        testcase( i==90 ); /* DEFAULT */
        testcase( i==91 ); /* AUTOINCREMENT */
        testcase( i==92 ); /* TO */
        testcase( i==93 ); /* IN */
        testcase( i==94 ); /* CAST */
        testcase( i==95 ); /* COLUMN */
        testcase( i==96 ); /* COMMIT */
        testcase( i==97 ); /* CONFLICT */
        testcase( i==98 ); /* CROSS */
        testcase( i==99 ); /* CURRENT_TIMESTAMP */
        testcase( i==100 ); /* CURRENT_TIME */
        testcase( i==101 ); /* PRIMARY */
        testcase( i==102 ); /* DEFERRED */
        testcase( i==103 ); /* DISTINCT */
        testcase( i==104 ); /* IS */
        testcase( i==105 ); /* DROP */
        testcase( i==106 ); /* FAIL */
        testcase( i==107 ); /* FROM */
        testcase( i==108 ); /* FULL */
        testcase( i==109 ); /* GLOB */
        testcase( i==110 ); /* BY */
        testcase( i==111 ); /* IF */
        testcase( i==112 ); /* ISNULL */
        testcase( i==113 ); /* ORDER */
        testcase( i==114 ); /* RESTRICT */
        testcase( i==115 ); /* RIGHT */
        testcase( i==116 ); /* ROLLBACK */
        testcase( i==117 ); /* ROW */
        testcase( i==118 ); /* UNION */
        testcase( i==119 ); /* USING */
        testcase( i==120 ); /* VACUUM */
        testcase( i==121 ); /* VIEW */
        testcase( i==122 ); /* INITIALLY */
        testcase( i==123 ); /* ALL */
        *pType = aCode[i];
        break;
      }
    }
  }
  return n;
}
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
  int id = TK_ID;
  keywordCode((char*)z, n, &id);







|
>

|
|
>
>
|
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<







131781
131782
131783
131784
131785
131786
131787
131788
131789
131790
131791
131792
131793
131794
131795
131796
131797
131798
131799
131800
131801
131802
131803
131804
131805
131806
131807
131808
131809
131810
131811
131812
131813
131814
131815
131816
131817
131818
131819
131820
131821
131822
131823
131824
131825
131826
131827
131828
131829
131830
131831
131832
131833
131834
131835
131836
131837
131838
131839
131840
131841
131842
131843
131844
131845
131846
131847
131848
131849
131850
131851
131852
131853
131854
131855
131856
131857
131858
131859
131860
131861
131862
131863
131864
131865
131866
131867
131868
131869
131870
131871
131872
131873
131874
131875
131876
131877
131878
131879
131880
131881
131882
131883
131884
131885
131886
131887
131888
131889
131890
131891
131892
131893
131894
131895
131896
131897
131898
131899
131900
131901
131902
131903
131904
131905
131906
131907
131908
131909
131910
131911
131912
131913
131914
131915
131916
131917
131918
131919
131920
131921
131922
131923
131924
131925
131926
131927
131928

131929
131930
131931
131932
131933
131934
131935
    TK_COLUMNKW,   TK_COMMIT,     TK_CONFLICT,   TK_JOIN_KW,    TK_CTIME_KW,   
    TK_CTIME_KW,   TK_PRIMARY,    TK_DEFERRED,   TK_DISTINCT,   TK_IS,         
    TK_DROP,       TK_FAIL,       TK_FROM,       TK_JOIN_KW,    TK_LIKE_KW,    
    TK_BY,         TK_IF,         TK_ISNULL,     TK_ORDER,      TK_RESTRICT,   
    TK_JOIN_KW,    TK_ROLLBACK,   TK_ROW,        TK_UNION,      TK_USING,      
    TK_VACUUM,     TK_VIEW,       TK_INITIALLY,  TK_ALL,        
  };
  int i, j;
  const char *zKW;
  if( n>=2 ){
    i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) % 127;
    for(i=((int)aHash[i])-1; i>=0; i=((int)aNext[i])-1){
      if( aLen[i]!=n ) continue;
      j = 0;
      zKW = &zText[aOffset[i]];
#ifdef SQLITE_ASCII
      while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }
#endif
#ifdef SQLITE_EBCDIC
      while( j<n && toupper(z[j])==zKW[j] ){ j++; }
#endif
      if( j<n ) continue;
      testcase( i==0 ); /* REINDEX */
      testcase( i==1 ); /* INDEXED */
      testcase( i==2 ); /* INDEX */
      testcase( i==3 ); /* DESC */
      testcase( i==4 ); /* ESCAPE */
      testcase( i==5 ); /* EACH */
      testcase( i==6 ); /* CHECK */
      testcase( i==7 ); /* KEY */
      testcase( i==8 ); /* BEFORE */
      testcase( i==9 ); /* FOREIGN */
      testcase( i==10 ); /* FOR */
      testcase( i==11 ); /* IGNORE */
      testcase( i==12 ); /* REGEXP */
      testcase( i==13 ); /* EXPLAIN */
      testcase( i==14 ); /* INSTEAD */
      testcase( i==15 ); /* ADD */
      testcase( i==16 ); /* DATABASE */
      testcase( i==17 ); /* AS */
      testcase( i==18 ); /* SELECT */
      testcase( i==19 ); /* TABLE */
      testcase( i==20 ); /* LEFT */
      testcase( i==21 ); /* THEN */
      testcase( i==22 ); /* END */
      testcase( i==23 ); /* DEFERRABLE */
      testcase( i==24 ); /* ELSE */
      testcase( i==25 ); /* EXCEPT */
      testcase( i==26 ); /* TRANSACTION */
      testcase( i==27 ); /* ACTION */
      testcase( i==28 ); /* ON */
      testcase( i==29 ); /* NATURAL */
      testcase( i==30 ); /* ALTER */
      testcase( i==31 ); /* RAISE */
      testcase( i==32 ); /* EXCLUSIVE */
      testcase( i==33 ); /* EXISTS */
      testcase( i==34 ); /* SAVEPOINT */
      testcase( i==35 ); /* INTERSECT */
      testcase( i==36 ); /* TRIGGER */
      testcase( i==37 ); /* REFERENCES */
      testcase( i==38 ); /* CONSTRAINT */
      testcase( i==39 ); /* INTO */
      testcase( i==40 ); /* OFFSET */
      testcase( i==41 ); /* OF */
      testcase( i==42 ); /* SET */
      testcase( i==43 ); /* TEMPORARY */
      testcase( i==44 ); /* TEMP */
      testcase( i==45 ); /* OR */
      testcase( i==46 ); /* UNIQUE */
      testcase( i==47 ); /* QUERY */
      testcase( i==48 ); /* WITHOUT */
      testcase( i==49 ); /* WITH */
      testcase( i==50 ); /* OUTER */
      testcase( i==51 ); /* RELEASE */
      testcase( i==52 ); /* ATTACH */
      testcase( i==53 ); /* HAVING */
      testcase( i==54 ); /* GROUP */
      testcase( i==55 ); /* UPDATE */
      testcase( i==56 ); /* BEGIN */
      testcase( i==57 ); /* INNER */
      testcase( i==58 ); /* RECURSIVE */
      testcase( i==59 ); /* BETWEEN */
      testcase( i==60 ); /* NOTNULL */
      testcase( i==61 ); /* NOT */
      testcase( i==62 ); /* NO */
      testcase( i==63 ); /* NULL */
      testcase( i==64 ); /* LIKE */
      testcase( i==65 ); /* CASCADE */
      testcase( i==66 ); /* ASC */
      testcase( i==67 ); /* DELETE */
      testcase( i==68 ); /* CASE */
      testcase( i==69 ); /* COLLATE */
      testcase( i==70 ); /* CREATE */
      testcase( i==71 ); /* CURRENT_DATE */
      testcase( i==72 ); /* DETACH */
      testcase( i==73 ); /* IMMEDIATE */
      testcase( i==74 ); /* JOIN */
      testcase( i==75 ); /* INSERT */
      testcase( i==76 ); /* MATCH */
      testcase( i==77 ); /* PLAN */
      testcase( i==78 ); /* ANALYZE */
      testcase( i==79 ); /* PRAGMA */
      testcase( i==80 ); /* ABORT */
      testcase( i==81 ); /* VALUES */
      testcase( i==82 ); /* VIRTUAL */
      testcase( i==83 ); /* LIMIT */
      testcase( i==84 ); /* WHEN */
      testcase( i==85 ); /* WHERE */
      testcase( i==86 ); /* RENAME */
      testcase( i==87 ); /* AFTER */
      testcase( i==88 ); /* REPLACE */
      testcase( i==89 ); /* AND */
      testcase( i==90 ); /* DEFAULT */
      testcase( i==91 ); /* AUTOINCREMENT */
      testcase( i==92 ); /* TO */
      testcase( i==93 ); /* IN */
      testcase( i==94 ); /* CAST */
      testcase( i==95 ); /* COLUMN */
      testcase( i==96 ); /* COMMIT */
      testcase( i==97 ); /* CONFLICT */
      testcase( i==98 ); /* CROSS */
      testcase( i==99 ); /* CURRENT_TIMESTAMP */
      testcase( i==100 ); /* CURRENT_TIME */
      testcase( i==101 ); /* PRIMARY */
      testcase( i==102 ); /* DEFERRED */
      testcase( i==103 ); /* DISTINCT */
      testcase( i==104 ); /* IS */
      testcase( i==105 ); /* DROP */
      testcase( i==106 ); /* FAIL */
      testcase( i==107 ); /* FROM */
      testcase( i==108 ); /* FULL */
      testcase( i==109 ); /* GLOB */
      testcase( i==110 ); /* BY */
      testcase( i==111 ); /* IF */
      testcase( i==112 ); /* ISNULL */
      testcase( i==113 ); /* ORDER */
      testcase( i==114 ); /* RESTRICT */
      testcase( i==115 ); /* RIGHT */
      testcase( i==116 ); /* ROLLBACK */
      testcase( i==117 ); /* ROW */
      testcase( i==118 ); /* UNION */
      testcase( i==119 ); /* USING */
      testcase( i==120 ); /* VACUUM */
      testcase( i==121 ); /* VIEW */
      testcase( i==122 ); /* INITIALLY */
      testcase( i==123 ); /* ALL */
      *pType = aCode[i];
      break;

    }
  }
  return n;
}
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
  int id = TK_ID;
  keywordCode((char*)z, n, &id);
131260
131261
131262
131263
131264
131265
131266
131267
131268
131269
131270
131271
131272


131273
131274
131275
131276
131277
131278
131279
131280
131281
131282
131283
131284
131285
131286
131287
131288
131289
131290
131291
131292
131293
131294
131295
131296
131297
131298
131299
131300
131301
131302
131303
131304
131305
131306
131307
131308
131309
131310
131311
131312
131313
131314
131315
131316
131317
131318
131319
131320
131321
131322
131323
131324
131325
131326
131327
131328
131329
131330
131331
131332
131333
131334
131335
131336
131337
131338
131339
131340
131341
131342
131343
131344
131345
131346
131347
131348
131349
131350
131351
131352
131353
131354
131355
131356
131357
131358
131359
131360
131361
131362
131363
131364
131365
131366
131367
131368
131369
131370
131371
131372
131373
131374
131375
131376
131377
131378
131379
131380
131381
131382
131383
131384
131385
131386
131387
131388
131389
131390
131391
131392
131393
131394
131395
131396
/* Make the IdChar function accessible from ctime.c */
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); }
#endif


/*
** Return the length of the token that begins at z[0]. 
** Store the token type in *tokenType before returning.
*/
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
  int i, c;
  switch( *z ){


    case ' ': case '\t': case '\n': case '\f': case '\r': {
      testcase( z[0]==' ' );
      testcase( z[0]=='\t' );
      testcase( z[0]=='\n' );
      testcase( z[0]=='\f' );
      testcase( z[0]=='\r' );
      for(i=1; sqlite3Isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case '-': {
      if( z[1]=='-' ){
        for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
        *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }
    case '(': {
      *tokenType = TK_LP;
      return 1;
    }
    case ')': {
      *tokenType = TK_RP;
      return 1;
    }
    case ';': {
      *tokenType = TK_SEMI;
      return 1;
    }
    case '+': {
      *tokenType = TK_PLUS;
      return 1;
    }
    case '*': {
      *tokenType = TK_STAR;
      return 1;
    }
    case '/': {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }
      for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
      if( c ) i++;
      *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
      return i;
    }
    case '%': {
      *tokenType = TK_REM;
      return 1;
    }
    case '=': {
      *tokenType = TK_EQ;
      return 1 + (z[1]=='=');
    }
    case '<': {
      if( (c=z[1])=='=' ){
        *tokenType = TK_LE;
        return 2;
      }else if( c=='>' ){
        *tokenType = TK_NE;
        return 2;
      }else if( c=='<' ){
        *tokenType = TK_LSHIFT;
        return 2;
      }else{
        *tokenType = TK_LT;
        return 1;
      }
    }
    case '>': {
      if( (c=z[1])=='=' ){
        *tokenType = TK_GE;
        return 2;
      }else if( c=='>' ){
        *tokenType = TK_RSHIFT;
        return 2;
      }else{
        *tokenType = TK_GT;
        return 1;
      }
    }
    case '!': {
      if( z[1]!='=' ){
        *tokenType = TK_ILLEGAL;
        return 2;
      }else{
        *tokenType = TK_NE;
        return 2;
      }
    }
    case '|': {
      if( z[1]!='|' ){
        *tokenType = TK_BITOR;
        return 1;
      }else{
        *tokenType = TK_CONCAT;
        return 2;
      }
    }
    case ',': {
      *tokenType = TK_COMMA;
      return 1;
    }
    case '&': {
      *tokenType = TK_BITAND;
      return 1;
    }
    case '~': {
      *tokenType = TK_BITNOT;
      return 1;
    }
    case '`':
    case '\'':
    case '"': {
      int delim = z[0];
      testcase( delim=='`' );
      testcase( delim=='\'' );
      testcase( delim=='"' );
      for(i=1; (c=z[i])!=0; i++){
        if( c==delim ){
          if( z[i+1]==delim ){







|




|
>
>
|









|








|



|



|



|



|



|









|



|



|














|











|








|








|



|



|



|
<
<







131982
131983
131984
131985
131986
131987
131988
131989
131990
131991
131992
131993
131994
131995
131996
131997
131998
131999
132000
132001
132002
132003
132004
132005
132006
132007
132008
132009
132010
132011
132012
132013
132014
132015
132016
132017
132018
132019
132020
132021
132022
132023
132024
132025
132026
132027
132028
132029
132030
132031
132032
132033
132034
132035
132036
132037
132038
132039
132040
132041
132042
132043
132044
132045
132046
132047
132048
132049
132050
132051
132052
132053
132054
132055
132056
132057
132058
132059
132060
132061
132062
132063
132064
132065
132066
132067
132068
132069
132070
132071
132072
132073
132074
132075
132076
132077
132078
132079
132080
132081
132082
132083
132084
132085
132086
132087
132088
132089
132090
132091
132092
132093
132094
132095
132096
132097
132098
132099
132100
132101
132102
132103
132104
132105
132106
132107
132108
132109
132110
132111


132112
132113
132114
132115
132116
132117
132118
/* Make the IdChar function accessible from ctime.c */
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); }
#endif


/*
** Return the length (in bytes) of the token that begins at z[0]. 
** Store the token type in *tokenType before returning.
*/
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
  int i, c;
  switch( aiClass[*z] ){  /* Switch on the character-class of the first byte
                          ** of the token. See the comment on the CC_ defines
                          ** above. */
    case CC_SPACE: {
      testcase( z[0]==' ' );
      testcase( z[0]=='\t' );
      testcase( z[0]=='\n' );
      testcase( z[0]=='\f' );
      testcase( z[0]=='\r' );
      for(i=1; sqlite3Isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case CC_MINUS: {
      if( z[1]=='-' ){
        for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
        *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }
    case CC_LP: {
      *tokenType = TK_LP;
      return 1;
    }
    case CC_RP: {
      *tokenType = TK_RP;
      return 1;
    }
    case CC_SEMI: {
      *tokenType = TK_SEMI;
      return 1;
    }
    case CC_PLUS: {
      *tokenType = TK_PLUS;
      return 1;
    }
    case CC_STAR: {
      *tokenType = TK_STAR;
      return 1;
    }
    case CC_SLASH: {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }
      for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
      if( c ) i++;
      *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
      return i;
    }
    case CC_PERCENT: {
      *tokenType = TK_REM;
      return 1;
    }
    case CC_EQ: {
      *tokenType = TK_EQ;
      return 1 + (z[1]=='=');
    }
    case CC_LT: {
      if( (c=z[1])=='=' ){
        *tokenType = TK_LE;
        return 2;
      }else if( c=='>' ){
        *tokenType = TK_NE;
        return 2;
      }else if( c=='<' ){
        *tokenType = TK_LSHIFT;
        return 2;
      }else{
        *tokenType = TK_LT;
        return 1;
      }
    }
    case CC_GT: {
      if( (c=z[1])=='=' ){
        *tokenType = TK_GE;
        return 2;
      }else if( c=='>' ){
        *tokenType = TK_RSHIFT;
        return 2;
      }else{
        *tokenType = TK_GT;
        return 1;
      }
    }
    case CC_BANG: {
      if( z[1]!='=' ){
        *tokenType = TK_ILLEGAL;
        return 2;
      }else{
        *tokenType = TK_NE;
        return 2;
      }
    }
    case CC_PIPE: {
      if( z[1]!='|' ){
        *tokenType = TK_BITOR;
        return 1;
      }else{
        *tokenType = TK_CONCAT;
        return 2;
      }
    }
    case CC_COMMA: {
      *tokenType = TK_COMMA;
      return 1;
    }
    case CC_AND: {
      *tokenType = TK_BITAND;
      return 1;
    }
    case CC_TILDA: {
      *tokenType = TK_BITNOT;
      return 1;
    }
    case CC_QUOTE: {


      int delim = z[0];
      testcase( delim=='`' );
      testcase( delim=='\'' );
      testcase( delim=='"' );
      for(i=1; (c=z[i])!=0; i++){
        if( c==delim ){
          if( z[i+1]==delim ){
131407
131408
131409
131410
131411
131412
131413
131414
131415
131416
131417
131418
131419
131420
131421
131422
131423
131424
131425
131426
131427
131428
131429
131430
131431
131432
131433
        *tokenType = TK_ID;
        return i+1;
      }else{
        *tokenType = TK_ILLEGAL;
        return i;
      }
    }
    case '.': {
#ifndef SQLITE_OMIT_FLOATING_POINT
      if( !sqlite3Isdigit(z[1]) )
#endif
      {
        *tokenType = TK_DOT;
        return 1;
      }
      /* If the next character is a digit, this is a floating point
      ** number that begins with ".".  Fall thru into the next case */
    }
    case '0': case '1': case '2': case '3': case '4':
    case '5': case '6': case '7': case '8': case '9': {
      testcase( z[0]=='0' );  testcase( z[0]=='1' );  testcase( z[0]=='2' );
      testcase( z[0]=='3' );  testcase( z[0]=='4' );  testcase( z[0]=='5' );
      testcase( z[0]=='6' );  testcase( z[0]=='7' );  testcase( z[0]=='8' );
      testcase( z[0]=='9' );
      *tokenType = TK_INTEGER;
#ifndef SQLITE_OMIT_HEX_INTEGER
      if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){







|










|
<







132129
132130
132131
132132
132133
132134
132135
132136
132137
132138
132139
132140
132141
132142
132143
132144
132145
132146
132147

132148
132149
132150
132151
132152
132153
132154
        *tokenType = TK_ID;
        return i+1;
      }else{
        *tokenType = TK_ILLEGAL;
        return i;
      }
    }
    case CC_DOT: {
#ifndef SQLITE_OMIT_FLOATING_POINT
      if( !sqlite3Isdigit(z[1]) )
#endif
      {
        *tokenType = TK_DOT;
        return 1;
      }
      /* If the next character is a digit, this is a floating point
      ** number that begins with ".".  Fall thru into the next case */
    }
    case CC_DIGIT: {

      testcase( z[0]=='0' );  testcase( z[0]=='1' );  testcase( z[0]=='2' );
      testcase( z[0]=='3' );  testcase( z[0]=='4' );  testcase( z[0]=='5' );
      testcase( z[0]=='6' );  testcase( z[0]=='7' );  testcase( z[0]=='8' );
      testcase( z[0]=='9' );
      *tokenType = TK_INTEGER;
#ifndef SQLITE_OMIT_HEX_INTEGER
      if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){
131454
131455
131456
131457
131458
131459
131460
131461
131462
131463
131464
131465
131466
131467
131468
131469
131470
131471
131472
131473
131474
131475
131476
131477
131478
131479
131480
131481
131482
131483
#endif
      while( IdChar(z[i]) ){
        *tokenType = TK_ILLEGAL;
        i++;
      }
      return i;
    }
    case '[': {
      for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
      *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
      return i;
    }
    case '?': {
      *tokenType = TK_VARIABLE;
      for(i=1; sqlite3Isdigit(z[i]); i++){}
      return i;
    }
#ifndef SQLITE_OMIT_TCL_VARIABLE
    case '$':
#endif
    case '@':  /* For compatibility with MS SQL Server */
    case '#':
    case ':': {
      int n = 0;
      testcase( z[0]=='$' );  testcase( z[0]=='@' );
      testcase( z[0]==':' );  testcase( z[0]=='#' );
      *tokenType = TK_VARIABLE;
      for(i=1; (c=z[i])!=0; i++){
        if( IdChar(c) ){
          n++;







|




|




<
|
<
<
|
<







132175
132176
132177
132178
132179
132180
132181
132182
132183
132184
132185
132186
132187
132188
132189
132190
132191

132192


132193

132194
132195
132196
132197
132198
132199
132200
#endif
      while( IdChar(z[i]) ){
        *tokenType = TK_ILLEGAL;
        i++;
      }
      return i;
    }
    case CC_QUOTE2: {
      for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
      *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
      return i;
    }
    case CC_VARNUM: {
      *tokenType = TK_VARIABLE;
      for(i=1; sqlite3Isdigit(z[i]); i++){}
      return i;
    }

    case CC_DOLLAR:


    case CC_VARALPHA: {

      int n = 0;
      testcase( z[0]=='$' );  testcase( z[0]=='@' );
      testcase( z[0]==':' );  testcase( z[0]=='#' );
      *tokenType = TK_VARIABLE;
      for(i=1; (c=z[i])!=0; i++){
        if( IdChar(c) ){
          n++;
131498
131499
131500
131501
131502
131503
131504












131505
131506
131507
131508
131509
131510
131511
131512
131513
131514
131515
131516
131517
131518

131519
131520
131521
131522

131523
131524
131525

131526
131527
131528
131529

131530
131531
131532
131533
131534
131535
131536
131537
131538
131539
131540
131541
131542
131543
131544
131545
131546
131547
131548
131549
131550
131551
131552
131553
131554
131555
131556
131557
131558
131559
131560
131561
131562
131563
131564
131565
131566
131567
131568
131569
131570
131571
131572
131573
131574
131575
131576
131577
131578
131579
131580
131581
131582
131583
131584
131585
131586
131587
131588
131589
131590
131591
131592
        }else{
          break;
        }
      }
      if( n==0 ) *tokenType = TK_ILLEGAL;
      return i;
    }












#ifndef SQLITE_OMIT_BLOB_LITERAL
    case 'x': case 'X': {
      testcase( z[0]=='x' ); testcase( z[0]=='X' );
      if( z[1]=='\'' ){
        *tokenType = TK_BLOB;
        for(i=2; sqlite3Isxdigit(z[i]); i++){}
        if( z[i]!='\'' || i%2 ){
          *tokenType = TK_ILLEGAL;
          while( z[i] && z[i]!='\'' ){ i++; }
        }
        if( z[i] ) i++;
        return i;
      }
      /* Otherwise fall through to the next case */

    }
#endif
    default: {
      if( !IdChar(*z) ){

        break;
      }
      for(i=1; IdChar(z[i]); i++){}

      *tokenType = TK_ID;
      return keywordCode((char*)z, i, tokenType);
    }
  }

  *tokenType = TK_ILLEGAL;
  return 1;
}

/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** then an and attempt is made to write an error message into 
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;                   /* Number of errors encountered */
  int i;                          /* Loop counter */
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */

  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nzVar==0 );
  assert( pParse->azVar==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    if( i>mxSqlLen ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
    if( tokenType>=TK_SPACE ){
      assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
      if( db->u1.isInterrupted ){
        sqlite3ErrorMsg(pParse, "interrupt");
        pParse->rc = SQLITE_INTERRUPT;
        break;
      }
      if( tokenType==TK_ILLEGAL ){
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"",
                        &pParse->sLastToken);
        break;







>
>
>
>
>
>
>
>
>
>
>
>

|











|
>


|
<
>
|
|
<
>
|
|


>
|
|















<















|







<
<












<







132215
132216
132217
132218
132219
132220
132221
132222
132223
132224
132225
132226
132227
132228
132229
132230
132231
132232
132233
132234
132235
132236
132237
132238
132239
132240
132241
132242
132243
132244
132245
132246
132247
132248
132249
132250
132251

132252
132253
132254

132255
132256
132257
132258
132259
132260
132261
132262
132263
132264
132265
132266
132267
132268
132269
132270
132271
132272
132273
132274
132275
132276
132277

132278
132279
132280
132281
132282
132283
132284
132285
132286
132287
132288
132289
132290
132291
132292
132293
132294
132295
132296
132297
132298
132299
132300


132301
132302
132303
132304
132305
132306
132307
132308
132309
132310
132311
132312

132313
132314
132315
132316
132317
132318
132319
        }else{
          break;
        }
      }
      if( n==0 ) *tokenType = TK_ILLEGAL;
      return i;
    }
    case CC_KYWD: {
      for(i=1; aiClass[z[i]]<=CC_KYWD; i++){}
      if( IdChar(z[i]) ){
        /* This token started out using characters that can appear in keywords,
        ** but z[i] is a character not allowed within keywords, so this must
        ** be an identifier instead */
        i++;
        break;
      }
      *tokenType = TK_ID;
      return keywordCode((char*)z, i, tokenType);
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case CC_X: {
      testcase( z[0]=='x' ); testcase( z[0]=='X' );
      if( z[1]=='\'' ){
        *tokenType = TK_BLOB;
        for(i=2; sqlite3Isxdigit(z[i]); i++){}
        if( z[i]!='\'' || i%2 ){
          *tokenType = TK_ILLEGAL;
          while( z[i] && z[i]!='\'' ){ i++; }
        }
        if( z[i] ) i++;
        return i;
      }
      /* If it is not a BLOB literal, then it must be an ID, since no
      ** SQL keywords start with the letter 'x'.  Fall through */
    }
#endif
    case CC_ID: {

      i = 1;
      break;
    }

    default: {
      *tokenType = TK_ILLEGAL;
      return 1;
    }
  }
  while( IdChar(z[i]) ){ i++; }
  *tokenType = TK_ID;
  return i;
}

/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** then an and attempt is made to write an error message into 
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;                   /* Number of errors encountered */
  int i;                          /* Loop counter */
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */

  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */

  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nzVar==0 );
  assert( pParse->azVar==0 );


  while( zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    if( i>mxSqlLen ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
    if( tokenType>=TK_SPACE ){
      assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
      if( db->u1.isInterrupted ){

        pParse->rc = SQLITE_INTERRUPT;
        break;
      }
      if( tokenType==TK_ILLEGAL ){
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"",
                        &pParse->sLastToken);
        break;
131613
131614
131615
131616
131617
131618
131619
131620
131621
131622
131623
131624
131625
131626
131627
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
  }
  assert( pzErrMsg!=0 );







<







132340
132341
132342
132343
132344
132345
132346

132347
132348
132349
132350
132351
132352
132353
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
  }
  assert( pzErrMsg!=0 );
132754
132755
132756
132757
132758
132759
132760
132761
132762
132763
132764
132765
132766
132767
132768
132769
132770
132771
132772
132773
    p = (LookasideSlot*)pStart;
    for(i=cnt-1; i>=0; i--){
      p->pNext = db->lookaside.pFree;
      db->lookaside.pFree = p;
      p = (LookasideSlot*)&((u8*)p)[sz];
    }
    db->lookaside.pEnd = p;
    db->lookaside.bEnabled = 1;
    db->lookaside.bMalloced = pBuf==0 ?1:0;
  }else{
    db->lookaside.pStart = db;
    db->lookaside.pEnd = db;
    db->lookaside.bEnabled = 0;
    db->lookaside.bMalloced = 0;
  }
#endif /* SQLITE_OMIT_LOOKASIDE */
  return SQLITE_OK;
}

/*







|




|







133480
133481
133482
133483
133484
133485
133486
133487
133488
133489
133490
133491
133492
133493
133494
133495
133496
133497
133498
133499
    p = (LookasideSlot*)pStart;
    for(i=cnt-1; i>=0; i--){
      p->pNext = db->lookaside.pFree;
      db->lookaside.pFree = p;
      p = (LookasideSlot*)&((u8*)p)[sz];
    }
    db->lookaside.pEnd = p;
    db->lookaside.bDisable = 0;
    db->lookaside.bMalloced = pBuf==0 ?1:0;
  }else{
    db->lookaside.pStart = db;
    db->lookaside.pEnd = db;
    db->lookaside.bDisable = 1;
    db->lookaside.bMalloced = 0;
  }
#endif /* SQLITE_OMIT_LOOKASIDE */
  return SQLITE_OK;
}

/*
133631
133632
133633
133634
133635
133636
133637
133638
133639
133640
133641
133642
133643
133644
133645
133646
133647
133648
133649
133650
133651
133652
133653
133654
133655
133656
133657
133658
*/
SQLITE_PRIVATE int sqlite3CreateFunc(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int enc,
  void *pUserData,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*),
  FuncDestructor *pDestructor
){
  FuncDef *p;
  int nName;
  int extraFlags;

  assert( sqlite3_mutex_held(db->mutex) );
  if( zFunctionName==0 ||
      (xFunc && (xFinal || xStep)) || 
      (!xFunc && (xFinal && !xStep)) ||
      (!xFunc && (!xFinal && xStep)) ||
      (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
      (255<(nName = sqlite3Strlen30( zFunctionName))) ){
    return SQLITE_MISUSE_BKPT;
  }

  assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
  extraFlags = enc &  SQLITE_DETERMINISTIC;







|










|
|
|







134357
134358
134359
134360
134361
134362
134363
134364
134365
134366
134367
134368
134369
134370
134371
134372
134373
134374
134375
134376
134377
134378
134379
134380
134381
134382
134383
134384
*/
SQLITE_PRIVATE int sqlite3CreateFunc(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int enc,
  void *pUserData,
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*),
  FuncDestructor *pDestructor
){
  FuncDef *p;
  int nName;
  int extraFlags;

  assert( sqlite3_mutex_held(db->mutex) );
  if( zFunctionName==0 ||
      (xSFunc && (xFinal || xStep)) || 
      (!xSFunc && (xFinal && !xStep)) ||
      (!xSFunc && (!xFinal && xStep)) ||
      (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
      (255<(nName = sqlite3Strlen30( zFunctionName))) ){
    return SQLITE_MISUSE_BKPT;
  }

  assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
  extraFlags = enc &  SQLITE_DETERMINISTIC;
133667
133668
133669
133670
133671
133672
133673
133674
133675
133676
133677
133678
133679
133680
133681
133682
133683
133684
  ** to the hash table.
  */
  if( enc==SQLITE_UTF16 ){
    enc = SQLITE_UTF16NATIVE;
  }else if( enc==SQLITE_ANY ){
    int rc;
    rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags,
         pUserData, xFunc, xStep, xFinal, pDestructor);
    if( rc==SQLITE_OK ){
      rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags,
          pUserData, xFunc, xStep, xFinal, pDestructor);
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }
    enc = SQLITE_UTF16BE;
  }
#else







|


|







134393
134394
134395
134396
134397
134398
134399
134400
134401
134402
134403
134404
134405
134406
134407
134408
134409
134410
  ** to the hash table.
  */
  if( enc==SQLITE_UTF16 ){
    enc = SQLITE_UTF16NATIVE;
  }else if( enc==SQLITE_ANY ){
    int rc;
    rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags,
         pUserData, xSFunc, xStep, xFinal, pDestructor);
    if( rc==SQLITE_OK ){
      rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags,
          pUserData, xSFunc, xStep, xFinal, pDestructor);
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }
    enc = SQLITE_UTF16BE;
  }
#else
133714
133715
133716
133717
133718
133719
133720
133721
133722
133723
133724
133725
133726
133727
133728
133729
133730
133731
133732
133733
133734
133735
133736
133737
133738
133739
133740
133741
133742
133743
133744
133745
133746
133747
133748
133749
133750
133751
133752
133753
133754
133755
133756
133757
133758
133759

  if( pDestructor ){
    pDestructor->nRef++;
  }
  p->pDestructor = pDestructor;
  p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
  testcase( p->funcFlags & SQLITE_DETERMINISTIC );
  p->xFunc = xFunc;
  p->xStep = xStep;
  p->xFinalize = xFinal;
  p->pUserData = pUserData;
  p->nArg = (u16)nArg;
  return SQLITE_OK;
}

/*
** Create new user functions.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_function(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*)
){
  return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
                                    xFinal, 0);
}

SQLITE_API int SQLITE_STDCALL sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*),
  void (*xDestroy)(void *)
){
  int rc = SQLITE_ERROR;
  FuncDestructor *pArg = 0;








|
<















|



|









|







134440
134441
134442
134443
134444
134445
134446
134447

134448
134449
134450
134451
134452
134453
134454
134455
134456
134457
134458
134459
134460
134461
134462
134463
134464
134465
134466
134467
134468
134469
134470
134471
134472
134473
134474
134475
134476
134477
134478
134479
134480
134481
134482
134483
134484

  if( pDestructor ){
    pDestructor->nRef++;
  }
  p->pDestructor = pDestructor;
  p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
  testcase( p->funcFlags & SQLITE_DETERMINISTIC );
  p->xSFunc = xSFunc ? xSFunc : xStep;

  p->xFinalize = xFinal;
  p->pUserData = pUserData;
  p->nArg = (u16)nArg;
  return SQLITE_OK;
}

/*
** Create new user functions.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_function(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*)
){
  return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xSFunc, xStep,
                                    xFinal, 0);
}

SQLITE_API int SQLITE_STDCALL sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*),
  void (*xDestroy)(void *)
){
  int rc = SQLITE_ERROR;
  FuncDestructor *pArg = 0;

133768
133769
133770
133771
133772
133773
133774
133775
133776
133777
133778
133779
133780
133781
133782
133783
133784
133785
133786
133787
133788
133789
133790
133791
133792
133793
133794
133795
133796
133797
133798
133799
133800
133801
133802
133803
133804
133805
133806
133807
133808
133809
133810
133811
133812
133813
133814
133815
    if( !pArg ){
      xDestroy(p);
      goto out;
    }
    pArg->xDestroy = xDestroy;
    pArg->pUserData = p;
  }
  rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
  if( pArg && pArg->nRef==0 ){
    assert( rc!=SQLITE_OK );
    xDestroy(p);
    sqlite3DbFree(db, pArg);
  }

 out:
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
SQLITE_API int SQLITE_STDCALL sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
){
  int rc;
  char *zFunc8;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
  rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
  sqlite3DbFree(db, zFunc8);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif








|



















|












|







134493
134494
134495
134496
134497
134498
134499
134500
134501
134502
134503
134504
134505
134506
134507
134508
134509
134510
134511
134512
134513
134514
134515
134516
134517
134518
134519
134520
134521
134522
134523
134524
134525
134526
134527
134528
134529
134530
134531
134532
134533
134534
134535
134536
134537
134538
134539
134540
    if( !pArg ){
      xDestroy(p);
      goto out;
    }
    pArg->xDestroy = xDestroy;
    pArg->pUserData = p;
  }
  rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, pArg);
  if( pArg && pArg->nRef==0 ){
    assert( rc!=SQLITE_OK );
    xDestroy(p);
    sqlite3DbFree(db, pArg);
  }

 out:
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
SQLITE_API int SQLITE_STDCALL sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *p,
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
){
  int rc;
  char *zFunc8;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
  rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0);
  sqlite3DbFree(db, zFunc8);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif

134265
134266
134267
134268
134269
134270
134271
134272
134273
134274
134275
134276
134277
134278
134279
      z = sqlite3_value_text16(db->pErr);
    }
    /* A malloc() may have failed within the call to sqlite3_value_text16()
    ** above. If this is the case, then the db->mallocFailed flag needs to
    ** be cleared before returning. Do this directly, instead of via
    ** sqlite3ApiExit(), to avoid setting the database handle error message.
    */
    db->mallocFailed = 0;
  }
  sqlite3_mutex_leave(db->mutex);
  return z;
}
#endif /* SQLITE_OMIT_UTF16 */

/*







|







134990
134991
134992
134993
134994
134995
134996
134997
134998
134999
135000
135001
135002
135003
135004
      z = sqlite3_value_text16(db->pErr);
    }
    /* A malloc() may have failed within the call to sqlite3_value_text16()
    ** above. If this is the case, then the db->mallocFailed flag needs to
    ** be cleared before returning. Do this directly, instead of via
    ** sqlite3ApiExit(), to avoid setting the database handle error message.
    */
    sqlite3OomClear(db);
  }
  sqlite3_mutex_leave(db->mutex);
  return z;
}
#endif /* SQLITE_OMIT_UTF16 */

/*
134903
134904
134905
134906
134907
134908
134909
134910
134911
134912
134913
134914
134915
134916
134917
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, sqlite3StrBINARY, 0);
  assert( db->pDfltColl!=0 );

  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite3_free(zErrMsg);
    goto opendb_out;
  }

  /* Open the backend database driver */
  rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,







|







135628
135629
135630
135631
135632
135633
135634
135635
135636
135637
135638
135639
135640
135641
135642
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, sqlite3StrBINARY, 0);
  assert( db->pDfltColl!=0 );

  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
    sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite3_free(zErrMsg);
    goto opendb_out;
  }

  /* Open the backend database driver */
  rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
135623
135624
135625
135626
135627
135628
135629
135630
135631
135632
135633
135634
135635
135636
135637
    ** assert() is disabled, then the return value is zero.  If X is
    ** false and assert() is enabled, then the assertion fires and the
    ** process aborts.  If X is false and assert() is disabled, then the
    ** return value is zero.
    */
    case SQLITE_TESTCTRL_ASSERT: {
      volatile int x = 0;
      assert( (x = va_arg(ap,int))!=0 );
      rc = x;
      break;
    }


    /*
    **  sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)







|







136348
136349
136350
136351
136352
136353
136354
136355
136356
136357
136358
136359
136360
136361
136362
    ** assert() is disabled, then the return value is zero.  If X is
    ** false and assert() is enabled, then the assertion fires and the
    ** process aborts.  If X is false and assert() is disabled, then the
    ** return value is zero.
    */
    case SQLITE_TESTCTRL_ASSERT: {
      volatile int x = 0;
      assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 );
      rc = x;
      break;
    }


    /*
    **  sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
136656
136657
136658
136659
136660
136661
136662






136663
136664
136665
136666
136667
136668
136669
*/
#ifndef _FTSINT_H
#define _FTSINT_H

#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif







/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)







>
>
>
>
>
>







137381
137382
137383
137384
137385
137386
137387
137388
137389
137390
137391
137392
137393
137394
137395
137396
137397
137398
137399
137400
*/
#ifndef _FTSINT_H
#define _FTSINT_H

#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif

/* FTS3/FTS4 require virtual tables */
#ifdef SQLITE_OMIT_VIRTUALTABLE
# undef SQLITE_ENABLE_FTS3
# undef SQLITE_ENABLE_FTS4
#endif

/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
146153
146154
146155
146156
146157
146158
146159

146160
146161
146162
146163
146164
146165
146166
146167
146168
146169
146170
146171






146172

146173
146174
146175
146176
146177
146178
146179

  pHash = (Fts3Hash *)sqlite3_user_data(context);

  zName = sqlite3_value_text(argv[0]);
  nName = sqlite3_value_bytes(argv[0])+1;

  if( argc==2 ){

    void *pOld;
    int n = sqlite3_value_bytes(argv[1]);
    if( zName==0 || n!=sizeof(pPtr) ){
      sqlite3_result_error(context, "argument type mismatch", -1);
      return;
    }
    pPtr = *(void **)sqlite3_value_blob(argv[1]);
    pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
    if( pOld==pPtr ){
      sqlite3_result_error(context, "out of memory", -1);
      return;
    }






  }else{

    if( zName ){
      pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
    }
    if( !pPtr ){
      char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
      sqlite3_result_error(context, zErr, -1);
      sqlite3_free(zErr);







>












>
>
>
>
>
>
|
>







146884
146885
146886
146887
146888
146889
146890
146891
146892
146893
146894
146895
146896
146897
146898
146899
146900
146901
146902
146903
146904
146905
146906
146907
146908
146909
146910
146911
146912
146913
146914
146915
146916
146917
146918

  pHash = (Fts3Hash *)sqlite3_user_data(context);

  zName = sqlite3_value_text(argv[0]);
  nName = sqlite3_value_bytes(argv[0])+1;

  if( argc==2 ){
#ifdef SQLITE_ENABLE_FTS3_TOKENIZER
    void *pOld;
    int n = sqlite3_value_bytes(argv[1]);
    if( zName==0 || n!=sizeof(pPtr) ){
      sqlite3_result_error(context, "argument type mismatch", -1);
      return;
    }
    pPtr = *(void **)sqlite3_value_blob(argv[1]);
    pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
    if( pOld==pPtr ){
      sqlite3_result_error(context, "out of memory", -1);
      return;
    }
#else
    sqlite3_result_error(context, "fts3tokenize: " 
        "disabled - rebuild with -DSQLITE_ENABLE_FTS3_TOKENIZER", -1
    );
    return;
#endif /* SQLITE_ENABLE_FTS3_TOKENIZER */
  }else
  {
    if( zName ){
      pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
    }
    if( !pPtr ){
      char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
      sqlite3_result_error(context, zErr, -1);
      sqlite3_free(zErr);
146414
146415
146416
146417
146418
146419
146420

146421
146422
146423
146424
146425
146426
146427
    sqlite3_result_error(context, zErr, -1);
  }else{
    sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  }
  Tcl_DecrRefCount(pRet);
}


static
int registerTokenizer(
  sqlite3 *db, 
  char *zName, 
  const sqlite3_tokenizer_module *p
){
  int rc;







>







147153
147154
147155
147156
147157
147158
147159
147160
147161
147162
147163
147164
147165
147166
147167
    sqlite3_result_error(context, zErr, -1);
  }else{
    sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  }
  Tcl_DecrRefCount(pRet);
}

#ifdef SQLITE_ENABLE_FTS3_TOKENIZER
static
int registerTokenizer(
  sqlite3 *db, 
  char *zName, 
  const sqlite3_tokenizer_module *p
){
  int rc;
146435
146436
146437
146438
146439
146440
146441


146442
146443
146444
146445
146446
146447
146448

  sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
  sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
  sqlite3_step(pStmt);

  return sqlite3_finalize(pStmt);
}



static
int queryTokenizer(
  sqlite3 *db, 
  char *zName,  
  const sqlite3_tokenizer_module **pp
){







>
>







147175
147176
147177
147178
147179
147180
147181
147182
147183
147184
147185
147186
147187
147188
147189
147190

  sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
  sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
  sqlite3_step(pStmt);

  return sqlite3_finalize(pStmt);
}
#endif /* SQLITE_ENABLE_FTS3_TOKENIZER */


static
int queryTokenizer(
  sqlite3 *db, 
  char *zName,  
  const sqlite3_tokenizer_module **pp
){
146506
146507
146508
146509
146510
146511
146512

146513
146514
146515
146516
146517

146518
146519
146520
146521
146522
146523
146524
  assert( p1==p2 );
  rc = queryTokenizer(db, "nosuchtokenizer", &p2);
  assert( rc==SQLITE_ERROR );
  assert( p2==0 );
  assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );

  /* Test the storage function */

  rc = registerTokenizer(db, "nosuchtokenizer", p1);
  assert( rc==SQLITE_OK );
  rc = queryTokenizer(db, "nosuchtokenizer", &p2);
  assert( rc==SQLITE_OK );
  assert( p2==p1 );


  sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
}

#endif

/*







>





>







147248
147249
147250
147251
147252
147253
147254
147255
147256
147257
147258
147259
147260
147261
147262
147263
147264
147265
147266
147267
147268
  assert( p1==p2 );
  rc = queryTokenizer(db, "nosuchtokenizer", &p2);
  assert( rc==SQLITE_ERROR );
  assert( p2==0 );
  assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );

  /* Test the storage function */
#ifdef SQLITE_ENABLE_FTS3_TOKENIZER
  rc = registerTokenizer(db, "nosuchtokenizer", p1);
  assert( rc==SQLITE_OK );
  rc = queryTokenizer(db, "nosuchtokenizer", &p2);
  assert( rc==SQLITE_OK );
  assert( p2==p1 );
#endif

  sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
}

#endif

/*
161116
161117
161118
161119
161120
161121
161122
161123
161124
161125
161126
161127
161128
161129
161130
** immediately without attempting the allocation or modifying the stored
** error code.
*/
static void *rbuMalloc(sqlite3rbu *p, int nByte){
  void *pRet = 0;
  if( p->rc==SQLITE_OK ){
    assert( nByte>0 );
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 ){
      p->rc = SQLITE_NOMEM;
    }else{
      memset(pRet, 0, nByte);
    }
  }
  return pRet;







|







161860
161861
161862
161863
161864
161865
161866
161867
161868
161869
161870
161871
161872
161873
161874
** immediately without attempting the allocation or modifying the stored
** error code.
*/
static void *rbuMalloc(sqlite3rbu *p, int nByte){
  void *pRet = 0;
  if( p->rc==SQLITE_OK ){
    assert( nByte>0 );
    pRet = sqlite3_malloc64(nByte);
    if( pRet==0 ){
      p->rc = SQLITE_NOMEM;
    }else{
      memset(pRet, 0, nByte);
    }
  }
  return pRet;
161162
161163
161164
161165
161166
161167
161168
161169
161170
161171
161172
161173
161174
161175
161176
161177
** if the allocation succeeds, (*pRc) is left unchanged.
*/
static char *rbuStrndup(const char *zStr, int *pRc){
  char *zRet = 0;

  assert( *pRc==SQLITE_OK );
  if( zStr ){
    int nCopy = strlen(zStr) + 1;
    zRet = (char*)sqlite3_malloc(nCopy);
    if( zRet ){
      memcpy(zRet, zStr, nCopy);
    }else{
      *pRc = SQLITE_NOMEM;
    }
  }








|
|







161906
161907
161908
161909
161910
161911
161912
161913
161914
161915
161916
161917
161918
161919
161920
161921
** if the allocation succeeds, (*pRc) is left unchanged.
*/
static char *rbuStrndup(const char *zStr, int *pRc){
  char *zRet = 0;

  assert( *pRc==SQLITE_OK );
  if( zStr ){
    size_t nCopy = strlen(zStr) + 1;
    zRet = (char*)sqlite3_malloc64(nCopy);
    if( zRet ){
      memcpy(zRet, zStr, nCopy);
    }else{
      *pRc = SQLITE_NOMEM;
    }
  }

162511
162512
162513
162514
162515
162516
162517
162518
162519
162520
162521
162522
162523
162524
162525
    return SQLITE_INTERNAL;
  }

  pRbu->pgsz = iAmt;
  if( pRbu->nFrame==pRbu->nFrameAlloc ){
    int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
    RbuFrame *aNew;
    aNew = (RbuFrame*)sqlite3_realloc(pRbu->aFrame, nNew * sizeof(RbuFrame));
    if( aNew==0 ) return SQLITE_NOMEM;
    pRbu->aFrame = aNew;
    pRbu->nFrameAlloc = nNew;
  }

  iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
  if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;







|







163255
163256
163257
163258
163259
163260
163261
163262
163263
163264
163265
163266
163267
163268
163269
    return SQLITE_INTERNAL;
  }

  pRbu->pgsz = iAmt;
  if( pRbu->nFrame==pRbu->nFrameAlloc ){
    int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
    RbuFrame *aNew;
    aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame));
    if( aNew==0 ) return SQLITE_NOMEM;
    pRbu->aFrame = aNew;
    pRbu->nFrameAlloc = nNew;
  }

  iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
  if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;
162576
162577
162578
162579
162580
162581
162582
162583
162584
162585
162586
162587
162588
162589
162590
  int nChar;
  LPWSTR zWideFilename;

  nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
  if( nChar==0 ){
    return 0;
  }
  zWideFilename = sqlite3_malloc( nChar*sizeof(zWideFilename[0]) );
  if( zWideFilename==0 ){
    return 0;
  }
  memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
  nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
                                nChar);
  if( nChar==0 ){







|







163320
163321
163322
163323
163324
163325
163326
163327
163328
163329
163330
163331
163332
163333
163334
  int nChar;
  LPWSTR zWideFilename;

  nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
  if( nChar==0 ){
    return 0;
  }
  zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) );
  if( zWideFilename==0 ){
    return 0;
  }
  memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
  nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
                                nChar);
  if( nChar==0 ){
163210
163211
163212
163213
163214
163215
163216
163217
163218
163219

163220
163221
163222
163223
163224
163225
163226
163227
163228
*/
SQLITE_API sqlite3rbu *SQLITE_STDCALL sqlite3rbu_open(
  const char *zTarget, 
  const char *zRbu,
  const char *zState
){
  sqlite3rbu *p;
  int nTarget = strlen(zTarget);
  int nRbu = strlen(zRbu);
  int nState = zState ? strlen(zState) : 0;


  p = (sqlite3rbu*)sqlite3_malloc(sizeof(sqlite3rbu)+nTarget+1+nRbu+1+nState+1);
  if( p ){
    RbuState *pState = 0;

    /* Create the custom VFS. */
    memset(p, 0, sizeof(sqlite3rbu));
    rbuCreateVfs(p);








|
|
|
>

|







163954
163955
163956
163957
163958
163959
163960
163961
163962
163963
163964
163965
163966
163967
163968
163969
163970
163971
163972
163973
*/
SQLITE_API sqlite3rbu *SQLITE_STDCALL sqlite3rbu_open(
  const char *zTarget, 
  const char *zRbu,
  const char *zState
){
  sqlite3rbu *p;
  size_t nTarget = strlen(zTarget);
  size_t nRbu = strlen(zRbu);
  size_t nState = zState ? strlen(zState) : 0;
  size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1+ nState+1;

  p = (sqlite3rbu*)sqlite3_malloc64(nByte);
  if( p ){
    RbuState *pState = 0;

    /* Create the custom VFS. */
    memset(p, 0, sizeof(sqlite3rbu));
    rbuCreateVfs(p);

163351
163352
163353
163354
163355
163356
163357
163358
163359
163360
163361
163362
163363
163364
163365
** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
** then edit any error message string so as to remove all occurrences of
** the pattern "rbu_imp_[0-9]*".
*/
static void rbuEditErrmsg(sqlite3rbu *p){
  if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
    int i;
    int nErrmsg = strlen(p->zErrmsg);
    for(i=0; i<(nErrmsg-8); i++){
      if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
        int nDel = 8;
        while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
        memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
        nErrmsg -= nDel;
      }







|







164096
164097
164098
164099
164100
164101
164102
164103
164104
164105
164106
164107
164108
164109
164110
** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
** then edit any error message string so as to remove all occurrences of
** the pattern "rbu_imp_[0-9]*".
*/
static void rbuEditErrmsg(sqlite3rbu *p){
  if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
    int i;
    size_t nErrmsg = strlen(p->zErrmsg);
    for(i=0; i<(nErrmsg-8); i++){
      if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
        int nDel = 8;
        while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
        memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
        nErrmsg -= nDel;
      }
163815
163816
163817
163818
163819
163820
163821
163822
163823
163824
163825
163826
163827
163828
163829
163830
163831
163832
163833
163834
163835
163836
163837
163838
163839
163840
  /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
  ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space 
  ** instead of a file on disk.  */
  assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
  if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
    if( iRegion<=p->nShm ){
      int nByte = (iRegion+1) * sizeof(char*);
      char **apNew = (char**)sqlite3_realloc(p->apShm, nByte);
      if( apNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
        p->apShm = apNew;
        p->nShm = iRegion+1;
      }
    }

    if( rc==SQLITE_OK && p->apShm[iRegion]==0 ){
      char *pNew = (char*)sqlite3_malloc(szRegion);
      if( pNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(pNew, 0, szRegion);
        p->apShm[iRegion] = pNew;
      }
    }







|










|







164560
164561
164562
164563
164564
164565
164566
164567
164568
164569
164570
164571
164572
164573
164574
164575
164576
164577
164578
164579
164580
164581
164582
164583
164584
164585
  /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
  ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space 
  ** instead of a file on disk.  */
  assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
  if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
    if( iRegion<=p->nShm ){
      int nByte = (iRegion+1) * sizeof(char*);
      char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
      if( apNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
        p->apShm = apNew;
        p->nShm = iRegion+1;
      }
    }

    if( rc==SQLITE_OK && p->apShm[iRegion]==0 ){
      char *pNew = (char*)sqlite3_malloc64(szRegion);
      if( pNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(pNew, 0, szRegion);
        p->apShm[iRegion] = pNew;
      }
    }
163936
163937
163938
163939
163940
163941
163942
163943
163944
163945
163946
163947
163948
163949
163950
  if( zName ){
    if( flags & SQLITE_OPEN_MAIN_DB ){
      /* A main database has just been opened. The following block sets
      ** (pFd->zWal) to point to a buffer owned by SQLite that contains
      ** the name of the *-wal file this db connection will use. SQLite
      ** happens to pass a pointer to this buffer when using xAccess()
      ** or xOpen() to operate on the *-wal file.  */
      int n = strlen(zName);
      const char *z = &zName[n];
      if( flags & SQLITE_OPEN_URI ){
        int odd = 0;
        while( 1 ){
          if( z[0]==0 ){
            odd = 1 - odd;
            if( odd && z[1]==0 ) break;







|







164681
164682
164683
164684
164685
164686
164687
164688
164689
164690
164691
164692
164693
164694
164695
  if( zName ){
    if( flags & SQLITE_OPEN_MAIN_DB ){
      /* A main database has just been opened. The following block sets
      ** (pFd->zWal) to point to a buffer owned by SQLite that contains
      ** the name of the *-wal file this db connection will use. SQLite
      ** happens to pass a pointer to this buffer when using xAccess()
      ** or xOpen() to operate on the *-wal file.  */
      int n = (int)strlen(zName);
      const char *z = &zName[n];
      if( flags & SQLITE_OPEN_URI ){
        int odd = 0;
        while( 1 ){
          if( z[0]==0 ){
            odd = 1 - odd;
            if( odd && z[1]==0 ) break;
163962
163963
163964
163965
163966
163967
163968
163969
163970
163971
163972
163973
163974
163975
163976
163977
      rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName);
      if( pDb ){
        if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
          /* This call is to open a *-wal file. Intead, open the *-oal. This
          ** code ensures that the string passed to xOpen() is terminated by a
          ** pair of '\0' bytes in case the VFS attempts to extract a URI 
          ** parameter from it.  */
          int nCopy = strlen(zName);
          char *zCopy = sqlite3_malloc(nCopy+2);
          if( zCopy ){
            memcpy(zCopy, zName, nCopy);
            zCopy[nCopy-3] = 'o';
            zCopy[nCopy] = '\0';
            zCopy[nCopy+1] = '\0';
            zOpen = (const char*)(pFd->zDel = zCopy);
          }else{







|
|







164707
164708
164709
164710
164711
164712
164713
164714
164715
164716
164717
164718
164719
164720
164721
164722
      rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName);
      if( pDb ){
        if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
          /* This call is to open a *-wal file. Intead, open the *-oal. This
          ** code ensures that the string passed to xOpen() is terminated by a
          ** pair of '\0' bytes in case the VFS attempts to extract a URI 
          ** parameter from it.  */
          size_t nCopy = strlen(zName);
          char *zCopy = sqlite3_malloc64(nCopy+2);
          if( zCopy ){
            memcpy(zCopy, zName, nCopy);
            zCopy[nCopy-3] = 'o';
            zCopy[nCopy] = '\0';
            zCopy[nCopy+1] = '\0';
            zOpen = (const char*)(pFd->zDel = zCopy);
          }else{
164192
164193
164194
164195
164196
164197
164198
164199
164200
164201
164202

164203
164204
164205
164206
164207
164208
164209
164210
164211
164212
    rbuVfsCurrentTime,            /* xCurrentTime */
    rbuVfsGetLastError,           /* xGetLastError */
    0,                            /* xCurrentTimeInt64 (version 2) */
    0, 0, 0                       /* Unimplemented version 3 methods */
  };

  rbu_vfs *pNew = 0;              /* Newly allocated VFS */
  int nName;
  int rc = SQLITE_OK;

  int nByte;

  nName = strlen(zName);
  nByte = sizeof(rbu_vfs) + nName + 1;
  pNew = (rbu_vfs*)sqlite3_malloc(nByte);
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    sqlite3_vfs *pParent;           /* Parent VFS */
    memset(pNew, 0, nByte);
    pParent = sqlite3_vfs_find(zParent);
    if( pParent==0 ){







<

|
|
>


|







164937
164938
164939
164940
164941
164942
164943

164944
164945
164946
164947
164948
164949
164950
164951
164952
164953
164954
164955
164956
164957
    rbuVfsCurrentTime,            /* xCurrentTime */
    rbuVfsGetLastError,           /* xGetLastError */
    0,                            /* xCurrentTimeInt64 (version 2) */
    0, 0, 0                       /* Unimplemented version 3 methods */
  };

  rbu_vfs *pNew = 0;              /* Newly allocated VFS */

  int rc = SQLITE_OK;
  size_t nName;
  size_t nByte;

  nName = strlen(zName);
  nByte = sizeof(rbu_vfs) + nName + 1;
  pNew = (rbu_vfs*)sqlite3_malloc64(nByte);
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    sqlite3_vfs *pParent;           /* Parent VFS */
    memset(pNew, 0, nByte);
    pParent = sqlite3_vfs_find(zParent);
    if( pParent==0 ){
164392
164393
164394
164395
164396
164397
164398


164399
164400
164401
164402
164403
164404
164405
164406
  char **pzErr
){
  StatTable *pTab = 0;
  int rc = SQLITE_OK;
  int iDb;

  if( argc>=4 ){


    iDb = sqlite3FindDbName(db, argv[3]);
    if( iDb<0 ){
      *pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
      return SQLITE_ERROR;
    }
  }else{
    iDb = 0;
  }







>
>
|







165137
165138
165139
165140
165141
165142
165143
165144
165145
165146
165147
165148
165149
165150
165151
165152
165153
  char **pzErr
){
  StatTable *pTab = 0;
  int rc = SQLITE_OK;
  int iDb;

  if( argc>=4 ){
    Token nm;
    sqlite3TokenInit(&nm, (char*)argv[3]);
    iDb = sqlite3FindDb(db, &nm);
    if( iDb<0 ){
      *pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
      return SQLITE_ERROR;
    }
  }else{
    iDb = 0;
  }
164977
164978
164979
164980
164981
164982
164983



164984

164985
164986
164987
164988
164989
164990
164991
#endif
SQLITE_EXTENSION_INIT1
/* #include <assert.h> */
/* #include <string.h> */
/* #include <stdlib.h> */
/* #include <stdarg.h> */




#define UNUSED_PARAM(X)  (void)(X)


#ifndef LARGEST_INT64
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*







>
>
>
|
>







165724
165725
165726
165727
165728
165729
165730
165731
165732
165733
165734
165735
165736
165737
165738
165739
165740
165741
165742
#endif
SQLITE_EXTENSION_INIT1
/* #include <assert.h> */
/* #include <string.h> */
/* #include <stdlib.h> */
/* #include <stdarg.h> */

/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAM
# define UNUSED_PARAM(X)  (void)(X)
#endif

#ifndef LARGEST_INT64
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*
165222
165223
165224
165225
165226
165227
165228
165229
165230

165231
165232






















165233
165234
165235
165236
165237
165238
165239
** string.
*/
static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
  u32 i;
  if( (N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0 ) return;
  p->zBuf[p->nUsed++] = '"';
  for(i=0; i<N; i++){
    char c = zIn[i];
    if( c=='"' || c=='\\' ){

      if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';






















    }
    p->zBuf[p->nUsed++] = c;
  }
  p->zBuf[p->nUsed++] = '"';
  assert( p->nUsed<p->nAlloc );
}








|

>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







165973
165974
165975
165976
165977
165978
165979
165980
165981
165982
165983
165984
165985
165986
165987
165988
165989
165990
165991
165992
165993
165994
165995
165996
165997
165998
165999
166000
166001
166002
166003
166004
166005
166006
166007
166008
166009
166010
166011
166012
166013
** string.
*/
static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
  u32 i;
  if( (N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0 ) return;
  p->zBuf[p->nUsed++] = '"';
  for(i=0; i<N; i++){
    unsigned char c = ((unsigned const char*)zIn)[i];
    if( c=='"' || c=='\\' ){
      json_simple_escape:
      if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
    }else if( c<=0x1f ){
      static const char aSpecial[] = {
         0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0,   0,   0,   0, 0,   0,   0, 0, 0
      };
      assert( sizeof(aSpecial)==32 );
      assert( aSpecial['\b']=='b' );
      assert( aSpecial['\f']=='f' );
      assert( aSpecial['\n']=='n' );
      assert( aSpecial['\r']=='r' );
      assert( aSpecial['\t']=='t' );
      if( aSpecial[c] ){
        c = aSpecial[c];
        goto json_simple_escape;
      }
      if( (p->nUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
      p->zBuf[p->nUsed++] = 'u';
      p->zBuf[p->nUsed++] = '0';
      p->zBuf[p->nUsed++] = '0';
      p->zBuf[p->nUsed++] = '0' + (c>>4);
      c = "0123456789abcdef"[c&0xf];
    }
    p->zBuf[p->nUsed++] = c;
  }
  p->zBuf[p->nUsed++] = '"';
  assert( p->nUsed<p->nAlloc );
}

165266
165267
165268
165269
165270
165271
165272
165273
165274
165275
165276
165277
165278
165279
165280
        jsonAppendString(p, z, n);
      }
      break;
    }
    default: {
      if( p->bErr==0 ){
        sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
        p->bErr = 1;
        jsonReset(p);
      }
      break;
    }
  }
}








|







166040
166041
166042
166043
166044
166045
166046
166047
166048
166049
166050
166051
166052
166053
166054
        jsonAppendString(p, z, n);
      }
      break;
    }
    default: {
      if( p->bErr==0 ){
        sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
        p->bErr = 2;
        jsonReset(p);
      }
      break;
    }
  }
}

166475
166476
166477
166478
166479
166480
166481

166482
166483
166484
166485
166486
166487
166488
166489
166490
166491
166492
166493
166494
166495
166496
166497
166498
166499
166500
166501
166502
166503
166504
166505
166506
166507
166508
*/
static void jsonArrayStep(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;

  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{







>



















|







167249
167250
167251
167252
167253
167254
167255
167256
167257
167258
167259
167260
167261
167262
167263
167264
167265
167266
167267
167268
167269
167270
167271
167272
167273
167274
167275
167276
167277
167278
167279
167280
167281
167282
167283
*/
static void jsonArrayStep(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{
166520
166521
166522
166523
166524
166525
166526

166527
166528
166529
166530
166531
166532
166533
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  const char *z;
  u32 n;

  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else{
      jsonAppendChar(pStr, ',');







>







167295
167296
167297
167298
167299
167300
167301
167302
167303
167304
167305
167306
167307
167308
167309
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  const char *z;
  u32 n;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else{
      jsonAppendChar(pStr, ',');
166542
166543
166544
166545
166546
166547
166548
166549
166550
166551
166552
166553
166554
166555
166556
}
static void jsonObjectFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{







|







167318
167319
167320
167321
167322
167323
167324
167325
167326
167327
167328
167329
167330
167331
167332
}
static void jsonObjectFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      if( pStr->bErr==0 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{
167207
167208
167209
167210
167211
167212
167213



167214
167215
167216
167217
167218
167219
167220
167221
167222
167223
167224
167225
167226
167227
167228
167229
167230
167231
167232
167233





167234
167235
167236
167237
167238






167239
167240
167241



167242
167243
167244
167245
167246
167247
167248
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**



** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**





** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().






**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.



**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**







>
>
>




















>
>
>
>
>





>
>
>
>
>
>



>
>
>







167983
167984
167985
167986
167987
167988
167989
167990
167991
167992
167993
167994
167995
167996
167997
167998
167999
168000
168001
168002
168003
168004
168005
168006
168007
168008
168009
168010
168011
168012
168013
168014
168015
168016
168017
168018
168019
168020
168021
168022
168023
168024
168025
168026
168027
168028
168029
168030
168031
168032
168033
168034
168035
168036
168037
168038
168039
168040
168041
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**
**   This function may be quite inefficient if used with an FTS5 table
**   created with the "columnsize=0" option.
**
** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always returns 0.
**
** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().
**
**   Usually, output parameter *piPhrase is set to the phrase number, *piCol
**   to the column in which it occurs and *piOff the token offset of the
**   first token of the phrase. The exception is if the table was created
**   with the offsets=0 option specified. In this case *piOff is always
**   set to -1.
**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. 
**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**
167319
167320
167321
167322
167323
167324
167325
167326
167327
167328
167329
167330
167331
167332
167333
167334

167335






167336
167337































167338
167339
167340
167341
167342
167343
167344
167345
167346
167347
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iOff>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods.

**






** xPhraseNext()
**   See xPhraseFirst above.































*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 1 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);








|







|
>

>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|







168112
168113
168114
168115
168116
168117
168118
168119
168120
168121
168122
168123
168124
168125
168126
168127
168128
168129
168130
168131
168132
168133
168134
168135
168136
168137
168138
168139
168140
168141
168142
168143
168144
168145
168146
168147
168148
168149
168150
168151
168152
168153
168154
168155
168156
168157
168158
168159
168160
168161
168162
168163
168164
168165
168166
168167
168168
168169
168170
168171
168172
168173
168174
168175
168176
168177
168178
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iCol>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods (and by
**   xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always iterates
**   through an empty set (all calls to xPhraseFirst() set iCol to -1).
**
** xPhraseNext()
**   See xPhraseFirst above.
**
** xPhraseFirstColumn()
**   This function and xPhraseNextColumn() are similar to the xPhraseFirst()
**   and xPhraseNext() APIs described above. The difference is that instead
**   of iterating through all instances of a phrase in the current row, these
**   APIs are used to iterate through the set of columns in the current row
**   that contain one or more instances of a specified phrase. For example:
**
**       Fts5PhraseIter iter;
**       int iCol;
**       for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
**           iCol>=0;
**           pApi->xPhraseNextColumn(pFts, &iter, &iCol)
**       ){
**         // Column iCol contains at least one instance of phrase iPhrase
**       }
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" option. If the FTS5 table is created with either 
**   "detail=none" "content=" option (i.e. if it is a contentless table), 
**   then this API always iterates through an empty set (all calls to 
**   xPhraseFirstColumn() set iCol to -1).
**
**   The information accessed using this API and its companion
**   xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
**   (or xInst/xInstCount). The chief advantage of this API is that it is
**   significantly more efficient than those alternatives when used with
**   "detail=column" tables.  
**
** xPhraseNextColumn()
**   See xPhraseFirstColumn above.
*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 3 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);

167363
167364
167365
167366
167367
167368
167369
167370
167371



167372
167373
167374
167375
167376
167377
167378

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  void (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);



};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************







|

>
>
>







168194
168195
168196
168197
168198
168199
168200
168201
168202
168203
168204
168205
168206
168207
168208
168209
168210
168211
168212

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);

  int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
  void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************
167670
167671
167672
167673
167674
167675
167676

167677
167678
167679
167680
167681
167682
167683
167684
167685
167686
167687
/* #include <assert.h> */

#ifndef SQLITE_AMALGAMATION

typedef unsigned char  u8;
typedef unsigned int   u32;
typedef unsigned short u16;

typedef sqlite3_int64 i64;
typedef sqlite3_uint64 u64;

#define ArraySize(x) (sizeof(x) / sizeof(x[0]))

#define testcase(x)
#define ALWAYS(x) 1
#define NEVER(x) 0

#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#define MAX(x,y) (((x) > (y)) ? (x) : (y))







>



|







168504
168505
168506
168507
168508
168509
168510
168511
168512
168513
168514
168515
168516
168517
168518
168519
168520
168521
168522
/* #include <assert.h> */

#ifndef SQLITE_AMALGAMATION

typedef unsigned char  u8;
typedef unsigned int   u32;
typedef unsigned short u16;
typedef short i16;
typedef sqlite3_int64 i64;
typedef sqlite3_uint64 u64;

#define ArraySize(x) ((int)(sizeof(x) / sizeof(x[0])))

#define testcase(x)
#define ALWAYS(x) 1
#define NEVER(x) 0

#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#define MAX(x,y) (((x) > (y)) ? (x) : (y))
167723
167724
167725
167726
167727
167728
167729










167730
167731
167732
167733
167734
167735
167736
*/
#ifdef SQLITE_DEBUG
SQLITE_API extern int sqlite3_fts5_may_be_corrupt;
# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
#else
# define assert_nc(x) assert(x)
#endif











typedef struct Fts5Global Fts5Global;
typedef struct Fts5Colset Fts5Colset;

/* If a NEAR() clump or phrase may only match a specific set of columns, 
** then an object of the following type is used to record the set of columns.
** Each entry in the aiCol[] array is a column that may be matched.







>
>
>
>
>
>
>
>
>
>







168558
168559
168560
168561
168562
168563
168564
168565
168566
168567
168568
168569
168570
168571
168572
168573
168574
168575
168576
168577
168578
168579
168580
168581
*/
#ifdef SQLITE_DEBUG
SQLITE_API extern int sqlite3_fts5_may_be_corrupt;
# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
#else
# define assert_nc(x) assert(x)
#endif

/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAM
# define UNUSED_PARAM(X)  (void)(X)
#endif

#ifndef UNUSED_PARAM2
# define UNUSED_PARAM2(X, Y)  (void)(X), (void)(Y)
#endif

typedef struct Fts5Global Fts5Global;
typedef struct Fts5Colset Fts5Colset;

/* If a NEAR() clump or phrase may only match a specific set of columns, 
** then an object of the following type is used to record the set of columns.
** Each entry in the aiCol[] array is a column that may be matched.
167795
167796
167797
167798
167799
167800
167801

167802
167803
167804
167805
167806
167807
167808
  u8 *abUnindexed;                /* True for unindexed columns */
  int nPrefix;                    /* Number of prefix indexes */
  int *aPrefix;                   /* Sizes in bytes of nPrefix prefix indexes */
  int eContent;                   /* An FTS5_CONTENT value */
  char *zContent;                 /* content table */ 
  char *zContentRowid;            /* "content_rowid=" option value */ 
  int bColumnsize;                /* "columnsize=" option value (dflt==1) */

  char *zContentExprlist;
  Fts5Tokenizer *pTok;
  fts5_tokenizer *pTokApi;

  /* Values loaded from the %_config table */
  int iCookie;                    /* Incremented when %_config is modified */
  int pgsz;                       /* Approximate page size used in %_data */







>







168640
168641
168642
168643
168644
168645
168646
168647
168648
168649
168650
168651
168652
168653
168654
  u8 *abUnindexed;                /* True for unindexed columns */
  int nPrefix;                    /* Number of prefix indexes */
  int *aPrefix;                   /* Sizes in bytes of nPrefix prefix indexes */
  int eContent;                   /* An FTS5_CONTENT value */
  char *zContent;                 /* content table */ 
  char *zContentRowid;            /* "content_rowid=" option value */ 
  int bColumnsize;                /* "columnsize=" option value (dflt==1) */
  int eDetail;                    /* FTS5_DETAIL_XXX value */
  char *zContentExprlist;
  Fts5Tokenizer *pTok;
  fts5_tokenizer *pTokApi;

  /* Values loaded from the %_config table */
  int iCookie;                    /* Incremented when %_config is modified */
  int pgsz;                       /* Approximate page size used in %_data */
167823
167824
167825
167826
167827
167828
167829



167830
167831
167832
167833
167834
167835
167836
/* Current expected value of %_config table 'version' field */
#define FTS5_CURRENT_VERSION 4

#define FTS5_CONTENT_NORMAL   0
#define FTS5_CONTENT_NONE     1
#define FTS5_CONTENT_EXTERNAL 2







static int sqlite3Fts5ConfigParse(
    Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
);
static void sqlite3Fts5ConfigFree(Fts5Config*);







>
>
>







168669
168670
168671
168672
168673
168674
168675
168676
168677
168678
168679
168680
168681
168682
168683
168684
168685
/* Current expected value of %_config table 'version' field */
#define FTS5_CURRENT_VERSION 4

#define FTS5_CONTENT_NORMAL   0
#define FTS5_CONTENT_NONE     1
#define FTS5_CONTENT_EXTERNAL 2

#define FTS5_DETAIL_FULL    0
#define FTS5_DETAIL_NONE    1
#define FTS5_DETAIL_COLUMNS 2



static int sqlite3Fts5ConfigParse(
    Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
);
static void sqlite3Fts5ConfigFree(Fts5Config*);
167869
167870
167871
167872
167873
167874
167875
167876
167877
167878
167879
167880
167881
167882
167883
167884
167885
167886
167887
167888
167889
167890
167891
167892
167893
167894
167895
167896
167897
167898
167899
167900
167901
typedef struct Fts5Buffer Fts5Buffer;
struct Fts5Buffer {
  u8 *p;
  int n;
  int nSpace;
};

static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, int);
static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
static void sqlite3Fts5BufferFree(Fts5Buffer*);
static void sqlite3Fts5BufferZero(Fts5Buffer*);
static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);

static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);

#define fts5BufferZero(x)             sqlite3Fts5BufferZero(x)
#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
#define fts5BufferFree(a)             sqlite3Fts5BufferFree(a)
#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
#define fts5BufferSet(a,b,c,d)        sqlite3Fts5BufferSet(a,b,c,d)

#define fts5BufferGrow(pRc,pBuf,nn) ( \
  (pBuf)->n + (nn) <= (pBuf)->nSpace ? 0 : \
    sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
)

/* Write and decode big-endian 32-bit integer values */
static void sqlite3Fts5Put32(u8*, int);
static int sqlite3Fts5Get32(const u8*);








|

|















|







168718
168719
168720
168721
168722
168723
168724
168725
168726
168727
168728
168729
168730
168731
168732
168733
168734
168735
168736
168737
168738
168739
168740
168741
168742
168743
168744
168745
168746
168747
168748
168749
168750
typedef struct Fts5Buffer Fts5Buffer;
struct Fts5Buffer {
  u8 *p;
  int n;
  int nSpace;
};

static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, u32);
static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, u32, const u8*);
static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
static void sqlite3Fts5BufferFree(Fts5Buffer*);
static void sqlite3Fts5BufferZero(Fts5Buffer*);
static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);

static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);

#define fts5BufferZero(x)             sqlite3Fts5BufferZero(x)
#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
#define fts5BufferFree(a)             sqlite3Fts5BufferFree(a)
#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
#define fts5BufferSet(a,b,c,d)        sqlite3Fts5BufferSet(a,b,c,d)

#define fts5BufferGrow(pRc,pBuf,nn) ( \
  (u32)((pBuf)->n) + (u32)(nn) <= (u32)((pBuf)->nSpace) ? 0 : \
    sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
)

/* Write and decode big-endian 32-bit integer values */
static void sqlite3Fts5Put32(u8*, int);
static int sqlite3Fts5Get32(const u8*);

167922
167923
167924
167925
167926
167927
167928

167929
167930
167931
167932
167933
167934
167935
167936
167937
167938
167939
167940
167941
167942







167943
167944
167945
167946
167947
167948
167949
167950
167951
167952
167953
167954









167955
167956
167957
167958
167959
167960
167961






167962
167963
167964
167965
167966
167967
167968
167969

167970
167971





167972
167973
167974
167975
167976




167977





167978
167979
167980
167981
167982
167983
167984
167985
167986
167987
167988
167989
167990
167991
167992
167993
167994
167995
167996
167997
167998
167999
168000
168001
168002
168003
168004
168005
168006
168007
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);

typedef struct Fts5PoslistWriter Fts5PoslistWriter;
struct Fts5PoslistWriter {
  i64 iPrev;
};
static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);


static int sqlite3Fts5PoslistNext64(
  const u8 *a, int n,             /* Buffer containing poslist */
  int *pi,                        /* IN/OUT: Offset within a[] */
  i64 *piOff                      /* IN/OUT: Current offset */
);

/* Malloc utility */
static void *sqlite3Fts5MallocZero(int *pRc, int nByte);
static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);

/* Character set tests (like isspace(), isalpha() etc.) */
static int sqlite3Fts5IsBareword(char t);








/*
** End of interface to code in fts5_buffer.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_index.c. fts5_index.c contains contains code
** to access the data stored in the %_data table.
*/

typedef struct Fts5Index Fts5Index;
typedef struct Fts5IndexIter Fts5IndexIter;










/*
** Values used as part of the flags argument passed to IndexQuery().
*/
#define FTS5INDEX_QUERY_PREFIX     0x0001   /* Prefix query */
#define FTS5INDEX_QUERY_DESC       0x0002   /* Docs in descending rowid order */
#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004   /* Do not use prefix index */
#define FTS5INDEX_QUERY_SCAN       0x0008   /* Scan query (fts5vocab) */







/*
** Create/destroy an Fts5Index object.
*/
static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
static int sqlite3Fts5IndexClose(Fts5Index *p);

/*

** for(
**   sqlite3Fts5IndexQuery(p, "token", 5, 0, 0, &pIter);





**   0==sqlite3Fts5IterEof(pIter);
**   sqlite3Fts5IterNext(pIter)
** ){
**   i64 iRowid = sqlite3Fts5IterRowid(pIter);
** }




*/






/*
** Open a new iterator to iterate though all rowids that match the 
** specified token or token prefix.
*/
static int sqlite3Fts5IndexQuery(
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
);

/*
** The various operations on open token or token prefix iterators opened
** using sqlite3Fts5IndexQuery().
*/
static int sqlite3Fts5IterEof(Fts5IndexIter*);
static int sqlite3Fts5IterNext(Fts5IndexIter*);
static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
static i64 sqlite3Fts5IterRowid(Fts5IndexIter*);
static int sqlite3Fts5IterPoslist(Fts5IndexIter*,Fts5Colset*, const u8**, int*, i64*);
static int sqlite3Fts5IterPoslistBuffer(Fts5IndexIter *pIter, Fts5Buffer *pBuf);

/*
** Close an iterator opened by sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter*);

/*







>














>
>
>
>
>
>
>












>
>
>
>
>
>
>
>
>







>
>
>
>
>
>








>
|
|
>
>
>
>
>
|
<
|
|
<
>
>
>
>

>
>
>
>
>

















<


<
<
<







168771
168772
168773
168774
168775
168776
168777
168778
168779
168780
168781
168782
168783
168784
168785
168786
168787
168788
168789
168790
168791
168792
168793
168794
168795
168796
168797
168798
168799
168800
168801
168802
168803
168804
168805
168806
168807
168808
168809
168810
168811
168812
168813
168814
168815
168816
168817
168818
168819
168820
168821
168822
168823
168824
168825
168826
168827
168828
168829
168830
168831
168832
168833
168834
168835
168836
168837
168838
168839
168840
168841
168842
168843
168844
168845
168846
168847
168848
168849
168850

168851
168852

168853
168854
168855
168856
168857
168858
168859
168860
168861
168862
168863
168864
168865
168866
168867
168868
168869
168870
168871
168872
168873
168874
168875
168876
168877
168878
168879

168880
168881



168882
168883
168884
168885
168886
168887
168888
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);

typedef struct Fts5PoslistWriter Fts5PoslistWriter;
struct Fts5PoslistWriter {
  i64 iPrev;
};
static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);
static void sqlite3Fts5PoslistSafeAppend(Fts5Buffer*, i64*, i64);

static int sqlite3Fts5PoslistNext64(
  const u8 *a, int n,             /* Buffer containing poslist */
  int *pi,                        /* IN/OUT: Offset within a[] */
  i64 *piOff                      /* IN/OUT: Current offset */
);

/* Malloc utility */
static void *sqlite3Fts5MallocZero(int *pRc, int nByte);
static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);

/* Character set tests (like isspace(), isalpha() etc.) */
static int sqlite3Fts5IsBareword(char t);


/* Bucket of terms object used by the integrity-check in offsets=0 mode. */
typedef struct Fts5Termset Fts5Termset;
static int sqlite3Fts5TermsetNew(Fts5Termset**);
static int sqlite3Fts5TermsetAdd(Fts5Termset*, int, const char*, int, int *pbPresent);
static void sqlite3Fts5TermsetFree(Fts5Termset*);

/*
** End of interface to code in fts5_buffer.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_index.c. fts5_index.c contains contains code
** to access the data stored in the %_data table.
*/

typedef struct Fts5Index Fts5Index;
typedef struct Fts5IndexIter Fts5IndexIter;

struct Fts5IndexIter {
  i64 iRowid;
  const u8 *pData;
  int nData;
  u8 bEof;
};

#define sqlite3Fts5IterEof(x) ((x)->bEof)

/*
** Values used as part of the flags argument passed to IndexQuery().
*/
#define FTS5INDEX_QUERY_PREFIX     0x0001   /* Prefix query */
#define FTS5INDEX_QUERY_DESC       0x0002   /* Docs in descending rowid order */
#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004   /* Do not use prefix index */
#define FTS5INDEX_QUERY_SCAN       0x0008   /* Scan query (fts5vocab) */

/* The following are used internally by the fts5_index.c module. They are
** defined here only to make it easier to avoid clashes with the flags
** above. */
#define FTS5INDEX_QUERY_SKIPEMPTY  0x0010
#define FTS5INDEX_QUERY_NOOUTPUT   0x0020

/*
** Create/destroy an Fts5Index object.
*/
static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
static int sqlite3Fts5IndexClose(Fts5Index *p);

/*
** Return a simple checksum value based on the arguments.
*/
static u64 sqlite3Fts5IndexEntryCksum(
  i64 iRowid, 
  int iCol, 
  int iPos, 
  int iIdx,
  const char *pTerm,
  int nTerm

);


/*
** Argument p points to a buffer containing utf-8 text that is n bytes in 
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int sqlite3Fts5IndexCharlenToBytelen(
  const char *p, 
  int nByte, 
  int nChar
);

/*
** Open a new iterator to iterate though all rowids that match the 
** specified token or token prefix.
*/
static int sqlite3Fts5IndexQuery(
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
);

/*
** The various operations on open token or token prefix iterators opened
** using sqlite3Fts5IndexQuery().
*/

static int sqlite3Fts5IterNext(Fts5IndexIter*);
static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);




/*
** Close an iterator opened by sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter*);

/*
168057
168058
168059
168060
168061
168062
168063
168064
168065
168066
168067
168068
168069
168070
168071
*/
static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);

/*
** Functions called by the storage module as part of integrity-check.
*/
static u64 sqlite3Fts5IndexCksum(Fts5Config*,i64,int,int,const char*,int);
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum);

/* 
** Called during virtual module initialization to register UDF 
** fts5_decode() with SQLite 
*/
static int sqlite3Fts5IndexInit(sqlite3*);







<







168938
168939
168940
168941
168942
168943
168944

168945
168946
168947
168948
168949
168950
168951
*/
static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);

/*
** Functions called by the storage module as part of integrity-check.
*/

static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum);

/* 
** Called during virtual module initialization to register UDF 
** fts5_decode() with SQLite 
*/
static int sqlite3Fts5IndexInit(sqlite3*);
168136
168137
168138
168139
168140
168141
168142
168143
168144
168145
168146
168147
168148
168149
168150
** Interface to code in fts5_hash.c. 
*/
typedef struct Fts5Hash Fts5Hash;

/*
** Create a hash table, free a hash table.
*/
static int sqlite3Fts5HashNew(Fts5Hash**, int *pnSize);
static void sqlite3Fts5HashFree(Fts5Hash*);

static int sqlite3Fts5HashWrite(
  Fts5Hash*,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */







|







169016
169017
169018
169019
169020
169021
169022
169023
169024
169025
169026
169027
169028
169029
169030
** Interface to code in fts5_hash.c. 
*/
typedef struct Fts5Hash Fts5Hash;

/*
** Create a hash table, free a hash table.
*/
static int sqlite3Fts5HashNew(Fts5Config*, Fts5Hash**, int *pnSize);
static void sqlite3Fts5HashFree(Fts5Hash*);

static int sqlite3Fts5HashWrite(
  Fts5Hash*,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */
168195
168196
168197
168198
168199
168200
168201
168202
168203
168204
168205
168206
168207
168208
168209
168210
168211
168212
168213
168214
168215
168216
168217
168218
168219
168220
168221
168222
168223
168224
168225
168226
168227
168228
168229
168230
static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
static int sqlite3Fts5StorageClose(Fts5Storage *p);
static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);

static int sqlite3Fts5DropAll(Fts5Config*);
static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);

static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64);
static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);

static int sqlite3Fts5StorageIntegrity(Fts5Storage *p);

static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);

static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);

static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit);
static int sqlite3Fts5StorageRollback(Fts5Storage *p);

static int sqlite3Fts5StorageConfigValue(
    Fts5Storage *p, const char*, sqlite3_value*, int
);

static int sqlite3Fts5StorageSpecialDelete(Fts5Storage *p, i64 iDel, sqlite3_value**);

static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);

/*
** End of interface to code in fts5_storage.c.







|



















<
<







169075
169076
169077
169078
169079
169080
169081
169082
169083
169084
169085
169086
169087
169088
169089
169090
169091
169092
169093
169094
169095
169096
169097
169098
169099
169100
169101


169102
169103
169104
169105
169106
169107
169108
static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
static int sqlite3Fts5StorageClose(Fts5Storage *p);
static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);

static int sqlite3Fts5DropAll(Fts5Config*);
static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);

static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64, sqlite3_value**);
static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);

static int sqlite3Fts5StorageIntegrity(Fts5Storage *p);

static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);

static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);

static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit);
static int sqlite3Fts5StorageRollback(Fts5Storage *p);

static int sqlite3Fts5StorageConfigValue(
    Fts5Storage *p, const char*, sqlite3_value*, int
);



static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);

/*
** End of interface to code in fts5_storage.c.
168273
168274
168275
168276
168277
168278
168279








168280


168281
168282
168283
168284
168285
168286
168287
/* Called during startup to register a UDF with SQLite */
static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);

static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);









static int sqlite3Fts5ExprClonePhrase(Fts5Config*, Fts5Expr*, int, Fts5Expr**);



/*******************************************
** The fts5_expr.c API above this point is used by the other hand-written
** C code in this module. The interfaces below this point are called by
** the parser code in fts5parse.y.  */

static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);







>
>
>
>
>
>
>
>
|
>
>







169151
169152
169153
169154
169155
169156
169157
169158
169159
169160
169161
169162
169163
169164
169165
169166
169167
169168
169169
169170
169171
169172
169173
169174
169175
/* Called during startup to register a UDF with SQLite */
static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);

static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);

typedef struct Fts5PoslistPopulator Fts5PoslistPopulator;
static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr*, int);
static int sqlite3Fts5ExprPopulatePoslists(
    Fts5Config*, Fts5Expr*, Fts5PoslistPopulator*, int, const char*, int
);
static void sqlite3Fts5ExprCheckPoslists(Fts5Expr*, i64);
static void sqlite3Fts5ExprClearEof(Fts5Expr*);

static int sqlite3Fts5ExprClonePhrase(Fts5Expr*, int, Fts5Expr**);

static int sqlite3Fts5ExprPhraseCollist(Fts5Expr *, int, const u8 **, int *);

/*******************************************
** The fts5_expr.c API above this point is used by the other hand-written
** C code in this module. The interfaces below this point are called by
** the parser code in fts5parse.y.  */

static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);
169062
169063
169064
169065
169066
169067
169068
169069

169070
169071
169072
169073
169074
169075
169076
   }
#endif
   while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/

  assert( 0 );

/******** End %stack_overflow code ********************************************/
   sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/







|
>







169950
169951
169952
169953
169954
169955
169956
169957
169958
169959
169960
169961
169962
169963
169964
169965
   }
#endif
   while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/

  UNUSED_PARAM(fts5yypMinor); /* Silence a compiler warning */
  sqlite3Fts5ParseError(pParse, "fts5: parser stack overflow");
/******** End %stack_overflow code ********************************************/
   sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
169359
169360
169361
169362
169363
169364
169365

169366
169367
169368
169369
169370
169371
169372
  int fts5yymajor,                   /* The major type of the error token */
  fts5YYMINORTYPE fts5yyminor            /* The minor type of the error token */
){
  sqlite3Fts5ParserARG_FETCH;
#define FTS5TOKEN (fts5yyminor.fts5yy0)
/************ Begin %syntax_error code ****************************************/


  sqlite3Fts5ParseError(
    pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
  );
/************ End %syntax_error code ******************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}








>







170248
170249
170250
170251
170252
170253
170254
170255
170256
170257
170258
170259
170260
170261
170262
  int fts5yymajor,                   /* The major type of the error token */
  fts5YYMINORTYPE fts5yyminor            /* The minor type of the error token */
){
  sqlite3Fts5ParserARG_FETCH;
#define FTS5TOKEN (fts5yyminor.fts5yy0)
/************ Begin %syntax_error code ****************************************/

  UNUSED_PARAM(fts5yymajor); /* Silence a compiler warning */
  sqlite3Fts5ParseError(
    pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
  );
/************ End %syntax_error code ******************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

169735
169736
169737
169738
169739
169740
169741


169742
169743
169744
169745
169746
169747
169748
  int nToken,                     /* Size of token in bytes */
  int iStartOff,                  /* Start offset of token */
  int iEndOff                     /* End offset of token */
){
  HighlightContext *p = (HighlightContext*)pContext;
  int rc = SQLITE_OK;
  int iPos;



  if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
  iPos = p->iPos++;

  if( p->iRangeEnd>0 ){
    if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
    if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;







>
>







170625
170626
170627
170628
170629
170630
170631
170632
170633
170634
170635
170636
170637
170638
170639
170640
  int nToken,                     /* Size of token in bytes */
  int iStartOff,                  /* Start offset of token */
  int iEndOff                     /* End offset of token */
){
  HighlightContext *p = (HighlightContext*)pContext;
  int rc = SQLITE_OK;
  int iPos;

  UNUSED_PARAM2(pToken, nToken);

  if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
  iPos = p->iPos++;

  if( p->iRangeEnd>0 ){
    if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
    if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;
169969
169970
169971
169972
169973
169974
169975

169976
169977
169978
169979
169980
169981
169982
*/
static int fts5CountCb(
  const Fts5ExtensionApi *pApi, 
  Fts5Context *pFts,
  void *pUserData                 /* Pointer to sqlite3_int64 variable */
){
  sqlite3_int64 *pn = (sqlite3_int64*)pUserData;

  (*pn)++;
  return SQLITE_OK;
}

/*
** Set *ppData to point to the Fts5Bm25Data object for the current query. 
** If the object has not already been allocated, allocate and populate it







>







170861
170862
170863
170864
170865
170866
170867
170868
170869
170870
170871
170872
170873
170874
170875
*/
static int fts5CountCb(
  const Fts5ExtensionApi *pApi, 
  Fts5Context *pFts,
  void *pUserData                 /* Pointer to sqlite3_int64 variable */
){
  sqlite3_int64 *pn = (sqlite3_int64*)pUserData;
  UNUSED_PARAM2(pApi, pFts);
  (*pn)++;
  return SQLITE_OK;
}

/*
** Set *ppData to point to the Fts5Bm25Data object for the current query. 
** If the object has not already been allocated, allocate and populate it
170122
170123
170124
170125
170126
170127
170128
170129
170130
170131
170132
170133
170134
170135
170136
    { "snippet",   0, fts5SnippetFunction, 0 },
    { "highlight", 0, fts5HighlightFunction, 0 },
    { "bm25",      0, fts5Bm25Function,    0 },
  };
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aBuiltin); i++){
    rc = pApi->xCreateFunction(pApi,
        aBuiltin[i].zFunc,
        aBuiltin[i].pUserData,
        aBuiltin[i].xFunc,
        aBuiltin[i].xDestroy
    );
  }







|







171015
171016
171017
171018
171019
171020
171021
171022
171023
171024
171025
171026
171027
171028
171029
    { "snippet",   0, fts5SnippetFunction, 0 },
    { "highlight", 0, fts5HighlightFunction, 0 },
    { "bm25",      0, fts5Bm25Function,    0 },
  };
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
    rc = pApi->xCreateFunction(pApi,
        aBuiltin[i].zFunc,
        aBuiltin[i].pUserData,
        aBuiltin[i].xFunc,
        aBuiltin[i].xDestroy
    );
  }
170153
170154
170155
170156
170157
170158
170159
170160

170161
170162
170163
170164
170165
170166
170167
170168
170169
170170
170171
170172

170173
170174
170175
170176
170177
170178
170179
******************************************************************************
*/



/* #include "fts5Int.h" */

static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, int nByte){

  int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;
  u8 *pNew;
  while( nNew<nByte ){
    nNew = nNew * 2;
  }
  pNew = sqlite3_realloc(pBuf->p, nNew);
  if( pNew==0 ){
    *pRc = SQLITE_NOMEM;
    return 1;
  }else{
    pBuf->nSpace = nNew;
    pBuf->p = pNew;

  }
  return 0;
}


/*
** Encode value iVal as an SQLite varint and append it to the buffer object







|
>
|
|
|
|
|
|
|
|
|
|
|
|
>







171046
171047
171048
171049
171050
171051
171052
171053
171054
171055
171056
171057
171058
171059
171060
171061
171062
171063
171064
171065
171066
171067
171068
171069
171070
171071
171072
171073
171074
******************************************************************************
*/



/* #include "fts5Int.h" */

static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, u32 nByte){
  if( (u32)pBuf->nSpace<nByte ){
    u32 nNew = pBuf->nSpace ? pBuf->nSpace : 64;
    u8 *pNew;
    while( nNew<nByte ){
      nNew = nNew * 2;
    }
    pNew = sqlite3_realloc(pBuf->p, nNew);
    if( pNew==0 ){
      *pRc = SQLITE_NOMEM;
      return 1;
    }else{
      pBuf->nSpace = nNew;
      pBuf->p = pNew;
    }
  }
  return 0;
}


/*
** Encode value iVal as an SQLite varint and append it to the buffer object
170199
170200
170201
170202
170203
170204
170205
170206
170207
170208
170209
170210
170211
170212
170213
170214
170215
170216
** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set 
** the error code in p. If an error has already occurred when this function
** is called, it is a no-op.
*/
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  int nData, 
  const u8 *pData
){
  assert( *pRc || nData>=0 );
  if( fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function







|


|







171094
171095
171096
171097
171098
171099
171100
171101
171102
171103
171104
171105
171106
171107
171108
171109
171110
171111
** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set 
** the error code in p. If an error has already occurred when this function
** is called, it is a no-op.
*/
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  u32 nData, 
  const u8 *pData
){
  assert_nc( *pRc || nData>=0 );
  if( fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function
170345
170346
170347
170348
170349
170350
170351





















170352
170353
170354
170355
170356
170357
170358
170359
170360
170361
170362
170363
170364
170365
170366
170367
170368
170369
170370
170371
170372
170373
170374
170375
170376
){
  memset(pIter, 0, sizeof(*pIter));
  pIter->a = a;
  pIter->n = n;
  sqlite3Fts5PoslistReaderNext(pIter);
  return pIter->bEof;
}






















static int sqlite3Fts5PoslistWriterAppend(
  Fts5Buffer *pBuf, 
  Fts5PoslistWriter *pWriter,
  i64 iPos
){
  static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
  int rc = SQLITE_OK;
  if( 0==fts5BufferGrow(&rc, pBuf, 5+5+5) ){
    if( (iPos & colmask) != (pWriter->iPrev & colmask) ){
      pBuf->p[pBuf->n++] = 1;
      pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
      pWriter->iPrev = (iPos & colmask);
    }
    pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-pWriter->iPrev)+2);
    pWriter->iPrev = iPos;
  }
  return rc;
}

static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
  void *pRet = 0;
  if( *pRc==SQLITE_OK ){
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 && nByte>0 ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<
|
|
<
<
<
<
<
<
|
<
|







171240
171241
171242
171243
171244
171245
171246
171247
171248
171249
171250
171251
171252
171253
171254
171255
171256
171257
171258
171259
171260
171261
171262
171263
171264
171265
171266
171267
171268
171269
171270
171271
171272
171273

171274
171275






171276

171277
171278
171279
171280
171281
171282
171283
171284
){
  memset(pIter, 0, sizeof(*pIter));
  pIter->a = a;
  pIter->n = n;
  sqlite3Fts5PoslistReaderNext(pIter);
  return pIter->bEof;
}

/*
** Append position iPos to the position list being accumulated in buffer
** pBuf, which must be already be large enough to hold the new data.
** The previous position written to this list is *piPrev. *piPrev is set
** to iPos before returning.
*/
static void sqlite3Fts5PoslistSafeAppend(
  Fts5Buffer *pBuf, 
  i64 *piPrev, 
  i64 iPos
){
  static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
  if( (iPos & colmask) != (*piPrev & colmask) ){
    pBuf->p[pBuf->n++] = 1;
    pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
    *piPrev = (iPos & colmask);
  }
  pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-*piPrev)+2);
  *piPrev = iPos;
}

static int sqlite3Fts5PoslistWriterAppend(
  Fts5Buffer *pBuf, 
  Fts5PoslistWriter *pWriter,
  i64 iPos
){

  int rc = 0;   /* Initialized only to suppress erroneous warning from Clang */
  if( fts5BufferGrow(&rc, pBuf, 5+5+5) ) return rc;






  sqlite3Fts5PoslistSafeAppend(pBuf, &pWriter->iPrev, iPos);

  return SQLITE_OK;
}

static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
  void *pRet = 0;
  if( *pRc==SQLITE_OK ){
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 && nByte>0 ){
170430
170431
170432
170433
170434
170435
170436



















































































170437
170438
170439
170440
170441
170442
170443
170444
170445
170446
170447
170448
170449
170450
170451
170452
170453
170454
170455
170456
170457
170458
170459
    1, 1, 1, 1, 1, 1, 1, 1,    1, 1, 1, 0, 0, 0, 0, 0    /* 0x70 .. 0x7F */
  };

  return (t & 0x80) || aBareword[(int)t];
}






















































































/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/



/* #include "fts5Int.h" */

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















<







171338
171339
171340
171341
171342
171343
171344
171345
171346
171347
171348
171349
171350
171351
171352
171353
171354
171355
171356
171357
171358
171359
171360
171361
171362
171363
171364
171365
171366
171367
171368
171369
171370
171371
171372
171373
171374
171375
171376
171377
171378
171379
171380
171381
171382
171383
171384
171385
171386
171387
171388
171389
171390
171391
171392
171393
171394
171395
171396
171397
171398
171399
171400
171401
171402
171403
171404
171405
171406
171407
171408
171409
171410
171411
171412
171413
171414
171415
171416
171417
171418
171419
171420
171421
171422
171423
171424
171425
171426
171427
171428
171429
171430
171431
171432
171433
171434
171435
171436
171437
171438
171439
171440
171441
171442

171443
171444
171445
171446
171447
171448
171449
    1, 1, 1, 1, 1, 1, 1, 1,    1, 1, 1, 0, 0, 0, 0, 0    /* 0x70 .. 0x7F */
  };

  return (t & 0x80) || aBareword[(int)t];
}


/*************************************************************************
*/
typedef struct Fts5TermsetEntry Fts5TermsetEntry;
struct Fts5TermsetEntry {
  char *pTerm;
  int nTerm;
  int iIdx;                       /* Index (main or aPrefix[] entry) */
  Fts5TermsetEntry *pNext;
};

struct Fts5Termset {
  Fts5TermsetEntry *apHash[512];
};

static int sqlite3Fts5TermsetNew(Fts5Termset **pp){
  int rc = SQLITE_OK;
  *pp = sqlite3Fts5MallocZero(&rc, sizeof(Fts5Termset));
  return rc;
}

static int sqlite3Fts5TermsetAdd(
  Fts5Termset *p, 
  int iIdx,
  const char *pTerm, int nTerm, 
  int *pbPresent
){
  int rc = SQLITE_OK;
  *pbPresent = 0;
  if( p ){
    int i;
    u32 hash = 13;
    Fts5TermsetEntry *pEntry;

    /* Calculate a hash value for this term. This is the same hash checksum
    ** used by the fts5_hash.c module. This is not important for correct
    ** operation of the module, but is necessary to ensure that some tests
    ** designed to produce hash table collisions really do work.  */
    for(i=nTerm-1; i>=0; i--){
      hash = (hash << 3) ^ hash ^ pTerm[i];
    }
    hash = (hash << 3) ^ hash ^ iIdx;
    hash = hash % ArraySize(p->apHash);

    for(pEntry=p->apHash[hash]; pEntry; pEntry=pEntry->pNext){
      if( pEntry->iIdx==iIdx 
          && pEntry->nTerm==nTerm 
          && memcmp(pEntry->pTerm, pTerm, nTerm)==0 
      ){
        *pbPresent = 1;
        break;
      }
    }

    if( pEntry==0 ){
      pEntry = sqlite3Fts5MallocZero(&rc, sizeof(Fts5TermsetEntry) + nTerm);
      if( pEntry ){
        pEntry->pTerm = (char*)&pEntry[1];
        pEntry->nTerm = nTerm;
        pEntry->iIdx = iIdx;
        memcpy(pEntry->pTerm, pTerm, nTerm);
        pEntry->pNext = p->apHash[hash];
        p->apHash[hash] = pEntry;
      }
    }
  }

  return rc;
}

static void sqlite3Fts5TermsetFree(Fts5Termset *p){
  if( p ){
    u32 i;
    for(i=0; i<ArraySize(p->apHash); i++){
      Fts5TermsetEntry *pEntry = p->apHash[i];
      while( pEntry ){
        Fts5TermsetEntry *pDel = pEntry;
        pEntry = pEntry->pNext;
        sqlite3_free(pDel);
      }
    }
    sqlite3_free(p);
  }
}

/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/



/* #include "fts5Int.h" */

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16
170628
170629
170630
170631
170632
170633
170634



























170635
170636
170637
170638
170639
170640
170641
  assert( 0==fts5_iswhitespace(z[0]) );
  quote = z[0];
  if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
    fts5Dequote(z);
  }
}




























/*
** Parse a "special" CREATE VIRTUAL TABLE directive and update
** configuration object pConfig as appropriate.
**
** If successful, object pConfig is updated and SQLITE_OK returned. If
** an error occurs, an SQLite error code is returned and an error message
** may be left in *pzErr. It is the responsibility of the caller to







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







171618
171619
171620
171621
171622
171623
171624
171625
171626
171627
171628
171629
171630
171631
171632
171633
171634
171635
171636
171637
171638
171639
171640
171641
171642
171643
171644
171645
171646
171647
171648
171649
171650
171651
171652
171653
171654
171655
171656
171657
171658
  assert( 0==fts5_iswhitespace(z[0]) );
  quote = z[0];
  if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
    fts5Dequote(z);
  }
}


struct Fts5Enum {
  const char *zName;
  int eVal;
};
typedef struct Fts5Enum Fts5Enum;

static int fts5ConfigSetEnum(
  const Fts5Enum *aEnum, 
  const char *zEnum, 
  int *peVal
){
  int nEnum = (int)strlen(zEnum);
  int i;
  int iVal = -1;

  for(i=0; aEnum[i].zName; i++){
    if( sqlite3_strnicmp(aEnum[i].zName, zEnum, nEnum)==0 ){
      if( iVal>=0 ) return SQLITE_ERROR;
      iVal = aEnum[i].eVal;
    }
  }

  *peVal = iVal;
  return iVal<0 ? SQLITE_ERROR : SQLITE_OK;
}

/*
** Parse a "special" CREATE VIRTUAL TABLE directive and update
** configuration object pConfig as appropriate.
**
** If successful, object pConfig is updated and SQLITE_OK returned. If
** an error occurs, an SQLite error code is returned and an error message
** may be left in *pzErr. It is the responsibility of the caller to
170685
170686
170687
170688
170689
170690
170691
170692
170693
170694
170695
170696
170697
170698
170699
      }

      while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
        nPre = nPre*10 + (p[0] - '0');
        p++;
      }

      if( rc==SQLITE_OK && (nPre<=0 || nPre>=1000) ){
        *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
        rc = SQLITE_ERROR;
        break;
      }

      pConfig->aPrefix[pConfig->nPrefix] = nPre;
      pConfig->nPrefix++;







|







171702
171703
171704
171705
171706
171707
171708
171709
171710
171711
171712
171713
171714
171715
171716
      }

      while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
        nPre = nPre*10 + (p[0] - '0');
        p++;
      }

      if( nPre<=0 || nPre>=1000 ){
        *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
        rc = SQLITE_ERROR;
        break;
      }

      pConfig->aPrefix[pConfig->nPrefix] = nPre;
      pConfig->nPrefix++;
170777
170778
170779
170780
170781
170782
170783














170784
170785
170786
170787
170788
170789
170790
      *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
      rc = SQLITE_ERROR;
    }else{
      pConfig->bColumnsize = (zArg[0]=='1');
    }
    return rc;
  }















  *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
  return SQLITE_ERROR;
}

/*
** Allocate an instance of the default tokenizer ("simple") at 







>
>
>
>
>
>
>
>
>
>
>
>
>
>







171794
171795
171796
171797
171798
171799
171800
171801
171802
171803
171804
171805
171806
171807
171808
171809
171810
171811
171812
171813
171814
171815
171816
171817
171818
171819
171820
171821
      *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
      rc = SQLITE_ERROR;
    }else{
      pConfig->bColumnsize = (zArg[0]=='1');
    }
    return rc;
  }

  if( sqlite3_strnicmp("detail", zCmd, nCmd)==0 ){
    const Fts5Enum aDetail[] = {
      { "none", FTS5_DETAIL_NONE },
      { "full", FTS5_DETAIL_FULL },
      { "columns", FTS5_DETAIL_COLUMNS },
      { 0, 0 }
    };

    if( (rc = fts5ConfigSetEnum(aDetail, zArg, &pConfig->eDetail)) ){
      *pzErr = sqlite3_mprintf("malformed detail=... directive");
    }
    return rc;
  }

  *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
  return SQLITE_ERROR;
}

/*
** Allocate an instance of the default tokenizer ("simple") at 
170933
170934
170935
170936
170937
170938
170939

170940
170941
170942
170943
170944
170945
170946

  nByte = nArg * (sizeof(char*) + sizeof(u8));
  pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
  pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
  pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
  pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
  pRet->bColumnsize = 1;

#ifdef SQLITE_DEBUG
  pRet->bPrefixIndex = 1;
#endif
  if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
    *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
    rc = SQLITE_ERROR;
  }







>







171964
171965
171966
171967
171968
171969
171970
171971
171972
171973
171974
171975
171976
171977
171978

  nByte = nArg * (sizeof(char*) + sizeof(u8));
  pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
  pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
  pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
  pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
  pRet->bColumnsize = 1;
  pRet->eDetail = FTS5_DETAIL_FULL;
#ifdef SQLITE_DEBUG
  pRet->bPrefixIndex = 1;
#endif
  if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
    *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
    rc = SQLITE_ERROR;
  }
171336
171337
171338
171339
171340
171341
171342
171343
171344
171345
171346
171347
171348
171349
171350

  if( rc==SQLITE_OK ){
    pConfig->iCookie = iCookie;
  }
  return rc;
}


/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.







<







172368
172369
172370
172371
172372
172373
172374

172375
172376
172377
172378
172379
172380
172381

  if( rc==SQLITE_OK ){
    pConfig->iCookie = iCookie;
  }
  return rc;
}


/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
171379
171380
171381
171382
171383
171384
171385

171386
171387
171388
171389
171390
171391
171392
/* #include <stdio.h> */
static void sqlite3Fts5ParserTrace(FILE*, char*);
#endif


struct Fts5Expr {
  Fts5Index *pIndex;

  Fts5ExprNode *pRoot;
  int bDesc;                      /* Iterate in descending rowid order */
  int nPhrase;                    /* Number of phrases in expression */
  Fts5ExprPhrase **apExprPhrase;  /* Pointers to phrase objects */
};

/*







>







172410
172411
172412
172413
172414
172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
/* #include <stdio.h> */
static void sqlite3Fts5ParserTrace(FILE*, char*);
#endif


struct Fts5Expr {
  Fts5Index *pIndex;
  Fts5Config *pConfig;
  Fts5ExprNode *pRoot;
  int bDesc;                      /* Iterate in descending rowid order */
  int nPhrase;                    /* Number of phrases in expression */
  Fts5ExprPhrase **apExprPhrase;  /* Pointers to phrase objects */
};

/*
171400
171401
171402
171403
171404
171405
171406



171407
171408
171409
171410
171411
171412
171413
171414
171415
171416
171417






171418
171419
171420
171421
171422
171423
171424
**       FTS5_TERM                (pNear valid)
*/
struct Fts5ExprNode {
  int eType;                      /* Node type */
  int bEof;                       /* True at EOF */
  int bNomatch;                   /* True if entry is not a match */




  i64 iRowid;                     /* Current rowid */
  Fts5ExprNearset *pNear;         /* For FTS5_STRING - cluster of phrases */

  /* Child nodes. For a NOT node, this array always contains 2 entries. For 
  ** AND or OR nodes, it contains 2 or more entries.  */
  int nChild;                     /* Number of child nodes */
  Fts5ExprNode *apChild[1];       /* Array of child nodes */
};

#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)







/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
  int bPrefix;                    /* True for a prefix term */
  char *zTerm;                    /* nul-terminated term */







>
>
>











>
>
>
>
>
>







172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
**       FTS5_TERM                (pNear valid)
*/
struct Fts5ExprNode {
  int eType;                      /* Node type */
  int bEof;                       /* True at EOF */
  int bNomatch;                   /* True if entry is not a match */

  /* Next method for this node. */
  int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);

  i64 iRowid;                     /* Current rowid */
  Fts5ExprNearset *pNear;         /* For FTS5_STRING - cluster of phrases */

  /* Child nodes. For a NOT node, this array always contains 2 entries. For 
  ** AND or OR nodes, it contains 2 or more entries.  */
  int nChild;                     /* Number of child nodes */
  Fts5ExprNode *apChild[1];       /* Array of child nodes */
};

#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)

/*
** Invoke the xNext method of an Fts5ExprNode object. This macro should be
** used as if it has the same signature as the xNext() methods themselves.
*/
#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))

/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
  int bPrefix;                    /* True for a prefix term */
  char *zTerm;                    /* nul-terminated term */
171572
171573
171574
171575
171576
171577
171578







171579

171580

171581
171582
171583
171584
171585
171586
171587
  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);
    }else{







      pNew->pRoot = sParse.pExpr;

      pNew->pIndex = 0;

      pNew->apExprPhrase = sParse.apPhrase;
      pNew->nPhrase = sParse.nPhrase;
      sParse.apPhrase = 0;
    }
  }

  sqlite3_free(sParse.apPhrase);







>
>
>
>
>
>
>
|
>

>







172613
172614
172615
172616
172617
172618
172619
172620
172621
172622
172623
172624
172625
172626
172627
172628
172629
172630
172631
172632
172633
172634
172635
172636
172637
  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);
    }else{
      if( !sParse.pExpr ){
        const int nByte = sizeof(Fts5ExprNode);
        pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
        if( pNew->pRoot ){
          pNew->pRoot->bEof = 1;
        }
      }else{
        pNew->pRoot = sParse.pExpr;
      }
      pNew->pIndex = 0;
      pNew->pConfig = pConfig;
      pNew->apExprPhrase = sParse.apPhrase;
      pNew->nPhrase = sParse.nPhrase;
      sParse.apPhrase = 0;
    }
  }

  sqlite3_free(sParse.apPhrase);
171623
171624
171625
171626
171627
171628
171629
171630
171631
171632
171633
171634
171635
171636
171637
171638
171639
171640
171641
171642
171643
171644
171645
171646
171647
171648
171649
171650
171651
171652
171653
171654
171655
171656
171657
171658
171659
171660
171661
171662
171663
171664
171665
171666
171667
171668
171669
171670
171671
171672
171673
171674
171675
171676
171677
171678
171679
171680
171681
171682
171683
171684
171685
171686
171687
171688
171689
171690
171691
171692
171693

171694
171695
171696
171697
171698
171699
171700
171701
171702
171703
171704
171705
171706
171707
171708
171709
171710
171711
171712
171713
171714
171715
171716
171717
171718
171719
171720
171721
171722
171723
  int bRetValid = 0;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  assert( bDesc==0 || bDesc==1 );
  for(p=pTerm; p; p=p->pSynonym){
    if( 0==sqlite3Fts5IterEof(p->pIter) ){
      i64 iRowid = sqlite3Fts5IterRowid(p->pIter);
      if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
        iRet = iRowid;
        bRetValid = 1;
      }
    }
  }

  if( pbEof && bRetValid==0 ) *pbEof = 1;
  return iRet;
}

/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  Fts5Colset *pColset,
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  for(p=pTerm; p; p=p->pSynonym){
    Fts5IndexIter *pIter = p->pIter;
    if( sqlite3Fts5IterEof(pIter)==0 && sqlite3Fts5IterRowid(pIter)==iRowid ){
      const u8 *a;
      int n;
      i64 dummy;
      rc = sqlite3Fts5IterPoslist(pIter, pColset, &a, &n, &dummy);
      if( rc!=SQLITE_OK ) goto synonym_poslist_out;
      if( nIter==nAlloc ){
        int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
        Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
          goto synonym_poslist_out;
        }
        memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
        nAlloc = nAlloc*2;
        if( aIter!=aStatic ) sqlite3_free(aIter);
        aIter = aNew;
      }
      sqlite3Fts5PoslistReaderInit(a, n, &aIter[nIter]);
      assert( aIter[nIter].bEof==0 );
      nIter++;
    }
  }

  assert( *pbDel==0 );
  if( nIter==1 ){
    *pa = (u8*)aIter[0].a;
    *pn = aIter[0].n;
  }else{
    Fts5PoslistWriter writer = {0};
    Fts5Buffer buf = {0,0,0};
    i64 iPrev = -1;

    while( 1 ){
      int i;
      i64 iMin = FTS5_LARGEST_INT64;
      for(i=0; i<nIter; i++){
        if( aIter[i].bEof==0 ){
          if( aIter[i].iPos==iPrev ){
            if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
          }
          if( aIter[i].iPos<iMin ){
            iMin = aIter[i].iPos;
          }
        }
      }
      if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
      rc = sqlite3Fts5PoslistWriterAppend(&buf, &writer, iMin);
      iPrev = iMin;
    }
    if( rc ){
      sqlite3_free(buf.p);
    }else{
      *pa = buf.p;
      *pn = buf.n;
      *pbDel = 1;
    }
  }

 synonym_poslist_out:
  if( aIter!=aStatic ) sqlite3_free(aIter);
  return rc;
}







|














|

<

|












|
|
<
<
<
<












|





<





<

>














|


|
<
<
|
|
<







172673
172674
172675
172676
172677
172678
172679
172680
172681
172682
172683
172684
172685
172686
172687
172688
172689
172690
172691
172692
172693
172694
172695
172696

172697
172698
172699
172700
172701
172702
172703
172704
172705
172706
172707
172708
172709
172710
172711
172712




172713
172714
172715
172716
172717
172718
172719
172720
172721
172722
172723
172724
172725
172726
172727
172728
172729
172730

172731
172732
172733
172734
172735

172736
172737
172738
172739
172740
172741
172742
172743
172744
172745
172746
172747
172748
172749
172750
172751
172752
172753
172754
172755


172756
172757

172758
172759
172760
172761
172762
172763
172764
  int bRetValid = 0;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  assert( bDesc==0 || bDesc==1 );
  for(p=pTerm; p; p=p->pSynonym){
    if( 0==sqlite3Fts5IterEof(p->pIter) ){
      i64 iRowid = p->pIter->iRowid;
      if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
        iRet = iRowid;
        bRetValid = 1;
      }
    }
  }

  if( pbEof && bRetValid==0 ) *pbEof = 1;
  return iRet;
}

/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymList(
  Fts5ExprTerm *pTerm, 

  i64 iRowid,
  Fts5Buffer *pBuf,               /* Use this buffer for space if required */
  u8 **pa, int *pn
){
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  for(p=pTerm; p; p=p->pSynonym){
    Fts5IndexIter *pIter = p->pIter;
    if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
      if( pIter->nData==0 ) continue;




      if( nIter==nAlloc ){
        int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
        Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
          goto synonym_poslist_out;
        }
        memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
        nAlloc = nAlloc*2;
        if( aIter!=aStatic ) sqlite3_free(aIter);
        aIter = aNew;
      }
      sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
      assert( aIter[nIter].bEof==0 );
      nIter++;
    }
  }


  if( nIter==1 ){
    *pa = (u8*)aIter[0].a;
    *pn = aIter[0].n;
  }else{
    Fts5PoslistWriter writer = {0};

    i64 iPrev = -1;
    fts5BufferZero(pBuf);
    while( 1 ){
      int i;
      i64 iMin = FTS5_LARGEST_INT64;
      for(i=0; i<nIter; i++){
        if( aIter[i].bEof==0 ){
          if( aIter[i].iPos==iPrev ){
            if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
          }
          if( aIter[i].iPos<iMin ){
            iMin = aIter[i].iPos;
          }
        }
      }
      if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
      rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
      iPrev = iMin;
    }
    if( rc==SQLITE_OK ){


      *pa = pBuf->p;
      *pn = pBuf->n;

    }
  }

 synonym_poslist_out:
  if( aIter!=aStatic ) sqlite3_free(aIter);
  return rc;
}
171732
171733
171734
171735
171736
171737
171738
171739
171740
171741
171742
171743
171744
171745
171746
171747
171748
171749
171750
171751
171752
171753
171754
171755
171756
171757
171758
171759
171760
171761
171762
171763
171764
171765
171766
171767

171768
171769
171770



171771

171772
171773
171774
171775
171776
171777
171778
171779
171780
171781
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if the current rowid is 
** not a match.
*/
static int fts5ExprPhraseIsMatch(
  Fts5ExprNode *pNode,            /* Node pPhrase belongs to */
  Fts5Colset *pColset,            /* Restrict matches to these columns */
  Fts5ExprPhrase *pPhrase,        /* Phrase object to initialize */
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;
  
  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>(int)ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
    aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
    if( !aIter ) return SQLITE_NOMEM;
  }
  memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);

  /* Initialize a term iterator for each term in the phrase */
  for(i=0; i<pPhrase->nTerm; i++){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
    i64 dummy;
    int n = 0;
    int bFlag = 0;
    const u8 *a = 0;
    if( pTerm->pSynonym ){

      rc = fts5ExprSynonymPoslist(
          pTerm, pColset, pNode->iRowid, &bFlag, (u8**)&a, &n
      );



    }else{

      rc = sqlite3Fts5IterPoslist(pTerm->pIter, pColset, &a, &n, &dummy);
    }
    if( rc!=SQLITE_OK ) goto ismatch_out;
    sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    aIter[i].bFlag = (u8)bFlag;
    if( aIter[i].bEof ) goto ismatch_out;
  }

  while( 1 ){
    int bMatch;







<













|









<


|

>
|
|
|
>
>
>

>
|

<







172773
172774
172775
172776
172777
172778
172779

172780
172781
172782
172783
172784
172785
172786
172787
172788
172789
172790
172791
172792
172793
172794
172795
172796
172797
172798
172799
172800
172801
172802

172803
172804
172805
172806
172807
172808
172809
172810
172811
172812
172813
172814
172815
172816
172817

172818
172819
172820
172821
172822
172823
172824
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if the current rowid is 
** not a match.
*/
static int fts5ExprPhraseIsMatch(
  Fts5ExprNode *pNode,            /* Node pPhrase belongs to */

  Fts5ExprPhrase *pPhrase,        /* Phrase object to initialize */
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;
  
  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
    aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
    if( !aIter ) return SQLITE_NOMEM;
  }
  memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);

  /* Initialize a term iterator for each term in the phrase */
  for(i=0; i<pPhrase->nTerm; i++){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];

    int n = 0;
    int bFlag = 0;
    u8 *a = 0;
    if( pTerm->pSynonym ){
      Fts5Buffer buf = {0, 0, 0};
      rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
      if( rc ){
        sqlite3_free(a);
        goto ismatch_out;
      }
      if( a==buf.p ) bFlag = 1;
    }else{
      a = (u8*)pTerm->pIter->pData;
      n = pTerm->pIter->nData;
    }

    sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    aIter[i].bFlag = (u8)bFlag;
    if( aIter[i].bEof ) goto ismatch_out;
  }

  while( 1 ){
    int bMatch;
171839
171840
171841
171842
171843
171844
171845
171846
171847
171848
171849
171850
171851
171852
171853
171854
171855
171856
171857
171858
  memset(p, 0, sizeof(Fts5LookaheadReader));
  p->a = a;
  p->n = n;
  fts5LookaheadReaderNext(p);
  return fts5LookaheadReaderNext(p);
}

#if 0
static int fts5LookaheadReaderEof(Fts5LookaheadReader *p){
  return (p->iPos==FTS5_LOOKAHEAD_EOF);
}
#endif

typedef struct Fts5NearTrimmer Fts5NearTrimmer;
struct Fts5NearTrimmer {
  Fts5LookaheadReader reader;     /* Input iterator */
  Fts5PoslistWriter writer;       /* Writer context */
  Fts5Buffer *pOut;               /* Output poslist */
};








<
<
<
<
<
<







172882
172883
172884
172885
172886
172887
172888






172889
172890
172891
172892
172893
172894
172895
  memset(p, 0, sizeof(Fts5LookaheadReader));
  p->a = a;
  p->n = n;
  fts5LookaheadReaderNext(p);
  return fts5LookaheadReaderNext(p);
}







typedef struct Fts5NearTrimmer Fts5NearTrimmer;
struct Fts5NearTrimmer {
  Fts5LookaheadReader reader;     /* Input iterator */
  Fts5PoslistWriter writer;       /* Writer context */
  Fts5Buffer *pOut;               /* Output poslist */
};

171882
171883
171884
171885
171886
171887
171888
171889
171890
171891
171892
171893
171894
171895
171896
  int rc = *pRc;
  int bMatch;

  assert( pNear->nPhrase>1 );

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pNear->nPhrase>(int)ArraySize(aStatic) ){
    int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
    a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
  }else{
    memset(aStatic, 0, sizeof(aStatic));
  }
  if( rc!=SQLITE_OK ){
    *pRc = rc;







|







172919
172920
172921
172922
172923
172924
172925
172926
172927
172928
172929
172930
172931
172932
172933
  int rc = *pRc;
  int bMatch;

  assert( pNear->nPhrase>1 );

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pNear->nPhrase>ArraySize(aStatic) ){
    int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
    a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
  }else{
    memset(aStatic, 0, sizeof(aStatic));
  }
  if( rc!=SQLITE_OK ){
    *pRc = rc;
171959
171960
171961
171962
171963
171964
171965
171966
171967
171968
171969
171970
171971
171972
171973
171974
171975
171976
171977
171978
171979
171980
171981
171982
171983
171984
171985
171986
171987
171988
171989
171990
171991
171992
171993
171994
171995
171996
171997
171998
171999
172000
172001
172002
172003
172004
172005
172006
172007
172008
172009
172010
172011
172012
172013
172014
172015
172016
172017
172018
172019
172020
172021
172022
172023
172024
172025
172026
172027
172028
172029
172030
172031
172032
172033
172034
172035
172036
172037
172038
172039
172040
172041
172042
172043
172044
172045
172046
172047
172048
172049
172050
172051
172052
172053
172054
172055
172056
172057
172058
172059
172060
172061
172062
172063
172064
172065
172066
172067
172068
172069
172070
172071
172072
172073
172074
172075
172076
172077
172078
172079
172080
172081
172082
172083
172084
172085
172086
    int bRet = a[0].pOut->n>0;
    *pRc = rc;
    if( a!=aStatic ) sqlite3_free(a);
    return bRet;
  }
}

/*
** Advance the first term iterator in the first phrase of pNear. Set output
** variable *pbEof to true if it reaches EOF or if an error occurs.
**
** Return SQLITE_OK if successful, or an SQLite error code if an error
** occurs.
*/
static int fts5ExprNearAdvanceFirst(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc = SQLITE_OK;

  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);

    /* Advance each iterator that currently points to iRowid. Or, if iFrom
    ** is valid - each iterator that points to a rowid before iFrom.  */
    for(p=pTerm; p; p=p->pSynonym){
      if( sqlite3Fts5IterEof(p->pIter)==0 ){
        i64 ii = sqlite3Fts5IterRowid(p->pIter);
        if( ii==iRowid 
         || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc) 
        ){
          if( bFromValid ){
            rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
          }else{
            rc = sqlite3Fts5IterNext(p->pIter);
          }
          if( rc!=SQLITE_OK ) break;
          if( sqlite3Fts5IterEof(p->pIter)==0 ){
            bEof = 0;
          }
        }else{
          bEof = 0;
        }
      }
    }

    /* Set the EOF flag if either all synonym iterators are at EOF or an
    ** error has occurred.  */
    pNode->bEof = (rc || bEof);
  }else{
    Fts5IndexIter *pIter = pTerm->pIter;

    assert( Fts5NodeIsString(pNode) );
    if( bFromValid ){
      rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
    }else{
      rc = sqlite3Fts5IterNext(pIter);
    }

    pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
  }

  return rc;
}

/*
** Advance iterator pIter until it points to a value equal to or laster
** than the initial value of *piLast. If this means the iterator points
** to a value laster than *piLast, update *piLast to the new lastest value.
**
** If the iterator reaches EOF, set *pbEof to true before returning. If
** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
** are set, return a non-zero value. Otherwise, return zero.
*/
static int fts5ExprAdvanceto(
  Fts5IndexIter *pIter,           /* Iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc,                       /* OUT: Error code */
  int *pbEof                      /* OUT: Set to true if EOF */
){
  i64 iLast = *piLast;
  i64 iRowid;

  iRowid = sqlite3Fts5IterRowid(pIter);
  if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
    int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
    if( rc || sqlite3Fts5IterEof(pIter) ){
      *pRc = rc;
      *pbEof = 1;
      return 1;
    }
    iRowid = sqlite3Fts5IterRowid(pIter);
    assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
  }
  *piLast = iRowid;

  return 0;
}

static int fts5ExprSynonymAdvanceto(
  Fts5ExprTerm *pTerm,            /* Term iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc                        /* OUT: Error code */
){
  int rc = SQLITE_OK;
  i64 iLast = *piLast;
  Fts5ExprTerm *p;
  int bEof = 0;

  for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
    if( sqlite3Fts5IterEof(p->pIter)==0 ){
      i64 iRowid = sqlite3Fts5IterRowid(p->pIter);
      if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
        rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
      }
    }
  }

  if( rc!=SQLITE_OK ){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



















|







|




















|







172996
172997
172998
172999
173000
173001
173002

































































173003
173004
173005
173006
173007
173008
173009
173010
173011
173012
173013
173014
173015
173016
173017
173018
173019
173020
173021
173022
173023
173024
173025
173026
173027
173028
173029
173030
173031
173032
173033
173034
173035
173036
173037
173038
173039
173040
173041
173042
173043
173044
173045
173046
173047
173048
173049
173050
173051
173052
173053
173054
173055
173056
173057
173058
    int bRet = a[0].pOut->n>0;
    *pRc = rc;
    if( a!=aStatic ) sqlite3_free(a);
    return bRet;
  }
}


































































/*
** Advance iterator pIter until it points to a value equal to or laster
** than the initial value of *piLast. If this means the iterator points
** to a value laster than *piLast, update *piLast to the new lastest value.
**
** If the iterator reaches EOF, set *pbEof to true before returning. If
** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
** are set, return a non-zero value. Otherwise, return zero.
*/
static int fts5ExprAdvanceto(
  Fts5IndexIter *pIter,           /* Iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc,                       /* OUT: Error code */
  int *pbEof                      /* OUT: Set to true if EOF */
){
  i64 iLast = *piLast;
  i64 iRowid;

  iRowid = pIter->iRowid;
  if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
    int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
    if( rc || sqlite3Fts5IterEof(pIter) ){
      *pRc = rc;
      *pbEof = 1;
      return 1;
    }
    iRowid = pIter->iRowid;
    assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
  }
  *piLast = iRowid;

  return 0;
}

static int fts5ExprSynonymAdvanceto(
  Fts5ExprTerm *pTerm,            /* Term iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc                        /* OUT: Error code */
){
  int rc = SQLITE_OK;
  i64 iLast = *piLast;
  Fts5ExprTerm *p;
  int bEof = 0;

  for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
    if( sqlite3Fts5IterEof(p->pIter)==0 ){
      i64 iRowid = p->pIter->iRowid;
      if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
        rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
      }
    }
  }

  if( rc!=SQLITE_OK ){
172096
172097
172098
172099
172100
172101
172102















172103
172104
172105
172106
172107
172108
172109
172110
172111
172112
172113
172114
172115
172116
172117

172118
172119
172120
172121
172122
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157
172158
172159
172160
172161
172162
172163
172164
172165
172166
172167
172168
172169
172170
172171
172172
172173
172174
172175
172176
172177
172178
172179
172180
172181
172182
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192
172193
172194
172195
172196
172197
172198
172199
172200
172201
172202
172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239

172240
172241
172242
172243
172244
172245
172246
static int fts5ExprNearTest(
  int *pRc,
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_STRING) */
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int rc = *pRc;















  int i;

  /* Check that each phrase in the nearset matches the current row.
  ** Populate the pPhrase->poslist buffers at the same time. If any
  ** phrase is not a match, break out of the loop early.  */
  for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
    if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset ){
      int bMatch = 0;
      rc = fts5ExprPhraseIsMatch(pNode, pNear->pColset, pPhrase, &bMatch);
      if( bMatch==0 ) break;
    }else{
      rc = sqlite3Fts5IterPoslistBuffer(
          pPhrase->aTerm[0].pIter, &pPhrase->poslist
      );

    }
  }

  *pRc = rc;
  if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
    return 1;
  }

  return 0;
}

static int fts5ExprTokenTest(
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_TERM) */
){
  /* As this "NEAR" object is actually a single phrase that consists 
  ** of a single term only, grab pointers into the poslist managed by the
  ** fts5_index.c iterator object. This is much faster than synthesizing 
  ** a new poslist the way we have to for more complicated phrase or NEAR
  ** expressions.  */
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
  Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
  Fts5Colset *pColset = pNear->pColset;
  int rc;

  assert( pNode->eType==FTS5_TERM );
  assert( pNear->nPhrase==1 && pPhrase->nTerm==1 );
  assert( pPhrase->aTerm[0].pSynonym==0 );

  rc = sqlite3Fts5IterPoslist(pIter, pColset, 
      (const u8**)&pPhrase->poslist.p, &pPhrase->poslist.n, &pNode->iRowid
  );
  pNode->bNomatch = (pPhrase->poslist.n==0);
  return rc;
}

/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators
** point to the same rowid, and if not, advances them until they do.
** If an EOF is reached before this happens, *pbEof is set to true before
** returning.
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if an iterator reaches
** EOF.
*/
static int fts5ExprNearNextMatch(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
  int rc = SQLITE_OK;
  i64 iLast;                      /* Lastest rowid any iterator points to */
  int i, j;                       /* Phrase and token index, respectively */
  int bMatch;                     /* True if all terms are at the same rowid */
  const int bDesc = pExpr->bDesc;

  /* Check that this node should not be FTS5_TERM */
  assert( pNear->nPhrase>1 
       || pNear->apPhrase[0]->nTerm>1 
       || pNear->apPhrase[0]->aTerm[0].pSynonym
  );

  /* Initialize iLast, the "lastest" rowid any iterator points to. If the
  ** iterator skips through rowids in the default ascending order, this means
  ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
  ** means the minimum rowid.  */
  if( pLeft->aTerm[0].pSynonym ){
    iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
  }else{
    iLast = sqlite3Fts5IterRowid(pLeft->aTerm[0].pIter);
  }

  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bEof = 1;
            return rc;
          }
        }else{
          Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
          i64 iRowid = sqlite3Fts5IterRowid(pIter);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
            return rc;
          }
        }
      }
    }
  }while( bMatch==0 );

  pNode->iRowid = iLast;
  pNode->bNomatch = (0==fts5ExprNearTest(&rc, pExpr, pNode));

  return rc;
}

/*
** Initialize all term iterators in the pNear object. If any term is found
** to match no documents at all, return immediately without initializing any
** further iterators.
*/
static int fts5ExprNearInitAll(
  Fts5Expr *pExpr,
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int i, j;
  int rc = SQLITE_OK;


  for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
    for(j=0; j<pPhrase->nTerm; j++){
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
      Fts5ExprTerm *p;
      int bEof = 1;








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

|
|
|
|
|
|
|
|
|
|
<
|
<
>
|
|

|
|
|
|
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<














>







173068
173069
173070
173071
173072
173073
173074
173075
173076
173077
173078
173079
173080
173081
173082
173083
173084
173085
173086
173087
173088
173089
173090
173091
173092
173093
173094
173095
173096
173097
173098
173099
173100
173101

173102

173103
173104
173105
173106
173107
173108
173109
173110

173111
173112
173113














173114


















































































173115
173116
173117
173118
173119
173120
173121
173122
173123
173124
173125
173126
173127
173128
173129
173130
173131
173132
173133
173134
173135
173136
static int fts5ExprNearTest(
  int *pRc,
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_STRING) */
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int rc = *pRc;

  if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
    Fts5ExprTerm *pTerm;
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
    pPhrase->poslist.n = 0;
    for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
      Fts5IndexIter *pIter = pTerm->pIter;
      if( sqlite3Fts5IterEof(pIter)==0 ){
        if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
          pPhrase->poslist.n = 1;
        }
      }
    }
    return pPhrase->poslist.n;
  }else{
    int i;

    /* Check that each phrase in the nearset matches the current row.
    ** Populate the pPhrase->poslist buffers at the same time. If any
    ** phrase is not a match, break out of the loop early.  */
    for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset ){
        int bMatch = 0;
        rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
        if( bMatch==0 ) break;
      }else{

        Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;

        fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
      }
    }

    *pRc = rc;
    if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
      return 1;
    }

    return 0;
  }
}


































































































/*
** Initialize all term iterators in the pNear object. If any term is found
** to match no documents at all, return immediately without initializing any
** further iterators.
*/
static int fts5ExprNearInitAll(
  Fts5Expr *pExpr,
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int i, j;
  int rc = SQLITE_OK;

  assert( pNode->bNomatch==0 );
  for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
    for(j=0; j<pPhrase->nTerm; j++){
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
      Fts5ExprTerm *p;
      int bEof = 1;

172267
172268
172269
172270
172271
172272
172273
172274
172275
172276
172277
172278
172279
172280
172281
172282
172283
172284
        return rc;
      }
    }
  }

  return rc;
}

/* fts5ExprNodeNext() calls fts5ExprNodeNextMatch(). And vice-versa. */
static int fts5ExprNodeNextMatch(Fts5Expr*, Fts5ExprNode*);


/*
** If pExpr is an ASC iterator, this function returns a value with the
** same sign as:
**
**   (iLhs - iRhs)
**







<
<
<
<







173157
173158
173159
173160
173161
173162
173163




173164
173165
173166
173167
173168
173169
173170
        return rc;
      }
    }
  }

  return rc;
}





/*
** If pExpr is an ASC iterator, this function returns a value with the
** same sign as:
**
**   (iLhs - iRhs)
**
172300
172301
172302
172303
172304
172305
172306

172307
172308
172309
172310
172311
172312
172313
    return (iLhs < iRhs);
  }
}

static void fts5ExprSetEof(Fts5ExprNode *pNode){
  int i;
  pNode->bEof = 1;

  for(i=0; i<pNode->nChild; i++){
    fts5ExprSetEof(pNode->apChild[i]);
  }
}

static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
  if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){







>







173186
173187
173188
173189
173190
173191
173192
173193
173194
173195
173196
173197
173198
173199
173200
    return (iLhs < iRhs);
  }
}

static void fts5ExprSetEof(Fts5ExprNode *pNode){
  int i;
  pNode->bEof = 1;
  pNode->bNomatch = 0;
  for(i=0; i<pNode->nChild; i++){
    fts5ExprSetEof(pNode->apChild[i]);
  }
}

static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
  if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
172322
172323
172324
172325
172326
172327
172328















































































































































































































































172329
























172330
172331
172332
172333
172334
172335
172336
172337
172338
172339
172340
172341
172342
172343
172344
172345
172346
172347
172348
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
    for(i=0; i<pNode->nChild; i++){
      fts5ExprNodeZeroPoslist(pNode->apChild[i]);
    }
  }
}

















































































































































































































































static int fts5ExprNodeNext(Fts5Expr*, Fts5ExprNode*, int, i64);

























/*
** Argument pNode is an FTS5_AND node.
*/
static int fts5ExprAndNextRowid(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pAnd              /* FTS5_AND node to advance */
){
  int iChild;
  i64 iLast = pAnd->iRowid;
  int rc = SQLITE_OK;
  int bMatch;

  assert( pAnd->bEof==0 );
  do {
    pAnd->bNomatch = 0;
    bMatch = 1;
    for(iChild=0; iChild<pAnd->nChild; iChild++){
      Fts5ExprNode *pChild = pAnd->apChild[iChild];
      if( 0 && pChild->eType==FTS5_STRING ){
        /* TODO */
      }else{
        int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
        if( cmp>0 ){
          /* Advance pChild until it points to iLast or laster */
          rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
          if( rc!=SQLITE_OK ) return rc;
        }
      }

      /* If the child node is now at EOF, so is the parent AND node. Otherwise,
      ** the child node is guaranteed to have advanced at least as far as
      ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
      ** new lastest rowid seen so far.  */
      assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|














<
<
<
|
|
|
|
|
<







173209
173210
173211
173212
173213
173214
173215
173216
173217
173218
173219
173220
173221
173222
173223
173224
173225
173226
173227
173228
173229
173230
173231
173232
173233
173234
173235
173236
173237
173238
173239
173240
173241
173242
173243
173244
173245
173246
173247
173248
173249
173250
173251
173252
173253
173254
173255
173256
173257
173258
173259
173260
173261
173262
173263
173264
173265
173266
173267
173268
173269
173270
173271
173272
173273
173274
173275
173276
173277
173278
173279
173280
173281
173282
173283
173284
173285
173286
173287
173288
173289
173290
173291
173292
173293
173294
173295
173296
173297
173298
173299
173300
173301
173302
173303
173304
173305
173306
173307
173308
173309
173310
173311
173312
173313
173314
173315
173316
173317
173318
173319
173320
173321
173322
173323
173324
173325
173326
173327
173328
173329
173330
173331
173332
173333
173334
173335
173336
173337
173338
173339
173340
173341
173342
173343
173344
173345
173346
173347
173348
173349
173350
173351
173352
173353
173354
173355
173356
173357
173358
173359
173360
173361
173362
173363
173364
173365
173366
173367
173368
173369
173370
173371
173372
173373
173374
173375
173376
173377
173378
173379
173380
173381
173382
173383
173384
173385
173386
173387
173388
173389
173390
173391
173392
173393
173394
173395
173396
173397
173398
173399
173400
173401
173402
173403
173404
173405
173406
173407
173408
173409
173410
173411
173412
173413
173414
173415
173416
173417
173418
173419
173420
173421
173422
173423
173424
173425
173426
173427
173428
173429
173430
173431
173432
173433
173434
173435
173436
173437
173438
173439
173440
173441
173442
173443
173444
173445
173446
173447
173448
173449
173450
173451
173452
173453
173454
173455
173456
173457
173458
173459
173460
173461
173462
173463
173464
173465
173466
173467
173468
173469
173470
173471
173472
173473
173474
173475
173476
173477
173478
173479
173480
173481
173482
173483
173484
173485
173486
173487
173488
173489
173490
173491
173492
173493
173494
173495
173496
173497
173498



173499
173500
173501
173502
173503

173504
173505
173506
173507
173508
173509
173510
    for(i=0; i<pNode->nChild; i++){
      fts5ExprNodeZeroPoslist(pNode->apChild[i]);
    }
  }
}



/*
** Compare the values currently indicated by the two nodes as follows:
**
**    res = (*p1) - (*p2)
**
** Nodes that point to values that come later in the iteration order are
** considered to be larger. Nodes at EOF are the largest of all.
**
** This means that if the iteration order is ASC, then numerically larger
** rowids are considered larger. Or if it is the default DESC, numerically
** smaller rowids are larger.
*/
static int fts5NodeCompare(
  Fts5Expr *pExpr,
  Fts5ExprNode *p1, 
  Fts5ExprNode *p2
){
  if( p2->bEof ) return -1;
  if( p1->bEof ) return +1;
  return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
}

/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators
** point to the same rowid, and if not, advances them until they do.
** If an EOF is reached before this happens, *pbEof is set to true before
** returning.
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if an iterator reaches
** EOF.
*/
static int fts5ExprNodeTest_STRING(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
  int rc = SQLITE_OK;
  i64 iLast;                      /* Lastest rowid any iterator points to */
  int i, j;                       /* Phrase and token index, respectively */
  int bMatch;                     /* True if all terms are at the same rowid */
  const int bDesc = pExpr->bDesc;

  /* Check that this node should not be FTS5_TERM */
  assert( pNear->nPhrase>1 
       || pNear->apPhrase[0]->nTerm>1 
       || pNear->apPhrase[0]->aTerm[0].pSynonym
  );

  /* Initialize iLast, the "lastest" rowid any iterator points to. If the
  ** iterator skips through rowids in the default ascending order, this means
  ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
  ** means the minimum rowid.  */
  if( pLeft->aTerm[0].pSynonym ){
    iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
  }else{
    iLast = pLeft->aTerm[0].pIter->iRowid;
  }

  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bNomatch = 0;
            pNode->bEof = 1;
            return rc;
          }
        }else{
          Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
          if( pIter->iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
            return rc;
          }
        }
      }
    }
  }while( bMatch==0 );

  pNode->iRowid = iLast;
  pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
  assert( pNode->bEof==0 || pNode->bNomatch==0 );

  return rc;
}

/*
** Advance the first term iterator in the first phrase of pNear. Set output
** variable *pbEof to true if it reaches EOF or if an error occurs.
**
** Return SQLITE_OK if successful, or an SQLite error code if an error
** occurs.
*/
static int fts5ExprNodeNext_STRING(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc = SQLITE_OK;

  pNode->bNomatch = 0;
  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);

    /* Advance each iterator that currently points to iRowid. Or, if iFrom
    ** is valid - each iterator that points to a rowid before iFrom.  */
    for(p=pTerm; p; p=p->pSynonym){
      if( sqlite3Fts5IterEof(p->pIter)==0 ){
        i64 ii = p->pIter->iRowid;
        if( ii==iRowid 
         || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc) 
        ){
          if( bFromValid ){
            rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
          }else{
            rc = sqlite3Fts5IterNext(p->pIter);
          }
          if( rc!=SQLITE_OK ) break;
          if( sqlite3Fts5IterEof(p->pIter)==0 ){
            bEof = 0;
          }
        }else{
          bEof = 0;
        }
      }
    }

    /* Set the EOF flag if either all synonym iterators are at EOF or an
    ** error has occurred.  */
    pNode->bEof = (rc || bEof);
  }else{
    Fts5IndexIter *pIter = pTerm->pIter;

    assert( Fts5NodeIsString(pNode) );
    if( bFromValid ){
      rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
    }else{
      rc = sqlite3Fts5IterNext(pIter);
    }

    pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
  }

  if( pNode->bEof==0 ){
    assert( rc==SQLITE_OK );
    rc = fts5ExprNodeTest_STRING(pExpr, pNode);
  }

  return rc;
}


static int fts5ExprNodeTest_TERM(
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_TERM) */
){
  /* As this "NEAR" object is actually a single phrase that consists 
  ** of a single term only, grab pointers into the poslist managed by the
  ** fts5_index.c iterator object. This is much faster than synthesizing 
  ** a new poslist the way we have to for more complicated phrase or NEAR
  ** expressions.  */
  Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
  Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;

  assert( pNode->eType==FTS5_TERM );
  assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
  assert( pPhrase->aTerm[0].pSynonym==0 );

  pPhrase->poslist.n = pIter->nData;
  if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
    pPhrase->poslist.p = (u8*)pIter->pData;
  }
  pNode->iRowid = pIter->iRowid;
  pNode->bNomatch = (pPhrase->poslist.n==0);
  return SQLITE_OK;
}

/*
** xNext() method for a node of type FTS5_TERM.
*/
static int fts5ExprNodeNext_TERM(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int rc;
  Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;

  assert( pNode->bEof==0 );
  if( bFromValid ){
    rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
  }else{
    rc = sqlite3Fts5IterNext(pIter);
  }
  if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
    rc = fts5ExprNodeTest_TERM(pExpr, pNode);
  }else{
    pNode->bEof = 1;
    pNode->bNomatch = 0;
  }
  return rc;
}

static void fts5ExprNodeTest_OR(
  Fts5Expr *pExpr,                /* Expression of which pNode is a part */
  Fts5ExprNode *pNode             /* Expression node to test */
){
  Fts5ExprNode *pNext = pNode->apChild[0];
  int i;

  for(i=1; i<pNode->nChild; i++){
    Fts5ExprNode *pChild = pNode->apChild[i];
    int cmp = fts5NodeCompare(pExpr, pNext, pChild);
    if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
      pNext = pChild;
    }
  }
  pNode->iRowid = pNext->iRowid;
  pNode->bEof = pNext->bEof;
  pNode->bNomatch = pNext->bNomatch;
}

static int fts5ExprNodeNext_OR(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int i;
  i64 iLast = pNode->iRowid;

  for(i=0; i<pNode->nChild; i++){
    Fts5ExprNode *p1 = pNode->apChild[i];
    assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
    if( p1->bEof==0 ){
      if( (p1->iRowid==iLast) 
       || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
      ){
        int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
        if( rc!=SQLITE_OK ) return rc;
      }
    }
  }

  fts5ExprNodeTest_OR(pExpr, pNode);
  return SQLITE_OK;
}

/*
** Argument pNode is an FTS5_AND node.
*/
static int fts5ExprNodeTest_AND(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pAnd              /* FTS5_AND node to advance */
){
  int iChild;
  i64 iLast = pAnd->iRowid;
  int rc = SQLITE_OK;
  int bMatch;

  assert( pAnd->bEof==0 );
  do {
    pAnd->bNomatch = 0;
    bMatch = 1;
    for(iChild=0; iChild<pAnd->nChild; iChild++){
      Fts5ExprNode *pChild = pAnd->apChild[iChild];



      int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
      if( cmp>0 ){
        /* Advance pChild until it points to iLast or laster */
        rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
        if( rc!=SQLITE_OK ) return rc;

      }

      /* If the child node is now at EOF, so is the parent AND node. Otherwise,
      ** the child node is guaranteed to have advanced at least as far as
      ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
      ** new lastest rowid seen so far.  */
      assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
172380
172381
172382
172383
172384
172385
172386









172387
172388
172389
172390
172391

172392
172393
172394
172395
172396
172397
172398
172399
172400
172401



172402
172403
172404
172405
172406
172407
172408





172409
172410




172411
172412
172413
172414





172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
172425
172426
172427
172428
172429
172430
172431
172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
172466
172467
172468
172469
172470
172471
172472
172473
172474
172475
172476
172477
172478
172479
172480
172481
172482
172483
172484
172485
172486
172487
172488
172489
172490
172491
172492
172493
172494
172495
172496
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
172512
172513
172514
172515
172516
172517
172518
172519
172520
172521
172522
172523
172524
172525
172526
172527
172528
172529
172530
172531
172532
172533
172534
172535
172536
172537
172538
172539
172540
172541
172542
172543
172544
172545
172546
172547
172548
172549
172550
172551
172552
172553
172554
172555
172556
172557
172558
172559
172560
172561
172562
172563
172564
172565
172566
172567
172568
172569
172570
172571
172572
172573
172574
172575
172576
172577
172578
172579
172580
172581

172582
172583
172584
172585
172586
172587

172588

172589


172590
172591















172592
172593
172594
172595
172596
172597
172598
172599
172600
172601
172602
  if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
    fts5ExprNodeZeroPoslist(pAnd);
  }
  pAnd->iRowid = iLast;
  return SQLITE_OK;
}











/*
** Compare the values currently indicated by the two nodes as follows:
**
**    res = (*p1) - (*p2)

**
** Nodes that point to values that come later in the iteration order are
** considered to be larger. Nodes at EOF are the largest of all.
**
** This means that if the iteration order is ASC, then numerically larger
** rowids are considered larger. Or if it is the default DESC, numerically
** smaller rowids are larger.
*/
static int fts5NodeCompare(
  Fts5Expr *pExpr,



  Fts5ExprNode *p1, 
  Fts5ExprNode *p2
){
  if( p2->bEof ) return -1;
  if( p1->bEof ) return +1;
  return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
}






/*




** Advance node iterator pNode, part of expression pExpr. If argument
** bFromValid is zero, then pNode is advanced exactly once. Or, if argument
** bFromValid is non-zero, then pNode is advanced until it is at or past
** rowid value iFrom. Whether "past" means "less than" or "greater than"





** depends on whether this is an ASC or DESC iterator.
*/
static int fts5ExprNodeNext(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int rc = SQLITE_OK;

  if( pNode->bEof==0 ){
    switch( pNode->eType ){
      case FTS5_STRING: {
        rc = fts5ExprNearAdvanceFirst(pExpr, pNode, bFromValid, iFrom);
        break;
      };

      case FTS5_TERM: {
        Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
        if( bFromValid ){
          rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
        }else{
          rc = sqlite3Fts5IterNext(pIter);
        }
        if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
          assert( rc==SQLITE_OK );
          rc = fts5ExprTokenTest(pExpr, pNode);
        }else{
          pNode->bEof = 1;
        }
        return rc;
      };

      case FTS5_AND: {
        Fts5ExprNode *pLeft = pNode->apChild[0];
        rc = fts5ExprNodeNext(pExpr, pLeft, bFromValid, iFrom);
        break;
      }

      case FTS5_OR: {
        int i;
        i64 iLast = pNode->iRowid;

        for(i=0; rc==SQLITE_OK && i<pNode->nChild; i++){
          Fts5ExprNode *p1 = pNode->apChild[i];
          assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
          if( p1->bEof==0 ){
            if( (p1->iRowid==iLast) 
             || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
            ){
              rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
            }
          }
        }

        break;
      }

      default: assert( pNode->eType==FTS5_NOT ); {
        assert( pNode->nChild==2 );
        rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
        break;
      }
    }

    if( rc==SQLITE_OK ){
      rc = fts5ExprNodeNextMatch(pExpr, pNode);
    }
  }

  /* Assert that if bFromValid was true, either:
  **
  **   a) an error occurred, or
  **   b) the node is now at EOF, or
  **   c) the node is now at or past rowid iFrom.
  */
  assert( bFromValid==0 
      || rc!=SQLITE_OK                                                  /* a */
      || pNode->bEof                                                    /* b */
      || pNode->iRowid==iFrom || pExpr->bDesc==(pNode->iRowid<iFrom)    /* c */
  );

  return rc;
}


/*
** If pNode currently points to a match, this function returns SQLITE_OK
** without modifying it. Otherwise, pNode is advanced until it does point
** to a match or EOF is reached.
*/
static int fts5ExprNodeNextMatch(
  Fts5Expr *pExpr,                /* Expression of which pNode is a part */
  Fts5ExprNode *pNode             /* Expression node to test */
){
  int rc = SQLITE_OK;
  if( pNode->bEof==0 ){
    switch( pNode->eType ){

      case FTS5_STRING: {
        /* Advance the iterators until they all point to the same rowid */
        rc = fts5ExprNearNextMatch(pExpr, pNode);
        break;
      }

      case FTS5_TERM: {
        rc = fts5ExprTokenTest(pExpr, pNode);
        break;
      }

      case FTS5_AND: {
        rc = fts5ExprAndNextRowid(pExpr, pNode);
        break;
      }

      case FTS5_OR: {
        Fts5ExprNode *pNext = pNode->apChild[0];
        int i;

        for(i=1; i<pNode->nChild; i++){
          Fts5ExprNode *pChild = pNode->apChild[i];
          int cmp = fts5NodeCompare(pExpr, pNext, pChild);
          if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
            pNext = pChild;
          }
        }
        pNode->iRowid = pNext->iRowid;
        pNode->bEof = pNext->bEof;
        pNode->bNomatch = pNext->bNomatch;
        break;
      }

      default: assert( pNode->eType==FTS5_NOT ); {
        Fts5ExprNode *p1 = pNode->apChild[0];
        Fts5ExprNode *p2 = pNode->apChild[1];
        assert( pNode->nChild==2 );

        while( rc==SQLITE_OK && p1->bEof==0 ){
          int cmp = fts5NodeCompare(pExpr, p1, p2);
          if( cmp>0 ){
            rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
            cmp = fts5NodeCompare(pExpr, p1, p2);
          }
          assert( rc!=SQLITE_OK || cmp<=0 );
          if( cmp || p2->bNomatch ) break;
          rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
        }
        pNode->bEof = p1->bEof;
        pNode->iRowid = p1->iRowid;
        break;
      }
    }
  }
  return rc;
}

 
/*
** Set node pNode, which is part of expression pExpr, to point to the first
** match. If there are no matches, set the Node.bEof flag to indicate EOF.
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
** It is not an error if there are no matches.
*/
static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
  int rc = SQLITE_OK;
  pNode->bEof = 0;


  if( Fts5NodeIsString(pNode) ){
    /* Initialize all term iterators in the NEAR object. */
    rc = fts5ExprNearInitAll(pExpr, pNode);
  }else{
    int i;

    for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){

      rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);


    }
    pNode->iRowid = pNode->apChild[0]->iRowid;















  }

  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeNextMatch(pExpr, pNode);
  }
  return rc;
}


/*
** Begin iterating through the set of documents in index pIdx matched by







>
>
>
>
>
>
>
>
>
|
<
<
<
|
>
|
<
<
<
<
<
<
<
|
|
>
>
>
|
|
<
|
<
<
|
>
>
>
>
>
|
<
>
>
>
>
|
<
|
|
>
>
>
>
>
|
<
|





<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<



<





|








<
|




|




|




<
<
|
<
<
<
<
<
<
<
<
<
<




<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<


















>






>

>

>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|







173526
173527
173528
173529
173530
173531
173532
173533
173534
173535
173536
173537
173538
173539
173540
173541
173542



173543
173544
173545







173546
173547
173548
173549
173550
173551
173552

173553


173554
173555
173556
173557
173558
173559
173560

173561
173562
173563
173564
173565

173566
173567
173568
173569
173570
173571
173572
173573

173574
173575
173576
173577
173578
173579




















































173580




173581
173582
173583














173584
173585
173586

173587
173588
173589
173590
173591
173592
173593
173594
173595
173596
173597
173598
173599
173600

173601
173602
173603
173604
173605
173606
173607
173608
173609
173610
173611
173612
173613
173614
173615


173616










173617
173618
173619
173620












173621



173622
173623
173624
173625
173626
173627
173628
173629
173630
173631
173632
173633
173634
173635
173636
173637
173638
173639
173640
173641
173642
173643
173644
173645
173646
173647
173648
173649
173650
173651
173652
173653
173654
173655
173656
173657
173658
173659
173660
173661
173662
173663
173664
173665
173666
173667
173668
173669
173670
173671
173672
173673
173674
173675
173676
173677
173678
173679
173680
  if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
    fts5ExprNodeZeroPoslist(pAnd);
  }
  pAnd->iRowid = iLast;
  return SQLITE_OK;
}

static int fts5ExprNodeNext_AND(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeTest_AND(pExpr, pNode);
  }



  return rc;
}








static int fts5ExprNodeTest_NOT(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode             /* FTS5_NOT node to advance */
){
  int rc = SQLITE_OK;
  Fts5ExprNode *p1 = pNode->apChild[0];
  Fts5ExprNode *p2 = pNode->apChild[1];

  assert( pNode->nChild==2 );



  while( rc==SQLITE_OK && p1->bEof==0 ){
    int cmp = fts5NodeCompare(pExpr, p1, p2);
    if( cmp>0 ){
      rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
      cmp = fts5NodeCompare(pExpr, p1, p2);
    }

    assert( rc!=SQLITE_OK || cmp<=0 );
    if( cmp || p2->bNomatch ) break;
    rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
  }
  pNode->bEof = p1->bEof;

  pNode->bNomatch = p1->bNomatch;
  pNode->iRowid = p1->iRowid;
  if( p1->bEof ){
    fts5ExprNodeZeroPoslist(p2);
  }
  return rc;
}


static int fts5ExprNodeNext_NOT(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){




















































  int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);




  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeTest_NOT(pExpr, pNode);
  }














  return rc;
}


/*
** If pNode currently points to a match, this function returns SQLITE_OK
** without modifying it. Otherwise, pNode is advanced until it does point
** to a match or EOF is reached.
*/
static int fts5ExprNodeTest(
  Fts5Expr *pExpr,                /* Expression of which pNode is a part */
  Fts5ExprNode *pNode             /* Expression node to test */
){
  int rc = SQLITE_OK;
  if( pNode->bEof==0 ){
    switch( pNode->eType ){

      case FTS5_STRING: {

        rc = fts5ExprNodeTest_STRING(pExpr, pNode);
        break;
      }

      case FTS5_TERM: {
        rc = fts5ExprNodeTest_TERM(pExpr, pNode);
        break;
      }

      case FTS5_AND: {
        rc = fts5ExprNodeTest_AND(pExpr, pNode);
        break;
      }

      case FTS5_OR: {


        fts5ExprNodeTest_OR(pExpr, pNode);










        break;
      }

      default: assert( pNode->eType==FTS5_NOT ); {












        rc = fts5ExprNodeTest_NOT(pExpr, pNode);



        break;
      }
    }
  }
  return rc;
}

 
/*
** Set node pNode, which is part of expression pExpr, to point to the first
** match. If there are no matches, set the Node.bEof flag to indicate EOF.
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
** It is not an error if there are no matches.
*/
static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
  int rc = SQLITE_OK;
  pNode->bEof = 0;
  pNode->bNomatch = 0;

  if( Fts5NodeIsString(pNode) ){
    /* Initialize all term iterators in the NEAR object. */
    rc = fts5ExprNearInitAll(pExpr, pNode);
  }else{
    int i;
    int nEof = 0;
    for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
      Fts5ExprNode *pChild = pNode->apChild[i];
      rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
      assert( pChild->bEof==0 || pChild->bEof==1 );
      nEof += pChild->bEof;
    }
    pNode->iRowid = pNode->apChild[0]->iRowid;

    switch( pNode->eType ){
      case FTS5_AND:
        if( nEof>0 ) fts5ExprSetEof(pNode);
        break;

      case FTS5_OR:
        if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
        break;

      default:
        assert( pNode->eType==FTS5_NOT );
        pNode->bEof = pNode->apChild[0]->bEof;
        break;
    }
  }

  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeTest(pExpr, pNode);
  }
  return rc;
}


/*
** Begin iterating through the set of documents in index pIdx matched by
172612
172613
172614
172615
172616
172617
172618
172619
172620
172621
172622
172623
172624
172625
172626
172627
172628
172629
172630
172631

172632
172633
172634
172635
172636
172637
172638
172639
172640
172641
172642
172643
172644
172645
172646

172647
172648

172649
172650
172651
172652
172653
172654
172655
172656
172657
172658
172659
172660
172661
172662
172663
172664
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
  Fts5ExprNode *pRoot = p->pRoot;
  int rc = SQLITE_OK;
  if( pRoot ){
    p->pIndex = pIdx;
    p->bDesc = bDesc;
    rc = fts5ExprNodeFirst(p, pRoot);

    /* If not at EOF but the current rowid occurs earlier than iFirst in
    ** the iteration order, move to document iFirst or later. */
    if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){
      rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
    }

    /* If the iterator is not at a real match, skip forward until it is. */
    while( pRoot->bNomatch && rc==SQLITE_OK && pRoot->bEof==0 ){

      rc = fts5ExprNodeNext(p, pRoot, 0, 0);
    }
  }
  return rc;
}

/*
** Move to the next document 
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
  int rc;
  Fts5ExprNode *pRoot = p->pRoot;

  do {
    rc = fts5ExprNodeNext(p, pRoot, 0, 0);

  }while( pRoot->bNomatch && pRoot->bEof==0 && rc==SQLITE_OK );
  if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
    pRoot->bEof = 1;
  }
  return rc;
}

static int sqlite3Fts5ExprEof(Fts5Expr *p){
  return (p->pRoot==0 || p->pRoot->bEof);
}

static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
  return p->pRoot->iRowid;
}

static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){







|











|
>















>


>
|







|







173690
173691
173692
173693
173694
173695
173696
173697
173698
173699
173700
173701
173702
173703
173704
173705
173706
173707
173708
173709
173710
173711
173712
173713
173714
173715
173716
173717
173718
173719
173720
173721
173722
173723
173724
173725
173726
173727
173728
173729
173730
173731
173732
173733
173734
173735
173736
173737
173738
173739
173740
173741
173742
173743
173744
173745
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
  Fts5ExprNode *pRoot = p->pRoot;
  int rc = SQLITE_OK;
  if( pRoot->xNext ){
    p->pIndex = pIdx;
    p->bDesc = bDesc;
    rc = fts5ExprNodeFirst(p, pRoot);

    /* If not at EOF but the current rowid occurs earlier than iFirst in
    ** the iteration order, move to document iFirst or later. */
    if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){
      rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
    }

    /* If the iterator is not at a real match, skip forward until it is. */
    while( pRoot->bNomatch ){
      assert( pRoot->bEof==0 && rc==SQLITE_OK );
      rc = fts5ExprNodeNext(p, pRoot, 0, 0);
    }
  }
  return rc;
}

/*
** Move to the next document 
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
  int rc;
  Fts5ExprNode *pRoot = p->pRoot;
  assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
  do {
    rc = fts5ExprNodeNext(p, pRoot, 0, 0);
    assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
  }while( pRoot->bNomatch );
  if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
    pRoot->bEof = 1;
  }
  return rc;
}

static int sqlite3Fts5ExprEof(Fts5Expr *p){
  return p->pRoot->bEof;
}

static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
  return p->pRoot->iRowid;
}

static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
172675
172676
172677
172678
172679
172680
172681
172682
172683
172684
172685

172686
172687
172688
172689
172690
172691
172692
    int i;
    for(i=0; i<pPhrase->nTerm; i++){
      Fts5ExprTerm *pSyn;
      Fts5ExprTerm *pNext;
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
      sqlite3_free(pTerm->zTerm);
      sqlite3Fts5IterClose(pTerm->pIter);

      for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
        pNext = pSyn->pSynonym;
        sqlite3Fts5IterClose(pSyn->pIter);

        sqlite3_free(pSyn);
      }
    }
    if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
    sqlite3_free(pPhrase);
  }
}







<



>







173756
173757
173758
173759
173760
173761
173762

173763
173764
173765
173766
173767
173768
173769
173770
173771
173772
173773
    int i;
    for(i=0; i<pPhrase->nTerm; i++){
      Fts5ExprTerm *pSyn;
      Fts5ExprTerm *pNext;
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
      sqlite3_free(pTerm->zTerm);
      sqlite3Fts5IterClose(pTerm->pIter);

      for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
        pNext = pSyn->pSynonym;
        sqlite3Fts5IterClose(pSyn->pIter);
        fts5BufferFree((Fts5Buffer*)&pSyn[1]);
        sqlite3_free(pSyn);
      }
    }
    if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
    sqlite3_free(pPhrase);
  }
}
172759
172760
172761
172762
172763
172764
172765


172766
172767
172768
172769
172770
172771
172772
172773
172774
172775
172776
172777
172778
172779
172780
172781
172782
172783
172784
172785
172786
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  int rc = SQLITE_OK;
  const int SZALLOC = 8;
  TokenCtx *pCtx = (TokenCtx*)pContext;
  Fts5ExprPhrase *pPhrase = pCtx->pPhrase;



  /* If an error has already occurred, this is a no-op */
  if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;

  assert( pPhrase==0 || pPhrase->nTerm>0 );
  if( pPhrase && (tflags & FTS5_TOKEN_COLOCATED) ){
    Fts5ExprTerm *pSyn;
    int nByte = sizeof(Fts5ExprTerm) + nToken+1;
    pSyn = (Fts5ExprTerm*)sqlite3_malloc(nByte);
    if( pSyn==0 ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pSyn, 0, nByte);
      pSyn->zTerm = (char*)&pSyn[1];
      memcpy(pSyn->zTerm, pToken, nToken);
      pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
      pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
    }
  }else{
    Fts5ExprTerm *pTerm;
    if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){







>
>







|





|







173840
173841
173842
173843
173844
173845
173846
173847
173848
173849
173850
173851
173852
173853
173854
173855
173856
173857
173858
173859
173860
173861
173862
173863
173864
173865
173866
173867
173868
173869
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  int rc = SQLITE_OK;
  const int SZALLOC = 8;
  TokenCtx *pCtx = (TokenCtx*)pContext;
  Fts5ExprPhrase *pPhrase = pCtx->pPhrase;

  UNUSED_PARAM2(iUnused1, iUnused2);

  /* If an error has already occurred, this is a no-op */
  if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;

  assert( pPhrase==0 || pPhrase->nTerm>0 );
  if( pPhrase && (tflags & FTS5_TOKEN_COLOCATED) ){
    Fts5ExprTerm *pSyn;
    int nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
    pSyn = (Fts5ExprTerm*)sqlite3_malloc(nByte);
    if( pSyn==0 ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pSyn, 0, nByte);
      pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
      memcpy(pSyn->zTerm, pToken, nToken);
      pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
      pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
    }
  }else{
    Fts5ExprTerm *pTerm;
    if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
172895
172896
172897
172898
172899
172900
172901
172902
172903
172904
172905
172906
172907
172908
172909
172910
172911
172912
172913
172914
172915
172916
172917
172918
172919
172920
172921
172922
172923
172924
}

/*
** Create a new FTS5 expression by cloning phrase iPhrase of the
** expression passed as the second argument.
*/
static int sqlite3Fts5ExprClonePhrase(
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */
  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */

  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
  if( rc==SQLITE_OK ){
    pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc, 
        sizeof(Fts5ExprPhrase*));
  }
  if( rc==SQLITE_OK ){
    pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, 







<







<

<


<

<







173978
173979
173980
173981
173982
173983
173984

173985
173986
173987
173988
173989
173990
173991

173992

173993
173994

173995

173996
173997
173998
173999
174000
174001
174002
}

/*
** Create a new FTS5 expression by cloning phrase iPhrase of the
** expression passed as the second argument.
*/
static int sqlite3Fts5ExprClonePhrase(

  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */
  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */

  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
  if( rc==SQLITE_OK ){
    pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc, 
        sizeof(Fts5ExprPhrase*));
  }
  if( rc==SQLITE_OK ){
    pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, 
172942
172943
172944
172945
172946
172947
172948

172949
172950
172951
172952
172953
172954
172955
172956

172957
172958

172959
172960
172961
172962
172963
172964
172965
      sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
    }
  }

  if( rc==SQLITE_OK ){
    /* All the allocations succeeded. Put the expression object together. */
    pNew->pIndex = pExpr->pIndex;

    pNew->nPhrase = 1;
    pNew->apExprPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->nPhrase = 1;
    sCtx.pPhrase->pNode = pNew->pRoot;

    if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 ){
      pNew->pRoot->eType = FTS5_TERM;

    }else{
      pNew->pRoot->eType = FTS5_STRING;

    }
  }else{
    sqlite3Fts5ExprFree(pNew);
    fts5ExprPhraseFree(sCtx.pPhrase);
    pNew = 0;
  }








>








>


>







174020
174021
174022
174023
174024
174025
174026
174027
174028
174029
174030
174031
174032
174033
174034
174035
174036
174037
174038
174039
174040
174041
174042
174043
174044
174045
174046
      sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
    }
  }

  if( rc==SQLITE_OK ){
    /* All the allocations succeeded. Put the expression object together. */
    pNew->pIndex = pExpr->pIndex;
    pNew->pConfig = pExpr->pConfig;
    pNew->nPhrase = 1;
    pNew->apExprPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->nPhrase = 1;
    sCtx.pPhrase->pNode = pNew->pRoot;

    if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 ){
      pNew->pRoot->eType = FTS5_TERM;
      pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
    }else{
      pNew->pRoot->eType = FTS5_STRING;
      pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
    }
  }else{
    sqlite3Fts5ExprFree(pNew);
    fts5ExprPhraseFree(sCtx.pPhrase);
    pNew = 0;
  }

173083
173084
173085
173086
173087
173088
173089









173090
173091
173092
173093
173094
173095
































173096
173097
173098
173099
173100
173101
173102
}

static void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNearset *pNear, 
  Fts5Colset *pColset 
){









  if( pNear ){
    pNear->pColset = pColset;
  }else{
    sqlite3_free(pColset);
  }
}

































static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
  if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
    int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
    memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
    p->nChild += pSub->nChild;
    sqlite3_free(pSub);







>
>
>
>
>
>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







174164
174165
174166
174167
174168
174169
174170
174171
174172
174173
174174
174175
174176
174177
174178
174179
174180
174181
174182
174183
174184
174185
174186
174187
174188
174189
174190
174191
174192
174193
174194
174195
174196
174197
174198
174199
174200
174201
174202
174203
174204
174205
174206
174207
174208
174209
174210
174211
174212
174213
174214
174215
174216
174217
174218
174219
174220
174221
174222
174223
174224
}

static void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNearset *pNear, 
  Fts5Colset *pColset 
){
  if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pParse->rc = SQLITE_ERROR;
    pParse->zErr = sqlite3_mprintf(
      "fts5: column queries are not supported (detail=none)"
    );
    sqlite3_free(pColset);
    return;
  }

  if( pNear ){
    pNear->pColset = pColset;
  }else{
    sqlite3_free(pColset);
  }
}

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 
       && pNear->apPhrase[0]->aTerm[0].pSynonym==0
      ){
        pNode->eType = FTS5_TERM;
        pNode->xNext = fts5ExprNodeNext_TERM;
      }else{
        pNode->xNext = fts5ExprNodeNext_STRING;
      }
      break;
    };

    case FTS5_OR: {
      pNode->xNext = fts5ExprNodeNext_OR;
      break;
    };

    case FTS5_AND: {
      pNode->xNext = fts5ExprNodeNext_AND;
      break;
    };

    default: assert( pNode->eType==FTS5_NOT ); {
      pNode->xNext = fts5ExprNodeNext_NOT;
      break;
    };
  }
}

static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
  if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
    int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
    memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
    p->nChild += pSub->nChild;
    sqlite3_free(pSub);
173139
173140
173141
173142
173143
173144
173145

173146
173147
173148
173149
173150
173151

173152
173153
173154








173155
173156

173157
173158
173159
173160
173161
173162
173163

    nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
    pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);

    if( pRet ){
      pRet->eType = eType;
      pRet->pNear = pNear;

      if( eType==FTS5_STRING ){
        int iPhrase;
        for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
          pNear->apPhrase[iPhrase]->pNode = pRet;
        }
        if( pNear->nPhrase==1 

         && pNear->apPhrase[0]->nTerm==1 
         && pNear->apPhrase[0]->aTerm[0].pSynonym==0
        ){








          pRet->eType = FTS5_TERM;
        }

      }else{
        fts5ExprAddChildren(pRet, pLeft);
        fts5ExprAddChildren(pRet, pRight);
      }
    }
  }








>





|
>
|
<

>
>
>
>
>
>
>
>
|

>







174261
174262
174263
174264
174265
174266
174267
174268
174269
174270
174271
174272
174273
174274
174275
174276

174277
174278
174279
174280
174281
174282
174283
174284
174285
174286
174287
174288
174289
174290
174291
174292
174293
174294
174295

    nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
    pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);

    if( pRet ){
      pRet->eType = eType;
      pRet->pNear = pNear;
      fts5ExprAssignXNext(pRet);
      if( eType==FTS5_STRING ){
        int iPhrase;
        for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
          pNear->apPhrase[iPhrase]->pNode = pRet;
        }

        if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL 
         && (pNear->nPhrase!=1 || pNear->apPhrase[0]->nTerm!=1)

        ){
          assert( pParse->rc==SQLITE_OK );
          pParse->rc = SQLITE_ERROR;
          assert( pParse->zErr==0 );
          pParse->zErr = sqlite3_mprintf(
              "fts5: %s queries are not supported (detail!=full)", 
              pNear->nPhrase==1 ? "phrase": "NEAR"
          );
          sqlite3_free(pRet);
          pRet = 0;
        }

      }else{
        fts5ExprAddChildren(pRet, pLeft);
        fts5ExprAddChildren(pRet, pRight);
      }
    }
  }

173262
173263
173264
173265
173266
173267
173268



173269
173270
173271
173272
173273
173274
173275
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];

      zRet = fts5PrintfAppend(zRet, " {");
      for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
        char *zTerm = pPhrase->aTerm[iTerm].zTerm;
        zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);



      }

      if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
      if( zRet==0 ) return 0;
    }

  }else{







>
>
>







174394
174395
174396
174397
174398
174399
174400
174401
174402
174403
174404
174405
174406
174407
174408
174409
174410
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];

      zRet = fts5PrintfAppend(zRet, " {");
      for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
        char *zTerm = pPhrase->aTerm[iTerm].zTerm;
        zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
        if( pPhrase->aTerm[iTerm].bPrefix ){
          zRet = fts5PrintfAppend(zRet, "*");
        }
      }

      if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
      if( zRet==0 ) return 0;
    }

  }else{
173429
173430
173431
173432
173433
173434
173435
173436
173437
173438
173439
173440
173441
173442
173443

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
    }else{
      zText = fts5ExprPrint(pConfig, pExpr->pRoot);
    }
    if( zText==0 ){







|







174564
174565
174566
174567
174568
174569
174570
174571
174572
174573
174574
174575
174576
174577
174578

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot->xNext==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
    }else{
      zText = fts5ExprPrint(pConfig, pExpr->pRoot);
    }
    if( zText==0 ){
173529
173530
173531
173532
173533
173534
173535
173536
173537
173538
173539
173540
173541
173542
173543
    { "fts5_isalnum",  fts5ExprIsAlnum },
    { "fts5_fold",     fts5ExprFold },
  };
  int i;
  int rc = SQLITE_OK;
  void *pCtx = (void*)pGlobal;

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aFunc); i++){
    struct Fts5ExprFunc *p = &aFunc[i];
    rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
  }

  /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
#ifndef NDEBUG
  (void)sqlite3Fts5ParserTrace;







|







174664
174665
174666
174667
174668
174669
174670
174671
174672
174673
174674
174675
174676
174677
174678
    { "fts5_isalnum",  fts5ExprIsAlnum },
    { "fts5_fold",     fts5ExprFold },
  };
  int i;
  int rc = SQLITE_OK;
  void *pCtx = (void*)pGlobal;

  for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
    struct Fts5ExprFunc *p = &aFunc[i];
    rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
  }

  /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
#ifndef NDEBUG
  (void)sqlite3Fts5ParserTrace;
173574
173575
173576
173577
173578
173579
173580



























































































































































































































173581
173582
173583
173584
173585
173586
173587
    nRet = pPhrase->poslist.n;
  }else{
    *pa = 0;
    nRet = 0;
  }
  return nRet;
}




























































































































































































































/*
** 2014 August 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







174709
174710
174711
174712
174713
174714
174715
174716
174717
174718
174719
174720
174721
174722
174723
174724
174725
174726
174727
174728
174729
174730
174731
174732
174733
174734
174735
174736
174737
174738
174739
174740
174741
174742
174743
174744
174745
174746
174747
174748
174749
174750
174751
174752
174753
174754
174755
174756
174757
174758
174759
174760
174761
174762
174763
174764
174765
174766
174767
174768
174769
174770
174771
174772
174773
174774
174775
174776
174777
174778
174779
174780
174781
174782
174783
174784
174785
174786
174787
174788
174789
174790
174791
174792
174793
174794
174795
174796
174797
174798
174799
174800
174801
174802
174803
174804
174805
174806
174807
174808
174809
174810
174811
174812
174813
174814
174815
174816
174817
174818
174819
174820
174821
174822
174823
174824
174825
174826
174827
174828
174829
174830
174831
174832
174833
174834
174835
174836
174837
174838
174839
174840
174841
174842
174843
174844
174845
174846
174847
174848
174849
174850
174851
174852
174853
174854
174855
174856
174857
174858
174859
174860
174861
174862
174863
174864
174865
174866
174867
174868
174869
174870
174871
174872
174873
174874
174875
174876
174877
174878
174879
174880
174881
174882
174883
174884
174885
174886
174887
174888
174889
174890
174891
174892
174893
174894
174895
174896
174897
174898
174899
174900
174901
174902
174903
174904
174905
174906
174907
174908
174909
174910
174911
174912
174913
174914
174915
174916
174917
174918
174919
174920
174921
174922
174923
174924
174925
174926
174927
174928
174929
174930
174931
174932
174933
174934
174935
174936
174937
174938
174939
174940
174941
    nRet = pPhrase->poslist.n;
  }else{
    *pa = 0;
    nRet = 0;
  }
  return nRet;
}

struct Fts5PoslistPopulator {
  Fts5PoslistWriter writer;
  int bOk;                        /* True if ok to populate */
  int bMiss;
};

static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
  Fts5PoslistPopulator *pRet;
  pRet = sqlite3_malloc(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
  if( pRet ){
    int i;
    memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
    for(i=0; i<pExpr->nPhrase; i++){
      Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
      Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
      assert( pExpr->apExprPhrase[i]->nTerm==1 );
      if( bLive && 
          (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
      ){
        pRet[i].bMiss = 1;
      }else{
        pBuf->n = 0;
      }
    }
  }
  return pRet;
}

struct Fts5ExprCtx {
  Fts5Expr *pExpr;
  Fts5PoslistPopulator *aPopulator;
  i64 iOff;
};
typedef struct Fts5ExprCtx Fts5ExprCtx;

/*
** TODO: Make this more efficient!
*/
static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
  int i;
  for(i=0; i<pColset->nCol; i++){
    if( pColset->aiCol[i]==iCol ) return 1;
  }
  return 0;
}

static int fts5ExprPopulatePoslistsCb(
  void *pCtx,                /* Copy of 2nd argument to xTokenize() */
  int tflags,                /* Mask of FTS5_TOKEN_* flags */
  const char *pToken,        /* Pointer to buffer containing token */
  int nToken,                /* Size of token in bytes */
  int iUnused1,              /* Byte offset of token within input text */
  int iUnused2               /* Byte offset of end of token within input text */
){
  Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
  Fts5Expr *pExpr = p->pExpr;
  int i;

  UNUSED_PARAM2(iUnused1, iUnused2);

  if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
  for(i=0; i<pExpr->nPhrase; i++){
    Fts5ExprTerm *pTerm;
    if( p->aPopulator[i].bOk==0 ) continue;
    for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
      int nTerm = strlen(pTerm->zTerm);
      if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix))
       && memcmp(pTerm->zTerm, pToken, nTerm)==0
      ){
        int rc = sqlite3Fts5PoslistWriterAppend(
            &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
        );
        if( rc ) return rc;
        break;
      }
    }
  }
  return SQLITE_OK;
}

static int sqlite3Fts5ExprPopulatePoslists(
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  Fts5PoslistPopulator *aPopulator,
  int iCol, 
  const char *z, int n
){
  int i;
  Fts5ExprCtx sCtx;
  sCtx.pExpr = pExpr;
  sCtx.aPopulator = aPopulator;
  sCtx.iOff = (((i64)iCol) << 32) - 1;

  for(i=0; i<pExpr->nPhrase; i++){
    Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
    Fts5Colset *pColset = pNode->pNear->pColset;
    if( (pColset && 0==fts5ExprColsetTest(pColset, iCol)) 
     || aPopulator[i].bMiss
    ){
      aPopulator[i].bOk = 0;
    }else{
      aPopulator[i].bOk = 1;
    }
  }

  return sqlite3Fts5Tokenize(pConfig, 
      FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
  );
}

static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
  if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
    pNode->pNear->apPhrase[0]->poslist.n = 0;
  }else{
    int i;
    for(i=0; i<pNode->nChild; i++){
      fts5ExprClearPoslists(pNode->apChild[i]);
    }
  }
}

static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
  pNode->iRowid = iRowid;
  pNode->bEof = 0;
  switch( pNode->eType ){
    case FTS5_TERM:
    case FTS5_STRING:
      return (pNode->pNear->apPhrase[0]->poslist.n>0);

    case FTS5_AND: {
      int i;
      for(i=0; i<pNode->nChild; i++){
        if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
          fts5ExprClearPoslists(pNode);
          return 0;
        }
      }
      break;
    }

    case FTS5_OR: {
      int i;
      int bRet = 0;
      for(i=0; i<pNode->nChild; i++){
        if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
          bRet = 1;
        }
      }
      return bRet;
    }

    default: {
      assert( pNode->eType==FTS5_NOT );
      if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
          || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
        ){
        fts5ExprClearPoslists(pNode);
        return 0;
      }
      break;
    }
  }
  return 1;
}

static void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
  fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
}

static void fts5ExprClearEof(Fts5ExprNode *pNode){
  int i;
  for(i=0; i<pNode->nChild; i++){
    fts5ExprClearEof(pNode->apChild[i]);
  }
  pNode->bEof = 0;
}
static void sqlite3Fts5ExprClearEof(Fts5Expr *pExpr){
  fts5ExprClearEof(pExpr->pRoot);
}

/*
** This function is only called for detail=columns tables. 
*/
static int sqlite3Fts5ExprPhraseCollist(
  Fts5Expr *pExpr, 
  int iPhrase, 
  const u8 **ppCollist, 
  int *pnCollist
){
  Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
  Fts5ExprNode *pNode = pPhrase->pNode;
  int rc = SQLITE_OK;

  assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
  assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );

  if( pNode->bEof==0 
   && pNode->iRowid==pExpr->pRoot->iRowid 
   && pPhrase->poslist.n>0
  ){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
    if( pTerm->pSynonym ){
      Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
      rc = fts5ExprSynonymList(
          pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
      );
    }else{
      *ppCollist = pPhrase->aTerm[0].pIter->pData;
      *pnCollist = pPhrase->aTerm[0].pIter->nData;
    }
  }else{
    *ppCollist = 0;
    *pnCollist = 0;
  }

  return rc;
}


/*
** 2014 August 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
173603
173604
173605
173606
173607
173608
173609

173610
173611
173612
173613
173614
173615
173616
** This file contains the implementation of an in-memory hash table used
** to accumuluate "term -> doclist" content before it is flused to a level-0
** segment.
*/


struct Fts5Hash {

  int *pnByte;                    /* Pointer to bytes counter */
  int nEntry;                     /* Number of entries currently in hash */
  int nSlot;                      /* Size of aSlot[] array */
  Fts5HashEntry *pScan;           /* Current ordered scan item */
  Fts5HashEntry **aSlot;          /* Array of hash slots */
};








>







174957
174958
174959
174960
174961
174962
174963
174964
174965
174966
174967
174968
174969
174970
174971
** This file contains the implementation of an in-memory hash table used
** to accumuluate "term -> doclist" content before it is flused to a level-0
** segment.
*/


struct Fts5Hash {
  int eDetail;                    /* Copy of Fts5Config.eDetail */
  int *pnByte;                    /* Pointer to bytes counter */
  int nEntry;                     /* Number of entries currently in hash */
  int nSlot;                      /* Size of aSlot[] array */
  Fts5HashEntry *pScan;           /* Current ordered scan item */
  Fts5HashEntry **aSlot;          /* Array of hash slots */
};

173638
173639
173640
173641
173642
173643
173644

173645
173646
173647
173648
173649
173650
173651
173652
173653
173654
173655
173656
173657
173658
173659
173660
173661
173662
173663
173664
173665
173666
173667
173668
173669
173670
173671
173672
173673

173674
173675
173676
173677
173678
173679
173680
struct Fts5HashEntry {
  Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
  Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
  
  int nAlloc;                     /* Total size of allocation */
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */

  u8 bDel;                        /* Set delete-flag @ iSzPoslist */

  int iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*
** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
static int sqlite3Fts5HashNew(Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;

  *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    int nByte;
    memset(pNew, 0, sizeof(Fts5Hash));
    pNew->pnByte = pnByte;


    pNew->nSlot = 1024;
    nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
    pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc(nByte);
    if( pNew->aSlot==0 ){
      sqlite3_free(pNew);
      *ppNew = 0;







>

|
|















|










>







174993
174994
174995
174996
174997
174998
174999
175000
175001
175002
175003
175004
175005
175006
175007
175008
175009
175010
175011
175012
175013
175014
175015
175016
175017
175018
175019
175020
175021
175022
175023
175024
175025
175026
175027
175028
175029
175030
175031
175032
175033
175034
175035
175036
175037
struct Fts5HashEntry {
  Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
  Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
  
  int nAlloc;                     /* Total size of allocation */
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  int nKey;                       /* Length of zKey[] in bytes */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */
  u8 bContent;                    /* Set content-flag (detail=none mode) */
  i16 iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*
** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;

  *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    int nByte;
    memset(pNew, 0, sizeof(Fts5Hash));
    pNew->pnByte = pnByte;
    pNew->eDetail = pConfig->eDetail;

    pNew->nSlot = 1024;
    nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
    pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc(nByte);
    if( pNew->aSlot==0 ){
      sqlite3_free(pNew);
      *ppNew = 0;
173759
173760
173761
173762
173763
173764
173765
173766
173767
173768









173769
173770
173771
173772
173773
173774
173775
173776
173777
173778
173779
173780

173781
173782


173783
173784
173785








173786
173787
173788
173789
173790
173791
173792
173793
173794
173795
173796
173797



173798
173799
173800
173801
173802

173803
173804
173805
173806
173807
173808
173809
173810
173811

173812
173813
173814

173815
173816
173817
173818
173819
173820

173821
173822
173823
173824
173825
173826
173827

173828
173829
173830
173831
173832
173833
173834
173835
173836





173837



173838
173839




173840
173841
173842
173843
173844
173845
173846
173847
173848
173849
173850
173851
173852
173853
173854
173855
173856
173857
173858
173859
173860
173861




173862
173863
173864
173865
173866
173867


173868

173869
173870
173871
173872
173873
173874

173875



173876
173877
173878

173879
173880
173881
173882



173883
173884

173885

173886
173887


173888
173889
173890
173891
173892
173893

173894
173895
173896
173897
173898
173899
173900

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
  pHash->aSlot = apNew;
  return SQLITE_OK;
}

static void fts5HashAddPoslistSize(Fts5HashEntry *p){
  if( p->iSzPoslist ){
    u8 *pPtr = (u8*)p;









    int nSz = (p->nData - p->iSzPoslist - 1);         /* Size in bytes */
    int nPos = nSz*2 + p->bDel;                       /* Value of nPos field */

    assert( p->bDel==0 || p->bDel==1 );
    if( nPos<=127 ){
      pPtr[p->iSzPoslist] = (u8)nPos;
    }else{
      int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
      memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
      sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
      p->nData += (nByte-1);
    }

    p->bDel = 0;
    p->iSzPoslist = 0;


  }
}









static int sqlite3Fts5HashWrite(
  Fts5Hash *pHash,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */
  char bByte,                     /* First byte of token */
  const char *pToken, int nToken  /* Token to add or remove to or from index */
){
  unsigned int iHash;
  Fts5HashEntry *p;
  u8 *pPtr;
  int nIncr = 0;                  /* Amount to increment (*pHash->pnByte) by */




  /* Attempt to locate an existing hash entry */
  iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( p->zKey[0]==bByte 

     && memcmp(&p->zKey[1], pToken, nToken)==0 
     && p->zKey[nToken+1]==0 
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){

    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;


    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
    }


    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, (u8*)p->zKey, nToken+1) );

    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iSzPoslist = p->nData;
    p->nData += 1;
    p->iRowid = iRowid;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;





    nIncr += p->nData;



  }





  /* Check there is enough space to append a new entry. Worst case scenario
  ** is:
  **
  **     + 9 bytes for a new rowid,
  **     + 4 byte reserved for the "poslist size" varint.
  **     + 1 byte for a "new column" byte,
  **     + 3 bytes for a new column number (16-bit max) as a varint,
  **     + 5 bytes for the new position offset (32-bit max).
  */
  if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
    int nNew = p->nAlloc * 2;
    Fts5HashEntry *pNew;
    Fts5HashEntry **pp;
    pNew = (Fts5HashEntry*)sqlite3_realloc(p, nNew);
    if( pNew==0 ) return SQLITE_NOMEM;
    pNew->nAlloc = nNew;
    for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
    *pp = pNew;
    p = pNew;
  }
  pPtr = (u8*)p;
  nIncr -= p->nData;





  /* If this is a new rowid, append the 4-byte size field for the previous
  ** entry, and the new rowid for this entry.  */
  if( iRowid!=p->iRowid ){
    fts5HashAddPoslistSize(p);
    p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iRowid - p->iRowid);


    p->iSzPoslist = p->nData;

    p->nData += 1;
    p->iCol = 0;
    p->iPos = 0;
    p->iRowid = iRowid;
  }


  if( iCol>=0 ){



    /* Append a new column value, if necessary */
    assert( iCol>=p->iCol );
    if( iCol!=p->iCol ){

      pPtr[p->nData++] = 0x01;
      p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
      p->iCol = iCol;
      p->iPos = 0;



    }


    /* Append the new position offset */

    p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
    p->iPos = iPos;


  }else{
    /* This is a delete. Set the delete flag. */
    p->bDel = 1;
  }
  nIncr += p->nData;


  *pHash->pnByte += nIncr;
  return SQLITE_OK;
}


/*
** Arguments pLeft and pRight point to linked-lists of hash-entry objects,







|


>
>
>
>
>
>
>
>
>
|
|

|
|
|
|
|
|
|
|
|
>
|

>
>



>
>
>
>
>
>
>
>












>
>
>





>

<







>



>






>







>


<
<
<
<



>
>
>
>
>
|
>
>
>
|

>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
>
>
>
>




|

>
>

>
|
|
|
<
|
|
>

>
>
>
|
|
|
>
|
|
|
|
>
>
>
|
|
>
|
>
|
|
>
>




<

>







175116
175117
175118
175119
175120
175121
175122
175123
175124
175125
175126
175127
175128
175129
175130
175131
175132
175133
175134
175135
175136
175137
175138
175139
175140
175141
175142
175143
175144
175145
175146
175147
175148
175149
175150
175151
175152
175153
175154
175155
175156
175157
175158
175159
175160
175161
175162
175163
175164
175165
175166
175167
175168
175169
175170
175171
175172
175173
175174
175175
175176
175177
175178
175179
175180
175181
175182
175183
175184

175185
175186
175187
175188
175189
175190
175191
175192
175193
175194
175195
175196
175197
175198
175199
175200
175201
175202
175203
175204
175205
175206
175207
175208
175209
175210
175211
175212
175213




175214
175215
175216
175217
175218
175219
175220
175221
175222
175223
175224
175225
175226
175227
175228
175229
175230
175231
175232
175233
175234
175235
175236
175237
175238
175239
175240
175241
175242
175243
175244
175245
175246
175247
175248
175249
175250
175251

175252
175253
175254
175255
175256
175257
175258
175259
175260
175261
175262
175263
175264
175265
175266
175267
175268
175269

175270
175271
175272
175273
175274
175275
175276
175277
175278
175279
175280
175281
175282
175283
175284
175285
175286
175287
175288
175289
175290
175291
175292
175293
175294
175295
175296
175297
175298
175299
175300

175301
175302
175303
175304
175305
175306
175307
175308
175309

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
  pHash->aSlot = apNew;
  return SQLITE_OK;
}

static void fts5HashAddPoslistSize(Fts5Hash *pHash, Fts5HashEntry *p){
  if( p->iSzPoslist ){
    u8 *pPtr = (u8*)p;
    if( pHash->eDetail==FTS5_DETAIL_NONE ){
      assert( p->nData==p->iSzPoslist );
      if( p->bDel ){
        pPtr[p->nData++] = 0x00;
        if( p->bContent ){
          pPtr[p->nData++] = 0x00;
        }
      }
    }else{
      int nSz = (p->nData - p->iSzPoslist - 1);       /* Size in bytes */
      int nPos = nSz*2 + p->bDel;                     /* Value of nPos field */

      assert( p->bDel==0 || p->bDel==1 );
      if( nPos<=127 ){
        pPtr[p->iSzPoslist] = (u8)nPos;
      }else{
        int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
        memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
        sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
        p->nData += (nByte-1);
      }
    }

    p->iSzPoslist = 0;
    p->bDel = 0;
    p->bContent = 0;
  }
}

/*
** Add an entry to the in-memory hash table. The key is the concatenation
** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos).
**
**     (bByte || pToken) -> (iRowid,iCol,iPos)
**
** Or, if iCol is negative, then the value is a delete marker.
*/
static int sqlite3Fts5HashWrite(
  Fts5Hash *pHash,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */
  char bByte,                     /* First byte of token */
  const char *pToken, int nToken  /* Token to add or remove to or from index */
){
  unsigned int iHash;
  Fts5HashEntry *p;
  u8 *pPtr;
  int nIncr = 0;                  /* Amount to increment (*pHash->pnByte) by */
  int bNew;                       /* If non-delete entry should be written */
  
  bNew = (pHash->eDetail==FTS5_DETAIL_FULL);

  /* Attempt to locate an existing hash entry */
  iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( p->zKey[0]==bByte 
     && p->nKey==nToken
     && memcmp(&p->zKey[1], pToken, nToken)==0 

    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    /* Figure out how much space to allocate */
    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    /* Grow the Fts5Hash.aSlot[] array if necessary. */
    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
    }

    /* Allocate new Fts5HashEntry and add it to the hash table. */
    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, (u8*)p->zKey, nToken+1) );
    p->nKey = nToken;
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;




    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;

    /* Add the first rowid field to the hash-entry */
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iRowid = iRowid;

    p->iSzPoslist = p->nData;
    if( pHash->eDetail!=FTS5_DETAIL_NONE ){
      p->nData += 1;
      p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
    }

    nIncr += p->nData;
  }else{

    /* Appending to an existing hash-entry. Check that there is enough 
    ** space to append the largest possible new entry. Worst case scenario 
    ** is:
    **
    **     + 9 bytes for a new rowid,
    **     + 4 byte reserved for the "poslist size" varint.
    **     + 1 byte for a "new column" byte,
    **     + 3 bytes for a new column number (16-bit max) as a varint,
    **     + 5 bytes for the new position offset (32-bit max).
    */
    if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
      int nNew = p->nAlloc * 2;
      Fts5HashEntry *pNew;
      Fts5HashEntry **pp;
      pNew = (Fts5HashEntry*)sqlite3_realloc(p, nNew);
      if( pNew==0 ) return SQLITE_NOMEM;
      pNew->nAlloc = nNew;
      for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
      *pp = pNew;
      p = pNew;
    }

    nIncr -= p->nData;
  }
  assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) );

  pPtr = (u8*)p;

  /* If this is a new rowid, append the 4-byte size field for the previous
  ** entry, and the new rowid for this entry.  */
  if( iRowid!=p->iRowid ){
    fts5HashAddPoslistSize(pHash, p);
    p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iRowid - p->iRowid);
    p->iRowid = iRowid;
    bNew = 1;
    p->iSzPoslist = p->nData;
    if( pHash->eDetail!=FTS5_DETAIL_NONE ){
      p->nData += 1;
      p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
      p->iPos = 0;

    }
  }

  if( iCol>=0 ){
    if( pHash->eDetail==FTS5_DETAIL_NONE ){
      p->bContent = 1;
    }else{
      /* Append a new column value, if necessary */
      assert( iCol>=p->iCol );
      if( iCol!=p->iCol ){
        if( pHash->eDetail==FTS5_DETAIL_FULL ){
          pPtr[p->nData++] = 0x01;
          p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
          p->iCol = iCol;
          p->iPos = 0;
        }else{
          bNew = 1;
          p->iCol = iPos = iCol;
        }
      }

      /* Append the new position offset, if necessary */
      if( bNew ){
        p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
        p->iPos = iPos;
      }
    }
  }else{
    /* This is a delete. Set the delete flag. */
    p->bDel = 1;
  }


  nIncr += p->nData;
  *pHash->pnByte += nIncr;
  return SQLITE_OK;
}


/*
** Arguments pLeft and pRight point to linked-lists of hash-entry objects,
174000
174001
174002
174003
174004
174005
174006
174007
174008
174009
174010
174011
174012
174013
174014
  Fts5HashEntry *p;

  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }








|







175409
175410
175411
175412
175413
175414
175415
175416
175417
175418
175419
175420
175421
175422
175423
  Fts5HashEntry *p;

  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(pHash, p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

174036
174037
174038
174039
174040
174041
174042
174043
174044
174045
174046
174047
174048
174049
174050
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = (int)strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;







|







175445
175446
175447
175448
175449
175450
175451
175452
175453
175454
175455
175456
175457
175458
175459
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = (int)strlen(p->zKey);
    fts5HashAddPoslistSize(pHash, p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
174311
174312
174313
174314
174315
174316
174317

174318
174319
174320
174321
174322
174323
174324
#define FTS5_DATA_ZERO_PADDING 8
#define FTS5_DATA_PADDING 20

typedef struct Fts5Data Fts5Data;
typedef struct Fts5DlidxIter Fts5DlidxIter;
typedef struct Fts5DlidxLvl Fts5DlidxLvl;
typedef struct Fts5DlidxWriter Fts5DlidxWriter;

typedef struct Fts5PageWriter Fts5PageWriter;
typedef struct Fts5SegIter Fts5SegIter;
typedef struct Fts5DoclistIter Fts5DoclistIter;
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;







>







175720
175721
175722
175723
175724
175725
175726
175727
175728
175729
175730
175731
175732
175733
175734
#define FTS5_DATA_ZERO_PADDING 8
#define FTS5_DATA_PADDING 20

typedef struct Fts5Data Fts5Data;
typedef struct Fts5DlidxIter Fts5DlidxIter;
typedef struct Fts5DlidxLvl Fts5DlidxLvl;
typedef struct Fts5DlidxWriter Fts5DlidxWriter;
typedef struct Fts5Iter Fts5Iter;
typedef struct Fts5PageWriter Fts5PageWriter;
typedef struct Fts5SegIter Fts5SegIter;
typedef struct Fts5DoclistIter Fts5DoclistIter;
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;
174483
174484
174485
174486
174487
174488
174489



174490
174491
174492
174493
174494
174495
174496
174497
174498
174499
174500
174501
174502
174503
174504
174505
174506
174507
174508
174509
174510
174511
174512
174513
174514
174515
174516
174517
174518
174519
174520
174521
174522
174523
174524
174525
174526
174527
174528
174529
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  int iLeafOffset;                /* Byte offset within current leaf */




  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
  int iTermLeafOffset;

  int iPgidxOff;                  /* Next offset in pgidx */
  int iEndofDoclist;

  /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
  int iRowidOffset;               /* Current entry in aRowidOffset[] */
  int nRowidOffset;               /* Allocated size of aRowidOffset[] array */
  int *aRowidOffset;              /* Array of offset to rowid fields */

  Fts5DlidxIter *pDlidx;          /* If there is a doclist-index */

  /* Variables populated based on current entry. */
  Fts5Buffer term;                /* Current term */
  i64 iRowid;                     /* Current rowid */
  int nPos;                       /* Number of bytes in current position list */
  int bDel;                       /* True if the delete flag is set */
};

/*
** Argument is a pointer to an Fts5Data structure that contains a 
** leaf page.
*/
#define ASSERT_SZLEAF_OK(x) assert( \
    (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
)

#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02


/* 
** Argument is a pointer to an Fts5Data structure that contains a leaf
** page. This macro evaluates to true if the leaf contains no terms, or
** false if it contains at least one term.
*/
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)







>
>
>



















|












<







175893
175894
175895
175896
175897
175898
175899
175900
175901
175902
175903
175904
175905
175906
175907
175908
175909
175910
175911
175912
175913
175914
175915
175916
175917
175918
175919
175920
175921
175922
175923
175924
175925
175926
175927
175928
175929
175930
175931
175932
175933
175934

175935
175936
175937
175938
175939
175940
175941
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  int iLeafOffset;                /* Byte offset within current leaf */

  /* Next method */
  void (*xNext)(Fts5Index*, Fts5SegIter*, int*);

  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
  int iTermLeafOffset;

  int iPgidxOff;                  /* Next offset in pgidx */
  int iEndofDoclist;

  /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
  int iRowidOffset;               /* Current entry in aRowidOffset[] */
  int nRowidOffset;               /* Allocated size of aRowidOffset[] array */
  int *aRowidOffset;              /* Array of offset to rowid fields */

  Fts5DlidxIter *pDlidx;          /* If there is a doclist-index */

  /* Variables populated based on current entry. */
  Fts5Buffer term;                /* Current term */
  i64 iRowid;                     /* Current rowid */
  int nPos;                       /* Number of bytes in current position list */
  u8 bDel;                        /* True if the delete flag is set */
};

/*
** Argument is a pointer to an Fts5Data structure that contains a 
** leaf page.
*/
#define ASSERT_SZLEAF_OK(x) assert( \
    (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
)

#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02


/* 
** Argument is a pointer to an Fts5Data structure that contains a leaf
** page. This macro evaluates to true if the leaf contains no terms, or
** false if it contains at least one term.
*/
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
174551
174552
174553
174554
174555
174556
174557
174558


174559
174560
174561




174562
174563
174564
174565
174566
174567
174568
174569
174570
174571
174572
174573
174574
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused. 
**
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5IndexIter {


  Fts5Index *pIndex;              /* Index that owns this iterator */
  Fts5Structure *pStruct;         /* Database structure for this iterator */
  Fts5Buffer poslist;             /* Buffer containing current poslist */





  int nSeg;                       /* Size of aSeg[] array */
  int bRev;                       /* True to iterate in reverse order */
  u8 bSkipEmpty;                  /* True to skip deleted entries */
  u8 bEof;                        /* True at EOF */
  u8 bFiltered;                   /* True if column-filter already applied */

  i64 iSwitchRowid;               /* Firstest rowid of other than aFirst[1] */
  Fts5CResult *aFirst;            /* Current merge state (see above) */
  Fts5SegIter aSeg[1];            /* Array of segment iterators */
};









|
>
>



>
>
>
>




<
<







175963
175964
175965
175966
175967
175968
175969
175970
175971
175972
175973
175974
175975
175976
175977
175978
175979
175980
175981
175982
175983


175984
175985
175986
175987
175988
175989
175990
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused. 
**
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5Iter {
  Fts5IndexIter base;             /* Base class containing output vars */

  Fts5Index *pIndex;              /* Index that owns this iterator */
  Fts5Structure *pStruct;         /* Database structure for this iterator */
  Fts5Buffer poslist;             /* Buffer containing current poslist */
  Fts5Colset *pColset;            /* Restrict matches to these columns */

  /* Invoked to set output variables. */
  void (*xSetOutputs)(Fts5Iter*, Fts5SegIter*);

  int nSeg;                       /* Size of aSeg[] array */
  int bRev;                       /* True to iterate in reverse order */
  u8 bSkipEmpty;                  /* True to skip deleted entries */



  i64 iSwitchRowid;               /* Firstest rowid of other than aFirst[1] */
  Fts5CResult *aFirst;            /* Current merge state (see above) */
  Fts5SegIter aSeg[1];            /* Array of segment iterators */
};


174650
174651
174652
174653
174654
174655
174656
174657
174658
174659
174660
174661
174662
174663
174664
174665
174666
174667
174668
174669
174670
174671
174672
174673
174674
*/
static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
  int nCmp = MIN(pLeft->n, pRight->n);
  int res = memcmp(pLeft->p, pRight->p, nCmp);
  return (res==0 ? (pLeft->n - pRight->n) : res);
}

#ifdef SQLITE_DEBUG
static int fts5BlobCompare(
  const u8 *pLeft, int nLeft, 
  const u8 *pRight, int nRight
){
  int nCmp = MIN(nLeft, nRight);
  int res = memcmp(pLeft, pRight, nCmp);
  return (res==0 ? (nLeft - nRight) : res);
}
#endif

static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
  int ret;
  fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
  return ret;
}

/*







<
<
<
<
<
<
<
<
<
<
<







176066
176067
176068
176069
176070
176071
176072











176073
176074
176075
176076
176077
176078
176079
*/
static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
  int nCmp = MIN(pLeft->n, pRight->n);
  int res = memcmp(pLeft->p, pRight->p, nCmp);
  return (res==0 ? (pLeft->n - pRight->n) : res);
}












static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
  int ret;
  fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
  return ret;
}

/*
174922
174923
174924
174925
174926
174927
174928



174929
174930
174931
174932
174933
174934

174935
174936
174937
174938




174939
174940
174941
174942
174943



174944
174945
174946
174947
174948
174949
174950
174951
174952
174953
    i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);

    for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
      Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
      int nTotal;
      int iSeg;




      i += fts5GetVarint32(&pData[i], pLvl->nMerge);
      i += fts5GetVarint32(&pData[i], nTotal);
      assert( nTotal>=pLvl->nMerge );
      pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc, 
          nTotal * sizeof(Fts5StructureSegment)
      );


      if( rc==SQLITE_OK ){
        pLvl->nSeg = nTotal;
        for(iSeg=0; iSeg<nTotal; iSeg++){




          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
        }
      }else{



        fts5StructureRelease(pRet);
        pRet = 0;
      }
    }
  }

  *ppOut = pRet;
  return rc;
}








>
>
>
|
|
|
|
|
|
>




>
>
>
>




<
>
>
>
|
|
<







176327
176328
176329
176330
176331
176332
176333
176334
176335
176336
176337
176338
176339
176340
176341
176342
176343
176344
176345
176346
176347
176348
176349
176350
176351
176352
176353
176354
176355

176356
176357
176358
176359
176360

176361
176362
176363
176364
176365
176366
176367
    i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);

    for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
      Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
      int nTotal;
      int iSeg;

      if( i>=nData ){
        rc = FTS5_CORRUPT;
      }else{
        i += fts5GetVarint32(&pData[i], pLvl->nMerge);
        i += fts5GetVarint32(&pData[i], nTotal);
        assert( nTotal>=pLvl->nMerge );
        pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc, 
            nTotal * sizeof(Fts5StructureSegment)
        );
      }

      if( rc==SQLITE_OK ){
        pLvl->nSeg = nTotal;
        for(iSeg=0; iSeg<nTotal; iSeg++){
          if( i>=nData ){
            rc = FTS5_CORRUPT;
            break;
          }
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
        }

      }
    }
    if( rc!=SQLITE_OK ){
      fts5StructureRelease(pRet);
      pRet = 0;

    }
  }

  *ppOut = pRet;
  return rc;
}

175542
175543
175544
175545
175546
175547
175548
175549
175550
















175551
175552
175553
175554
175555


175556
175557
175558
175559
175560
175561
175562
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */
    int nSz;
    ASSERT_SZLEAF_OK(pIter->pLeaf);
















    fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
    pIter->bDel = (nSz & 0x0001);
    pIter->nPos = nSz>>1;
    pIter->iLeafOffset = iOff;
    assert_nc( pIter->nPos>=0 );


  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;








<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
<
|
>
>







176956
176957
176958
176959
176960
176961
176962

176963
176964
176965
176966
176967
176968
176969
176970
176971
176972
176973
176974
176975
176976
176977
176978
176979
176980
176981
176982

176983
176984
176985
176986
176987
176988
176989
176990
176991
176992
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */

    ASSERT_SZLEAF_OK(pIter->pLeaf);
    if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
      int iEod = MIN(pIter->iEndofDoclist, pIter->pLeaf->szLeaf);
      pIter->bDel = 0;
      pIter->nPos = 1;
      if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
        pIter->bDel = 1;
        iOff++;
        if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
          pIter->nPos = 1;
          iOff++;
        }else{
          pIter->nPos = 0;
        }
      }
    }else{
      int nSz;
      fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
      pIter->bDel = (nSz & 0x0001);
      pIter->nPos = nSz>>1;

      assert_nc( pIter->nPos>=0 );
    }
    pIter->iLeafOffset = iOff;
  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;

175591
175592
175593
175594
175595
175596
175597




175598
175599
175600
175601
175602
175603
175604
175605
175606
175607
175608
175609
175610
175611
175612
175613
175614














175615
175616
175617
175618
175619
175620
175621
*/
static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;  /* Offset to read at */
  int nNew;                       /* Bytes of new data */

  iOff += fts5GetVarint32(&a[iOff], nNew);




  pIter->term.n = nKeep;
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
  iOff += nNew;
  pIter->iTermLeafOffset = iOff;
  pIter->iTermLeafPgno = pIter->iLeafPgno;
  pIter->iLeafOffset = iOff;

  if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
  }else{
    int nExtra;
    pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
    pIter->iEndofDoclist += nExtra;
  }

  fts5SegIterLoadRowid(p, pIter);
}















/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
** this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 







>
>
>
>

















>
>
>
>
>
>
>
>
>
>
>
>
>
>







177021
177022
177023
177024
177025
177026
177027
177028
177029
177030
177031
177032
177033
177034
177035
177036
177037
177038
177039
177040
177041
177042
177043
177044
177045
177046
177047
177048
177049
177050
177051
177052
177053
177054
177055
177056
177057
177058
177059
177060
177061
177062
177063
177064
177065
177066
177067
177068
177069
*/
static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;  /* Offset to read at */
  int nNew;                       /* Bytes of new data */

  iOff += fts5GetVarint32(&a[iOff], nNew);
  if( iOff+nNew>pIter->pLeaf->nn ){
    p->rc = FTS5_CORRUPT;
    return;
  }
  pIter->term.n = nKeep;
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
  iOff += nNew;
  pIter->iTermLeafOffset = iOff;
  pIter->iTermLeafPgno = pIter->iLeafPgno;
  pIter->iLeafOffset = iOff;

  if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
  }else{
    int nExtra;
    pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
    pIter->iEndofDoclist += nExtra;
  }

  fts5SegIterLoadRowid(p, pIter);
}

static void fts5SegIterNext(Fts5Index*, Fts5SegIter*, int*);
static void fts5SegIterNext_Reverse(Fts5Index*, Fts5SegIter*, int*);
static void fts5SegIterNext_None(Fts5Index*, Fts5SegIter*, int*);

static void fts5SegIterSetNext(Fts5Index *p, Fts5SegIter *pIter){
  if( pIter->flags & FTS5_SEGITER_REVERSE ){
    pIter->xNext = fts5SegIterNext_Reverse;
  }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pIter->xNext = fts5SegIterNext_None;
  }else{
    pIter->xNext = fts5SegIterNext;
  }
}

/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
** this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
175634
175635
175636
175637
175638
175639
175640

175641
175642
175643
175644
175645
175646
175647
    ** at EOF already. */
    assert( pIter->pLeaf==0 );
    return;
  }

  if( p->rc==SQLITE_OK ){
    memset(pIter, 0, sizeof(*pIter));

    pIter->pSeg = pSeg;
    pIter->iLeafPgno = pSeg->pgnoFirst-1;
    fts5SegIterNextPage(p, pIter);
  }

  if( p->rc==SQLITE_OK ){
    pIter->iLeafOffset = 4;







>







177082
177083
177084
177085
177086
177087
177088
177089
177090
177091
177092
177093
177094
177095
177096
    ** at EOF already. */
    assert( pIter->pLeaf==0 );
    return;
  }

  if( p->rc==SQLITE_OK ){
    memset(pIter, 0, sizeof(*pIter));
    fts5SegIterSetNext(p, pIter);
    pIter->pSeg = pSeg;
    pIter->iLeafPgno = pSeg->pgnoFirst-1;
    fts5SegIterNextPage(p, pIter);
  }

  if( p->rc==SQLITE_OK ){
    pIter->iLeafOffset = 4;
175665
175666
175667
175668
175669
175670
175671

175672
175673
175674
175675
175676
175677
175678
175679
175680
175681
175682
175683








175684
175685
175686
175687
175688

175689
175690
175691
175692

175693
175694
175695
175696
175697
175698
175699
** This function advances the iterator so that it points to the last 
** relevant rowid on the page and, if necessary, initializes the 
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){

  int n = pIter->pLeaf->szLeaf;
  int i = pIter->iLeafOffset;
  u8 *a = pIter->pLeaf->p;
  int iRowidOffset = 0;

  if( n>pIter->iEndofDoclist ){
    n = pIter->iEndofDoclist;
  }

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  while( 1 ){
    i64 iDelta = 0;








    int nPos;
    int bDummy;

    i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
    i += nPos;

    if( i>=n ) break;
    i += fts5GetVarint(&a[i], (u64*)&iDelta);
    pIter->iRowid += iDelta;


    if( iRowidOffset>=pIter->nRowidOffset ){
      int nNew = pIter->nRowidOffset + 8;
      int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
      if( aNew==0 ){
        p->rc = SQLITE_NOMEM;
        break;
      }







>












>
>
>
>
>
>
>
>
|
|
<
|
|
>




>







177114
177115
177116
177117
177118
177119
177120
177121
177122
177123
177124
177125
177126
177127
177128
177129
177130
177131
177132
177133
177134
177135
177136
177137
177138
177139
177140
177141
177142
177143

177144
177145
177146
177147
177148
177149
177150
177151
177152
177153
177154
177155
177156
177157
177158
** This function advances the iterator so that it points to the last 
** relevant rowid on the page and, if necessary, initializes the 
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
  int eDetail = p->pConfig->eDetail;
  int n = pIter->pLeaf->szLeaf;
  int i = pIter->iLeafOffset;
  u8 *a = pIter->pLeaf->p;
  int iRowidOffset = 0;

  if( n>pIter->iEndofDoclist ){
    n = pIter->iEndofDoclist;
  }

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  while( 1 ){
    i64 iDelta = 0;

    if( eDetail==FTS5_DETAIL_NONE ){
      /* todo */
      if( i<n && a[i]==0 ){
        i++;
        if( i<n && a[i]==0 ) i++;
      }
    }else{
      int nPos;
      int bDummy;

      i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
      i += nPos;
    }
    if( i>=n ) break;
    i += fts5GetVarint(&a[i], (u64*)&iDelta);
    pIter->iRowid += iDelta;

    /* If necessary, grow the pIter->aRowidOffset[] array. */
    if( iRowidOffset>=pIter->nRowidOffset ){
      int nNew = pIter->nRowidOffset + 8;
      int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
      if( aNew==0 ){
        p->rc = SQLITE_NOMEM;
        break;
      }
175759
175760
175761
175762
175763
175764
175765
175766
175767
175768
175769








































































































175770
175771
175772
175773
175774
175775
175776
175777
175778
175779
175780
175781
175782
175783
175784
175785
175786
175787
175788
175789
175790
175791
175792
175793
175794
175795
175796
175797
175798
175799
175800
175801
175802
175803
175804
175805
175806
175807
175808


175809



175810
175811
175812
175813
175814
175815
175816
175817
175818
175819
175820
175821
175822
175823
175824
175825
175826
175827
175828
175829
175830
175831
175832
175833
175834
175835
175836
175837
175838
175839
175840
175841
175842
175843
175844
175845
175846
175847
175848
175849
175850
175851
175852
175853
175854
175855
175856
175857
175858
175859
175860
175861
175862
175863
175864
175865
175866
175867
175868
175869
175870
175871
175872
175873
175874
175875
175876
175877
175878
175879
175880
175881

175882
175883
175884
175885
175886
175887
175888
175889
175890
175891
175892
175893
175894
175895
175896
175897
175898
175899
175900
175901
175902
175903




175904
175905
175906
175907
175908
175909
175910
175911
175912
175913
175914
175915
175916





175917
175918
175919
175920
175921
175922
175923
}

/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte
** position-list.
*/
static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5IndexIter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
  return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
}









































































































/*
** Advance iterator pIter to the next entry. 
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. It 
** is not considered an error if the iterator reaches EOF. If an error has 
** already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterNext(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbNewTerm                  /* OUT: Set for new term */
){
  assert( pbNewTerm==0 || *pbNewTerm==0 );
  if( p->rc==SQLITE_OK ){
    if( pIter->flags & FTS5_SEGITER_REVERSE ){
      assert( pIter->pNextLeaf==0 );
      if( pIter->iRowidOffset>0 ){
        u8 *a = pIter->pLeaf->p;
        int iOff;
        int nPos;
        int bDummy;
        i64 iDelta;

        pIter->iRowidOffset--;
        pIter->iLeafOffset = iOff = pIter->aRowidOffset[pIter->iRowidOffset];
        iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
        iOff += nPos;
        fts5GetVarint(&a[iOff], (u64*)&iDelta);
        pIter->iRowid -= iDelta;
        fts5SegIterLoadNPos(p, pIter);
      }else{
        fts5SegIterReverseNewPage(p, pIter);
      }
    }else{
      Fts5Data *pLeaf = pIter->pLeaf;
      int iOff;
      int bNewTerm = 0;
      int nKeep = 0;






      /* Search for the end of the position list within the current page. */
      u8 *a = pLeaf->p;
      int n = pLeaf->szLeaf;

      ASSERT_SZLEAF_OK(pLeaf);
      iOff = pIter->iLeafOffset + pIter->nPos;

      if( iOff<n ){
        /* The next entry is on the current page. */
        assert_nc( iOff<=pIter->iEndofDoclist );
        if( iOff>=pIter->iEndofDoclist ){
          bNewTerm = 1;
          if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
            iOff += fts5GetVarint32(&a[iOff], nKeep);
          }
        }else{
          u64 iDelta;
          iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
          pIter->iRowid += iDelta;
          assert_nc( iDelta>0 );
        }
        pIter->iLeafOffset = iOff;

      }else if( pIter->pSeg==0 ){
        const u8 *pList = 0;
        const char *zTerm = 0;
        int nList = 0;
        assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
        if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
          sqlite3Fts5HashScanNext(p->pHash);
          sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
        }
        if( pList==0 ){
          fts5DataRelease(pIter->pLeaf);
          pIter->pLeaf = 0;
        }else{
          pIter->pLeaf->p = (u8*)pList;
          pIter->pLeaf->nn = nList;
          pIter->pLeaf->szLeaf = nList;
          pIter->iEndofDoclist = nList+1;
          sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
              (u8*)zTerm);
          pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
          *pbNewTerm = 1;
        }
      }else{
        iOff = 0;
        /* Next entry is not on the current page */
        while( iOff==0 ){
          fts5SegIterNextPage(p, pIter);
          pLeaf = pIter->pLeaf;
          if( pLeaf==0 ) break;
          ASSERT_SZLEAF_OK(pLeaf);
          if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
            iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
            pIter->iLeafOffset = iOff;

            if( pLeaf->nn>pLeaf->szLeaf ){
              pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
                  &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
              );
            }

          }
          else if( pLeaf->nn>pLeaf->szLeaf ){
            pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
                &pLeaf->p[pLeaf->szLeaf], iOff
            );
            pIter->iLeafOffset = iOff;
            pIter->iEndofDoclist = iOff;
            bNewTerm = 1;
          }

          if( iOff>=pLeaf->szLeaf ){
            p->rc = FTS5_CORRUPT;
            return;
          }
        }
      }

      /* Check if the iterator is now at EOF. If so, return early. */
      if( pIter->pLeaf ){
        if( bNewTerm ){
          if( pIter->flags & FTS5_SEGITER_ONETERM ){
            fts5DataRelease(pIter->pLeaf);
            pIter->pLeaf = 0;
          }else{
            fts5SegIterLoadTerm(p, pIter, nKeep);
            fts5SegIterLoadNPos(p, pIter);
            if( pbNewTerm ) *pbNewTerm = 1;
          }
        }else{
          /* The following could be done by calling fts5SegIterLoadNPos(). But
          ** this block is particularly performance critical, so equivalent
          ** code is inlined. */




          int nSz;
          assert( p->rc==SQLITE_OK );
          fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
          pIter->bDel = (nSz & 0x0001);
          pIter->nPos = nSz>>1;
          assert_nc( pIter->nPos>=0 );
        }
      }
    }
  }
}

#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }






/*
** Iterator pIter currently points to the first rowid in a doclist. This
** function sets the iterator up so that iterates in reverse order through
** the doclist.
*/
static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){







|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
>
>

>
>
>
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
>
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
|
|
|
|
|
<
<





>
>
>
>
>







177218
177219
177220
177221
177222
177223
177224
177225
177226
177227
177228
177229
177230
177231
177232
177233
177234
177235
177236
177237
177238
177239
177240
177241
177242
177243
177244
177245
177246
177247
177248
177249
177250
177251
177252
177253
177254
177255
177256
177257
177258
177259
177260
177261
177262
177263
177264
177265
177266
177267
177268
177269
177270
177271
177272
177273
177274
177275
177276
177277
177278
177279
177280
177281
177282
177283
177284
177285
177286
177287
177288
177289
177290
177291
177292
177293
177294
177295
177296
177297
177298
177299
177300
177301
177302
177303
177304
177305
177306
177307
177308
177309
177310
177311
177312
177313
177314
177315
177316
177317
177318
177319
177320
177321
177322
177323
177324
177325
177326
177327
177328
177329
177330
177331
177332
177333
177334
177335
177336
177337
177338
177339
177340
177341
177342
177343
177344
177345






















177346
177347
177348
177349
177350
177351
177352
177353
177354
177355
177356
177357
177358
177359
177360
177361
177362
177363
177364
177365
177366
177367
177368
177369
177370
177371
177372
177373
177374
177375
177376
177377
177378
177379
177380
177381
177382
177383
177384
177385
177386
177387
177388
177389
177390
177391
177392
177393
177394
177395
177396
177397
177398
177399
177400
177401
177402
177403
177404
177405
177406
177407
177408
177409
177410
177411
177412
177413
177414
177415
177416
177417
177418
177419
177420
177421
177422
177423
177424
177425
177426
177427
177428
177429
177430
177431
177432
177433
177434
177435
177436
177437
177438
177439
177440
177441
177442
177443
177444
177445
177446
177447
177448
177449
177450
177451
177452
177453
177454
177455
177456
177457
177458
177459
177460


177461
177462
177463
177464
177465
177466
177467
177468
177469
177470
177471
177472
177473
177474
177475
177476
177477
}

/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte
** position-list.
*/
static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5Iter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
  return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
}

/*
** Advance iterator pIter to the next entry.
**
** This version of fts5SegIterNext() is only used by reverse iterators.
*/
static void fts5SegIterNext_Reverse(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbUnused                   /* Unused */
){
  assert( pIter->flags & FTS5_SEGITER_REVERSE );
  assert( pIter->pNextLeaf==0 );
  UNUSED_PARAM(pbUnused);

  if( pIter->iRowidOffset>0 ){
    u8 *a = pIter->pLeaf->p;
    int iOff;
    i64 iDelta;

    pIter->iRowidOffset--;
    pIter->iLeafOffset = pIter->aRowidOffset[pIter->iRowidOffset];
    fts5SegIterLoadNPos(p, pIter);
    iOff = pIter->iLeafOffset;
    if( p->pConfig->eDetail!=FTS5_DETAIL_NONE ){
      iOff += pIter->nPos;
    }
    fts5GetVarint(&a[iOff], (u64*)&iDelta);
    pIter->iRowid -= iDelta;
  }else{
    fts5SegIterReverseNewPage(p, pIter);
  }
}

/*
** Advance iterator pIter to the next entry.
**
** This version of fts5SegIterNext() is only used if detail=none and the
** iterator is not a reverse direction iterator.
*/
static void fts5SegIterNext_None(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbNewTerm                  /* OUT: Set for new term */
){
  int iOff;

  assert( p->rc==SQLITE_OK );
  assert( (pIter->flags & FTS5_SEGITER_REVERSE)==0 );
  assert( p->pConfig->eDetail==FTS5_DETAIL_NONE );

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  iOff = pIter->iLeafOffset;

  /* Next entry is on the next page */
  if( pIter->pSeg && iOff>=pIter->pLeaf->szLeaf ){
    fts5SegIterNextPage(p, pIter);
    if( p->rc || pIter->pLeaf==0 ) return;
    pIter->iRowid = 0;
    iOff = 4;
  }

  if( iOff<pIter->iEndofDoclist ){
    /* Next entry is on the current page */
    i64 iDelta;
    iOff += sqlite3Fts5GetVarint(&pIter->pLeaf->p[iOff], (u64*)&iDelta);
    pIter->iLeafOffset = iOff;
    pIter->iRowid += iDelta;
  }else if( (pIter->flags & FTS5_SEGITER_ONETERM)==0 ){
    if( pIter->pSeg ){
      int nKeep = 0;
      if( iOff!=fts5LeafFirstTermOff(pIter->pLeaf) ){
        iOff += fts5GetVarint32(&pIter->pLeaf->p[iOff], nKeep);
      }
      pIter->iLeafOffset = iOff;
      fts5SegIterLoadTerm(p, pIter, nKeep);
    }else{
      const u8 *pList = 0;
      const char *zTerm = 0;
      int nList;
      sqlite3Fts5HashScanNext(p->pHash);
      sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
      if( pList==0 ) goto next_none_eof;
      pIter->pLeaf->p = (u8*)pList;
      pIter->pLeaf->nn = nList;
      pIter->pLeaf->szLeaf = nList;
      pIter->iEndofDoclist = nList;
      sqlite3Fts5BufferSet(&p->rc,&pIter->term, (int)strlen(zTerm), (u8*)zTerm);
      pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
    }

    if( pbNewTerm ) *pbNewTerm = 1;
  }else{
    goto next_none_eof;
  }

  fts5SegIterLoadNPos(p, pIter);

  return;
 next_none_eof:
  fts5DataRelease(pIter->pLeaf);
  pIter->pLeaf = 0;
}


/*
** Advance iterator pIter to the next entry. 
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. It 
** is not considered an error if the iterator reaches EOF. If an error has 
** already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterNext(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbNewTerm                  /* OUT: Set for new term */
){






















  Fts5Data *pLeaf = pIter->pLeaf;
  int iOff;
  int bNewTerm = 0;
  int nKeep = 0;
  u8 *a;
  int n;

  assert( pbNewTerm==0 || *pbNewTerm==0 );
  assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );

  /* Search for the end of the position list within the current page. */
  a = pLeaf->p;
  n = pLeaf->szLeaf;

  ASSERT_SZLEAF_OK(pLeaf);
  iOff = pIter->iLeafOffset + pIter->nPos;

  if( iOff<n ){
    /* The next entry is on the current page. */
    assert_nc( iOff<=pIter->iEndofDoclist );
    if( iOff>=pIter->iEndofDoclist ){
      bNewTerm = 1;
      if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
        iOff += fts5GetVarint32(&a[iOff], nKeep);
      }
    }else{
      u64 iDelta;
      iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
      pIter->iRowid += iDelta;
      assert_nc( iDelta>0 );
    }
    pIter->iLeafOffset = iOff;

  }else if( pIter->pSeg==0 ){
    const u8 *pList = 0;
    const char *zTerm = 0;
    int nList = 0;
    assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
    if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
      sqlite3Fts5HashScanNext(p->pHash);
      sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
    }
    if( pList==0 ){
      fts5DataRelease(pIter->pLeaf);
      pIter->pLeaf = 0;
    }else{
      pIter->pLeaf->p = (u8*)pList;
      pIter->pLeaf->nn = nList;
      pIter->pLeaf->szLeaf = nList;
      pIter->iEndofDoclist = nList+1;
      sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
          (u8*)zTerm);
      pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
      *pbNewTerm = 1;
    }
  }else{
    iOff = 0;
    /* Next entry is not on the current page */
    while( iOff==0 ){
      fts5SegIterNextPage(p, pIter);
      pLeaf = pIter->pLeaf;
      if( pLeaf==0 ) break;
      ASSERT_SZLEAF_OK(pLeaf);
      if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
        iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
        pIter->iLeafOffset = iOff;

        if( pLeaf->nn>pLeaf->szLeaf ){
          pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
              &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
              );
        }

      }
      else if( pLeaf->nn>pLeaf->szLeaf ){
        pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
            &pLeaf->p[pLeaf->szLeaf], iOff
            );
        pIter->iLeafOffset = iOff;
        pIter->iEndofDoclist = iOff;
        bNewTerm = 1;
      }
      assert_nc( iOff<pLeaf->szLeaf );
      if( iOff>pLeaf->szLeaf ){
        p->rc = FTS5_CORRUPT;
        return;
      }
    }
  }

  /* Check if the iterator is now at EOF. If so, return early. */
  if( pIter->pLeaf ){
    if( bNewTerm ){
      if( pIter->flags & FTS5_SEGITER_ONETERM ){
        fts5DataRelease(pIter->pLeaf);
        pIter->pLeaf = 0;
      }else{
        fts5SegIterLoadTerm(p, pIter, nKeep);
        fts5SegIterLoadNPos(p, pIter);
        if( pbNewTerm ) *pbNewTerm = 1;
      }
    }else{
      /* The following could be done by calling fts5SegIterLoadNPos(). But
      ** this block is particularly performance critical, so equivalent
      ** code is inlined. 
      **
      ** Later: Switched back to fts5SegIterLoadNPos() because it supports
      ** detail=none mode. Not ideal.
      */
      int nSz;
      assert( p->rc==SQLITE_OK );
      fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
      pIter->bDel = (nSz & 0x0001);
      pIter->nPos = nSz>>1;
      assert_nc( pIter->nPos>=0 );


    }
  }
}

#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }

#define fts5IndexSkipVarint(a, iOff) {            \
  int iEnd = iOff+9;                              \
  while( (a[iOff++] & 0x80) && iOff<iEnd );       \
}

/*
** Iterator pIter currently points to the first rowid in a doclist. This
** function sets the iterator up so that iterates in reverse order through
** the doclist.
*/
static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){
175931
175932
175933
175934
175935
175936
175937







175938
175939
175940
175941
175942
175943
175944
175945
    pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
  }else{
    Fts5Data *pLeaf = pIter->pLeaf;         /* Current leaf data */

    /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
    ** position-list content for the current rowid. Back it up so that it
    ** points to the start of the position-list size field. */







    pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);

    /* If this condition is true then the largest rowid for the current
    ** term may not be stored on the current page. So search forward to
    ** see where said rowid really is.  */
    if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
      int pgno;
      Fts5StructureSegment *pSeg = pIter->pSeg;







>
>
>
>
>
>
>
|







177485
177486
177487
177488
177489
177490
177491
177492
177493
177494
177495
177496
177497
177498
177499
177500
177501
177502
177503
177504
177505
177506
    pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
  }else{
    Fts5Data *pLeaf = pIter->pLeaf;         /* Current leaf data */

    /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
    ** position-list content for the current rowid. Back it up so that it
    ** points to the start of the position-list size field. */
    int iPoslist;
    if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
      iPoslist = pIter->iTermLeafOffset;
    }else{
      iPoslist = 4;
    }
    fts5IndexSkipVarint(pLeaf->p, iPoslist);
    pIter->iLeafOffset = iPoslist;

    /* If this condition is true then the largest rowid for the current
    ** term may not be stored on the current page. So search forward to
    ** see where said rowid really is.  */
    if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
      int pgno;
      Fts5StructureSegment *pSeg = pIter->pSeg;
176015
176016
176017
176018
176019
176020
176021
176022
176023
176024
176025
176026
176027
176028
176029
176030
176031
176032
176033
  ){
    return;
  }

  pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
}

#define fts5IndexSkipVarint(a, iOff) {            \
  int iEnd = iOff+9;                              \
  while( (a[iOff++] & 0x80) && iOff<iEnd );       \
}

/*
** The iterator object passed as the second argument currently contains
** no valid values except for the Fts5SegIter.pLeaf member variable. This
** function searches the leaf page for a term matching (pTerm/nTerm).
**
** If the specified term is found on the page, then the iterator is left
** pointing to it. If argument bGe is zero and the term is not found,







<
<
<
<
<







177576
177577
177578
177579
177580
177581
177582





177583
177584
177585
177586
177587
177588
177589
  ){
    return;
  }

  pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
}






/*
** The iterator object passed as the second argument currently contains
** no valid values except for the Fts5SegIter.pLeaf member variable. This
** function searches the leaf page for a term matching (pTerm/nTerm).
**
** If the specified term is found on the page, then the iterator is left
** pointing to it. If argument bGe is zero and the term is not found,
176157
176158
176159
176160
176161
176162
176163
176164
176165
176166
176167
176168
176169
176170
176171
176172
176173
176174
176175
176176
176177
176178
176179
176180
176181
176182
176183
** pSeg. If there is no such term in the index, the iterator is set to EOF.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterSeekInit(
  Fts5Index *p,                   /* FTS5 backend */
  Fts5Buffer *pBuf,               /* Buffer to use for loading pages */
  const u8 *pTerm, int nTerm,     /* Term to seek to */
  int flags,                      /* Mask of FTS5INDEX_XXX flags */
  Fts5StructureSegment *pSeg,     /* Description of segment */
  Fts5SegIter *pIter              /* Object to populate */
){
  int iPg = 1;
  int bGe = (flags & FTS5INDEX_QUERY_SCAN);
  int bDlidx = 0;                 /* True if there is a doclist-index */

  static int nCall = 0;
  nCall++;

  assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
  assert( pTerm && nTerm );
  memset(pIter, 0, sizeof(*pIter));
  pIter->pSeg = pSeg;

  /* This block sets stack variable iPg to the leaf page number that may
  ** contain term (pTerm/nTerm), if it is present in the segment. */







<









<
<
<







177713
177714
177715
177716
177717
177718
177719

177720
177721
177722
177723
177724
177725
177726
177727
177728



177729
177730
177731
177732
177733
177734
177735
** pSeg. If there is no such term in the index, the iterator is set to EOF.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterSeekInit(
  Fts5Index *p,                   /* FTS5 backend */

  const u8 *pTerm, int nTerm,     /* Term to seek to */
  int flags,                      /* Mask of FTS5INDEX_XXX flags */
  Fts5StructureSegment *pSeg,     /* Description of segment */
  Fts5SegIter *pIter              /* Object to populate */
){
  int iPg = 1;
  int bGe = (flags & FTS5INDEX_QUERY_SCAN);
  int bDlidx = 0;                 /* True if there is a doclist-index */




  assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
  assert( pTerm && nTerm );
  memset(pIter, 0, sizeof(*pIter));
  pIter->pSeg = pSeg;

  /* This block sets stack variable iPg to the leaf page number that may
  ** contain term (pTerm/nTerm), if it is present in the segment. */
176221
176222
176223
176224
176225
176226
176227


176228
176229
176230
176231
176232
176233
176234
        fts5SegIterLoadDlidx(p, pIter);
      }
      if( flags & FTS5INDEX_QUERY_DESC ){
        fts5SegIterReverse(p, pIter);
      }
    }
  }



  /* Either:
  **
  **   1) an error has occurred, or
  **   2) the iterator points to EOF, or
  **   3) the iterator points to an entry with term (pTerm/nTerm), or
  **   4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points







>
>







177773
177774
177775
177776
177777
177778
177779
177780
177781
177782
177783
177784
177785
177786
177787
177788
        fts5SegIterLoadDlidx(p, pIter);
      }
      if( flags & FTS5INDEX_QUERY_DESC ){
        fts5SegIterReverse(p, pIter);
      }
    }
  }

  fts5SegIterSetNext(p, pIter);

  /* Either:
  **
  **   1) an error has occurred, or
  **   2) the iterator points to EOF, or
  **   3) the iterator points to an entry with term (pTerm/nTerm), or
  **   4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
176279
176280
176281
176282
176283
176284
176285
176286
176287
176288
176289
176290
176291
176292
176293
176294


176295
176296
176297
176298
176299
176300
176301
    sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
    pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
    if( pLeaf==0 ) return;
    pLeaf->p = (u8*)pList;
    pLeaf->nn = pLeaf->szLeaf = nList;
    pIter->pLeaf = pLeaf;
    pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
    pIter->iEndofDoclist = pLeaf->nn+1;

    if( flags & FTS5INDEX_QUERY_DESC ){
      pIter->flags |= FTS5_SEGITER_REVERSE;
      fts5SegIterReverseInitPage(p, pIter);
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
  }


}

/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
  fts5BufferFree(&pIter->term);







|








>
>







177833
177834
177835
177836
177837
177838
177839
177840
177841
177842
177843
177844
177845
177846
177847
177848
177849
177850
177851
177852
177853
177854
177855
177856
177857
    sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
    pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
    if( pLeaf==0 ) return;
    pLeaf->p = (u8*)pList;
    pLeaf->nn = pLeaf->szLeaf = nList;
    pIter->pLeaf = pLeaf;
    pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
    pIter->iEndofDoclist = pLeaf->nn;

    if( flags & FTS5INDEX_QUERY_DESC ){
      pIter->flags |= FTS5_SEGITER_REVERSE;
      fts5SegIterReverseInitPage(p, pIter);
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
  }

  fts5SegIterSetNext(p, pIter);
}

/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
  fts5BufferFree(&pIter->term);
176311
176312
176313
176314
176315
176316
176317
176318
176319
176320
176321
176322
176323
176324
176325
/*
** This function is used as part of the big assert() procedure implemented by
** fts5AssertMultiIterSetup(). It ensures that the result currently stored
** in *pRes is the correct result of comparing the current positions of the
** two iterators.
*/
static void fts5AssertComparisonResult(
  Fts5IndexIter *pIter, 
  Fts5SegIter *p1,
  Fts5SegIter *p2,
  Fts5CResult *pRes
){
  int i1 = p1 - pIter->aSeg;
  int i2 = p2 - pIter->aSeg;








|







177867
177868
177869
177870
177871
177872
177873
177874
177875
177876
177877
177878
177879
177880
177881
/*
** This function is used as part of the big assert() procedure implemented by
** fts5AssertMultiIterSetup(). It ensures that the result currently stored
** in *pRes is the correct result of comparing the current positions of the
** two iterators.
*/
static void fts5AssertComparisonResult(
  Fts5Iter *pIter, 
  Fts5SegIter *p1,
  Fts5SegIter *p2,
  Fts5CResult *pRes
){
  int i1 = p1 - pIter->aSeg;
  int i2 = p2 - pIter->aSeg;

176352
176353
176354
176355
176356
176357
176358
176359
176360
176361
176362
176363
176364
176365
176366
176367
176368
176369
176370
176371

/*
** This function is a no-op unless SQLITE_DEBUG is defined when this module
** is compiled. In that case, this function is essentially an assert() 
** statement used to verify that the contents of the pIter->aFirst[] array
** are correct.
*/
static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5IndexIter *pIter){
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int i;

    assert( (pFirst->pLeaf==0)==pIter->bEof );

    /* Check that pIter->iSwitchRowid is set correctly. */
    for(i=0; i<pIter->nSeg; i++){
      Fts5SegIter *p1 = &pIter->aSeg[i];
      assert( p1==pFirst 
           || p1->pLeaf==0 
           || fts5BufferCompare(&pFirst->term, &p1->term) 







|




|







177908
177909
177910
177911
177912
177913
177914
177915
177916
177917
177918
177919
177920
177921
177922
177923
177924
177925
177926
177927

/*
** This function is a no-op unless SQLITE_DEBUG is defined when this module
** is compiled. In that case, this function is essentially an assert() 
** statement used to verify that the contents of the pIter->aFirst[] array
** are correct.
*/
static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5Iter *pIter){
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int i;

    assert( (pFirst->pLeaf==0)==pIter->base.bEof );

    /* Check that pIter->iSwitchRowid is set correctly. */
    for(i=0; i<pIter->nSeg; i++){
      Fts5SegIter *p1 = &pIter->aSeg[i];
      assert( p1==pFirst 
           || p1->pLeaf==0 
           || fts5BufferCompare(&pFirst->term, &p1->term) 
176397
176398
176399
176400
176401
176402
176403
176404
176405
176406
176407
176408
176409
176410
176411
** Do the comparison necessary to populate pIter->aFirst[iOut].
**
** If the returned value is non-zero, then it is the index of an entry
** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
** to a key that is a duplicate of another, higher priority, 
** segment-iterator in the pSeg->aSeg[] array.
*/
static int fts5MultiIterDoCompare(Fts5IndexIter *pIter, int iOut){
  int i1;                         /* Index of left-hand Fts5SegIter */
  int i2;                         /* Index of right-hand Fts5SegIter */
  int iRes;
  Fts5SegIter *p1;                /* Left-hand Fts5SegIter */
  Fts5SegIter *p2;                /* Right-hand Fts5SegIter */
  Fts5CResult *pRes = &pIter->aFirst[iOut];








|







177953
177954
177955
177956
177957
177958
177959
177960
177961
177962
177963
177964
177965
177966
177967
** Do the comparison necessary to populate pIter->aFirst[iOut].
**
** If the returned value is non-zero, then it is the index of an entry
** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
** to a key that is a duplicate of another, higher priority, 
** segment-iterator in the pSeg->aSeg[] array.
*/
static int fts5MultiIterDoCompare(Fts5Iter *pIter, int iOut){
  int i1;                         /* Index of left-hand Fts5SegIter */
  int i2;                         /* Index of right-hand Fts5SegIter */
  int iRes;
  Fts5SegIter *p1;                /* Left-hand Fts5SegIter */
  Fts5SegIter *p2;                /* Right-hand Fts5SegIter */
  Fts5CResult *pRes = &pIter->aFirst[iOut];

176531
176532
176533
176534
176535
176536
176537
176538
176539
176540
176541
176542
176543
176544
176545
176546
176547
176548
176549
176550
176551
176552
176553
176554
176555
176556
176557
176558
176559
176560
176561
176562
176563
176564
176565
176566
176567
176568
176569
176570
176571
176572


176573
176574
176575
176576
176577
176578
176579
176580
176581
176582
176583
176584
176585
176586
176587
176588
176589
176590
176591

176592
176593
176594
176595
176596
176597
176598
      pIter->iLeafPgno = iLeafPgno+1;
      fts5SegIterReverseNewPage(p, pIter);
      bMove = 0;
    }
  }

  do{
    if( bMove ) fts5SegIterNext(p, pIter, 0);
    if( pIter->pLeaf==0 ) break;
    if( bRev==0 && pIter->iRowid>=iMatch ) break;
    if( bRev!=0 && pIter->iRowid<=iMatch ) break;
    bMove = 1;
  }while( p->rc==SQLITE_OK );
}


/*
** Free the iterator object passed as the second argument.
*/
static void fts5MultiIterFree(Fts5Index *p, Fts5IndexIter *pIter){
  if( pIter ){
    int i;
    for(i=0; i<pIter->nSeg; i++){
      fts5SegIterClear(&pIter->aSeg[i]);
    }
    fts5StructureRelease(pIter->pStruct);
    fts5BufferFree(&pIter->poslist);
    sqlite3_free(pIter);
  }
}

static void fts5MultiIterAdvanced(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5IndexIter *pIter,           /* Iterator to update aFirst[] array for */
  int iChanged,                   /* Index of sub-iterator just advanced */
  int iMinset                     /* Minimum entry in aFirst[] to set */
){
  int i;
  for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
    int iEq;
    if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
      fts5SegIterNext(p, &pIter->aSeg[iEq], 0);


      i = pIter->nSeg + iEq;
    }
  }
}

/*
** Sub-iterator iChanged of iterator pIter has just been advanced. It still
** points to the same term though - just a different rowid. This function
** attempts to update the contents of the pIter->aFirst[] accordingly.
** If it does so successfully, 0 is returned. Otherwise 1.
**
** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
** on the iterator instead. That function does the same as this one, except
** that it deals with more complicated cases as well.
*/ 
static int fts5MultiIterAdvanceRowid(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5IndexIter *pIter,           /* Iterator to update aFirst[] array for */
  int iChanged                    /* Index of sub-iterator just advanced */

){
  Fts5SegIter *pNew = &pIter->aSeg[iChanged];

  if( pNew->iRowid==pIter->iSwitchRowid
   || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
  ){
    int i;







|











|













|







|
>
>
















<
|
|
>







178087
178088
178089
178090
178091
178092
178093
178094
178095
178096
178097
178098
178099
178100
178101
178102
178103
178104
178105
178106
178107
178108
178109
178110
178111
178112
178113
178114
178115
178116
178117
178118
178119
178120
178121
178122
178123
178124
178125
178126
178127
178128
178129
178130
178131
178132
178133
178134
178135
178136
178137
178138
178139
178140
178141
178142
178143
178144
178145
178146

178147
178148
178149
178150
178151
178152
178153
178154
178155
178156
      pIter->iLeafPgno = iLeafPgno+1;
      fts5SegIterReverseNewPage(p, pIter);
      bMove = 0;
    }
  }

  do{
    if( bMove && p->rc==SQLITE_OK ) pIter->xNext(p, pIter, 0);
    if( pIter->pLeaf==0 ) break;
    if( bRev==0 && pIter->iRowid>=iMatch ) break;
    if( bRev!=0 && pIter->iRowid<=iMatch ) break;
    bMove = 1;
  }while( p->rc==SQLITE_OK );
}


/*
** Free the iterator object passed as the second argument.
*/
static void fts5MultiIterFree(Fts5Iter *pIter){
  if( pIter ){
    int i;
    for(i=0; i<pIter->nSeg; i++){
      fts5SegIterClear(&pIter->aSeg[i]);
    }
    fts5StructureRelease(pIter->pStruct);
    fts5BufferFree(&pIter->poslist);
    sqlite3_free(pIter);
  }
}

static void fts5MultiIterAdvanced(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Iter *pIter,                /* Iterator to update aFirst[] array for */
  int iChanged,                   /* Index of sub-iterator just advanced */
  int iMinset                     /* Minimum entry in aFirst[] to set */
){
  int i;
  for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
    int iEq;
    if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
      Fts5SegIter *pSeg = &pIter->aSeg[iEq];
      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, 0);
      i = pIter->nSeg + iEq;
    }
  }
}

/*
** Sub-iterator iChanged of iterator pIter has just been advanced. It still
** points to the same term though - just a different rowid. This function
** attempts to update the contents of the pIter->aFirst[] accordingly.
** If it does so successfully, 0 is returned. Otherwise 1.
**
** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
** on the iterator instead. That function does the same as this one, except
** that it deals with more complicated cases as well.
*/ 
static int fts5MultiIterAdvanceRowid(

  Fts5Iter *pIter,                /* Iterator to update aFirst[] array for */
  int iChanged,                   /* Index of sub-iterator just advanced */
  Fts5SegIter **ppFirst
){
  Fts5SegIter *pNew = &pIter->aSeg[iChanged];

  if( pNew->iRowid==pIter->iSwitchRowid
   || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
  ){
    int i;
176617
176618
176619
176620
176621
176622
176623

176624
176625
176626
176627
176628
176629
176630
176631
176632
176633
176634
176635
176636
176637
176638
176639
176640
176641
176642
176643
176644
176645
176646
176647
176648
176649
176650
176651

176652
176653
176654
176655
176656
176657
176658
176659
176660
176661
176662
176663
176664
176665
176666


176667

176668




176669
176670
176671
176672
176673
176674
176675
176676
176677
176678
176679
176680
176681
176682
176683
176684
176685
176686

176687
176688
176689
176690
176691
176692
176693
176694
176695
176696
176697
176698
176699
176700
176701
176702


176703

176704
176705
176706
176707
176708
176709
176710
176711
176712
176713
176714
176715
176716
176717
176718
176719
176720

176721
176722
176723
176724
176725
176726
176727
176728
176729
176730
176731
176732
176733
176734
176735
176736
176737
176738
176739
176740

176741
176742
176743
176744
176745
176746
176747
176748



176749
176750
176751
176752
176753
176754
176755
176756
176757
176758
176759
176760
176761
176762



176763
176764
176765
176766
176767
176768
176769
176770





176771
176772
176773
176774
176775
176776
176777
176778
176779
176780
176781
176782
176783
176784
176785
176786
176787
176788

176789
176790
176791
176792
176793
176794
176795
176796


176797
176798
176799

176800
176801
176802
176803
176804

176805
176806
176807
176808




176809
176810
176811
176812
176813
176814
176815
176816
176817
176818
176819
176820
176821
176822
176823
176824
176825
176826
176827
176828
176829
176830
176831
176832


176833


176834
176835
176836


176837

176838
176839
176840
176841
176842

176843
176844
176845
176846
176847
176848
176849
176850
176851
176852
176853
176854
176855
176856
176857
176858
176859
176860
176861
176862
176863
176864
176865
176866
176867
176868
176869
176870
176871
176872
176873
176874
176875
176876
176877
176878
176879
176880
176881
176882



176883


176884
176885
176886
176887
176888
176889
176890
176891
176892
176893
176894
176895

176896



176897
176898
176899


176900
176901
176902
176903
176904
176905
176906
176907
176908
176909
176910


176911
176912
176913
176914
176915
176916
176917
176918
176919
176920
176921
176922
176923
176924



176925
176926
176927
176928
176929
176930
176931
      pRes->iFirst = (u16)(pNew - pIter->aSeg);
      if( i==1 ) break;

      pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
    }
  }


  return 0;
}

/*
** Set the pIter->bEof variable based on the state of the sub-iterators.
*/
static void fts5MultiIterSetEof(Fts5IndexIter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  pIter->bEof = pSeg->pLeaf==0;
  pIter->iSwitchRowid = pSeg->iRowid;
}

/*
** Move the iterator to the next entry. 
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not 
** considered an error if the iterator reaches EOF, or if it is already at 
** EOF when this function is called.
*/
static void fts5MultiIterNext(
  Fts5Index *p, 
  Fts5IndexIter *pIter,
  int bFrom,                      /* True if argument iFrom is valid */
  i64 iFrom                       /* Advance at least as far as this */
){
  if( p->rc==SQLITE_OK ){
    int bUseFrom = bFrom;
    do {

      int iFirst = pIter->aFirst[1].iFirst;
      int bNewTerm = 0;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      assert( p->rc==SQLITE_OK );
      if( bUseFrom && pSeg->pDlidx ){
        fts5SegIterNextFrom(p, pSeg, iFrom);
      }else{
        fts5SegIterNext(p, pSeg, &bNewTerm);
      }

      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(p, pIter, iFirst)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);


      }

      fts5AssertMultiIterSetup(p, pIter);





      bUseFrom = 0;
    }while( pIter->bSkipEmpty && fts5MultiIterIsEmpty(p, pIter) );
  }
}

static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5IndexIter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;


      fts5SegIterNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(p, pIter, iFirst)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}





static Fts5IndexIter *fts5MultiIterAlloc(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  int nSeg
){
  Fts5IndexIter *pNew;
  int nSlot;                      /* Power of two >= nSeg */

  for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
  pNew = fts5IdxMalloc(p, 
      sizeof(Fts5IndexIter) +             /* pNew */
      sizeof(Fts5SegIter) * (nSlot-1) +   /* pNew->aSeg[] */
      sizeof(Fts5CResult) * nSlot         /* pNew->aFirst[] */
  );
  if( pNew ){
    pNew->nSeg = nSlot;
    pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
    pNew->pIndex = p;

  }
  return pNew;
}

/*
** Allocate a new Fts5IndexIter object.
**
** The new object will be used to iterate through data in structure pStruct.
** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
** is zero or greater, data from the first nSegment segments on level iLevel
** is merged.
**
** The iterator initially points to the first term/rowid entry in the 
** iterated data.
*/
static void fts5MultiIterNew(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Structure *pStruct,         /* Structure of specific index */
  int bSkipEmpty,                 /* True to ignore delete-keys */
  int flags,                      /* FTS5INDEX_QUERY_XXX flags */

  const u8 *pTerm, int nTerm,     /* Term to seek to (or NULL/0) */
  int iLevel,                     /* Level to iterate (-1 for all) */
  int nSegment,                   /* Number of segments to merge (iLevel>=0) */
  Fts5IndexIter **ppOut           /* New object */
){
  int nSeg = 0;                   /* Number of segment-iters in use */
  int iIter = 0;                  /* */
  int iSeg;                       /* Used to iterate through segments */



  Fts5Buffer buf = {0,0,0};       /* Buffer used by fts5SegIterSeekInit() */
  Fts5StructureLevel *pLvl;
  Fts5IndexIter *pNew;

  assert( (pTerm==0 && nTerm==0) || iLevel<0 );

  /* Allocate space for the new multi-seg-iterator. */
  if( p->rc==SQLITE_OK ){
    if( iLevel<0 ){
      assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
      nSeg = pStruct->nSegment;
      nSeg += (p->pHash ? 1 : 0);
    }else{
      nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);



    }
  }
  *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
  if( pNew==0 ) return;
  pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
  pNew->bSkipEmpty = (u8)bSkipEmpty;
  pNew->pStruct = pStruct;
  fts5StructureRef(pStruct);






  /* Initialize each of the component segment iterators. */
  if( iLevel<0 ){
    Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
    if( p->pHash ){
      /* Add a segment iterator for the current contents of the hash table. */
      Fts5SegIter *pIter = &pNew->aSeg[iIter++];
      fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
    }
    for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
      for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
        Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
        Fts5SegIter *pIter = &pNew->aSeg[iIter++];
        if( pTerm==0 ){
          fts5SegIterInit(p, pSeg, pIter);
        }else{
          fts5SegIterSeekInit(p, &buf, pTerm, nTerm, flags, pSeg, pIter);
        }

      }
    }
  }else{
    pLvl = &pStruct->aLevel[iLevel];
    for(iSeg=nSeg-1; iSeg>=0; iSeg--){
      fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
    }
  }


  assert( iIter==nSeg );

  /* If the above was successful, each component iterators now points 

  ** to the first entry in its segment. In this case initialize the 
  ** aFirst[] array. Or, if an error has occurred, free the iterator
  ** object and set the output variable to NULL.  */
  if( p->rc==SQLITE_OK ){
    for(iIter=pNew->nSeg-1; iIter>0; iIter--){

      int iEq;
      if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
        fts5SegIterNext(p, &pNew->aSeg[iEq], 0);
        fts5MultiIterAdvanced(p, pNew, iEq, iIter);




      }
    }
    fts5MultiIterSetEof(pNew);
    fts5AssertMultiIterSetup(p, pNew);

    if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
      fts5MultiIterNext(p, pNew, 0, 0);
    }
  }else{
    fts5MultiIterFree(p, pNew);
    *ppOut = 0;
  }
  fts5BufferFree(&buf);
}

/*
** Create an Fts5IndexIter that iterates through the doclist provided
** as the second argument.
*/
static void fts5MultiIterNew2(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Data *pData,                /* Doclist to iterate through */
  int bDesc,                      /* True for descending rowid order */
  Fts5IndexIter **ppOut           /* New object */


){


  Fts5IndexIter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){


    Fts5SegIter *pIter = &pNew->aSeg[1];


    pNew->bFiltered = 1;
    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;

      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
        pNew->bRev = 1;
        pIter->flags |= FTS5_SEGITER_REVERSE;
        fts5SegIterReverseInitPage(p, pIter);
      }else{
        fts5SegIterLoadNPos(p, pIter);
      }
      pData = 0;
    }else{
      pNew->bEof = 1;
    }

    *ppOut = pNew;
  }

  fts5DataRelease(pData);
}

/*
** Return true if the iterator is at EOF or if an error has occurred. 
** False otherwise.
*/
static int fts5MultiIterEof(Fts5Index *p, Fts5IndexIter *pIter){
  assert( p->rc 
      || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->bEof 
  );
  return (p->rc || pIter->bEof);
}

/*
** Return the rowid of the entry that the iterator currently points
** to. If the iterator points to EOF when this function is called the
** results are undefined.
*/
static i64 fts5MultiIterRowid(Fts5IndexIter *pIter){
  assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
  return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;



}



/*
** Move the iterator to the next entry at or following iMatch.
*/
static void fts5MultiIterNextFrom(
  Fts5Index *p, 
  Fts5IndexIter *pIter, 
  i64 iMatch
){
  while( 1 ){
    i64 iRowid;
    fts5MultiIterNext(p, pIter, 1, iMatch);

    if( fts5MultiIterEof(p, pIter) ) break;



    iRowid = fts5MultiIterRowid(pIter);
    if( pIter->bRev==0 && iRowid>=iMatch ) break;
    if( pIter->bRev!=0 && iRowid<=iMatch ) break;


  }
}

/*
** Return a pointer to a buffer containing the term associated with the 
** entry that the iterator currently points to.
*/
static const u8 *fts5MultiIterTerm(Fts5IndexIter *pIter, int *pn){
  Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  *pn = p->term.n;
  return p->term.p;


}

static void fts5ChunkIterate(
  Fts5Index *p,                   /* Index object */
  Fts5SegIter *pSeg,              /* Poslist of this iterator */
  void *pCtx,                     /* Context pointer for xChunk callback */
  void (*xChunk)(Fts5Index*, void*, const u8*, int)
){
  int nRem = pSeg->nPos;          /* Number of bytes still to come */
  Fts5Data *pData = 0;
  u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
  int pgno = pSeg->iLeafPgno;
  int pgnoSave = 0;




  if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
    pgnoSave = pgno+1;
  }

  while( 1 ){
    xChunk(p, pCtx, pChunk, nChunk);







>






|

|












|



<
|
<
>
|
|
|
|
|
|
|
|
|

|
|
|
|
|
>
>
|
>
|
>
>
>
>
|
|
<





|









>
|

|













>
>
|
>
|



|




|







>




<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
>
|
<
<
<

<
<
<
>
>
>
|
<
<
|
<
|
|
<
<
<
|
<
<
|
>
>
>
|
|
<
<
<
<
|
|
>
>
>
>
>

|
|
|
|
|
<
<
<
<
|
<
<
|
<
<
<
|
>
|
<
<
<
<
<
|
<
>
>
|
|
<
>
|
|
|
|
|
>
|
|
<
|
>
>
>
>


<
<
|
<
<
|
<
<
<
|
<
<
<
<
<
<
<
|
|
<
<
<
>
>

>
>
|
<
|
>
>
|
>

<
<
|
<
>
|
<
<
|
|
<
|

<
<
|
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
>
>
>
|
>
>
|
<
<
<
<
<
<
<
|
|
|
<
>
|
>
>
>
|
|
<
>
>
|
|
|
<
<
<
<
<
<
<
<
>
>














>
>
>







178175
178176
178177
178178
178179
178180
178181
178182
178183
178184
178185
178186
178187
178188
178189
178190
178191
178192
178193
178194
178195
178196
178197
178198
178199
178200
178201
178202
178203
178204
178205
178206
178207

178208

178209
178210
178211
178212
178213
178214
178215
178216
178217
178218
178219
178220
178221
178222
178223
178224
178225
178226
178227
178228
178229
178230
178231
178232
178233
178234
178235

178236
178237
178238
178239
178240
178241
178242
178243
178244
178245
178246
178247
178248
178249
178250
178251
178252
178253
178254
178255
178256
178257
178258
178259
178260
178261
178262
178263
178264
178265
178266
178267
178268
178269
178270
178271
178272
178273
178274
178275
178276
178277
178278
178279
178280
178281
178282
178283
178284
178285
178286
178287
178288
178289
178290
178291
178292
178293











178294
178295



178296
178297



178298



178299
178300
178301
178302


178303

178304
178305



178306


178307
178308
178309
178310
178311
178312




178313
178314
178315
178316
178317
178318
178319
178320
178321
178322
178323
178324
178325




178326


178327



178328
178329
178330





178331

178332
178333
178334
178335

178336
178337
178338
178339
178340
178341
178342
178343
178344

178345
178346
178347
178348
178349
178350
178351


178352


178353



178354







178355
178356



178357
178358
178359
178360
178361
178362

178363
178364
178365
178366
178367
178368


178369

178370
178371


178372
178373

178374
178375


178376


178377
178378















178379
178380








178381
178382
178383
178384
178385
178386
178387







178388
178389
178390

178391
178392
178393
178394
178395
178396
178397

178398
178399
178400
178401
178402








178403
178404
178405
178406
178407
178408
178409
178410
178411
178412
178413
178414
178415
178416
178417
178418
178419
178420
178421
178422
178423
178424
178425
178426
178427
178428
      pRes->iFirst = (u16)(pNew - pIter->aSeg);
      if( i==1 ) break;

      pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
    }
  }

  *ppFirst = pNew;
  return 0;
}

/*
** Set the pIter->bEof variable based on the state of the sub-iterators.
*/
static void fts5MultiIterSetEof(Fts5Iter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  pIter->base.bEof = pSeg->pLeaf==0;
  pIter->iSwitchRowid = pSeg->iRowid;
}

/*
** Move the iterator to the next entry. 
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not 
** considered an error if the iterator reaches EOF, or if it is already at 
** EOF when this function is called.
*/
static void fts5MultiIterNext(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int bFrom,                      /* True if argument iFrom is valid */
  i64 iFrom                       /* Advance at least as far as this */
){

  int bUseFrom = bFrom;

  while( p->rc==SQLITE_OK ){
    int iFirst = pIter->aFirst[1].iFirst;
    int bNewTerm = 0;
    Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
    assert( p->rc==SQLITE_OK );
    if( bUseFrom && pSeg->pDlidx ){
      fts5SegIterNextFrom(p, pSeg, iFrom);
    }else{
      pSeg->xNext(p, pSeg, &bNewTerm);
    }

    if( pSeg->pLeaf==0 || bNewTerm 
     || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
    ){
      fts5MultiIterAdvanced(p, pIter, iFirst, 1);
      fts5MultiIterSetEof(pIter);
      pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
      if( pSeg->pLeaf==0 ) return;
    }

    fts5AssertMultiIterSetup(p, pIter);
    assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
    if( pIter->bSkipEmpty==0 || pSeg->nPos ){
      pIter->xSetOutputs(pIter, pSeg);
      return;
    }
    bUseFrom = 0;

  }
}

static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}

static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
  UNUSED_PARAM2(pUnused1, pUnused2);
}

static Fts5Iter *fts5MultiIterAlloc(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  int nSeg
){
  Fts5Iter *pNew;
  int nSlot;                      /* Power of two >= nSeg */

  for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
  pNew = fts5IdxMalloc(p, 
      sizeof(Fts5Iter) +                  /* pNew */
      sizeof(Fts5SegIter) * (nSlot-1) +   /* pNew->aSeg[] */
      sizeof(Fts5CResult) * nSlot         /* pNew->aFirst[] */
  );
  if( pNew ){
    pNew->nSeg = nSlot;
    pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
    pNew->pIndex = p;
    pNew->xSetOutputs = fts5IterSetOutputs_Noop;
  }
  return pNew;
}












static void fts5PoslistCallback(
  Fts5Index *pUnused, 



  void *pContext, 
  const u8 *pChunk, int nChunk



){



  UNUSED_PARAM(pUnused);
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);


  }

}




typedef struct PoslistCallbackCtx PoslistCallbackCtx;


struct PoslistCallbackCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
  int eState;                     /* See above */
};





typedef struct PoslistOffsetsCtx PoslistOffsetsCtx;
struct PoslistOffsetsCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
  int iRead;
  int iWrite;
};

/*
** TODO: Make this more efficient!
*/
static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
  int i;




  for(i=0; i<pColset->nCol; i++){


    if( pColset->aiCol[i]==iCol ) return 1;



  }
  return 0;
}







static void fts5PoslistOffsetsCallback(
  Fts5Index *pUnused, 
  void *pContext, 
  const u8 *pChunk, int nChunk

){
  PoslistOffsetsCtx *pCtx = (PoslistOffsetsCtx*)pContext;
  UNUSED_PARAM(pUnused);
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    int i = 0;
    while( i<nChunk ){
      int iVal;
      i += fts5GetVarint32(&pChunk[i], iVal);

      iVal += pCtx->iRead - 2;
      pCtx->iRead = iVal;
      if( fts5IndexColsetTest(pCtx->pColset, iVal) ){
        fts5BufferSafeAppendVarint(pCtx->pBuf, iVal + 2 - pCtx->iWrite);
        pCtx->iWrite = iVal;
      }
    }


  }


}











static void fts5PoslistFilterCallback(
  Fts5Index *pUnused,



  void *pContext, 
  const u8 *pChunk, int nChunk
){
  PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
  UNUSED_PARAM(pUnused);
  assert_nc( nChunk>=0 );

  if( nChunk>0 ){
    /* Search through to find the first varint with value 1. This is the
    ** start of the next columns hits. */
    int i = 0;
    int iStart = 0;



    if( pCtx->eState==2 ){

      int iCol;
      fts5FastGetVarint32(pChunk, i, iCol);


      if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
        pCtx->eState = 1;

        fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
      }else{


        pCtx->eState = 0;


      }
    }
















    do {








      while( i<nChunk && pChunk[i]!=0x01 ){
        while( pChunk[i] & 0x80 ) i++;
        i++;
      }
      if( pCtx->eState ){
        fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
      }







      if( i<nChunk ){
        int iCol;
        iStart = i;

        i++;
        if( i>=nChunk ){
          pCtx->eState = 2;
        }else{
          fts5FastGetVarint32(pChunk, i, iCol);
          pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
          if( pCtx->eState ){

            fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
            iStart = i;
          }
        }
      }








    }while( i<nChunk );
  }
}

static void fts5ChunkIterate(
  Fts5Index *p,                   /* Index object */
  Fts5SegIter *pSeg,              /* Poslist of this iterator */
  void *pCtx,                     /* Context pointer for xChunk callback */
  void (*xChunk)(Fts5Index*, void*, const u8*, int)
){
  int nRem = pSeg->nPos;          /* Number of bytes still to come */
  Fts5Data *pData = 0;
  u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
  int pgno = pSeg->iLeafPgno;
  int pgnoSave = 0;

  /* This function does notmwork with detail=none databases. */
  assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );

  if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
    pgnoSave = pgno+1;
  }

  while( 1 ){
    xChunk(p, pCtx, pChunk, nChunk);
176944
176945
176946
176947
176948
176949
176950





























176951



































































































































































































































































































































































































































176952
176953
176954
176955
176956
176957
176958
        pSeg->pNextLeaf = pData;
        pData = 0;
      }
    }
  }
}



































































































































































































































































































































































































































































/*
** Allocate a new segment-id for the structure pStruct. The new segment
** id must be between 1 and 65335 inclusive, and must not be used by 
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







178441
178442
178443
178444
178445
178446
178447
178448
178449
178450
178451
178452
178453
178454
178455
178456
178457
178458
178459
178460
178461
178462
178463
178464
178465
178466
178467
178468
178469
178470
178471
178472
178473
178474
178475
178476
178477
178478
178479
178480
178481
178482
178483
178484
178485
178486
178487
178488
178489
178490
178491
178492
178493
178494
178495
178496
178497
178498
178499
178500
178501
178502
178503
178504
178505
178506
178507
178508
178509
178510
178511
178512
178513
178514
178515
178516
178517
178518
178519
178520
178521
178522
178523
178524
178525
178526
178527
178528
178529
178530
178531
178532
178533
178534
178535
178536
178537
178538
178539
178540
178541
178542
178543
178544
178545
178546
178547
178548
178549
178550
178551
178552
178553
178554
178555
178556
178557
178558
178559
178560
178561
178562
178563
178564
178565
178566
178567
178568
178569
178570
178571
178572
178573
178574
178575
178576
178577
178578
178579
178580
178581
178582
178583
178584
178585
178586
178587
178588
178589
178590
178591
178592
178593
178594
178595
178596
178597
178598
178599
178600
178601
178602
178603
178604
178605
178606
178607
178608
178609
178610
178611
178612
178613
178614
178615
178616
178617
178618
178619
178620
178621
178622
178623
178624
178625
178626
178627
178628
178629
178630
178631
178632
178633
178634
178635
178636
178637
178638
178639
178640
178641
178642
178643
178644
178645
178646
178647
178648
178649
178650
178651
178652
178653
178654
178655
178656
178657
178658
178659
178660
178661
178662
178663
178664
178665
178666
178667
178668
178669
178670
178671
178672
178673
178674
178675
178676
178677
178678
178679
178680
178681
178682
178683
178684
178685
178686
178687
178688
178689
178690
178691
178692
178693
178694
178695
178696
178697
178698
178699
178700
178701
178702
178703
178704
178705
178706
178707
178708
178709
178710
178711
178712
178713
178714
178715
178716
178717
178718
178719
178720
178721
178722
178723
178724
178725
178726
178727
178728
178729
178730
178731
178732
178733
178734
178735
178736
178737
178738
178739
178740
178741
178742
178743
178744
178745
178746
178747
178748
178749
178750
178751
178752
178753
178754
178755
178756
178757
178758
178759
178760
178761
178762
178763
178764
178765
178766
178767
178768
178769
178770
178771
178772
178773
178774
178775
178776
178777
178778
178779
178780
178781
178782
178783
178784
178785
178786
178787
178788
178789
178790
178791
178792
178793
178794
178795
178796
178797
178798
178799
178800
178801
178802
178803
178804
178805
178806
178807
178808
178809
178810
178811
178812
178813
178814
178815
178816
178817
178818
178819
178820
178821
178822
178823
178824
178825
178826
178827
178828
178829
178830
178831
178832
178833
178834
178835
178836
178837
178838
178839
178840
178841
178842
178843
178844
178845
178846
178847
178848
178849
178850
178851
178852
178853
178854
178855
178856
178857
178858
178859
178860
178861
178862
178863
178864
178865
178866
178867
178868
178869
178870
178871
178872
178873
178874
178875
178876
178877
178878
178879
178880
178881
178882
178883
178884
178885
178886
178887
178888
178889
178890
178891
178892
178893
178894
178895
178896
178897
178898
178899
178900
178901
178902
178903
        pSeg->pNextLeaf = pData;
        pData = 0;
      }
    }
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
*/
static void fts5SegiterPoslist(
  Fts5Index *p,
  Fts5SegIter *pSeg,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){
  if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos) ){
    if( pColset==0 ){
      fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
    }else{
      if( p->pConfig->eDetail==FTS5_DETAIL_FULL ){
        PoslistCallbackCtx sCtx;
        sCtx.pBuf = pBuf;
        sCtx.pColset = pColset;
        sCtx.eState = fts5IndexColsetTest(pColset, 0);
        assert( sCtx.eState==0 || sCtx.eState==1 );
        fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
      }else{
        PoslistOffsetsCtx sCtx;
        memset(&sCtx, 0, sizeof(sCtx));
        sCtx.pBuf = pBuf;
        sCtx.pColset = pColset;
        fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistOffsetsCallback);
      }
    }
  }
}

/*
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
** the position list contains entries for column iCol, then (*pa) is set
** to point to the sub-position-list for that column and the number of
** bytes in it returned. Or, if the argument position list does not
** contain any entries for column iCol, return 0.
*/
static int fts5IndexExtractCol(
  const u8 **pa,                  /* IN/OUT: Pointer to poslist */
  int n,                          /* IN: Size of poslist in bytes */
  int iCol                        /* Column to extract from poslist */
){
  int iCurrent = 0;               /* Anything before the first 0x01 is col 0 */
  const u8 *p = *pa;
  const u8 *pEnd = &p[n];         /* One byte past end of position list */

  while( iCol>iCurrent ){
    /* Advance pointer p until it points to pEnd or an 0x01 byte that is
    ** not part of a varint. Note that it is not possible for a negative
    ** or extremely large varint to occur within an uncorrupted position 
    ** list. So the last byte of each varint may be assumed to have a clear
    ** 0x80 bit.  */
    while( *p!=0x01 ){
      while( *p++ & 0x80 );
      if( p>=pEnd ) return 0;
    }
    *pa = p++;
    iCurrent = *p++;
    if( iCurrent & 0x80 ){
      p--;
      p += fts5GetVarint32(p, iCurrent);
    }
  }
  if( iCol!=iCurrent ) return 0;

  /* Advance pointer p until it points to pEnd or an 0x01 byte that is
  ** not part of a varint */
  while( p<pEnd && *p!=0x01 ){
    while( *p++ & 0x80 );
  }

  return p - (*pa);
}

static int fts5IndexExtractColset (
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;
}

/*
** xSetOutputs callback used by detail=none tables.
*/
static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
  pIter->base.iRowid = pSeg->iRowid;
  pIter->base.nData = pSeg->nPos;
}

/*
** xSetOutputs callback used by detail=full and detail=col tables when no
** column filters are specified.
*/
static void fts5IterSetOutputs_Nocolset(Fts5Iter *pIter, Fts5SegIter *pSeg){
  pIter->base.iRowid = pSeg->iRowid;
  pIter->base.nData = pSeg->nPos;

  assert( pIter->pIndex->pConfig->eDetail!=FTS5_DETAIL_NONE );
  assert( pIter->pColset==0 );

  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    pIter->base.pData = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist);
    pIter->base.pData = pIter->poslist.p;
  }
}

/*
** xSetOutputs callback used by detail=col when there is a column filter
** and there are 100 or more columns. Also called as a fallback from
** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
*/
static void fts5IterSetOutputs_Col(Fts5Iter *pIter, Fts5SegIter *pSeg){
  fts5BufferZero(&pIter->poslist);
  fts5SegiterPoslist(pIter->pIndex, pSeg, pIter->pColset, &pIter->poslist);
  pIter->base.iRowid = pSeg->iRowid;
  pIter->base.pData = pIter->poslist.p;
  pIter->base.nData = pIter->poslist.n;
}

/*
** xSetOutputs callback used when: 
**
**   * detail=col,
**   * there is a column filter, and
**   * the table contains 100 or fewer columns. 
**
** The last point is to ensure all column numbers are stored as 
** single-byte varints.
*/
static void fts5IterSetOutputs_Col100(Fts5Iter *pIter, Fts5SegIter *pSeg){

  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
  assert( pIter->pColset );

  if( pSeg->iLeafOffset+pSeg->nPos>pSeg->pLeaf->szLeaf ){
    fts5IterSetOutputs_Col(pIter, pSeg);
  }else{
    u8 *a = (u8*)&pSeg->pLeaf->p[pSeg->iLeafOffset];
    u8 *pEnd = (u8*)&a[pSeg->nPos]; 
    int iPrev = 0;
    int *aiCol = pIter->pColset->aiCol;
    int *aiColEnd = &aiCol[pIter->pColset->nCol];

    u8 *aOut = pIter->poslist.p;
    int iPrevOut = 0;

    pIter->base.iRowid = pSeg->iRowid;

    while( a<pEnd ){
      iPrev += (int)a++[0] - 2;
      while( *aiCol<iPrev ){
        aiCol++;
        if( aiCol==aiColEnd ) goto setoutputs_col_out;
      }
      if( *aiCol==iPrev ){
        *aOut++ = (iPrev - iPrevOut) + 2;
        iPrevOut = iPrev;
      }
    }

setoutputs_col_out:
    pIter->base.pData = pIter->poslist.p;
    pIter->base.nData = aOut - pIter->poslist.p;
  }
}

/*
** xSetOutputs callback used by detail=full when there is a column filter.
*/
static void fts5IterSetOutputs_Full(Fts5Iter *pIter, Fts5SegIter *pSeg){
  Fts5Colset *pColset = pIter->pColset;
  pIter->base.iRowid = pSeg->iRowid;

  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_FULL );
  assert( pColset );

  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset->nCol==1 ){
      pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
      pIter->base.pData = a;
    }else{
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, a, pSeg->nPos, &pIter->poslist);
      pIter->base.pData = pIter->poslist.p;
      pIter->base.nData = pIter->poslist.n;
    }
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
    pIter->base.pData = pIter->poslist.p;
    pIter->base.nData = pIter->poslist.n;
  }
}

static void fts5IterSetOutputCb(int *pRc, Fts5Iter *pIter){
  if( *pRc==SQLITE_OK ){
    Fts5Config *pConfig = pIter->pIndex->pConfig;
    if( pConfig->eDetail==FTS5_DETAIL_NONE ){
      pIter->xSetOutputs = fts5IterSetOutputs_None;
    }

    else if( pIter->pColset==0 ){
      pIter->xSetOutputs = fts5IterSetOutputs_Nocolset;
    }

    else if( pConfig->eDetail==FTS5_DETAIL_FULL ){
      pIter->xSetOutputs = fts5IterSetOutputs_Full;
    }

    else{
      assert( pConfig->eDetail==FTS5_DETAIL_COLUMNS );
      if( pConfig->nCol<=100 ){
        pIter->xSetOutputs = fts5IterSetOutputs_Col100;
        sqlite3Fts5BufferSize(pRc, &pIter->poslist, pConfig->nCol);
      }else{
        pIter->xSetOutputs = fts5IterSetOutputs_Col;
      }
    }
  }
}


/*
** Allocate a new Fts5Iter object.
**
** The new object will be used to iterate through data in structure pStruct.
** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
** is zero or greater, data from the first nSegment segments on level iLevel
** is merged.
**
** The iterator initially points to the first term/rowid entry in the 
** iterated data.
*/
static void fts5MultiIterNew(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Structure *pStruct,         /* Structure of specific index */
  int flags,                      /* FTS5INDEX_QUERY_XXX flags */
  Fts5Colset *pColset,            /* Colset to filter on (or NULL) */
  const u8 *pTerm, int nTerm,     /* Term to seek to (or NULL/0) */
  int iLevel,                     /* Level to iterate (-1 for all) */
  int nSegment,                   /* Number of segments to merge (iLevel>=0) */
  Fts5Iter **ppOut                /* New object */
){
  int nSeg = 0;                   /* Number of segment-iters in use */
  int iIter = 0;                  /* */
  int iSeg;                       /* Used to iterate through segments */
  Fts5StructureLevel *pLvl;
  Fts5Iter *pNew;

  assert( (pTerm==0 && nTerm==0) || iLevel<0 );

  /* Allocate space for the new multi-seg-iterator. */
  if( p->rc==SQLITE_OK ){
    if( iLevel<0 ){
      assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
      nSeg = pStruct->nSegment;
      nSeg += (p->pHash ? 1 : 0);
    }else{
      nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
    }
  }
  *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
  if( pNew==0 ) return;
  pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
  pNew->bSkipEmpty = (0!=(flags & FTS5INDEX_QUERY_SKIPEMPTY));
  pNew->pStruct = pStruct;
  pNew->pColset = pColset;
  fts5StructureRef(pStruct);
  if( (flags & FTS5INDEX_QUERY_NOOUTPUT)==0 ){
    fts5IterSetOutputCb(&p->rc, pNew);
  }

  /* Initialize each of the component segment iterators. */
  if( p->rc==SQLITE_OK ){
    if( iLevel<0 ){
      Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
      if( p->pHash ){
        /* Add a segment iterator for the current contents of the hash table. */
        Fts5SegIter *pIter = &pNew->aSeg[iIter++];
        fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
      }
      for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
        for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
          Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
          Fts5SegIter *pIter = &pNew->aSeg[iIter++];
          if( pTerm==0 ){
            fts5SegIterInit(p, pSeg, pIter);
          }else{
            fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter);
          }
        }
      }
    }else{
      pLvl = &pStruct->aLevel[iLevel];
      for(iSeg=nSeg-1; iSeg>=0; iSeg--){
        fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
      }
    }
    assert( iIter==nSeg );
  }

  /* If the above was successful, each component iterators now points 
  ** to the first entry in its segment. In this case initialize the 
  ** aFirst[] array. Or, if an error has occurred, free the iterator
  ** object and set the output variable to NULL.  */
  if( p->rc==SQLITE_OK ){
    for(iIter=pNew->nSeg-1; iIter>0; iIter--){
      int iEq;
      if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
        Fts5SegIter *pSeg = &pNew->aSeg[iEq];
        if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
        fts5MultiIterAdvanced(p, pNew, iEq, iIter);
      }
    }
    fts5MultiIterSetEof(pNew);
    fts5AssertMultiIterSetup(p, pNew);

    if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
      fts5MultiIterNext(p, pNew, 0, 0);
    }else if( pNew->base.bEof==0 ){
      Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
      pNew->xSetOutputs(pNew, pSeg);
    }

  }else{
    fts5MultiIterFree(pNew);
    *ppOut = 0;
  }
}

/*
** Create an Fts5Iter that iterates through the doclist provided
** as the second argument.
*/
static void fts5MultiIterNew2(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Data *pData,                /* Doclist to iterate through */
  int bDesc,                      /* True for descending rowid order */
  Fts5Iter **ppOut                /* New object */
){
  Fts5Iter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){
    Fts5SegIter *pIter = &pNew->aSeg[1];

    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;
      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
        pNew->bRev = 1;
        pIter->flags |= FTS5_SEGITER_REVERSE;
        fts5SegIterReverseInitPage(p, pIter);
      }else{
        fts5SegIterLoadNPos(p, pIter);
      }
      pData = 0;
    }else{
      pNew->base.bEof = 1;
    }
    fts5SegIterSetNext(p, pIter);

    *ppOut = pNew;
  }

  fts5DataRelease(pData);
}

/*
** Return true if the iterator is at EOF or if an error has occurred. 
** False otherwise.
*/
static int fts5MultiIterEof(Fts5Index *p, Fts5Iter *pIter){
  assert( p->rc 
      || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->base.bEof 
  );
  return (p->rc || pIter->base.bEof);
}

/*
** Return the rowid of the entry that the iterator currently points
** to. If the iterator points to EOF when this function is called the
** results are undefined.
*/
static i64 fts5MultiIterRowid(Fts5Iter *pIter){
  assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
  return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
}

/*
** Move the iterator to the next entry at or following iMatch.
*/
static void fts5MultiIterNextFrom(
  Fts5Index *p, 
  Fts5Iter *pIter, 
  i64 iMatch
){
  while( 1 ){
    i64 iRowid;
    fts5MultiIterNext(p, pIter, 1, iMatch);
    if( fts5MultiIterEof(p, pIter) ) break;
    iRowid = fts5MultiIterRowid(pIter);
    if( pIter->bRev==0 && iRowid>=iMatch ) break;
    if( pIter->bRev!=0 && iRowid<=iMatch ) break;
  }
}

/*
** Return a pointer to a buffer containing the term associated with the 
** entry that the iterator currently points to.
*/
static const u8 *fts5MultiIterTerm(Fts5Iter *pIter, int *pn){
  Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  *pn = p->term.n;
  return p->term.p;
}

/*
** Allocate a new segment-id for the structure pStruct. The new segment
** id must be between 1 and 65335 inclusive, and must not be used by 
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**
176992
176993
176994
176995
176996
176997
176998
176999



177000
177001
177002
177003
177004
177005
177006
177007
177008
177009
177010
177011
177012
177013
177014
  if( p->pHash ){
    sqlite3Fts5HashClear(p->pHash);
    p->nPendingData = 0;
  }
}

/*
** Return the size of the prefix, in bytes, that buffer (nNew/pNew) shares



** with buffer (nOld/pOld).
*/
static int fts5PrefixCompress(
  int nOld, const u8 *pOld,
  int nNew, const u8 *pNew
){
  int i;
  assert( fts5BlobCompare(pOld, nOld, pNew, nNew)<0 );
  for(i=0; i<nOld; i++){
    if( pOld[i]!=pNew[i] ) break;
  }
  return i;
}

static void fts5WriteDlidxClear(







|
>
>
>
|

|
<
<
<

<







178937
178938
178939
178940
178941
178942
178943
178944
178945
178946
178947
178948
178949
178950



178951

178952
178953
178954
178955
178956
178957
178958
  if( p->pHash ){
    sqlite3Fts5HashClear(p->pHash);
    p->nPendingData = 0;
  }
}

/*
** Return the size of the prefix, in bytes, that buffer 
** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
**
** Buffer (pNew/<length-unknown>) is guaranteed to be greater 
** than buffer (pOld/nOld).
*/
static int fts5PrefixCompress(int nOld, const u8 *pOld, const u8 *pNew){



  int i;

  for(i=0; i<nOld; i++){
    if( pOld[i]!=pNew[i] ) break;
  }
  return i;
}

static void fts5WriteDlidxClear(
177310
177311
177312
177313
177314
177315
177316
177317
177318
177319
177320
177321
177322
177323
177324
177325
177326
177327
177328
177329
177330
      ** Usually, the previous term is available in pPage->term. The exception
      ** is if this is the first term written in an incremental-merge step.
      ** In this case the previous term is not available, so just write a
      ** copy of (pTerm/nTerm) into the parent node. This is slightly
      ** inefficient, but still correct.  */
      int n = nTerm;
      if( pPage->term.n ){
        n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
      }
      fts5WriteBtreeTerm(p, pWriter, n, pTerm);
      pPage = &pWriter->writer;
    }
  }else{
    nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
  }

  /* Append the number of bytes of new data, then the term data itself
  ** to the page. */
  fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
  fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);







|





|







179254
179255
179256
179257
179258
179259
179260
179261
179262
179263
179264
179265
179266
179267
179268
179269
179270
179271
179272
179273
179274
      ** Usually, the previous term is available in pPage->term. The exception
      ** is if this is the first term written in an incremental-merge step.
      ** In this case the previous term is not available, so just write a
      ** copy of (pTerm/nTerm) into the parent node. This is slightly
      ** inefficient, but still correct.  */
      int n = nTerm;
      if( pPage->term.n ){
        n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, pTerm);
      }
      fts5WriteBtreeTerm(p, pWriter, n, pTerm);
      pPage = &pWriter->writer;
    }
  }else{
    nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, pTerm);
    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
  }

  /* Append the number of bytes of new data, then the term data itself
  ** to the page. */
  fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
  fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
177342
177343
177344
177345
177346
177347
177348
177349
177350
177351
177352
177353
177354
177355
177356
177357

/*
** Append a rowid and position-list size field to the writers output. 
*/
static void fts5WriteAppendRowid(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  i64 iRowid,
  int nPos
){
  if( p->rc==SQLITE_OK ){
    Fts5PageWriter *pPage = &pWriter->writer;

    if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
      fts5WriteFlushLeaf(p, pWriter);
    }







|
<







179286
179287
179288
179289
179290
179291
179292
179293

179294
179295
179296
179297
179298
179299
179300

/*
** Append a rowid and position-list size field to the writers output. 
*/
static void fts5WriteAppendRowid(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  i64 iRowid

){
  if( p->rc==SQLITE_OK ){
    Fts5PageWriter *pPage = &pWriter->writer;

    if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
      fts5WriteFlushLeaf(p, pWriter);
    }
177370
177371
177372
177373
177374
177375
177376
177377
177378
177379
177380
177381
177382
177383
177384
177385
    }else{
      assert( p->rc || iRowid>pWriter->iPrevRowid );
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
    }
    pWriter->iPrevRowid = iRowid;
    pWriter->bFirstRowidInDoclist = 0;
    pWriter->bFirstRowidInPage = 0;

    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPos);
  }
}

static void fts5WriteAppendPoslistData(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  const u8 *aData, 







<
<







179313
179314
179315
179316
179317
179318
179319


179320
179321
179322
179323
179324
179325
179326
    }else{
      assert( p->rc || iRowid>pWriter->iPrevRowid );
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
    }
    pWriter->iPrevRowid = iRowid;
    pWriter->bFirstRowidInDoclist = 0;
    pWriter->bFirstRowidInPage = 0;


  }
}

static void fts5WriteAppendPoslistData(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  const u8 *aData, 
177482
177483
177484
177485
177486
177487
177488
177489
177490
177491
177492
177493
177494
177495
177496
}

/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental
** merge step has finished but the input has not been completely exhausted.
*/
static void fts5TrimSegments(Fts5Index *p, Fts5IndexIter *pIter){
  int i;
  Fts5Buffer buf;
  memset(&buf, 0, sizeof(Fts5Buffer));
  for(i=0; i<pIter->nSeg; i++){
    Fts5SegIter *pSeg = &pIter->aSeg[i];
    if( pSeg->pSeg==0 ){
      /* no-op */







|







179423
179424
179425
179426
179427
179428
179429
179430
179431
179432
179433
179434
179435
179436
179437
}

/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental
** merge step has finished but the input has not been completely exhausted.
*/
static void fts5TrimSegments(Fts5Index *p, Fts5Iter *pIter){
  int i;
  Fts5Buffer buf;
  memset(&buf, 0, sizeof(Fts5Buffer));
  for(i=0; i<pIter->nSeg; i++){
    Fts5SegIter *pSeg = &pIter->aSeg[i];
    if( pSeg->pSeg==0 ){
      /* no-op */
177560
177561
177562
177563
177564
177565
177566
177567
177568
177569
177570
177571
177572
177573


177574
177575
177576
177577
177578
177579
177580
  Fts5Structure **ppStruct,       /* IN/OUT: Stucture of index */
  int iLvl,                       /* Level to read input from */
  int *pnRem                      /* Write up to this many output leaves */
){
  Fts5Structure *pStruct = *ppStruct;
  Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
  Fts5StructureLevel *pLvlOut;
  Fts5IndexIter *pIter = 0;       /* Iterator to read input data */
  int nRem = pnRem ? *pnRem : 0;  /* Output leaf pages left to write */
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bOldest;                    /* True if the output segment is the oldest */



  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
  if( pLvl->nMerge ){







|






>
>







179501
179502
179503
179504
179505
179506
179507
179508
179509
179510
179511
179512
179513
179514
179515
179516
179517
179518
179519
179520
179521
179522
179523
  Fts5Structure **ppStruct,       /* IN/OUT: Stucture of index */
  int iLvl,                       /* Level to read input from */
  int *pnRem                      /* Write up to this many output leaves */
){
  Fts5Structure *pStruct = *ppStruct;
  Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
  Fts5StructureLevel *pLvlOut;
  Fts5Iter *pIter = 0;       /* Iterator to read input data */
  int nRem = pnRem ? *pnRem : 0;  /* Output leaf pages left to write */
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bOldest;                    /* True if the output segment is the oldest */
  int eDetail = p->pConfig->eDetail;
  const int flags = FTS5INDEX_QUERY_NOOUTPUT;

  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
  if( pLvl->nMerge ){
177611
177612
177613
177614
177615
177616
177617
177618
177619
177620
177621
177622
177623
177624
177625

    /* Read input from all segments in the input level */
    nInput = pLvl->nSeg;
  }
  bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);

  assert( iLvl>=0 );
  for(fts5MultiIterNew(p, pStruct, 0, 0, 0, 0, iLvl, nInput, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int nPos;                     /* position-list size field value */
    int nTerm;
    const u8 *pTerm;







|







179554
179555
179556
179557
179558
179559
179560
179561
179562
179563
179564
179565
179566
179567
179568

    /* Read input from all segments in the input level */
    nInput = pLvl->nSeg;
  }
  bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);

  assert( iLvl>=0 );
  for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int nPos;                     /* position-list size field value */
    int nTerm;
    const u8 *pTerm;
177636
177637
177638
177639
177640
177641
177642
177643
177644
177645








177646


177647

177648
177649
177650
177651
177652
177653
177654
      /* This is a new term. Append a term to the output segment. */
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */
    nPos = pSegIter->nPos*2 + pSegIter->bDel;
    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter), nPos);









    /* Append the position-list data to the output */


    fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);

  }

  /* Flush the last leaf page to disk. Set the output segment b-tree height
  ** and last leaf page number at the same time.  */
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  if( fts5MultiIterEof(p, pIter) ){







<
|

>
>
>
>
>
>
>
>
|
>
>
|
>







179579
179580
179581
179582
179583
179584
179585

179586
179587
179588
179589
179590
179591
179592
179593
179594
179595
179596
179597
179598
179599
179600
179601
179602
179603
179604
179605
179606
179607
      /* This is a new term. Append a term to the output segment. */
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */

    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));

    if( eDetail==FTS5_DETAIL_NONE ){
      if( pSegIter->bDel ){
        fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
        if( pSegIter->nPos>0 ){
          fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
        }
      }
    }else{
      /* Append the position-list data to the output */
      nPos = pSegIter->nPos*2 + pSegIter->bDel;
      fts5BufferAppendVarint(&p->rc, &writer.writer.buf, nPos);
      fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
    }
  }

  /* Flush the last leaf page to disk. Set the output segment b-tree height
  ** and last leaf page number at the same time.  */
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  if( fts5MultiIterEof(p, pIter) ){
177673
177674
177675
177676
177677
177678
177679
177680
177681
177682
177683
177684
177685
177686
177687
    }
  }else{
    assert( pSeg->pgnoLast>0 );
    fts5TrimSegments(p, pIter);
    pLvl->nMerge = nInput;
  }

  fts5MultiIterFree(p, pIter);
  fts5BufferFree(&term);
  if( pnRem ) *pnRem -= writer.nLeafWritten;
}

/*
** Do up to nPg pages of automerge work on the index.
*/







|







179626
179627
179628
179629
179630
179631
179632
179633
179634
179635
179636
179637
179638
179639
179640
    }
  }else{
    assert( pSeg->pgnoLast>0 );
    fts5TrimSegments(p, pIter);
    pLvl->nMerge = nInput;
  }

  fts5MultiIterFree(pIter);
  fts5BufferFree(&term);
  if( pnRem ) *pnRem -= writer.nLeafWritten;
}

/*
** Do up to nPg pages of automerge work on the index.
*/
177828
177829
177830
177831
177832
177833
177834
177835
177836
177837
177838
177839
177840
177841
177842
  /* Obtain a reference to the index structure and allocate a new segment-id
  ** for the new level-0 segment.  */
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);

  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;

    Fts5StructureSegment *pSeg;   /* New segment within pStruct */
    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */
    Fts5Buffer *pPgidx;           /* Buffer in which to assemble pgidx */

    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);








|







179781
179782
179783
179784
179785
179786
179787
179788
179789
179790
179791
179792
179793
179794
179795
  /* Obtain a reference to the index structure and allocate a new segment-id
  ** for the new level-0 segment.  */
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);

  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;
    int eDetail = p->pConfig->eDetail;
    Fts5StructureSegment *pSeg;   /* New segment within pStruct */
    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */
    Fts5Buffer *pPgidx;           /* Buffer in which to assemble pgidx */

    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);

177871
177872
177873
177874
177875
177876
177877
177878
177879
177880
177881
177882
177883
177884
177885
177886
177887
177888
177889
177890
177891
177892
177893
177894
177895

















177896
177897
177898
177899
177900
177901
177902
177903
177904
177905
177906
177907
177908
177909
177910
177911
177912
177913
177914
177915
177916
177917
177918
177919
177920
177921
177922
177923

177924
177925
177926
177927
177928
177929
177930
        i64 iDelta = 0;
        int iOff = 0;

        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){
          int nPos;
          int nCopy;
          int bDummy;
          iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);
          nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
          nCopy += nPos;
          iRowid += iDelta;
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );


















          if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
            /* The entire poslist will fit on the current leaf. So copy
            ** it in one go. */
            fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
          }else{
            /* The entire poslist will not fit on this leaf. So it needs
            ** to be broken into sections. The only qualification being
            ** that each varint must be stored contiguously.  */
            const u8 *pPoslist = &pDoclist[iOff];
            int iPos = 0;
            while( p->rc==SQLITE_OK ){
              int nSpace = pgsz - pBuf->n - pPgidx->n;
              int n = 0;
              if( (nCopy - iPos)<=nSpace ){
                n = nCopy - iPos;
              }else{
                n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
              }
              assert( n>0 );
              fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
              iPos += n;
              if( (pBuf->n + pPgidx->n)>=pgsz ){
                fts5WriteFlushLeaf(p, &writer);
              }
              if( iPos>=nCopy ) break;
            }
          }
          iOff += nCopy;

        }
      }

      /* TODO2: Doclist terminator written here. */
      /* pBuf->p[pBuf->n++] = '\0'; */
      assert( pBuf->n<=pBuf->nSpace );
      sqlite3Fts5HashScanNext(pHash);







<
<
<

<
<












>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







179824
179825
179826
179827
179828
179829
179830



179831


179832
179833
179834
179835
179836
179837
179838
179839
179840
179841
179842
179843
179844
179845
179846
179847
179848
179849
179850
179851
179852
179853
179854
179855
179856
179857
179858
179859
179860
179861
179862
179863
179864
179865
179866
179867
179868
179869
179870
179871
179872
179873
179874
179875
179876
179877
179878
179879
179880
179881
179882
179883
179884
179885
179886
179887
179888
179889
179890
179891
179892
179893
179894
179895
179896
        i64 iDelta = 0;
        int iOff = 0;

        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){



          iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);


          iRowid += iDelta;
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );

          if( eDetail==FTS5_DETAIL_NONE ){
            if( iOff<nDoclist && pDoclist[iOff]==0 ){
              pBuf->p[pBuf->n++] = 0;
              iOff++;
              if( iOff<nDoclist && pDoclist[iOff]==0 ){
                pBuf->p[pBuf->n++] = 0;
                iOff++;
              }
            }
            if( (pBuf->n + pPgidx->n)>=pgsz ){
              fts5WriteFlushLeaf(p, &writer);
            }
          }else{
            int bDummy;
            int nPos;
            int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
            nCopy += nPos;
            if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
              /* The entire poslist will fit on the current leaf. So copy
              ** it in one go. */
              fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
            }else{
              /* The entire poslist will not fit on this leaf. So it needs
              ** to be broken into sections. The only qualification being
              ** that each varint must be stored contiguously.  */
              const u8 *pPoslist = &pDoclist[iOff];
              int iPos = 0;
              while( p->rc==SQLITE_OK ){
                int nSpace = pgsz - pBuf->n - pPgidx->n;
                int n = 0;
                if( (nCopy - iPos)<=nSpace ){
                  n = nCopy - iPos;
                }else{
                  n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
                }
                assert( n>0 );
                fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
                iPos += n;
                if( (pBuf->n + pPgidx->n)>=pgsz ){
                  fts5WriteFlushLeaf(p, &writer);
                }
                if( iPos>=nCopy ) break;
              }
            }
            iOff += nCopy;
          }
        }
      }

      /* TODO2: Doclist terminator written here. */
      /* pBuf->p[pBuf->n++] = '\0'; */
      assert( pBuf->n<=pBuf->nSpace );
      sqlite3Fts5HashScanNext(pHash);
178033
178034
178035
178036
178037
178038
178039
178040
178041
178042
178043
178044
178045
178046
178047
178048
178049
178050
178051
178052
178053
178054
178055
178056
178057
178058
178059
178060
178061
178062
178063
178064
178065
178066
178067
178068
178069
178070
178071
178072
178073
178074
178075
178076
178077
178078
178079
178080
178081
178082
178083
178084
178085
178086
178087
178088
178089
178090
178091
178092
178093
178094
178095
178096
178097
178098
178099
178100
178101
178102
178103
178104
178105
178106
178107
178108
178109
178110
178111
178112
178113
178114
178115
178116
178117
178118
178119
178120
178121
178122
178123
178124
178125
178126
178127
178128
178129
178130
178131

178132
178133
178134
178135
178136
178137
178138
178139
178140
178141
178142
178143
178144
178145
178146
178147
178148
178149
178150
178151
178152
178153
178154
178155
178156
178157
178158
178159
178160
178161
178162
178163
178164
178165
178166
178167
178168
178169
178170
178171
178172
178173
178174
178175
178176
178177
178178
178179
178180
178181
178182
178183
178184
178185
178186
178187
178188
178189
178190
178191
178192
178193
178194
178195
178196
178197
178198
178199
178200
178201
178202
178203
178204
178205


178206





178207
178208
178209
178210
178211
178212
178213
178214
178215
178216
178217
178218
178219
178220
178221
178222
178223
178224
178225
178226
178227
178228
178229
178230
178231
178232
178233
178234
178235
178236
178237
178238
178239
178240
178241
178242
178243
178244
178245
178246
178247
178248
178249
178250
178251
178252
178253
178254
178255
178256
178257
178258
178259
178260
178261
178262
178263
178264
178265
178266
178267
178268
178269
    fts5StructureWrite(p, pStruct);
  }
  fts5StructureRelease(pStruct);

  return fts5IndexReturn(p);
}

static void fts5PoslistCallback(
  Fts5Index *p, 
  void *pContext, 
  const u8 *pChunk, int nChunk
){
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);
  }
}

typedef struct PoslistCallbackCtx PoslistCallbackCtx;
struct PoslistCallbackCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
  int eState;                     /* See above */
};

/*
** TODO: Make this more efficient!
*/
static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
  int i;
  for(i=0; i<pColset->nCol; i++){
    if( pColset->aiCol[i]==iCol ) return 1;
  }
  return 0;
}

static void fts5PoslistFilterCallback(
  Fts5Index *p, 
  void *pContext, 
  const u8 *pChunk, int nChunk
){
  PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    /* Search through to find the first varint with value 1. This is the
    ** start of the next columns hits. */
    int i = 0;
    int iStart = 0;

    if( pCtx->eState==2 ){
      int iCol;
      fts5FastGetVarint32(pChunk, i, iCol);
      if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
        pCtx->eState = 1;
        fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
      }else{
        pCtx->eState = 0;
      }
    }

    do {
      while( i<nChunk && pChunk[i]!=0x01 ){
        while( pChunk[i] & 0x80 ) i++;
        i++;
      }
      if( pCtx->eState ){
        fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
      }
      if( i<nChunk ){
        int iCol;
        iStart = i;
        i++;
        if( i>=nChunk ){
          pCtx->eState = 2;
        }else{
          fts5FastGetVarint32(pChunk, i, iCol);
          pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
          if( pCtx->eState ){
            fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
            iStart = i;
          }
        }
      }
    }while( i<nChunk );
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
*/
static void fts5SegiterPoslist(
  Fts5Index *p,
  Fts5SegIter *pSeg,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){

  if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos) ){
    if( pColset==0 ){
      fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
    }else{
      PoslistCallbackCtx sCtx;
      sCtx.pBuf = pBuf;
      sCtx.pColset = pColset;
      sCtx.eState = fts5IndexColsetTest(pColset, 0);
      assert( sCtx.eState==0 || sCtx.eState==1 );
      fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
    }
  }
}

/*
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
** the position list contains entries for column iCol, then (*pa) is set
** to point to the sub-position-list for that column and the number of
** bytes in it returned. Or, if the argument position list does not
** contain any entries for column iCol, return 0.
*/
static int fts5IndexExtractCol(
  const u8 **pa,                  /* IN/OUT: Pointer to poslist */
  int n,                          /* IN: Size of poslist in bytes */
  int iCol                        /* Column to extract from poslist */
){
  int iCurrent = 0;               /* Anything before the first 0x01 is col 0 */
  const u8 *p = *pa;
  const u8 *pEnd = &p[n];         /* One byte past end of position list */
  u8 prev = 0;

  while( iCol>iCurrent ){
    /* Advance pointer p until it points to pEnd or an 0x01 byte that is
    ** not part of a varint */
    while( (prev & 0x80) || *p!=0x01 ){
      prev = *p++;
      if( p==pEnd ) return 0;
    }
    *pa = p++;
    p += fts5GetVarint32(p, iCurrent);
  }
  if( iCol!=iCurrent ) return 0;

  /* Advance pointer p until it points to pEnd or an 0x01 byte that is
  ** not part of a varint */
  assert( (prev & 0x80)==0 );
  while( p<pEnd && ((prev & 0x80) || *p!=0x01) ){
    prev = *p++;
  }
  return p - (*pa);
}


/*
** Iterator pMulti currently points to a valid entry (not EOF). This
** function appends the following to buffer pBuf:
**
**   * The varint iDelta, and
**   * the position list that currently points to, including the size field.
**
** If argument pColset is NULL, then the position list is filtered according
** to pColset before being appended to the buffer. If this means there are
** no entries in the position list, nothing is appended to the buffer (not
** even iDelta).
**
** If an error occurs, an error code is left in p->rc. 
*/
static int fts5AppendPoslist(
  Fts5Index *p,
  i64 iDelta,
  Fts5IndexIter *pMulti,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){


  if( p->rc==SQLITE_OK ){





    Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
    assert( fts5MultiIterEof(p, pMulti)==0 );
    assert( pSeg->nPos>0 );
    if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos+9+9) ){

      if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf 
       && (pColset==0 || pColset->nCol==1)
      ){
        const u8 *pPos = &pSeg->pLeaf->p[pSeg->iLeafOffset];
        int nPos;
        if( pColset ){
          nPos = fts5IndexExtractCol(&pPos, pSeg->nPos, pColset->aiCol[0]);
          if( nPos==0 ) return 1;
        }else{
          nPos = pSeg->nPos;
        }
        assert( nPos>0 );
        fts5BufferSafeAppendVarint(pBuf, iDelta);
        fts5BufferSafeAppendVarint(pBuf, nPos*2);
        fts5BufferSafeAppendBlob(pBuf, pPos, nPos);
      }else{
        int iSv1;
        int iSv2;
        int iData;

        /* Append iDelta */
        iSv1 = pBuf->n;
        fts5BufferSafeAppendVarint(pBuf, iDelta);

        /* WRITEPOSLISTSIZE */
        iSv2 = pBuf->n;
        fts5BufferSafeAppendVarint(pBuf, pSeg->nPos*2);
        iData = pBuf->n;

        fts5SegiterPoslist(p, pSeg, pColset, pBuf);

        if( pColset ){
          int nActual = pBuf->n - iData;
          if( nActual!=pSeg->nPos ){
            if( nActual==0 ){
              pBuf->n = iSv1;
              return 1;
            }else{
              int nReq = sqlite3Fts5GetVarintLen((u32)(nActual*2));
              while( iSv2<(iData-nReq) ){ pBuf->p[iSv2++] = 0x80; }
              sqlite3Fts5PutVarint(&pBuf->p[iSv2], nActual*2);
            }
          }
        }
      }

    }
  }

  return 0;
}

static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
  u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;

  assert( pIter->aPoslist );
  if( p>=pIter->aEof ){
    pIter->aPoslist = 0;







|
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<


>
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|


|
<


>
>
|
>
>
>
>
>
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







179999
180000
180001
180002
180003
180004
180005
180006
180007








180008













































































180009

180010
180011
180012
180013









180014



















180015




































180016
180017
180018
180019

180020
180021
180022
180023
180024
180025
180026
180027
180028
180029




180030



















































180031
180032
180033
180034
180035
180036
180037
    fts5StructureWrite(p, pStruct);
  }
  fts5StructureRelease(pStruct);

  return fts5IndexReturn(p);
}

static void fts5AppendRowid(
  Fts5Index *p,








  i64 iDelta,













































































  Fts5Iter *pUnused,

  Fts5Buffer *pBuf
){
  UNUSED_PARAM(pUnused);
  fts5BufferAppendVarint(&p->rc, pBuf, iDelta);









}
























































static void fts5AppendPoslist(
  Fts5Index *p,
  i64 iDelta,
  Fts5Iter *pMulti,

  Fts5Buffer *pBuf
){
  int nData = pMulti->base.nData;
  assert( nData>0 );
  if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nData+9+9) ){
    fts5BufferSafeAppendVarint(pBuf, iDelta);
    fts5BufferSafeAppendVarint(pBuf, nData*2);
    fts5BufferSafeAppendBlob(pBuf, pMulti->base.pData, nData);
  }
}

























































static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
  u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;

  assert( pIter->aPoslist );
  if( p>=pIter->aEof ){
    pIter->aPoslist = 0;
178316
178317
178318
178319
178320
178321
178322































































178323
178324
178325
178326
178327
178328
178329
178330
178331
178332
178333
178334
178335
178336
178337
178338
178339
178340
178341
178342
178343
178344
178345
178346
178347
178348
178349

178350
178351
178352
178353
178354

178355
178356
178357
178358
178359
178360

178361
178362

178363
178364
178365
178366
178367
178368
178369

178370
178371
178372
178373
178374
178375


178376
178377
178378

178379
178380
178381
178382
178383
178384
178385
178386
178387




178388



178389






178390
178391

178392









178393
178394
178395
178396
178397
178398
178399

178400
178401









178402
178403
178404
178405
178406
178407
178408
178409
178410
178411
178412
178413
178414
178415
178416
178417
178418
178419
178420
178421
178422
178423
178424
178425










178426
178427
178428
178429
178430
178431


178432
178433
178434
178435
178436
178437
178438
178439
178440


178441
178442
178443
178444
178445
178446


178447
178448
178449
178450
178451


178452
178453
178454
178455
178456
178457
178458
178459
178460
178461
178462
178463
178464
178465
178466
178467
178468
178469
178470
178471
178472
178473
178474
178475
178476
178477
178478
178479
178480
178481
178482
178483
178484
#endif

#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) {       \
  assert( (pBuf)->n!=0 || (iLastRowid)==0 );                   \
  fts5BufferSafeAppendVarint((pBuf), (iRowid) - (iLastRowid)); \
  (iLastRowid) = (iRowid);                                     \
}
































































/*
** Buffers p1 and p2 contain doclists. This function merges the content
** of the two doclists together and sets buffer p1 to the result before
** returning.
**
** If an error occurs, an error code is left in p->rc. If an error has
** already occurred, this function is a no-op.
*/
static void fts5MergePrefixLists(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Buffer *p1,                 /* First list to merge */
  Fts5Buffer *p2                  /* Second list to merge */
){
  if( p2->n ){
    i64 iLastRowid = 0;
    Fts5DoclistIter i1;
    Fts5DoclistIter i2;
    Fts5Buffer out;
    Fts5Buffer tmp;
    memset(&out, 0, sizeof(out));
    memset(&tmp, 0, sizeof(tmp));

    sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
    fts5DoclistIterInit(p1, &i1);
    fts5DoclistIterInit(p2, &i2);
    while( p->rc==SQLITE_OK && (i1.aPoslist!=0 || i2.aPoslist!=0) ){

      if( i2.aPoslist==0 || (i1.aPoslist && i1.iRowid<i2.iRowid) ){
        /* Copy entry from i1 */
        fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
        fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);
        fts5DoclistIterNext(&i1);

      }
      else if( i1.aPoslist==0 || i2.iRowid!=i1.iRowid ){
        /* Copy entry from i2 */
        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.nPoslist+i2.nSize);
        fts5DoclistIterNext(&i2);

      }
      else{

        i64 iPos1 = 0;
        i64 iPos2 = 0;
        int iOff1 = 0;
        int iOff2 = 0;
        u8 *a1 = &i1.aPoslist[i1.nSize];
        u8 *a2 = &i2.aPoslist[i2.nSize];


        Fts5PoslistWriter writer;
        memset(&writer, 0, sizeof(writer));

        /* Merge the two position lists. */ 
        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferZero(&tmp);



        sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
        sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);


        while( p->rc==SQLITE_OK && (iPos1>=0 || iPos2>=0) ){
          i64 iNew;
          if( iPos2<0 || (iPos1>=0 && iPos1<iPos2) ){
            iNew = iPos1;
            sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
          }else{
            iNew = iPos2;
            sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);




            if( iPos1==iPos2 ){



              sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1,&iPos1);






            }
          }

          p->rc = sqlite3Fts5PoslistWriterAppend(&tmp, &writer, iNew);









        }

        /* WRITEPOSLISTSIZE */
        fts5BufferSafeAppendVarint(&out, tmp.n * 2);
        fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
        fts5DoclistIterNext(&i1);
        fts5DoclistIterNext(&i2);

      }
    }










    fts5BufferSet(&p->rc, p1, out.n, out.p);
    fts5BufferFree(&tmp);
    fts5BufferFree(&out);
  }
}

static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
  Fts5Buffer tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}

static void fts5SetupPrefixIter(
  Fts5Index *p,                   /* Index to read from */
  int bDesc,                      /* True for "ORDER BY rowid DESC" */
  const u8 *pToken,               /* Buffer containing prefix to match */
  int nToken,                     /* Size of buffer pToken in bytes */
  Fts5Colset *pColset,            /* Restrict matches to these columns */
  Fts5IndexIter **ppIter          /* OUT: New iterator */
){
  Fts5Structure *pStruct;
  Fts5Buffer *aBuf;
  const int nBuf = 32;











  aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
  pStruct = fts5StructureRead(p);

  if( aBuf && pStruct ){
    const int flags = FTS5INDEX_QUERY_SCAN;


    int i;
    i64 iLastRowid = 0;
    Fts5IndexIter *p1 = 0;     /* Iterator used to gather data from index */
    Fts5Data *pData;
    Fts5Buffer doclist;
    int bNewTerm = 1;

    memset(&doclist, 0, sizeof(doclist));
    for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);


        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext2(p, p1, &bNewTerm)
    ){
      i64 iRowid = fts5MultiIterRowid(p1);
      int nTerm;
      const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);


      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( bNewTerm ){
        if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
      }



      if( doclist.n>0 && iRowid<=iLastRowid ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
            fts5BufferZero(&doclist);
          }else{
            fts5MergePrefixLists(p, &doclist, &aBuf[i]);
            fts5BufferZero(&aBuf[i]);
          }
        }
        iLastRowid = 0;
      }

      if( !fts5AppendPoslist(p, iRowid-iLastRowid, p1, pColset, &doclist) ){
        iLastRowid = iRowid;
      }
    }

    for(i=0; i<nBuf; i++){
      if( p->rc==SQLITE_OK ){
        fts5MergePrefixLists(p, &doclist, &aBuf[i]);
      }
      fts5BufferFree(&aBuf[i]);
    }
    fts5MultiIterFree(p, p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















|
|
<
<

|


|
>
|




>

|




>


>







>



<


>
>



>

<
<
|
|
|
|
|
|
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>


>
|
>
>
>
>
>
>
>
>
>







>


>
>
>
>
>
>
>
>
>







<
<
<
<
<
<






|




>
>
>
>
>
>
>
>
>
>





|
>
>


|





|
>
>



|
|
|
>
>





>
>
|






|






|
|
<




|



|







180084
180085
180086
180087
180088
180089
180090
180091
180092
180093
180094
180095
180096
180097
180098
180099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173


180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206

180207
180208
180209
180210
180211
180212
180213
180214
180215


180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275






180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346

180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
#endif

#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) {       \
  assert( (pBuf)->n!=0 || (iLastRowid)==0 );                   \
  fts5BufferSafeAppendVarint((pBuf), (iRowid) - (iLastRowid)); \
  (iLastRowid) = (iRowid);                                     \
}

/*
** Swap the contents of buffer *p1 with that of *p2.
*/
static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
  Fts5Buffer tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}

static void fts5NextRowid(Fts5Buffer *pBuf, int *piOff, i64 *piRowid){
  int i = *piOff;
  if( i>=pBuf->n ){
    *piOff = -1;
  }else{
    u64 iVal;
    *piOff = i + sqlite3Fts5GetVarint(&pBuf->p[i], &iVal);
    *piRowid += iVal;
  }
}

/*
** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
** In this case the buffers consist of a delta-encoded list of rowids only.
*/
static void fts5MergeRowidLists(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Buffer *p1,                 /* First list to merge */
  Fts5Buffer *p2                  /* Second list to merge */
){
  int i1 = 0;
  int i2 = 0;
  i64 iRowid1 = 0;
  i64 iRowid2 = 0;
  i64 iOut = 0;

  Fts5Buffer out;
  memset(&out, 0, sizeof(out));
  sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
  if( p->rc ) return;

  fts5NextRowid(p1, &i1, &iRowid1);
  fts5NextRowid(p2, &i2, &iRowid2);
  while( i1>=0 || i2>=0 ){
    if( i1>=0 && (i2<0 || iRowid1<iRowid2) ){
      assert( iOut==0 || iRowid1>iOut );
      fts5BufferSafeAppendVarint(&out, iRowid1 - iOut);
      iOut = iRowid1;
      fts5NextRowid(p1, &i1, &iRowid1);
    }else{
      assert( iOut==0 || iRowid2>iOut );
      fts5BufferSafeAppendVarint(&out, iRowid2 - iOut);
      iOut = iRowid2;
      if( i1>=0 && iRowid1==iRowid2 ){
        fts5NextRowid(p1, &i1, &iRowid1);
      }
      fts5NextRowid(p2, &i2, &iRowid2);
    }
  }

  fts5BufferSwap(&out, p1);
  fts5BufferFree(&out);
}

/*
** Buffers p1 and p2 contain doclists. This function merges the content
** of the two doclists together and sets buffer p1 to the result before
** returning.
**
** If an error occurs, an error code is left in p->rc. If an error has
** already occurred, this function is a no-op.
*/
static void fts5MergePrefixLists(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Buffer *p1,                 /* First list to merge */
  Fts5Buffer *p2                  /* Second list to merge */
){
  if( p2->n ){
    i64 iLastRowid = 0;
    Fts5DoclistIter i1;
    Fts5DoclistIter i2;
    Fts5Buffer out = {0, 0, 0};
    Fts5Buffer tmp = {0, 0, 0};



    if( sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n) ) return;
    fts5DoclistIterInit(p1, &i1);
    fts5DoclistIterInit(p2, &i2);

    while( 1 ){
      if( i1.iRowid<i2.iRowid ){
        /* Copy entry from i1 */
        fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
        fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);
        fts5DoclistIterNext(&i1);
        if( i1.aPoslist==0 ) break;
      }
      else if( i2.iRowid!=i1.iRowid ){
        /* Copy entry from i2 */
        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.nPoslist+i2.nSize);
        fts5DoclistIterNext(&i2);
        if( i2.aPoslist==0 ) break;
      }
      else{
        /* Merge the two position lists. */ 
        i64 iPos1 = 0;
        i64 iPos2 = 0;
        int iOff1 = 0;
        int iOff2 = 0;
        u8 *a1 = &i1.aPoslist[i1.nSize];
        u8 *a2 = &i2.aPoslist[i2.nSize];

        i64 iPrev = 0;
        Fts5PoslistWriter writer;
        memset(&writer, 0, sizeof(writer));


        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferZero(&tmp);
        sqlite3Fts5BufferSize(&p->rc, &tmp, i1.nPoslist + i2.nPoslist);
        if( p->rc ) break;

        sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
        sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
        assert( iPos1>=0 && iPos2>=0 );



        if( iPos1<iPos2 ){
          sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
          sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
        }else{
          sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
          sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
        }

        if( iPos1>=0 && iPos2>=0 ){
          while( 1 ){
            if( iPos1<iPos2 ){
              if( iPos1!=iPrev ){
                sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
              }
              sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
              if( iPos1<0 ) break;
            }else{
              assert( iPos2!=iPrev );
              sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
              sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
              if( iPos2<0 ) break;
            }
          }
        }

        if( iPos1>=0 ){
          if( iPos1!=iPrev ){
            sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
          }
          fts5BufferSafeAppendBlob(&tmp, &a1[iOff1], i1.nPoslist-iOff1);
        }else{
          assert( iPos2>=0 && iPos2!=iPrev );
          sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
          fts5BufferSafeAppendBlob(&tmp, &a2[iOff2], i2.nPoslist-iOff2);
        }

        /* WRITEPOSLISTSIZE */
        fts5BufferSafeAppendVarint(&out, tmp.n * 2);
        fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
        fts5DoclistIterNext(&i1);
        fts5DoclistIterNext(&i2);
        if( i1.aPoslist==0 || i2.aPoslist==0 ) break;
      }
    }

    if( i1.aPoslist ){
      fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
      fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.aEof - i1.aPoslist);
    }
    else if( i2.aPoslist ){
      fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
      fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.aEof - i2.aPoslist);
    }

    fts5BufferSet(&p->rc, p1, out.n, out.p);
    fts5BufferFree(&tmp);
    fts5BufferFree(&out);
  }
}







static void fts5SetupPrefixIter(
  Fts5Index *p,                   /* Index to read from */
  int bDesc,                      /* True for "ORDER BY rowid DESC" */
  const u8 *pToken,               /* Buffer containing prefix to match */
  int nToken,                     /* Size of buffer pToken in bytes */
  Fts5Colset *pColset,            /* Restrict matches to these columns */
  Fts5Iter **ppIter          /* OUT: New iterator */
){
  Fts5Structure *pStruct;
  Fts5Buffer *aBuf;
  const int nBuf = 32;

  void (*xMerge)(Fts5Index*, Fts5Buffer*, Fts5Buffer*);
  void (*xAppend)(Fts5Index*, i64, Fts5Iter*, Fts5Buffer*);
  if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
    xMerge = fts5MergeRowidLists;
    xAppend = fts5AppendRowid;
  }else{
    xMerge = fts5MergePrefixLists;
    xAppend = fts5AppendPoslist;
  }

  aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
  pStruct = fts5StructureRead(p);

  if( aBuf && pStruct ){
    const int flags = FTS5INDEX_QUERY_SCAN 
                    | FTS5INDEX_QUERY_SKIPEMPTY 
                    | FTS5INDEX_QUERY_NOOUTPUT;
    int i;
    i64 iLastRowid = 0;
    Fts5Iter *p1 = 0;     /* Iterator used to gather data from index */
    Fts5Data *pData;
    Fts5Buffer doclist;
    int bNewTerm = 1;

    memset(&doclist, 0, sizeof(doclist));
    fts5MultiIterNew(p, pStruct, flags, pColset, pToken, nToken, -1, 0, &p1);
    fts5IterSetOutputCb(&p->rc, p1);
    for( /* no-op */ ;
        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext2(p, p1, &bNewTerm)
    ){
      Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
      int nTerm = pSeg->term.n;
      const u8 *pTerm = pSeg->term.p;
      p1->xSetOutputs(p1, pSeg);

      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( bNewTerm ){
        if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
      }

      if( p1->base.nData==0 ) continue;

      if( p1->base.iRowid<=iLastRowid && doclist.n>0 ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
            fts5BufferZero(&doclist);
          }else{
            xMerge(p, &doclist, &aBuf[i]);
            fts5BufferZero(&aBuf[i]);
          }
        }
        iLastRowid = 0;
      }

      xAppend(p, p1->base.iRowid-iLastRowid, p1, &doclist);
      iLastRowid = p1->base.iRowid;

    }

    for(i=0; i<nBuf; i++){
      if( p->rc==SQLITE_OK ){
        xMerge(p, &doclist, &aBuf[i]);
      }
      fts5BufferFree(&aBuf[i]);
    }
    fts5MultiIterFree(p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);
178496
178497
178498
178499
178500
178501
178502
178503
178504
178505
178506
178507
178508
178509
178510
** to the document with rowid iRowid.
*/
static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
  assert( p->rc==SQLITE_OK );

  /* Allocate the hash table if it has not already been allocated */
  if( p->pHash==0 ){
    p->rc = sqlite3Fts5HashNew(&p->pHash, &p->nPendingData);
  }

  /* Flush the hash table to disk if required */
  if( iRowid<p->iWriteRowid 
   || (iRowid==p->iWriteRowid && p->bDelete==0)
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){







|







180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
** to the document with rowid iRowid.
*/
static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
  assert( p->rc==SQLITE_OK );

  /* Allocate the hash table if it has not already been allocated */
  if( p->pHash==0 ){
    p->rc = sqlite3Fts5HashNew(p->pConfig, &p->pHash, &p->nPendingData);
  }

  /* Flush the hash table to disk if required */
  if( iRowid<p->iWriteRowid 
   || (iRowid==p->iWriteRowid && p->bDelete==0)
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){
178531
178532
178533
178534
178535
178536
178537
178538
178539
178540
178541
178542
178543
178544
178545
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
static int sqlite3Fts5IndexRollback(Fts5Index *p){
  fts5CloseReader(p);
  fts5IndexDiscardData(p);
  assert( p->rc==SQLITE_OK );
  return SQLITE_OK;
}

/*
** The %_data table is completely empty when this function is called. This
** function populates it with the initial structure objects for each index,
** and the initial version of the "averages" record (a zero-byte blob).







|







180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
static int sqlite3Fts5IndexRollback(Fts5Index *p){
  fts5CloseReader(p);
  fts5IndexDiscardData(p);
  /* assert( p->rc==SQLITE_OK ); */
  return SQLITE_OK;
}

/*
** The %_data table is completely empty when this function is called. This
** function populates it with the initial structure objects for each index,
** and the initial version of the "averages" record (a zero-byte blob).
178617
178618
178619
178620
178621
178622
178623
178624




178625
178626
178627
178628
178629
178630
178631
}

/*
** Argument p points to a buffer containing utf-8 text that is n bytes in 
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int fts5IndexCharlenToBytelen(const char *p, int nByte, int nChar){




  int n = 0;
  int i;
  for(i=0; i<nChar; i++){
    if( n>=nByte ) return 0;      /* Input contains fewer than nChar chars */
    if( (unsigned char)p[n++]>=0xc0 ){
      while( (p[n] & 0xc0)==0x80 ) n++;
    }







|
>
>
>
>







180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
}

/*
** Argument p points to a buffer containing utf-8 text that is n bytes in 
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int sqlite3Fts5IndexCharlenToBytelen(
  const char *p, 
  int nByte, 
  int nChar
){
  int n = 0;
  int i;
  for(i=0; i<nChar; i++){
    if( n>=nByte ) return 0;      /* Input contains fewer than nChar chars */
    if( (unsigned char)p[n++]>=0xc0 ){
      while( (p[n] & 0xc0)==0x80 ) n++;
    }
178674
178675
178676
178677
178678
178679
178680

178681
178682
178683
178684
178685
178686
178687
178688

  /* Add the entry to the main terms index. */
  rc = sqlite3Fts5HashWrite(
      p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
  );

  for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){

    int nByte = fts5IndexCharlenToBytelen(pToken, nToken, pConfig->aPrefix[i]);
    if( nByte ){
      rc = sqlite3Fts5HashWrite(p->pHash, 
          p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
          nByte
      );
    }
  }







>
|







180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571

  /* Add the entry to the main terms index. */
  rc = sqlite3Fts5HashWrite(
      p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
  );

  for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
    const int nChar = pConfig->aPrefix[i];
    int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
    if( nByte ){
      rc = sqlite3Fts5HashWrite(p->pHash, 
          p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
          nByte
      );
    }
  }
178698
178699
178700
178701
178702
178703
178704
178705
178706
178707
178708
178709
178710
178711
178712

178713
178714
178715





178716
178717
178718
178719
178720

178721
178722
178723
178724
178725
178726
178727
178728
178729
178730
178731
178732
178733

178734
178735
178736

178737

178738
178739
178740

178741
178742
178743






178744
178745
178746
178747
178748
178749
178750

178751
178752
178753
178754
178755
178756
178757
178758
178759
178760
178761
178762
178763
178764
178765
178766
178767
178768

178769
178770
178771
178772
178773
178774
178775
178776
178777

178778
178779
178780
178781
178782
178783
178784
178785
178786
178787
178788
178789
178790
178791
178792
178793
178794
178795
178796
178797
178798
178799
178800

178801
178802
178803
178804
178805
178806
178807
178808
178809
178810
178811
178812
178813
178814
178815
178816
178817
178818
178819
178820
178821
178822
178823
178824
178825
178826
178827
178828
178829
178830
178831
178832
178833
178834
178835
178836
178837
178838
178839
178840
178841
178842
178843
178844
178845
178846
178847
178848
178849
178850
178851
178852
178853
178854
178855
178856
178857
178858
178859
178860
178861
178862
178863
178864
178865
178866
178867
178868
178869
178870
178871
178872
178873
178874
178875
178876
178877
178878
178879
178880
178881
178882
178883
178884
178885
178886
178887
178888
178889
178890
178891
178892
178893
178894
178895
178896
178897
178898
178899
178900
178901
178902

178903
178904
178905
178906
178907
178908
178909
178910
178911
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
){
  Fts5Config *pConfig = p->pConfig;
  Fts5IndexIter *pRet = 0;
  int iIdx = 0;
  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){

    memcpy(&buf.p[1], pToken, nToken);

#ifdef SQLITE_DEBUG





    /* If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 
    ** mode only.  */

    if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
      assert( flags & FTS5INDEX_QUERY_PREFIX );
      iIdx = 1+pConfig->nPrefix;
    }else
#endif
    if( flags & FTS5INDEX_QUERY_PREFIX ){
      int nChar = fts5IndexCharlen(pToken, nToken);
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
        if( pConfig->aPrefix[iIdx-1]==nChar ) break;
      }
    }

    if( iIdx<=pConfig->nPrefix ){

      Fts5Structure *pStruct = fts5StructureRead(p);
      buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
      if( pStruct ){

        fts5MultiIterNew(p, pStruct, 1, flags, buf.p, nToken+1, -1, 0, &pRet);

        fts5StructureRelease(pStruct);
      }
    }else{

      int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
      buf.p[0] = FTS5_MAIN_PREFIX;
      fts5SetupPrefixIter(p, bDesc, buf.p, nToken+1, pColset, &pRet);






    }

    if( p->rc ){
      sqlite3Fts5IterClose(pRet);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = pRet;
    sqlite3Fts5BufferFree(&buf);
  }
  return fts5IndexReturn(p);
}

/*
** Return true if the iterator passed as the only argument is at EOF.
*/
static int sqlite3Fts5IterEof(Fts5IndexIter *pIter){
  assert( pIter->pIndex->rc==SQLITE_OK );
  return pIter->bEof;
}

/*
** Move to the next matching rowid. 
*/
static int sqlite3Fts5IterNext(Fts5IndexIter *pIter){

  assert( pIter->pIndex->rc==SQLITE_OK );
  fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching term/rowid. Used by the fts5vocab module.
*/
static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIter){

  Fts5Index *p = pIter->pIndex;

  assert( pIter->pIndex->rc==SQLITE_OK );

  fts5MultiIterNext(p, pIter, 0, 0);
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
      fts5DataRelease(pSeg->pLeaf);
      pSeg->pLeaf = 0;
      pIter->bEof = 1;
    }
  }

  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching rowid that occurs at or after iMatch. The
** definition of "at or after" depends on whether this iterator iterates
** in ascending or descending rowid order.
*/
static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIter, i64 iMatch){

  fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
  return fts5IndexReturn(pIter->pIndex);
}

/*
** Return the current rowid.
*/
static i64 sqlite3Fts5IterRowid(Fts5IndexIter *pIter){
  return fts5MultiIterRowid(pIter);
}

/*
** Return the current term.
*/
static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIter, int *pn){
  int n;
  const char *z = (const char*)fts5MultiIterTerm(pIter, &n);
  *pn = n-1;
  return &z[1];
}


static int fts5IndexExtractColset (
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;
}


/*
** Return a pointer to a buffer containing a copy of the position list for
** the current entry. Output variable *pn is set to the size of the buffer 
** in bytes before returning.
**
** The returned position list does not include the "number of bytes" varint
** field that starts the position list on disk.
*/
static int sqlite3Fts5IterPoslist(
  Fts5IndexIter *pIter, 
  Fts5Colset *pColset,            /* Column filter (or NULL) */
  const u8 **pp,                  /* OUT: Pointer to position-list data */
  int *pn,                        /* OUT: Size of position-list in bytes */
  i64 *piRowid                    /* OUT: Current rowid */
){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( pIter->pIndex->rc==SQLITE_OK );
  *piRowid = pSeg->iRowid;
  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    u8 *pPos = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset==0 || pIter->bFiltered ){
      *pn = pSeg->nPos;
      *pp = pPos;
    }else if( pColset->nCol==1 ){
      *pp = pPos;
      *pn = fts5IndexExtractCol(pp, pSeg->nPos, pColset->aiCol[0]);
    }else{
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, pPos, pSeg->nPos, &pIter->poslist);
      *pp = pIter->poslist.p;
      *pn = pIter->poslist.n;
    }
  }else{
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
    *pp = pIter->poslist.p;
    *pn = pIter->poslist.n;
  }
  return fts5IndexReturn(pIter->pIndex);
}

/*
** This function is similar to sqlite3Fts5IterPoslist(), except that it
** copies the position list into the buffer supplied as the second 
** argument.
*/
static int sqlite3Fts5IterPoslistBuffer(Fts5IndexIter *pIter, Fts5Buffer *pBuf){
  Fts5Index *p = pIter->pIndex;
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( p->rc==SQLITE_OK );
  fts5BufferZero(pBuf);
  fts5SegiterPoslist(p, pSeg, 0, pBuf);
  return fts5IndexReturn(p);
}

/*
** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter *pIter){
  if( pIter ){

    Fts5Index *pIndex = pIter->pIndex;
    fts5MultiIterFree(pIter->pIndex, pIter);
    fts5CloseReader(pIndex);
  }
}

/*
** Read and decode the "averages" record from the database. 
**







|
<






>


<
>
>
>
>
>
|




>













>



>
|
>



>



>
>
>
>
>
>



|



>
|








<
<
<
<
<



|
>








|
>










|











|
>




<
<
<
<
<
<
<



|

|




<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


|
|
>

|







180581
180582
180583
180584
180585
180586
180587
180588

180589
180590
180591
180592
180593
180594
180595
180596
180597

180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658





180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675
180676
180677
180678
180679
180680
180681
180682
180683
180684
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698
180699
180700
180701







180702
180703
180704
180705
180706
180707
180708
180709
180710
180711





















180712























































180713
180714
180715
180716
180717
180718
180719
180720
180721
180722
180723
180724
180725
180726
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
){
  Fts5Config *pConfig = p->pConfig;
  Fts5Iter *pRet = 0;

  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    int iIdx = 0;                 /* Index to search */
    memcpy(&buf.p[1], pToken, nToken);


    /* Figure out which index to search and set iIdx accordingly. If this
    ** is a prefix query for which there is no prefix index, set iIdx to
    ** greater than pConfig->nPrefix to indicate that the query will be
    ** satisfied by scanning multiple terms in the main index.
    **
    ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 
    ** mode only.  */
#ifdef SQLITE_DEBUG
    if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
      assert( flags & FTS5INDEX_QUERY_PREFIX );
      iIdx = 1+pConfig->nPrefix;
    }else
#endif
    if( flags & FTS5INDEX_QUERY_PREFIX ){
      int nChar = fts5IndexCharlen(pToken, nToken);
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
        if( pConfig->aPrefix[iIdx-1]==nChar ) break;
      }
    }

    if( iIdx<=pConfig->nPrefix ){
      /* Straight index lookup */
      Fts5Structure *pStruct = fts5StructureRead(p);
      buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
      if( pStruct ){
        fts5MultiIterNew(p, pStruct, flags | FTS5INDEX_QUERY_SKIPEMPTY, 
            pColset, buf.p, nToken+1, -1, 0, &pRet
        );
        fts5StructureRelease(pStruct);
      }
    }else{
      /* Scan multiple terms in the main index */
      int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
      buf.p[0] = FTS5_MAIN_PREFIX;
      fts5SetupPrefixIter(p, bDesc, buf.p, nToken+1, pColset, &pRet);
      assert( p->rc!=SQLITE_OK || pRet->pColset==0 );
      fts5IterSetOutputCb(&p->rc, pRet);
      if( p->rc==SQLITE_OK ){
        Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
        if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
      }
    }

    if( p->rc ){
      sqlite3Fts5IterClose(&pRet->base);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = &pRet->base;
    sqlite3Fts5BufferFree(&buf);
  }
  return fts5IndexReturn(p);
}

/*
** Return true if the iterator passed as the only argument is at EOF.
*/





/*
** Move to the next matching rowid. 
*/
static int sqlite3Fts5IterNext(Fts5IndexIter *pIndexIter){
  Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
  assert( pIter->pIndex->rc==SQLITE_OK );
  fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching term/rowid. Used by the fts5vocab module.
*/
static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIndexIter){
  Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
  Fts5Index *p = pIter->pIndex;

  assert( pIter->pIndex->rc==SQLITE_OK );

  fts5MultiIterNext(p, pIter, 0, 0);
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
      fts5DataRelease(pSeg->pLeaf);
      pSeg->pLeaf = 0;
      pIter->base.bEof = 1;
    }
  }

  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching rowid that occurs at or after iMatch. The
** definition of "at or after" depends on whether this iterator iterates
** in ascending or descending rowid order.
*/
static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIndexIter, i64 iMatch){
  Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
  fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
  return fts5IndexReturn(pIter->pIndex);
}








/*
** Return the current term.
*/
static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIndexIter, int *pn){
  int n;
  const char *z = (const char*)fts5MultiIterTerm((Fts5Iter*)pIndexIter, &n);
  *pn = n-1;
  return &z[1];
}






















/*























































** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter *pIndexIter){
  if( pIndexIter ){
    Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
    Fts5Index *pIndex = pIter->pIndex;
    fts5MultiIterFree(pIter);
    fts5CloseReader(pIndex);
  }
}

/*
** Read and decode the "averages" record from the database. 
**
178990
178991
178992
178993
178994
178995
178996
178997
178998
178999
179000
179001
179002
179003
179004
** Below this point is the implementation of the integrity-check 
** functionality.
*/

/*
** Return a simple checksum value based on the arguments.
*/
static u64 fts5IndexEntryCksum(
  i64 iRowid, 
  int iCol, 
  int iPos, 
  int iIdx,
  const char *pTerm,
  int nTerm
){







|







180805
180806
180807
180808
180809
180810
180811
180812
180813
180814
180815
180816
180817
180818
180819
** Below this point is the implementation of the integrity-check 
** functionality.
*/

/*
** Return a simple checksum value based on the arguments.
*/
static u64 sqlite3Fts5IndexEntryCksum(
  i64 iRowid, 
  int iCol, 
  int iPos, 
  int iIdx,
  const char *pTerm,
  int nTerm
){
179060
179061
179062
179063
179064
179065
179066

179067
179068
179069
179070
179071
179072
179073
179074
179075
179076
179077


179078
179079
179080
179081
179082
179083
179084
179085
179086


179087
179088
179089
179090
179091
179092
179093
179094
179095
179096
179097
  Fts5Index *p,                   /* Fts5 index object */
  int iIdx,
  const char *z,                  /* Index key to query for */
  int n,                          /* Size of index key in bytes */
  int flags,                      /* Flags for Fts5IndexQuery */
  u64 *pCksum                     /* IN/OUT: Checksum value */
){

  u64 cksum = *pCksum;
  Fts5IndexIter *pIdxIter = 0;
  int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIdxIter);

  while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIdxIter) ){
    i64 dummy;
    const u8 *pPos;
    int nPos;
    i64 rowid = sqlite3Fts5IterRowid(pIdxIter);
    rc = sqlite3Fts5IterPoslist(pIdxIter, 0, &pPos, &nPos, &dummy);
    if( rc==SQLITE_OK ){


      Fts5PoslistReader sReader;
      for(sqlite3Fts5PoslistReaderInit(pPos, nPos, &sReader);
          sReader.bEof==0;
          sqlite3Fts5PoslistReaderNext(&sReader)
      ){
        int iCol = FTS5_POS2COLUMN(sReader.iPos);
        int iOff = FTS5_POS2OFFSET(sReader.iPos);
        cksum ^= fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
      }


      rc = sqlite3Fts5IterNext(pIdxIter);
    }
  }
  sqlite3Fts5IterClose(pIdxIter);

  *pCksum = cksum;
  return rc;
}


/*







>

|
|

|
<
<
<
|
|
|
>
>

|





|

>
>
|


|







180875
180876
180877
180878
180879
180880
180881
180882
180883
180884
180885
180886
180887



180888
180889
180890
180891
180892
180893
180894
180895
180896
180897
180898
180899
180900
180901
180902
180903
180904
180905
180906
180907
180908
180909
180910
180911
180912
180913
180914
  Fts5Index *p,                   /* Fts5 index object */
  int iIdx,
  const char *z,                  /* Index key to query for */
  int n,                          /* Size of index key in bytes */
  int flags,                      /* Flags for Fts5IndexQuery */
  u64 *pCksum                     /* IN/OUT: Checksum value */
){
  int eDetail = p->pConfig->eDetail;
  u64 cksum = *pCksum;
  Fts5IndexIter *pIter = 0;
  int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIter);

  while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIter) ){



    i64 rowid = pIter->iRowid;

    if( eDetail==FTS5_DETAIL_NONE ){
      cksum ^= sqlite3Fts5IndexEntryCksum(rowid, 0, 0, iIdx, z, n);
    }else{
      Fts5PoslistReader sReader;
      for(sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &sReader);
          sReader.bEof==0;
          sqlite3Fts5PoslistReaderNext(&sReader)
      ){
        int iCol = FTS5_POS2COLUMN(sReader.iPos);
        int iOff = FTS5_POS2OFFSET(sReader.iPos);
        cksum ^= sqlite3Fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
      }
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts5IterNext(pIter);
    }
  }
  sqlite3Fts5IterClose(pIter);

  *pCksum = cksum;
  return rc;
}


/*
179377
179378
179379
179380
179381
179382
179383
179384
179385
179386
179387
179388
179389
179390
179391

179392
179393
179394
179395
179396
179397
179398
179399
179400
179401

179402
179403
179404
179405
179406
179407
179408
#endif
}


/*
** Run internal checks to ensure that the FTS index (a) is internally 
** consistent and (b) contains entries for which the XOR of the checksums
** as calculated by fts5IndexEntryCksum() is cksum.
**
** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
** checksum does not match. Return SQLITE_OK if all checks pass without
** error, or some other SQLite error code if another error (e.g. OOM)
** occurs.
*/
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){

  u64 cksum2 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer poslist = {0,0,0};   /* Buffer used to hold a poslist */
  Fts5IndexIter *pIter;           /* Used to iterate through entire index */
  Fts5Structure *pStruct;         /* Index structure */

#ifdef SQLITE_DEBUG
  /* Used by extra internal tests only run if NDEBUG is not defined */
  u64 cksum3 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer term = {0,0,0};      /* Buffer used to hold most recent term */
#endif

  
  /* Load the FTS index structure */
  pStruct = fts5StructureRead(p);

  /* Check that the internal nodes of each segment match the leaves */
  if( pStruct ){
    int iLvl, iSeg;







|







>


|







>







181194
181195
181196
181197
181198
181199
181200
181201
181202
181203
181204
181205
181206
181207
181208
181209
181210
181211
181212
181213
181214
181215
181216
181217
181218
181219
181220
181221
181222
181223
181224
181225
181226
181227
#endif
}


/*
** Run internal checks to ensure that the FTS index (a) is internally 
** consistent and (b) contains entries for which the XOR of the checksums
** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
**
** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
** checksum does not match. Return SQLITE_OK if all checks pass without
** error, or some other SQLite error code if another error (e.g. OOM)
** occurs.
*/
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
  int eDetail = p->pConfig->eDetail;
  u64 cksum2 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer poslist = {0,0,0};   /* Buffer used to hold a poslist */
  Fts5Iter *pIter;                /* Used to iterate through entire index */
  Fts5Structure *pStruct;         /* Index structure */

#ifdef SQLITE_DEBUG
  /* Used by extra internal tests only run if NDEBUG is not defined */
  u64 cksum3 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer term = {0,0,0};      /* Buffer used to hold most recent term */
#endif
  const int flags = FTS5INDEX_QUERY_NOOUTPUT;
  
  /* Load the FTS index structure */
  pStruct = fts5StructureRead(p);

  /* Check that the internal nodes of each segment match the leaves */
  if( pStruct ){
    int iLvl, iSeg;
179423
179424
179425
179426
179427
179428
179429
179430
179431
179432
179433
179434
179435
179436
179437
179438
179439
179440
179441
179442





179443
179444
179445
179446
179447
179448

179449
179450
179451
179452
179453
179454
179455
179456
179457
179458
179459
179460
179461
179462
179463
179464
179465
179466
179467
179468
179469
179470
179471
179472
179473
179474
179475
179476
179477
179478
179479
179480
179481
179482
179483
179484
179485
179486
179487
179488
179489
179490
179491
179492
179493
179494
179495
179496
179497
179498
  ** variable cksum2) based on entries extracted from the full-text index
  ** while doing a linear scan of each individual index in turn. 
  **
  ** As each term visited by the linear scans, a separate query for the
  ** same term is performed. cksum3 is calculated based on the entries
  ** extracted by these queries.
  */
  for(fts5MultiIterNew(p, pStruct, 0, 0, 0, 0, -1, 0, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    int n;                      /* Size of term in bytes */
    i64 iPos = 0;               /* Position read from poslist */
    int iOff = 0;               /* Offset within poslist */
    i64 iRowid = fts5MultiIterRowid(pIter);
    char *z = (char*)fts5MultiIterTerm(pIter, &n);

    /* If this is a new term, query for it. Update cksum3 with the results. */
    fts5TestTerm(p, &term, z, n, cksum2, &cksum3);






    poslist.n = 0;
    fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst] , 0, &poslist);
    while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
      int iCol = FTS5_POS2COLUMN(iPos);
      int iTokOff = FTS5_POS2OFFSET(iPos);
      cksum2 ^= fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);

    }
  }
  fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);

  fts5MultiIterFree(p, pIter);
  if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;

  fts5StructureRelease(pStruct);
#ifdef SQLITE_DEBUG
  fts5BufferFree(&term);
#endif
  fts5BufferFree(&poslist);
  return fts5IndexReturn(p);
}


/*
** Calculate and return a checksum that is the XOR of the index entry
** checksum of all entries that would be generated by the token specified
** by the final 5 arguments.
*/
static u64 sqlite3Fts5IndexCksum(
  Fts5Config *pConfig,            /* Configuration object */
  i64 iRowid,                     /* Document term appears in */
  int iCol,                       /* Column term appears in */
  int iPos,                       /* Position term appears in */
  const char *pTerm, int nTerm    /* Term at iPos */
){
  u64 ret = 0;                    /* Return value */
  int iIdx;                       /* For iterating through indexes */

  ret = fts5IndexEntryCksum(iRowid, iCol, iPos, 0, pTerm, nTerm);

  for(iIdx=0; iIdx<pConfig->nPrefix; iIdx++){
    int nByte = fts5IndexCharlenToBytelen(pTerm, nTerm, pConfig->aPrefix[iIdx]);
    if( nByte ){
      ret ^= fts5IndexEntryCksum(iRowid, iCol, iPos, iIdx+1, pTerm, nByte);
    }
  }

  return ret;
}

/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/

/*







|












>
>
>
>
>
|
|
|
|
|
|
>




|










<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







181242
181243
181244
181245
181246
181247
181248
181249
181250
181251
181252
181253
181254
181255
181256
181257
181258
181259
181260
181261
181262
181263
181264
181265
181266
181267
181268
181269
181270
181271
181272
181273
181274
181275
181276
181277
181278
181279
181280
181281
181282
181283
181284
181285
181286
181287
181288




























181289
181290
181291
181292
181293
181294
181295
  ** variable cksum2) based on entries extracted from the full-text index
  ** while doing a linear scan of each individual index in turn. 
  **
  ** As each term visited by the linear scans, a separate query for the
  ** same term is performed. cksum3 is calculated based on the entries
  ** extracted by these queries.
  */
  for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, -1, 0, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    int n;                      /* Size of term in bytes */
    i64 iPos = 0;               /* Position read from poslist */
    int iOff = 0;               /* Offset within poslist */
    i64 iRowid = fts5MultiIterRowid(pIter);
    char *z = (char*)fts5MultiIterTerm(pIter, &n);

    /* If this is a new term, query for it. Update cksum3 with the results. */
    fts5TestTerm(p, &term, z, n, cksum2, &cksum3);

    if( eDetail==FTS5_DETAIL_NONE ){
      if( 0==fts5MultiIterIsEmpty(p, pIter) ){
        cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, 0, 0, -1, z, n);
      }
    }else{
      poslist.n = 0;
      fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst], 0, &poslist);
      while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
        int iCol = FTS5_POS2COLUMN(iPos);
        int iTokOff = FTS5_POS2OFFSET(iPos);
        cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);
      }
    }
  }
  fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);

  fts5MultiIterFree(pIter);
  if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;

  fts5StructureRelease(pStruct);
#ifdef SQLITE_DEBUG
  fts5BufferFree(&term);
#endif
  fts5BufferFree(&poslist);
  return fts5IndexReturn(p);
}





























/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/

/*
179651
179652
179653
179654
179655
179656
179657









































179658
179659
179660
179661
179662
179663
179664
179665
179666
179667
179668
179669
179670
179671
179672
179673

179674
179675

179676
179677
179678
179679
179680
179681
179682
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}










































/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
){
  i64 iRowid;                     /* Rowid for record being decoded */
  int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
  const u8 *aBlob; int n;         /* Record to decode */
  u8 *a = 0;
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  int nSpace = 0;


  assert( nArg==2 );

  memset(&s, 0, sizeof(Fts5Buffer));
  iRowid = sqlite3_value_int64(apVal[0]);

  /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
  ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
  ** buffer overreads even if the record is corrupt.  */
  n = sqlite3_value_bytes(apVal[1]);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>


>







181448
181449
181450
181451
181452
181453
181454
181455
181456
181457
181458
181459
181460
181461
181462
181463
181464
181465
181466
181467
181468
181469
181470
181471
181472
181473
181474
181475
181476
181477
181478
181479
181480
181481
181482
181483
181484
181485
181486
181487
181488
181489
181490
181491
181492
181493
181494
181495
181496
181497
181498
181499
181500
181501
181502
181503
181504
181505
181506
181507
181508
181509
181510
181511
181512
181513
181514
181515
181516
181517
181518
181519
181520
181521
181522
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}

/*
** This function is part of the fts5_decode() debugging function. It is 
** only ever used with detail=none tables.
**
** Buffer (pData/nData) contains a doclist in the format used by detail=none
** tables. This function appends a human-readable version of that list to
** buffer pBuf.
**
** If *pRc is other than SQLITE_OK when this function is called, it is a
** no-op. If an OOM or other error occurs within this function, *pRc is
** set to an SQLite error code before returning. The final state of buffer
** pBuf is undefined in this case.
*/
static void fts5DecodeRowidList(
  int *pRc,                       /* IN/OUT: Error code */
  Fts5Buffer *pBuf,               /* Buffer to append text to */
  const u8 *pData, int nData      /* Data to decode list-of-rowids from */
){
  int i = 0;
  i64 iRowid = 0;

  while( i<nData ){
    const char *zApp = "";
    u64 iVal;
    i += sqlite3Fts5GetVarint(&pData[i], &iVal);
    iRowid += iVal;

    if( i<nData && pData[i]==0x00 ){
      i++;
      if( i<nData && pData[i]==0x00 ){
        i++;
        zApp = "+";
      }else{
        zApp = "*";
      }
    }

    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
  }
}

/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
){
  i64 iRowid;                     /* Rowid for record being decoded */
  int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
  const u8 *aBlob; int n;         /* Record to decode */
  u8 *a = 0;
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  int nSpace = 0;
  int eDetailNone = (sqlite3_user_data(pCtx)!=0);

  assert( nArg==2 );
  UNUSED_PARAM(nArg);
  memset(&s, 0, sizeof(Fts5Buffer));
  iRowid = sqlite3_value_int64(apVal[0]);

  /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
  ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
  ** buffer overreads even if the record is corrupt.  */
  n = sqlite3_value_bytes(apVal[1]);
179708
179709
179710
179711
179712
179713
179714
















































179715
179716
179717
179718
179719
179720
179721
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      fts5DecodeAverages(&rc, &s, a, n);
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
















































  }else{
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;                   /* Offset of pgidx in a[] */
    int iPgidxOff;
    int iPgidxPrev = 0;           /* Previous value read from pgidx */
    int iTermOff = 0;
    int iRowidOff = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







181548
181549
181550
181551
181552
181553
181554
181555
181556
181557
181558
181559
181560
181561
181562
181563
181564
181565
181566
181567
181568
181569
181570
181571
181572
181573
181574
181575
181576
181577
181578
181579
181580
181581
181582
181583
181584
181585
181586
181587
181588
181589
181590
181591
181592
181593
181594
181595
181596
181597
181598
181599
181600
181601
181602
181603
181604
181605
181606
181607
181608
181609
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      fts5DecodeAverages(&rc, &s, a, n);
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
  }else if( eDetailNone ){
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;
    int iPgidxOff = szLeaf = fts5GetU16(&a[2]);
    int iTermOff;
    int nKeep = 0;
    int iOff;

    memset(&term, 0, sizeof(Fts5Buffer));

    /* Decode any entries that occur before the first term. */
    if( szLeaf<n ){
      iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff);
    }else{
      iTermOff = szLeaf;
    }
    fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4);

    iOff = iTermOff;
    while( iOff<szLeaf ){
      int nAppend;

      /* Read the term data for the next term*/
      iOff += fts5GetVarint32(&a[iOff], nAppend);
      term.n = nKeep;
      fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]);
      sqlite3Fts5BufferAppendPrintf(
          &rc, &s, " term=%.*s", term.n, (const char*)term.p
      );
      iOff += nAppend;

      /* Figure out where the doclist for this term ends */
      if( iPgidxOff<n ){
        int nIncr;
        iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr);
        iTermOff += nIncr;
      }else{
        iTermOff = szLeaf;
      }

      fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff);
      iOff = iTermOff;
      if( iOff<szLeaf ){
        iOff += fts5GetVarint32(&a[iOff], nKeep);
      }
    }

    fts5BufferFree(&term);
  }else{
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;                   /* Offset of pgidx in a[] */
    int iPgidxOff;
    int iPgidxPrev = 0;           /* Previous value read from pgidx */
    int iTermOff = 0;
    int iRowidOff = 0;
179835
179836
179837
179838
179839
179840
179841








179842
179843
179844
179845
179846
179847
179848
179849
179850
179851
179852
179853
179854
179855
179856
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
static int sqlite3Fts5IndexInit(sqlite3 *db){
  int rc = sqlite3_create_function(
      db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
  );








  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
    );
  }
  return rc;
}


/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**







>
>
>
>
>
>
>
>







<







181723
181724
181725
181726
181727
181728
181729
181730
181731
181732
181733
181734
181735
181736
181737
181738
181739
181740
181741
181742
181743
181744

181745
181746
181747
181748
181749
181750
181751
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
static int sqlite3Fts5IndexInit(sqlite3 *db){
  int rc = sqlite3_create_function(
      db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
  );

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_decode_none", 2, 
        SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
    );
  }

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
    );
  }
  return rc;
}


/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
180066
180067
180068
180069
180070
180071
180072

180073
180074
180075
180076
180077
180078

180079
180080
180081
180082
180083
180084
180085
#define FTS5_BI_ORDER_RANK   0x0020
#define FTS5_BI_ORDER_ROWID  0x0040
#define FTS5_BI_ORDER_DESC   0x0080

/*
** Values for Fts5Cursor.csrflags
*/

#define FTS5CSR_REQUIRE_CONTENT   0x01
#define FTS5CSR_REQUIRE_DOCSIZE   0x02
#define FTS5CSR_REQUIRE_INST      0x04
#define FTS5CSR_EOF               0x08
#define FTS5CSR_FREE_ZRANK        0x10
#define FTS5CSR_REQUIRE_RESEEK    0x20


#define BitFlagAllTest(x,y) (((x) & (y))==(y))
#define BitFlagTest(x,y)    (((x) & (y))!=0)


/*
** Macros to Set(), Clear() and Test() cursor flags.







>
|
|
|
<


>







181961
181962
181963
181964
181965
181966
181967
181968
181969
181970
181971

181972
181973
181974
181975
181976
181977
181978
181979
181980
181981
#define FTS5_BI_ORDER_RANK   0x0020
#define FTS5_BI_ORDER_ROWID  0x0040
#define FTS5_BI_ORDER_DESC   0x0080

/*
** Values for Fts5Cursor.csrflags
*/
#define FTS5CSR_EOF               0x01
#define FTS5CSR_REQUIRE_CONTENT   0x02
#define FTS5CSR_REQUIRE_DOCSIZE   0x04
#define FTS5CSR_REQUIRE_INST      0x08

#define FTS5CSR_FREE_ZRANK        0x10
#define FTS5CSR_REQUIRE_RESEEK    0x20
#define FTS5CSR_REQUIRE_POSLIST   0x40

#define BitFlagAllTest(x,y) (((x) & (y))==(y))
#define BitFlagTest(x,y)    (((x) & (y))!=0)


/*
** Macros to Set(), Clear() and Test() cursor flags.
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<(int)ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
        if( p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 







|







182279
182280
182281
182282
182283
182284
182285
182286
182287
182288
182289
182290
182291
182292
182293
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
        if( p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<(int)ArraySize(aConstraint); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
    }
  }








|







182326
182327
182328
182329
182330
182331
182332
182333
182334
182335
182336
182337
182338
182339
182340
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<ArraySize(aConstraint); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
    }
  }

180485
180486
180487
180488
180489
180490
180491

180492
180493
180494
180495
180496
180497
180498
** specific to the previous row stored by the cursor object.
*/
static void fts5CsrNewrow(Fts5Cursor *pCsr){
  CsrFlagSet(pCsr, 
      FTS5CSR_REQUIRE_CONTENT 
    | FTS5CSR_REQUIRE_DOCSIZE 
    | FTS5CSR_REQUIRE_INST 

  );
}

static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  Fts5Auxdata *pData;
  Fts5Auxdata *pNext;







>







182381
182382
182383
182384
182385
182386
182387
182388
182389
182390
182391
182392
182393
182394
182395
** specific to the previous row stored by the cursor object.
*/
static void fts5CsrNewrow(Fts5Cursor *pCsr){
  CsrFlagSet(pCsr, 
      FTS5CSR_REQUIRE_CONTENT 
    | FTS5CSR_REQUIRE_DOCSIZE 
    | FTS5CSR_REQUIRE_INST 
    | FTS5CSR_REQUIRE_POSLIST 
  );
}

static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  Fts5Auxdata *pData;
  Fts5Auxdata *pNext;
180567
180568
180569
180570
180571
180572
180573


180574
180575
180576
180577
180578
180579
180580

180581
180582
180583
180584
180585
180586
180587
180588
180589
    int iOff = 0;
    rc = SQLITE_OK;

    pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
    nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
    aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);



    for(i=0; i<(pSorter->nIdx-1); i++){
      int iVal;
      a += fts5GetVarint32(a, iVal);
      iOff += iVal;
      pSorter->aIdx[i] = iOff;
    }
    pSorter->aIdx[i] = &aBlob[nBlob] - a;


    pSorter->aPoslist = a;
    fts5CsrNewrow(pCsr);
  }

  return rc;
}









>
>
|
|
|
|
|
|
|
>
|
|







182464
182465
182466
182467
182468
182469
182470
182471
182472
182473
182474
182475
182476
182477
182478
182479
182480
182481
182482
182483
182484
182485
182486
182487
182488
182489
    int iOff = 0;
    rc = SQLITE_OK;

    pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
    nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
    aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);

    /* nBlob==0 in detail=none mode. */
    if( nBlob>0 ){
      for(i=0; i<(pSorter->nIdx-1); i++){
        int iVal;
        a += fts5GetVarint32(a, iVal);
        iOff += iVal;
        pSorter->aIdx[i] = iOff;
      }
      pSorter->aIdx[i] = &aBlob[nBlob] - a;
      pSorter->aPoslist = a;
    }

    fts5CsrNewrow(pCsr);
  }

  return rc;
}


180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633

180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654

180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667

180668
180669
180670
180671
180672
180673
180674
  assert( *pbSkip==0 );
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
    Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
    int bDesc = pCsr->bDesc;
    i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);

    rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->pIndex, iRowid, bDesc);
    if( rc==SQLITE_OK && iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
      *pbSkip = 1;
    }

    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
    fts5CsrNewrow(pCsr);
    if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
      CsrFlagSet(pCsr, FTS5CSR_EOF);

    }
  }
  return rc;
}


/*
** Advance the cursor to the next row in the table that matches the 
** search criteria.
**
** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
** even if we reach end-of-file.  The fts5EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;

  assert( (pCsr->ePlan<3)==
          (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE) 
  );


  if( pCsr->ePlan<3 ){
    int bSkip = 0;
    if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
    rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
    if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
      CsrFlagSet(pCsr, FTS5CSR_EOF);
    }
    fts5CsrNewrow(pCsr);
  }else{
    switch( pCsr->ePlan ){
      case FTS5_PLAN_SPECIAL: {
        CsrFlagSet(pCsr, FTS5CSR_EOF);

        break;
      }
  
      case FTS5_PLAN_SORTED_MATCH: {
        rc = fts5SorterNext(pCsr);
        break;
      }







|







>
















|




>





|
<
<





>







182519
182520
182521
182522
182523
182524
182525
182526
182527
182528
182529
182530
182531
182532
182533
182534
182535
182536
182537
182538
182539
182540
182541
182542
182543
182544
182545
182546
182547
182548
182549
182550
182551
182552
182553
182554
182555
182556
182557
182558
182559
182560
182561
182562


182563
182564
182565
182566
182567
182568
182569
182570
182571
182572
182573
182574
182575
  assert( *pbSkip==0 );
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
    Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
    int bDesc = pCsr->bDesc;
    i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);

    rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->pIndex, iRowid, bDesc);
    if( rc==SQLITE_OK &&  iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
      *pbSkip = 1;
    }

    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
    fts5CsrNewrow(pCsr);
    if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
      CsrFlagSet(pCsr, FTS5CSR_EOF);
      *pbSkip = 1;
    }
  }
  return rc;
}


/*
** Advance the cursor to the next row in the table that matches the 
** search criteria.
**
** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
** even if we reach end-of-file.  The fts5EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc;

  assert( (pCsr->ePlan<3)==
          (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE) 
  );
  assert( !CsrFlagTest(pCsr, FTS5CSR_EOF) );

  if( pCsr->ePlan<3 ){
    int bSkip = 0;
    if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
    rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
    CsrFlagSet(pCsr, sqlite3Fts5ExprEof(pCsr->pExpr));


    fts5CsrNewrow(pCsr);
  }else{
    switch( pCsr->ePlan ){
      case FTS5_PLAN_SPECIAL: {
        CsrFlagSet(pCsr, FTS5CSR_EOF);
        rc = SQLITE_OK;
        break;
      }
  
      case FTS5_PLAN_SORTED_MATCH: {
        rc = fts5SorterNext(pCsr);
        break;
      }
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698


180699
180700
180701
180702
180703
180704
180705
180706
180707
180708
180709
180710
180711
180712
180713
180714
180715
180716
180717

180718
180719
180720
180721
180722
180723
180724
180725
180726
180727
180728
180729
180730
180731
180732
180733
180734
180735
180736
180737
180738
180739
180740
180741
180742
180743
180744
180745
180746
180747
180748
180749
180750
180751
    }
  }
  
  return rc;
}


static sqlite3_stmt *fts5PrepareStatement(
  int *pRc,
  Fts5Config *pConfig, 
  const char *zFmt,
  ...
){
  sqlite3_stmt *pRet = 0;


  va_list ap;
  va_start(ap, zFmt);

  if( *pRc==SQLITE_OK ){
    int rc;
    char *zSql = sqlite3_vmprintf(zFmt, ap);
    if( zSql==0 ){
      rc = SQLITE_NOMEM; 
    }else{
      rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pRet, 0);
      if( rc!=SQLITE_OK ){
        *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
      }
      sqlite3_free(zSql);
    }
    *pRc = rc;
  }

  va_end(ap);

  return pRet;
} 

static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Sorter *pSorter;
  int nPhrase;
  int nByte;
  int rc = SQLITE_OK;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that
  ** is not possible as SQLite reference counts the virtual table objects.
  ** And since the statement required here reads from this very virtual 
  ** table, saving it creates a circular reference.
  **
  ** If SQLite a built-in statement cache, this wouldn't be a problem. */
  pSorter->pStmt = fts5PrepareStatement(&rc, pConfig,
      "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
      pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
      (zRankArgs ? ", " : ""),
      (zRankArgs ? zRankArgs : ""),
      bDesc ? "DESC" : "ASC"
  );








|
|





>
>

<

<
|
|
|
|
|
|
|
|
|
|
|
<
|
<

>
|







|

















|







182586
182587
182588
182589
182590
182591
182592
182593
182594
182595
182596
182597
182598
182599
182600
182601
182602

182603

182604
182605
182606
182607
182608
182609
182610
182611
182612
182613
182614

182615

182616
182617
182618
182619
182620
182621
182622
182623
182624
182625
182626
182627
182628
182629
182630
182631
182632
182633
182634
182635
182636
182637
182638
182639
182640
182641
182642
182643
182644
182645
182646
182647
182648
182649
182650
182651
    }
  }
  
  return rc;
}


static int fts5PrepareStatement(
  sqlite3_stmt **ppStmt,
  Fts5Config *pConfig, 
  const char *zFmt,
  ...
){
  sqlite3_stmt *pRet = 0;
  int rc;
  char *zSql;
  va_list ap;



  va_start(ap, zFmt);
  zSql = sqlite3_vmprintf(zFmt, ap);
  if( zSql==0 ){
    rc = SQLITE_NOMEM; 
  }else{
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pRet, 0);
    if( rc!=SQLITE_OK ){
      *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
    }
    sqlite3_free(zSql);
  }



  va_end(ap);
  *ppStmt = pRet;
  return rc;
} 

static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Sorter *pSorter;
  int nPhrase;
  int nByte;
  int rc;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that
  ** is not possible as SQLite reference counts the virtual table objects.
  ** And since the statement required here reads from this very virtual 
  ** table, saving it creates a circular reference.
  **
  ** If SQLite a built-in statement cache, this wouldn't be a problem. */
  rc = fts5PrepareStatement(&pSorter->pStmt, pConfig,
      "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
      pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
      (zRankArgs ? ", " : ""),
      (zRankArgs ? zRankArgs : ""),
      bDesc ? "DESC" : "ASC"
  );

180937
180938
180939
180940
180941
180942
180943
180944
180945
180946
180947
180948
180949
180950
180951
180952
180953
180954
180955
180956
180957
180958
180959
180960



180961
180962
180963
180964
180965
180966
180967
**   1. Full-text search using a MATCH operator.
**   2. A by-rowid lookup.
**   3. A full-table scan.
*/
static int fts5FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;             /* Error code */
  int iVal = 0;                   /* Counter for apVal[] */
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  char **pzErrmsg = pConfig->pzErrmsg;




  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
    memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
  }

  assert( pCsr->pStmt==0 );







|
















>
>
>







182837
182838
182839
182840
182841
182842
182843
182844
182845
182846
182847
182848
182849
182850
182851
182852
182853
182854
182855
182856
182857
182858
182859
182860
182861
182862
182863
182864
182865
182866
182867
182868
182869
182870
**   1. Full-text search using a MATCH operator.
**   2. A by-rowid lookup.
**   3. A full-table scan.
*/
static int fts5FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *zUnused,            /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;             /* Error code */
  int iVal = 0;                   /* Counter for apVal[] */
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
    memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
  }

  assert( pCsr->pStmt==0 );
181013
181014
181015
181016
181017
181018
181019

181020
181021
181022
181023
181024
181025
181026
    assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
    assert( nVal==0 && pMatch==0 && bOrderByRank==0 && bDesc==0 );
    assert( pCsr->iLastRowid==LARGEST_INT64 );
    assert( pCsr->iFirstRowid==SMALLEST_INT64 );
    pCsr->ePlan = FTS5_PLAN_SOURCE;
    pCsr->pExpr = pTab->pSortCsr->pExpr;
    rc = fts5CursorFirst(pTab, pCsr, bDesc);

  }else if( pMatch ){
    const char *zExpr = (const char*)sqlite3_value_text(apVal[0]);
    if( zExpr==0 ) zExpr = "";

    rc = fts5CursorParseRank(pConfig, pCsr, pRank);
    if( rc==SQLITE_OK ){
      if( zExpr[0]=='*' ){







>







182916
182917
182918
182919
182920
182921
182922
182923
182924
182925
182926
182927
182928
182929
182930
    assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
    assert( nVal==0 && pMatch==0 && bOrderByRank==0 && bDesc==0 );
    assert( pCsr->iLastRowid==LARGEST_INT64 );
    assert( pCsr->iFirstRowid==SMALLEST_INT64 );
    pCsr->ePlan = FTS5_PLAN_SOURCE;
    pCsr->pExpr = pTab->pSortCsr->pExpr;
    rc = fts5CursorFirst(pTab, pCsr, bDesc);
    sqlite3Fts5ExprClearEof(pCsr->pExpr);
  }else if( pMatch ){
    const char *zExpr = (const char*)sqlite3_value_text(apVal[0]);
    if( zExpr==0 ) zExpr = "";

    rc = fts5CursorParseRank(pConfig, pCsr, pRank);
    if( rc==SQLITE_OK ){
      if( zExpr[0]=='*' ){
181238
181239
181240
181241
181242
181243
181244
181245
181246
181247
181248
181249
181250
181251
181252
181253
181254
181255
181256
181257
181258
181259
    }
  }
  return rc;
}

static int fts5SpecialDelete(
  Fts5Table *pTab, 
  sqlite3_value **apVal, 
  sqlite3_int64 *piRowid
){
  int rc = SQLITE_OK;
  int eType1 = sqlite3_value_type(apVal[1]);
  if( eType1==SQLITE_INTEGER ){
    sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
    rc = sqlite3Fts5StorageSpecialDelete(pTab->pStorage, iDel, &apVal[2]);
  }
  return rc;
}

static void fts5StorageInsert(
  int *pRc, 
  Fts5Table *pTab, 







|
<





|







183142
183143
183144
183145
183146
183147
183148
183149

183150
183151
183152
183153
183154
183155
183156
183157
183158
183159
183160
183161
183162
    }
  }
  return rc;
}

static int fts5SpecialDelete(
  Fts5Table *pTab, 
  sqlite3_value **apVal

){
  int rc = SQLITE_OK;
  int eType1 = sqlite3_value_type(apVal[1]);
  if( eType1==SQLITE_INTEGER ){
    sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
    rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, &apVal[2]);
  }
  return rc;
}

static void fts5StorageInsert(
  int *pRc, 
  Fts5Table *pTab, 
181315
181316
181317
181318
181319
181320
181321
181322
181323
181324
181325
181326
181327
181328
181329
   && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL 
  ){
    /* A "special" INSERT op. These are handled separately. */
    const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
    if( pConfig->eContent!=FTS5_CONTENT_NORMAL 
      && 0==sqlite3_stricmp("delete", z) 
    ){
      rc = fts5SpecialDelete(pTab, apVal, pRowid);
    }else{
      rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
    }
  }else{
    /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
    ** any conflict on the rowid value must be detected before any 
    ** modifications are made to the database file. There are 4 cases:







|







183218
183219
183220
183221
183222
183223
183224
183225
183226
183227
183228
183229
183230
183231
183232
   && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL 
  ){
    /* A "special" INSERT op. These are handled separately. */
    const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
    if( pConfig->eContent!=FTS5_CONTENT_NORMAL 
      && 0==sqlite3_stricmp("delete", z) 
    ){
      rc = fts5SpecialDelete(pTab, apVal);
    }else{
      rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
    }
  }else{
    /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
    ** any conflict on the rowid value must be detected before any 
    ** modifications are made to the database file. There are 4 cases:
181352
181353
181354
181355
181356
181357
181358
181359
181360
181361
181362
181363
181364
181365
181366
181367
181368
181369
181370
181371
181372
181373
181374
181375
181376
181377
181378
181379
181380
181381
181382
181383
181384
181385
181386
181387
181388
181389
181390
181391
181392
181393
181394
181395
181396
181397
181398
181399
181400
181401
181402
      );
      rc = SQLITE_ERROR;
    }

    /* Case 1: DELETE */
    else if( nArg==1 ){
      i64 iDel = sqlite3_value_int64(apVal[0]);  /* Rowid to delete */
      rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel);
    }

    /* Case 2: INSERT */
    else if( eType0!=SQLITE_INTEGER ){     
      /* If this is a REPLACE, first remove the current entry (if any) */
      if( eConflict==SQLITE_REPLACE 
       && sqlite3_value_type(apVal[1])==SQLITE_INTEGER 
      ){
        i64 iNew = sqlite3_value_int64(apVal[1]);  /* Rowid to delete */
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew);
      }
      fts5StorageInsert(&rc, pTab, apVal, pRowid);
    }

    /* Case 2: UPDATE */
    else{
      i64 iOld = sqlite3_value_int64(apVal[0]);  /* Old rowid */
      i64 iNew = sqlite3_value_int64(apVal[1]);  /* New rowid */
      if( iOld!=iNew ){
        if( eConflict==SQLITE_REPLACE ){
          rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew);
          }
          fts5StorageInsert(&rc, pTab, apVal, pRowid);
        }else{
          rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld);
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *pRowid);
          }
        }
      }else{
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld);
        fts5StorageInsert(&rc, pTab, apVal, pRowid);
      }
    }
  }

  pTab->pConfig->pzErrmsg = 0;
  return rc;







|









|










|

|





|






|







183255
183256
183257
183258
183259
183260
183261
183262
183263
183264
183265
183266
183267
183268
183269
183270
183271
183272
183273
183274
183275
183276
183277
183278
183279
183280
183281
183282
183283
183284
183285
183286
183287
183288
183289
183290
183291
183292
183293
183294
183295
183296
183297
183298
183299
183300
183301
183302
183303
183304
183305
      );
      rc = SQLITE_ERROR;
    }

    /* Case 1: DELETE */
    else if( nArg==1 ){
      i64 iDel = sqlite3_value_int64(apVal[0]);  /* Rowid to delete */
      rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, 0);
    }

    /* Case 2: INSERT */
    else if( eType0!=SQLITE_INTEGER ){     
      /* If this is a REPLACE, first remove the current entry (if any) */
      if( eConflict==SQLITE_REPLACE 
       && sqlite3_value_type(apVal[1])==SQLITE_INTEGER 
      ){
        i64 iNew = sqlite3_value_int64(apVal[1]);  /* Rowid to delete */
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
      }
      fts5StorageInsert(&rc, pTab, apVal, pRowid);
    }

    /* Case 2: UPDATE */
    else{
      i64 iOld = sqlite3_value_int64(apVal[0]);  /* Old rowid */
      i64 iNew = sqlite3_value_int64(apVal[1]);  /* New rowid */
      if( iOld!=iNew ){
        if( eConflict==SQLITE_REPLACE ){
          rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
          }
          fts5StorageInsert(&rc, pTab, apVal, pRowid);
        }else{
          rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *pRowid);
          }
        }
      }else{
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
        fts5StorageInsert(&rc, pTab, apVal, pRowid);
      }
    }
  }

  pTab->pConfig->pzErrmsg = 0;
  return rc;
181416
181417
181418
181419
181420
181421
181422

181423
181424
181425
181426
181427
181428
181429
181430
181431
181432

181433
181434
181435
181436
181437
181438
181439
181440
181441
181442
181443
181444
181445
181446
181447


181448
181449
181450
181451
181452
181453
181454
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
static int fts5BeginMethod(sqlite3_vtab *pVtab){

  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_BEGIN, 0);
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts5SyncMethod().
*/
static int fts5CommitMethod(sqlite3_vtab *pVtab){

  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_COMMIT, 0);
  return SQLITE_OK;
}

/*
** Implementation of xRollback(). Discard the contents of the pending-terms
** hash-table. Any changes made to the database are reverted by SQLite.
*/
static int fts5RollbackMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5Table *pTab = (Fts5Table*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
  rc = sqlite3Fts5StorageRollback(pTab->pStorage);
  return rc;
}



static void *fts5ApiUserData(Fts5Context *pCtx){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return pCsr->pAux->pUserData;
}

static int fts5ApiColumnCount(Fts5Context *pCtx){







>










>















>
>







183319
183320
183321
183322
183323
183324
183325
183326
183327
183328
183329
183330
183331
183332
183333
183334
183335
183336
183337
183338
183339
183340
183341
183342
183343
183344
183345
183346
183347
183348
183349
183350
183351
183352
183353
183354
183355
183356
183357
183358
183359
183360
183361
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
static int fts5BeginMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAM(pVtab);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_BEGIN, 0);
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts5SyncMethod().
*/
static int fts5CommitMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAM(pVtab);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_COMMIT, 0);
  return SQLITE_OK;
}

/*
** Implementation of xRollback(). Discard the contents of the pending-terms
** hash-table. Any changes made to the database are reverted by SQLite.
*/
static int fts5RollbackMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5Table *pTab = (Fts5Table*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
  rc = sqlite3Fts5StorageRollback(pTab->pStorage);
  return rc;
}

static int fts5CsrPoslist(Fts5Cursor*, int, const u8**, int*);

static void *fts5ApiUserData(Fts5Context *pCtx){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return pCsr->pAux->pUserData;
}

static int fts5ApiColumnCount(Fts5Context *pCtx){
181491
181492
181493
181494
181495
181496
181497





















181498

















181499









181500







181501
181502
181503
181504
181505
181506
181507

181508
181509
181510
181511
181512
181513
181514
181515
}

static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
}






















static int fts5CsrPoslist(Fts5Cursor *pCsr, int iPhrase, const u8 **pa){

















  int n;









  if( pCsr->pSorter ){







    Fts5Sorter *pSorter = pCsr->pSorter;
    int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
    n = pSorter->aIdx[iPhrase] - i1;
    *pa = &pSorter->aPoslist[i1];
  }else{
    n = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
  }

  return n;
}

/*
** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
** correctly for the current view. Return SQLITE_OK if successful, or an
** SQLite error code otherwise.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>


|


|

>
|







183398
183399
183400
183401
183402
183403
183404
183405
183406
183407
183408
183409
183410
183411
183412
183413
183414
183415
183416
183417
183418
183419
183420
183421
183422
183423
183424
183425
183426
183427
183428
183429
183430
183431
183432
183433
183434
183435
183436
183437
183438
183439
183440
183441
183442
183443
183444
183445
183446
183447
183448
183449
183450
183451
183452
183453
183454
183455
183456
183457
183458
183459
183460
183461
183462
183463
183464
183465
183466
183467
183468
183469
183470
183471
183472
183473
183474
183475
183476
183477
}

static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
}

static int fts5ApiColumnText(
  Fts5Context *pCtx, 
  int iCol, 
  const char **pz, 
  int *pn
){
  int rc = SQLITE_OK;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  if( fts5IsContentless((Fts5Table*)(pCsr->base.pVtab)) ){
    *pz = 0;
    *pn = 0;
  }else{
    rc = fts5SeekCursor(pCsr, 0);
    if( rc==SQLITE_OK ){
      *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
      *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
    }
  }
  return rc;
}

static int fts5CsrPoslist(
  Fts5Cursor *pCsr, 
  int iPhrase, 
  const u8 **pa,
  int *pn
){
  Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
  int rc = SQLITE_OK;
  int bLive = (pCsr->pSorter==0);

  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_POSLIST) ){

    if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
      Fts5PoslistPopulator *aPopulator;
      int i;
      aPopulator = sqlite3Fts5ExprClearPoslists(pCsr->pExpr, bLive);
      if( aPopulator==0 ) rc = SQLITE_NOMEM;
      for(i=0; i<pConfig->nCol && rc==SQLITE_OK; i++){
        int n; const char *z;
        rc = fts5ApiColumnText((Fts5Context*)pCsr, i, &z, &n);
        if( rc==SQLITE_OK ){
          rc = sqlite3Fts5ExprPopulatePoslists(
              pConfig, pCsr->pExpr, aPopulator, i, z, n
          );
        }
      }
      sqlite3_free(aPopulator);

      if( pCsr->pSorter ){
        sqlite3Fts5ExprCheckPoslists(pCsr->pExpr, pCsr->pSorter->iRowid);
      }
    }
    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_POSLIST);
  }

  if( pCsr->pSorter && pConfig->eDetail==FTS5_DETAIL_FULL ){
    Fts5Sorter *pSorter = pCsr->pSorter;
    int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
    *pn = pSorter->aIdx[iPhrase] - i1;
    *pa = &pSorter->aPoslist[i1];
  }else{
    *pn = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
  }

  return rc;
}

/*
** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
** correctly for the current view. Return SQLITE_OK if successful, or an
** SQLite error code otherwise.
*/
181526
181527
181528
181529
181530
181531
181532
181533
181534

181535

181536
181537
181538


181539
181540
181541
181542
181543
181544
181545
181546
181547
181548
181549
181550
181551
181552
181553
181554
181555
181556
181557
181558
181559
181560
181561
181562
181563
181564
181565
181566
181567
181568
181569

181570
181571
181572
181573
181574
181575
181576
  aIter = pCsr->aInstIter;

  if( aIter ){
    int nInst = 0;                /* Number instances seen so far */
    int i;

    /* Initialize all iterators */
    for(i=0; i<nIter; i++){
      const u8 *a;

      int n = fts5CsrPoslist(pCsr, i, &a);

      sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    }



    while( 1 ){
      int *aInst;
      int iBest = -1;
      for(i=0; i<nIter; i++){
        if( (aIter[i].bEof==0) 
         && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos) 
        ){
          iBest = i;
        }
      }
      if( iBest<0 ) break;

      nInst++;
      if( nInst>=pCsr->nInstAlloc ){
        pCsr->nInstAlloc = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
        aInst = (int*)sqlite3_realloc(
            pCsr->aInst, pCsr->nInstAlloc*sizeof(int)*3
        );
        if( aInst ){
          pCsr->aInst = aInst;
        }else{
          rc = SQLITE_NOMEM;
          break;
        }
      }

      aInst = &pCsr->aInst[3 * (nInst-1)];
      aInst[0] = iBest;
      aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
      aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
      sqlite3Fts5PoslistReaderNext(&aIter[iBest]);

    }

    pCsr->nInstCount = nInst;
    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
  }
  return rc;
}







|

>
|
>
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
>







183488
183489
183490
183491
183492
183493
183494
183495
183496
183497
183498
183499
183500
183501
183502
183503
183504
183505
183506
183507
183508
183509
183510
183511
183512
183513
183514
183515
183516
183517
183518
183519
183520
183521
183522
183523
183524
183525
183526
183527
183528
183529
183530
183531
183532
183533
183534
183535
183536
183537
183538
183539
183540
183541
183542
183543
  aIter = pCsr->aInstIter;

  if( aIter ){
    int nInst = 0;                /* Number instances seen so far */
    int i;

    /* Initialize all iterators */
    for(i=0; i<nIter && rc==SQLITE_OK; i++){
      const u8 *a;
      int n; 
      rc = fts5CsrPoslist(pCsr, i, &a, &n);
      if( rc==SQLITE_OK ){
        sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
      }
    }

    if( rc==SQLITE_OK ){
      while( 1 ){
        int *aInst;
        int iBest = -1;
        for(i=0; i<nIter; i++){
          if( (aIter[i].bEof==0) 
              && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos) 
            ){
            iBest = i;
          }
        }
        if( iBest<0 ) break;

        nInst++;
        if( nInst>=pCsr->nInstAlloc ){
          pCsr->nInstAlloc = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
          aInst = (int*)sqlite3_realloc(
              pCsr->aInst, pCsr->nInstAlloc*sizeof(int)*3
              );
          if( aInst ){
            pCsr->aInst = aInst;
          }else{
            rc = SQLITE_NOMEM;
            break;
          }
        }

        aInst = &pCsr->aInst[3 * (nInst-1)];
        aInst[0] = iBest;
        aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
        aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
        sqlite3Fts5PoslistReaderNext(&aIter[iBest]);
      }
    }

    pCsr->nInstCount = nInst;
    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
  }
  return rc;
}
181595
181596
181597
181598
181599
181600
181601






181602
181603
181604
181605
181606
181607
181608
181609
181610
181611
181612
181613
181614
181615
181616
181617
181618
181619
181620
181621
181622
181623
181624
181625
181626
181627
181628
181629
181630
181631
181632
181633
181634
181635
181636
181637
181638
181639
181640
181641
181642
181643
181644


181645
181646
181647
181648
181649
181650
181651
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  int rc = SQLITE_OK;
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0 
   || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) 
  ){
    if( iIdx<0 || iIdx>=pCsr->nInstCount ){
      rc = SQLITE_RANGE;






    }else{
      *piPhrase = pCsr->aInst[iIdx*3];
      *piCol = pCsr->aInst[iIdx*3 + 1];
      *piOff = pCsr->aInst[iIdx*3 + 2];
    }
  }
  return rc;
}

static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
  return fts5CursorRowid((Fts5Cursor*)pCtx);
}

static int fts5ApiColumnText(
  Fts5Context *pCtx, 
  int iCol, 
  const char **pz, 
  int *pn
){
  int rc = SQLITE_OK;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  if( fts5IsContentless((Fts5Table*)(pCsr->base.pVtab)) ){
    *pz = 0;
    *pn = 0;
  }else{
    rc = fts5SeekCursor(pCsr, 0);
    if( rc==SQLITE_OK ){
      *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
      *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
    }
  }
  return rc;
}

static int fts5ColumnSizeCb(
  void *pContext,                 /* Pointer to int */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iStart,                     /* Start offset of token */
  int iEnd                        /* End offset of token */
){
  int *pCnt = (int*)pContext;


  if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
    (*pCnt)++;
  }
  return SQLITE_OK;
}

static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){







>
>
>
>
>
>













<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



|
|
|
|


>
>







183562
183563
183564
183565
183566
183567
183568
183569
183570
183571
183572
183573
183574
183575
183576
183577
183578
183579
183580
183581
183582
183583
183584
183585
183586
183587





















183588
183589
183590
183591
183592
183593
183594
183595
183596
183597
183598
183599
183600
183601
183602
183603
183604
183605
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  int rc = SQLITE_OK;
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0 
   || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) 
  ){
    if( iIdx<0 || iIdx>=pCsr->nInstCount ){
      rc = SQLITE_RANGE;
#if 0
    }else if( fts5IsOffsetless((Fts5Table*)pCsr->base.pVtab) ){
      *piPhrase = pCsr->aInst[iIdx*3];
      *piCol = pCsr->aInst[iIdx*3 + 2];
      *piOff = -1;
#endif
    }else{
      *piPhrase = pCsr->aInst[iIdx*3];
      *piCol = pCsr->aInst[iIdx*3 + 1];
      *piOff = pCsr->aInst[iIdx*3 + 2];
    }
  }
  return rc;
}

static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
  return fts5CursorRowid((Fts5Cursor*)pCtx);
}






















static int fts5ColumnSizeCb(
  void *pContext,                 /* Pointer to int */
  int tflags,
  const char *pUnused,            /* Buffer containing token */
  int nUnused,                    /* Size of token in bytes */
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  int *pCnt = (int*)pContext;
  UNUSED_PARAM2(pUnused, nUnused);
  UNUSED_PARAM2(iUnused1, iUnused2);
  if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
    (*pCnt)++;
  }
  return SQLITE_OK;
}

static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){
181753
181754
181755
181756
181757
181758
181759
181760
181761
181762
181763

181764
181765
181766
181767
181768
181769
181770
181771
181772
181773
181774
181775
181776
181777
181778
181779
181780
181781
181782
181783
181784
181785
181786

181787

181788
181789
181790
181791
181792












































































181793
181794
181795
181796
181797
181798
181799
    }
  }

  return pRet;
}

static void fts5ApiPhraseNext(
  Fts5Context *pCtx, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){

  if( pIter->a>=pIter->b ){
    *piCol = -1;
    *piOff = -1;
  }else{
    int iVal;
    pIter->a += fts5GetVarint32(pIter->a, iVal);
    if( iVal==1 ){
      pIter->a += fts5GetVarint32(pIter->a, iVal);
      *piCol = iVal;
      *piOff = 0;
      pIter->a += fts5GetVarint32(pIter->a, iVal);
    }
    *piOff += (iVal-2);
  }
}

static void fts5ApiPhraseFirst(
  Fts5Context *pCtx, 
  int iPhrase, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;

  int n = fts5CsrPoslist(pCsr, iPhrase, &pIter->a);

  pIter->b = &pIter->a[n];
  *piCol = 0;
  *piOff = 0;
  fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
}













































































static int fts5ApiQueryPhrase(Fts5Context*, int, void*, 
    int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
);

static const Fts5ExtensionApi sFts5Api = {
  2,                            /* iVersion */







|



>
















|






>
|
>
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







183707
183708
183709
183710
183711
183712
183713
183714
183715
183716
183717
183718
183719
183720
183721
183722
183723
183724
183725
183726
183727
183728
183729
183730
183731
183732
183733
183734
183735
183736
183737
183738
183739
183740
183741
183742
183743
183744
183745
183746
183747
183748
183749
183750
183751
183752
183753
183754
183755
183756
183757
183758
183759
183760
183761
183762
183763
183764
183765
183766
183767
183768
183769
183770
183771
183772
183773
183774
183775
183776
183777
183778
183779
183780
183781
183782
183783
183784
183785
183786
183787
183788
183789
183790
183791
183792
183793
183794
183795
183796
183797
183798
183799
183800
183801
183802
183803
183804
183805
183806
183807
183808
183809
183810
183811
183812
183813
183814
183815
183816
183817
183818
183819
183820
183821
183822
183823
183824
183825
183826
183827
183828
183829
183830
183831
183832
    }
  }

  return pRet;
}

static void fts5ApiPhraseNext(
  Fts5Context *pUnused, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){
  UNUSED_PARAM(pUnused);
  if( pIter->a>=pIter->b ){
    *piCol = -1;
    *piOff = -1;
  }else{
    int iVal;
    pIter->a += fts5GetVarint32(pIter->a, iVal);
    if( iVal==1 ){
      pIter->a += fts5GetVarint32(pIter->a, iVal);
      *piCol = iVal;
      *piOff = 0;
      pIter->a += fts5GetVarint32(pIter->a, iVal);
    }
    *piOff += (iVal-2);
  }
}

static int fts5ApiPhraseFirst(
  Fts5Context *pCtx, 
  int iPhrase, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  int n;
  int rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
  if( rc==SQLITE_OK ){
    pIter->b = &pIter->a[n];
    *piCol = 0;
    *piOff = 0;
    fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
  }
  return rc;
}

static void fts5ApiPhraseNextColumn(
  Fts5Context *pCtx, 
  Fts5PhraseIter *pIter, 
  int *piCol
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;

  if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
    if( pIter->a>=pIter->b ){
      *piCol = -1;
    }else{
      int iIncr;
      pIter->a += fts5GetVarint32(&pIter->a[0], iIncr);
      *piCol += (iIncr-2);
    }
  }else{
    while( 1 ){
      int dummy;
      if( pIter->a>=pIter->b ){
        *piCol = -1;
        return;
      }
      if( pIter->a[0]==0x01 ) break;
      pIter->a += fts5GetVarint32(pIter->a, dummy);
    }
    pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
  }
}

static int fts5ApiPhraseFirstColumn(
  Fts5Context *pCtx, 
  int iPhrase, 
  Fts5PhraseIter *pIter, 
  int *piCol
){
  int rc = SQLITE_OK;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;

  if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
    Fts5Sorter *pSorter = pCsr->pSorter;
    int n;
    if( pSorter ){
      int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
      n = pSorter->aIdx[iPhrase] - i1;
      pIter->a = &pSorter->aPoslist[i1];
    }else{
      rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, iPhrase, &pIter->a, &n);
    }
    if( rc==SQLITE_OK ){
      pIter->b = &pIter->a[n];
      *piCol = 0;
      fts5ApiPhraseNextColumn(pCtx, pIter, piCol);
    }
  }else{
    int n;
    rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
    if( rc==SQLITE_OK ){
      pIter->b = &pIter->a[n];
      if( n<=0 ){
        *piCol = -1;
      }else if( pIter->a[0]==0x01 ){
        pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
      }else{
        *piCol = 0;
      }
    }
  }

  return rc;
}


static int fts5ApiQueryPhrase(Fts5Context*, int, void*, 
    int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
);

static const Fts5ExtensionApi sFts5Api = {
  2,                            /* iVersion */
181810
181811
181812
181813
181814
181815
181816


181817
181818
181819
181820
181821
181822
181823
181824
181825
181826
181827
181828
181829
181830
181831
181832
181833
181834
181835
181836
181837
181838
181839
181840
181841
181842
181843
181844
181845
181846
181847
181848
  fts5ApiColumnText,
  fts5ApiColumnSize,
  fts5ApiQueryPhrase,
  fts5ApiSetAuxdata,
  fts5ApiGetAuxdata,
  fts5ApiPhraseFirst,
  fts5ApiPhraseNext,


};


/*
** Implementation of API function xQueryPhrase().
*/
static int fts5ApiQueryPhrase(
  Fts5Context *pCtx, 
  int iPhrase, 
  void *pUserData,
  int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  int rc;
  Fts5Cursor *pNew = 0;

  rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
  if( rc==SQLITE_OK ){
    Fts5Config *pConf = pTab->pConfig;
    pNew->ePlan = FTS5_PLAN_MATCH;
    pNew->iFirstRowid = SMALLEST_INT64;
    pNew->iLastRowid = LARGEST_INT64;
    pNew->base.pVtab = (sqlite3_vtab*)pTab;
    rc = sqlite3Fts5ExprClonePhrase(pConf, pCsr->pExpr, iPhrase, &pNew->pExpr);
  }

  if( rc==SQLITE_OK ){
    for(rc = fts5CursorFirst(pTab, pNew, 0);
        rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
        rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
    ){







>
>

<

















<




|







183843
183844
183845
183846
183847
183848
183849
183850
183851
183852

183853
183854
183855
183856
183857
183858
183859
183860
183861
183862
183863
183864
183865
183866
183867
183868
183869

183870
183871
183872
183873
183874
183875
183876
183877
183878
183879
183880
183881
  fts5ApiColumnText,
  fts5ApiColumnSize,
  fts5ApiQueryPhrase,
  fts5ApiSetAuxdata,
  fts5ApiGetAuxdata,
  fts5ApiPhraseFirst,
  fts5ApiPhraseNext,
  fts5ApiPhraseFirstColumn,
  fts5ApiPhraseNextColumn,
};


/*
** Implementation of API function xQueryPhrase().
*/
static int fts5ApiQueryPhrase(
  Fts5Context *pCtx, 
  int iPhrase, 
  void *pUserData,
  int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  int rc;
  Fts5Cursor *pNew = 0;

  rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
  if( rc==SQLITE_OK ){

    pNew->ePlan = FTS5_PLAN_MATCH;
    pNew->iFirstRowid = SMALLEST_INT64;
    pNew->iLastRowid = LARGEST_INT64;
    pNew->base.pVtab = (sqlite3_vtab*)pTab;
    rc = sqlite3Fts5ExprClonePhrase(pCsr->pExpr, iPhrase, &pNew->pExpr);
  }

  if( rc==SQLITE_OK ){
    for(rc = fts5CursorFirst(pTab, pNew, 0);
        rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
        rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
    ){
181944
181945
181946
181947
181948
181949
181950


181951
181952
181953
181954
181955
181956
181957
181958
181959
181960
181961
181962
181963
181964
























181965
181966
181967
181968
181969
181970
181971
static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
  int i;
  int rc = SQLITE_OK;
  int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  Fts5Buffer val;

  memset(&val, 0, sizeof(Fts5Buffer));



  /* Append the varints */
  for(i=0; i<(nPhrase-1); i++){
    const u8 *dummy;
    int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
    sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
  }

  /* Append the position lists */
  for(i=0; i<nPhrase; i++){
    const u8 *pPoslist;
    int nPoslist;
    nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
    sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
























  }

  sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
  return rc;
}

/* 







>
>

|
|
|
|
|
|

|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







183977
183978
183979
183980
183981
183982
183983
183984
183985
183986
183987
183988
183989
183990
183991
183992
183993
183994
183995
183996
183997
183998
183999
184000
184001
184002
184003
184004
184005
184006
184007
184008
184009
184010
184011
184012
184013
184014
184015
184016
184017
184018
184019
184020
184021
184022
184023
184024
184025
184026
184027
184028
184029
184030
static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
  int i;
  int rc = SQLITE_OK;
  int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  Fts5Buffer val;

  memset(&val, 0, sizeof(Fts5Buffer));
  switch( ((Fts5Table*)(pCsr->base.pVtab))->pConfig->eDetail ){
    case FTS5_DETAIL_FULL:

      /* Append the varints */
      for(i=0; i<(nPhrase-1); i++){
        const u8 *dummy;
        int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
        sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
      }

      /* Append the position lists */
      for(i=0; i<nPhrase; i++){
        const u8 *pPoslist;
        int nPoslist;
        nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
        sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
      }
      break;

    case FTS5_DETAIL_COLUMNS:

      /* Append the varints */
      for(i=0; rc==SQLITE_OK && i<(nPhrase-1); i++){
        const u8 *dummy;
        int nByte;
        rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &dummy, &nByte);
        sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
      }

      /* Append the position lists */
      for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
        const u8 *pPoslist;
        int nPoslist;
        rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &pPoslist, &nPoslist);
        sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
      }
      break;

    default:
      break;
  }

  sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
  return rc;
}

/* 
182021
182022
182023
182024
182025
182026
182027
182028
182029
182030
182031
182032
182033
182034
182035

182036
182037
182038
182039
182040
182041
182042

/*
** This routine implements the xFindFunction method for the FTS3
** virtual table.
*/
static int fts5FindFunctionMethod(
  sqlite3_vtab *pVtab,            /* Virtual table handle */
  int nArg,                       /* Number of SQL function arguments */
  const char *zName,              /* Name of SQL function */
  void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
  void **ppArg                    /* OUT: User data for *pxFunc */
){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  Fts5Auxiliary *pAux;


  pAux = fts5FindAuxiliary(pTab, zName);
  if( pAux ){
    *pxFunc = fts5ApiCallback;
    *ppArg = (void*)pAux;
    return 1;
  }








|







>







184080
184081
184082
184083
184084
184085
184086
184087
184088
184089
184090
184091
184092
184093
184094
184095
184096
184097
184098
184099
184100
184101
184102

/*
** This routine implements the xFindFunction method for the FTS3
** virtual table.
*/
static int fts5FindFunctionMethod(
  sqlite3_vtab *pVtab,            /* Virtual table handle */
  int nUnused,                    /* Number of SQL function arguments */
  const char *zName,              /* Name of SQL function */
  void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
  void **ppArg                    /* OUT: User data for *pxFunc */
){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  Fts5Auxiliary *pAux;

  UNUSED_PARAM(nUnused);
  pAux = fts5FindAuxiliary(pTab, zName);
  if( pAux ){
    *pxFunc = fts5ApiCallback;
    *ppArg = (void*)pAux;
    return 1;
  }

182058
182059
182060
182061
182062
182063
182064

182065
182066
182067
182068
182069
182070
182071
182072
182073
182074
182075
182076

182077
182078
182079
182080
182081
182082
182083
182084
182085
182086
182087
182088

182089
182090
182091
182092
182093
182094
182095
/*
** The xSavepoint() method.
**
** Flush the contents of the pending-terms table to disk.
*/
static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;

  fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;

  fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/
static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;

  fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageRollback(pTab->pStorage);
}

/*
** Register a new auxiliary function with global context pGlobal.







>












>












>







184118
184119
184120
184121
184122
184123
184124
184125
184126
184127
184128
184129
184130
184131
184132
184133
184134
184135
184136
184137
184138
184139
184140
184141
184142
184143
184144
184145
184146
184147
184148
184149
184150
184151
184152
184153
184154
184155
184156
184157
184158
/*
** The xSavepoint() method.
**
** Flush the contents of the pending-terms table to disk.
*/
static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/
static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageRollback(pTab->pStorage);
}

/*
** Register a new auxiliary function with global context pGlobal.
182261
182262
182263
182264
182265
182266
182267
182268
182269
182270
182271

182272
182273
182274
182275
182276
182277
182278
182279
182280
182281
182282
182283
182284
182285
182286

182287
182288
182289
182290
182291
182292
182293
182294

  sqlite3_free(pGlobal);
}

static void fts5Fts5Func(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apVal           /* Function arguments */
){
  Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
  char buf[8];

  assert( nArg==0 );
  assert( sizeof(buf)>=sizeof(pGlobal) );
  memcpy(buf, (void*)&pGlobal, sizeof(pGlobal));
  sqlite3_result_blob(pCtx, buf, sizeof(pGlobal), SQLITE_TRANSIENT);
}

/*
** Implementation of fts5_source_id() function.
*/
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apVal           /* Function arguments */
){
  assert( nArg==0 );

  sqlite3_result_text(pCtx, "fts5: 2016-01-20 15:27:19 17efb4209f97fb4971656086b138599a91a75ff9", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,







|



>












|


>
|







184324
184325
184326
184327
184328
184329
184330
184331
184332
184333
184334
184335
184336
184337
184338
184339
184340
184341
184342
184343
184344
184345
184346
184347
184348
184349
184350
184351
184352
184353
184354
184355
184356
184357
184358
184359

  sqlite3_free(pGlobal);
}

static void fts5Fts5Func(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
  char buf[8];
  UNUSED_PARAM2(nArg, apUnused);
  assert( nArg==0 );
  assert( sizeof(buf)>=sizeof(pGlobal) );
  memcpy(buf, (void*)&pGlobal, sizeof(pGlobal));
  sqlite3_result_blob(pCtx, buf, sizeof(pGlobal), SQLITE_TRANSIENT);
}

/*
** Implementation of fts5_source_id() function.
*/
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2016-02-12 18:48:09 a049fbbde5da2e43d41aa8c2b41f9eb21507ac76", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,
182725
182726
182727
182728
182729
182730
182731
182732
182733
182734
182735
182736
182737
182738
182739
*/
static int sqlite3Fts5StorageClose(Fts5Storage *p){
  int rc = SQLITE_OK;
  if( p ){
    int i;

    /* Finalize all SQL statements */
    for(i=0; i<(int)ArraySize(p->aStmt); i++){
      sqlite3_finalize(p->aStmt[i]);
    }

    sqlite3_free(p);
  }
  return rc;
}







|







184790
184791
184792
184793
184794
184795
184796
184797
184798
184799
184800
184801
184802
184803
184804
*/
static int sqlite3Fts5StorageClose(Fts5Storage *p){
  int rc = SQLITE_OK;
  if( p ){
    int i;

    /* Finalize all SQL statements */
    for(i=0; i<ArraySize(p->aStmt); i++){
      sqlite3_finalize(p->aStmt[i]);
    }

    sqlite3_free(p);
  }
  return rc;
}
182749
182750
182751
182752
182753
182754
182755
182756
182757
182758
182759
182760

182761
182762
182763
182764
182765
182766
182767
182768
182769
182770
182771
182772




182773
182774
182775



182776

182777
182778
182779
182780
182781
182782


182783
182784
182785
182786
182787
182788
182789
182790
182791


182792
182793




182794

182795
182796
182797
182798

182799
182800
182801
182802
182803
182804
182805
182806
182807
182808
182809
182810
182811
** Tokenization callback used when inserting tokens into the FTS index.
*/
static int fts5StorageInsertCallback(
  void *pContext,                 /* Pointer to Fts5InsertCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iStart,                     /* Start offset of token */
  int iEnd                        /* End offset of token */
){
  Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
  Fts5Index *pIdx = pCtx->pStorage->pIndex;

  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }
  return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
}

/*
** If a row with rowid iDel is present in the %_content table, add the
** delete-markers to the FTS index necessary to delete it. Do not actually
** remove the %_content row at this time though.
*/
static int fts5StorageDeleteFromIndex(Fts5Storage *p, i64 iDel){




  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pSeek;            /* SELECT to read row iDel from %_data */
  int rc;                         /* Return code */





  rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
  if( rc==SQLITE_OK ){
    int rc2;
    sqlite3_bind_int64(pSeek, 1, iDel);
    if( sqlite3_step(pSeek)==SQLITE_ROW ){
      int iCol;


      Fts5InsertCtx ctx;
      ctx.pStorage = p;
      ctx.iCol = -1;
      rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
      for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
        if( pConfig->abUnindexed[iCol-1] ) continue;
        ctx.szCol = 0;
        rc = sqlite3Fts5Tokenize(pConfig, 
            FTS5_TOKENIZE_DOCUMENT,


            (const char*)sqlite3_column_text(pSeek, iCol),
            sqlite3_column_bytes(pSeek, iCol),




            (void*)&ctx,

            fts5StorageInsertCallback
        );
        p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
      }

      p->nTotalRow--;
    }
    rc2 = sqlite3_reset(pSeek);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  return rc;
}


/*
** Insert a record into the %_docsize table. Specifically, do:
**







|
|



>











|
>
>
>
>

|

>
>
>

>
|
|
<

|
|
>
>
|
|
|
|
|
|
<
<
|
>
>
|
|
>
>
>
>
|
>
|
|
|
|
>
|
|
|
|
<
<







184814
184815
184816
184817
184818
184819
184820
184821
184822
184823
184824
184825
184826
184827
184828
184829
184830
184831
184832
184833
184834
184835
184836
184837
184838
184839
184840
184841
184842
184843
184844
184845
184846
184847
184848
184849
184850
184851
184852

184853
184854
184855
184856
184857
184858
184859
184860
184861
184862
184863


184864
184865
184866
184867
184868
184869
184870
184871
184872
184873
184874
184875
184876
184877
184878
184879
184880
184881
184882
184883


184884
184885
184886
184887
184888
184889
184890
** Tokenization callback used when inserting tokens into the FTS index.
*/
static int fts5StorageInsertCallback(
  void *pContext,                 /* Pointer to Fts5InsertCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
  Fts5Index *pIdx = pCtx->pStorage->pIndex;
  UNUSED_PARAM2(iUnused1, iUnused2);
  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }
  return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
}

/*
** If a row with rowid iDel is present in the %_content table, add the
** delete-markers to the FTS index necessary to delete it. Do not actually
** remove the %_content row at this time though.
*/
static int fts5StorageDeleteFromIndex(
  Fts5Storage *p, 
  i64 iDel, 
  sqlite3_value **apVal
){
  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pSeek = 0;        /* SELECT to read row iDel from %_data */
  int rc;                         /* Return code */
  int rc2;                        /* sqlite3_reset() return code */
  int iCol;
  Fts5InsertCtx ctx;

  if( apVal==0 ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
    if( rc!=SQLITE_OK ) return rc;

    sqlite3_bind_int64(pSeek, 1, iDel);
    if( sqlite3_step(pSeek)!=SQLITE_ROW ){
      return sqlite3_reset(pSeek);
    }
  }

  ctx.pStorage = p;
  ctx.iCol = -1;
  rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
  for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
    if( pConfig->abUnindexed[iCol-1]==0 ){


      const char *zText;
      int nText;
      if( pSeek ){
        zText = (const char*)sqlite3_column_text(pSeek, iCol);
        nText = sqlite3_column_bytes(pSeek, iCol);
      }else{
        zText = (const char*)sqlite3_value_text(apVal[iCol-1]);
        nText = sqlite3_value_bytes(apVal[iCol-1]);
      }
      ctx.szCol = 0;
      rc = sqlite3Fts5Tokenize(pConfig, FTS5_TOKENIZE_DOCUMENT, 
          zText, nText, (void*)&ctx, fts5StorageInsertCallback
      );
      p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
    }
  }
  p->nTotalRow--;

  rc2 = sqlite3_reset(pSeek);
  if( rc==SQLITE_OK ) rc = rc2;


  return rc;
}


/*
** Insert a record into the %_docsize table. Specifically, do:
**
182877
182878
182879
182880
182881
182882
182883
182884
182885
182886
182887
182888

182889
182890
182891
182892
182893
182894
182895
182896
182897
182898
182899
182900
182901
182902
182903
182904
182905
182906
182907
182908
182909
182910
182911
182912
182913
182914
182915
182916
182917
182918
182919
182920
182921
182922
182923
182924
182925
182926
182927
182928
182929
182930
182931
182932
182933
182934
182935
182936
182937
182938
182939
182940
182941
182942
182943
182944
182945
182946
182947
182948
182949
182950
182951
182952
182953
182954
182955
182956
182957
182958
182959
182960
182961
182962
182963
182964
182965
182966
182967
182968
182969
182970
182971
182972

  return rc;
}

/*
** Remove a row from the FTS table.
*/
static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel){
  Fts5Config *pConfig = p->pConfig;
  int rc;
  sqlite3_stmt *pDel = 0;


  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    rc = fts5StorageDeleteFromIndex(p, iDel);
  }

  /* Delete the %_docsize record */
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Delete the %_content record */
  if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
    }
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Write the averages record */
  if( rc==SQLITE_OK ){
    rc = fts5StorageSaveTotals(p);
  }

  return rc;
}

static int sqlite3Fts5StorageSpecialDelete(
  Fts5Storage *p, 
  i64 iDel, 
  sqlite3_value **apVal
){
  Fts5Config *pConfig = p->pConfig;
  int rc;
  sqlite3_stmt *pDel = 0;

  assert( pConfig->eContent!=FTS5_CONTENT_NORMAL );
  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    int iCol;
    Fts5InsertCtx ctx;
    ctx.pStorage = p;
    ctx.iCol = -1;

    rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
    for(iCol=0; rc==SQLITE_OK && iCol<pConfig->nCol; iCol++){
      if( pConfig->abUnindexed[iCol] ) continue;
      ctx.szCol = 0;
      rc = sqlite3Fts5Tokenize(pConfig, 
        FTS5_TOKENIZE_DOCUMENT,
        (const char*)sqlite3_value_text(apVal[iCol]),
        sqlite3_value_bytes(apVal[iCol]),
        (void*)&ctx,
        fts5StorageInsertCallback
      );
      p->aTotalSize[iCol] -= (i64)ctx.szCol;
    }
    p->nTotalRow--;
  }

  /* Delete the %_docsize record */
  if( pConfig->bColumnsize ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    }
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }








|




>




|

















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







184956
184957
184958
184959
184960
184961
184962
184963
184964
184965
184966
184967
184968
184969
184970
184971
184972
184973
184974
184975
184976
184977
184978
184979
184980
184981
184982
184983
184984
184985
184986
184987
184988
184989
184990























































184991
184992
184993
184994
184995
184996
184997

  return rc;
}

/*
** Remove a row from the FTS table.
*/
static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel, sqlite3_value **apVal){
  Fts5Config *pConfig = p->pConfig;
  int rc;
  sqlite3_stmt *pDel = 0;

  assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    rc = fts5StorageDeleteFromIndex(p, iDel, apVal);
  }

  /* Delete the %_docsize record */
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Delete the %_content record */
  if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
    }























































    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

183212
183213
183214
183215
183216
183217
183218

183219
183220

183221
183222
183223
183224
183225
183226
183227
183228
183229
183230
183231
183232
183233









183234
183235
183236





















183237



183238








183239




183240
183241
183242
183243
183244
183245
183246
183247
*/
typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
struct Fts5IntegrityCtx {
  i64 iRowid;
  int iCol;
  int szCol;
  u64 cksum;

  Fts5Config *pConfig;
};


/*
** Tokenization callback used by integrity check.
*/
static int fts5StorageIntegrityCallback(
  void *pContext,                 /* Pointer to Fts5InsertCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iStart,                     /* Start offset of token */
  int iEnd                        /* End offset of token */
){
  Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;









  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }





















  pCtx->cksum ^= sqlite3Fts5IndexCksum(



      pCtx->pConfig, pCtx->iRowid, pCtx->iCol, pCtx->szCol-1, pToken, nToken








  );




  return SQLITE_OK;
}

/*
** Check that the contents of the FTS index match that of the %_content
** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
** some other SQLite error code if an error occurs while attempting to
** determine this.







>


>





|



|
|


>
>
>
>
>
>
>
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
|
>
>
>
>
|







185237
185238
185239
185240
185241
185242
185243
185244
185245
185246
185247
185248
185249
185250
185251
185252
185253
185254
185255
185256
185257
185258
185259
185260
185261
185262
185263
185264
185265
185266
185267
185268
185269
185270
185271
185272
185273
185274
185275
185276
185277
185278
185279
185280
185281
185282
185283
185284
185285
185286
185287
185288
185289
185290
185291
185292
185293
185294
185295
185296
185297
185298
185299
185300
185301
185302
185303
185304
185305
185306
185307
185308
185309
185310
185311
185312
185313
185314
185315
185316
185317
185318
185319
*/
typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
struct Fts5IntegrityCtx {
  i64 iRowid;
  int iCol;
  int szCol;
  u64 cksum;
  Fts5Termset *pTermset;
  Fts5Config *pConfig;
};


/*
** Tokenization callback used by integrity check.
*/
static int fts5StorageIntegrityCallback(
  void *pContext,                 /* Pointer to Fts5IntegrityCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;
  Fts5Termset *pTermset = pCtx->pTermset;
  int bPresent;
  int ii;
  int rc = SQLITE_OK;
  int iPos;
  int iCol;

  UNUSED_PARAM2(iUnused1, iUnused2);

  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }

  switch( pCtx->pConfig->eDetail ){
    case FTS5_DETAIL_FULL:
      iPos = pCtx->szCol-1;
      iCol = pCtx->iCol;
      break;

    case FTS5_DETAIL_COLUMNS:
      iPos = pCtx->iCol;
      iCol = 0;
      break;

    default:
      assert( pCtx->pConfig->eDetail==FTS5_DETAIL_NONE );
      iPos = 0;
      iCol = 0;
      break;
  }

  rc = sqlite3Fts5TermsetAdd(pTermset, 0, pToken, nToken, &bPresent);
  if( rc==SQLITE_OK && bPresent==0 ){
    pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
        pCtx->iRowid, iCol, iPos, 0, pToken, nToken
    );
  }

  for(ii=0; rc==SQLITE_OK && ii<pCtx->pConfig->nPrefix; ii++){
    const int nChar = pCtx->pConfig->aPrefix[ii];
    int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
    if( nByte ){
      rc = sqlite3Fts5TermsetAdd(pTermset, ii+1, pToken, nByte, &bPresent);
      if( bPresent==0 ){
        pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
            pCtx->iRowid, iCol, iPos, ii+1, pToken, nByte
        );
      }
    }
  }

  return rc;
}

/*
** Check that the contents of the FTS index match that of the %_content
** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
** some other SQLite error code if an error occurs while attempting to
** determine this.
183268
183269
183270
183271
183272
183273
183274



183275
183276
183277
183278
183279




183280
183281
183282
183283
183284
183285
183286

183287
183288
183289
183290



183291




183292
183293
183294
183295
183296
183297
183298
    int rc2;
    while( SQLITE_ROW==sqlite3_step(pScan) ){
      int i;
      ctx.iRowid = sqlite3_column_int64(pScan, 0);
      ctx.szCol = 0;
      if( pConfig->bColumnsize ){
        rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);



      }
      for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
        if( pConfig->abUnindexed[i] ) continue;
        ctx.iCol = i;
        ctx.szCol = 0;




        rc = sqlite3Fts5Tokenize(pConfig, 
            FTS5_TOKENIZE_DOCUMENT,
            (const char*)sqlite3_column_text(pScan, i+1),
            sqlite3_column_bytes(pScan, i+1),
            (void*)&ctx,
            fts5StorageIntegrityCallback
        );

        if( pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
          rc = FTS5_CORRUPT;
        }
        aTotalSize[i] += ctx.szCol;



      }




      if( rc!=SQLITE_OK ) break;
    }
    rc2 = sqlite3_reset(pScan);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  /* Test that the "totals" (sometimes called "averages") record looks Ok */







>
>
>





>
>
>
>
|
|
|
|
|
|
|
>
|



>
>
>
|
>
>
>
>







185340
185341
185342
185343
185344
185345
185346
185347
185348
185349
185350
185351
185352
185353
185354
185355
185356
185357
185358
185359
185360
185361
185362
185363
185364
185365
185366
185367
185368
185369
185370
185371
185372
185373
185374
185375
185376
185377
185378
185379
185380
185381
185382
185383
185384
185385
    int rc2;
    while( SQLITE_ROW==sqlite3_step(pScan) ){
      int i;
      ctx.iRowid = sqlite3_column_int64(pScan, 0);
      ctx.szCol = 0;
      if( pConfig->bColumnsize ){
        rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);
      }
      if( rc==SQLITE_OK && pConfig->eDetail==FTS5_DETAIL_NONE ){
        rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
      }
      for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
        if( pConfig->abUnindexed[i] ) continue;
        ctx.iCol = i;
        ctx.szCol = 0;
        if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
          rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
        }
        if( rc==SQLITE_OK ){
          rc = sqlite3Fts5Tokenize(pConfig, 
              FTS5_TOKENIZE_DOCUMENT,
              (const char*)sqlite3_column_text(pScan, i+1),
              sqlite3_column_bytes(pScan, i+1),
              (void*)&ctx,
              fts5StorageIntegrityCallback
          );
        }
        if( rc==SQLITE_OK && pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
          rc = FTS5_CORRUPT;
        }
        aTotalSize[i] += ctx.szCol;
        if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
          sqlite3Fts5TermsetFree(ctx.pTermset);
          ctx.pTermset = 0;
        }
      }
      sqlite3Fts5TermsetFree(ctx.pTermset);
      ctx.pTermset = 0;

      if( rc!=SQLITE_OK ) break;
    }
    rc2 = sqlite3_reset(pScan);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  /* Test that the "totals" (sometimes called "averages") record looks Ok */
183553
183554
183555
183556
183557
183558
183559
183560
183561
183562
183563
183564
183565

183566
183567
183568
183569
183570
183571
183572
  sqlite3_free(p);
}

/*
** Create an "ascii" tokenizer.
*/
static int fts5AsciiCreate(
  void *pCtx, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;
  AsciiTokenizer *p = 0;

  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = sqlite3_malloc(sizeof(AsciiTokenizer));
    if( p==0 ){
      rc = SQLITE_NOMEM;
    }else{







|





>







185640
185641
185642
185643
185644
185645
185646
185647
185648
185649
185650
185651
185652
185653
185654
185655
185656
185657
185658
185659
185660
  sqlite3_free(p);
}

/*
** Create an "ascii" tokenizer.
*/
static int fts5AsciiCreate(
  void *pUnused, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;
  AsciiTokenizer *p = 0;
  UNUSED_PARAM(pUnused);
  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = sqlite3_malloc(sizeof(AsciiTokenizer));
    if( p==0 ){
      rc = SQLITE_NOMEM;
    }else{
183607
183608
183609
183610
183611
183612
183613
183614
183615
183616
183617
183618
183619
183620
183621
183622
183623
183624
183625
183626


183627
183628
183629
183630
183631
183632
183633

/*
** Tokenize some text using the ascii tokenizer.
*/
static int fts5AsciiTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int flags,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  int ie;
  int is = 0;

  char aFold[64];
  int nFold = sizeof(aFold);
  char *pFold = aFold;
  unsigned char *a = p->aTokenChar;



  while( is<nText && rc==SQLITE_OK ){
    int nByte;

    /* Skip any leading divider characters. */
    while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
      is++;







|












>
>







185695
185696
185697
185698
185699
185700
185701
185702
185703
185704
185705
185706
185707
185708
185709
185710
185711
185712
185713
185714
185715
185716
185717
185718
185719
185720
185721
185722
185723

/*
** Tokenize some text using the ascii tokenizer.
*/
static int fts5AsciiTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int iUnused,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  int ie;
  int is = 0;

  char aFold[64];
  int nFold = sizeof(aFold);
  char *pFold = aFold;
  unsigned char *a = p->aTokenChar;

  UNUSED_PARAM(iUnused);

  while( is<nText && rc==SQLITE_OK ){
    int nByte;

    /* Skip any leading divider characters. */
    while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
      is++;
183814
183815
183816
183817
183818
183819
183820
183821
183822
183823
183824
183825
183826


183827
183828
183829
183830
183831
183832
183833
  return;
}

/*
** Create a "unicode61" tokenizer.
*/
static int fts5UnicodeCreate(
  void *pCtx, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;             /* Return code */
  Unicode61Tokenizer *p = 0;      /* New tokenizer object */ 



  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
    if( p ){
      int i;







|





>
>







185904
185905
185906
185907
185908
185909
185910
185911
185912
185913
185914
185915
185916
185917
185918
185919
185920
185921
185922
185923
185924
185925
  return;
}

/*
** Create a "unicode61" tokenizer.
*/
static int fts5UnicodeCreate(
  void *pUnused, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;             /* Return code */
  Unicode61Tokenizer *p = 0;      /* New tokenizer object */ 

  UNUSED_PARAM(pUnused);

  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
    if( p ){
      int i;
183877
183878
183879
183880
183881
183882
183883
183884
183885
183886
183887
183888
183889
183890
183891
183892
183893
183894
183895
183896
183897
183898


183899
183900
183901
183902
183903
183904
183905
  assert( (sqlite3Fts5UnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
  return sqlite3Fts5UnicodeIsalnum(iCode) ^ fts5UnicodeIsException(p, iCode);
}

static int fts5UnicodeTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int flags,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  unsigned char *a = p->aTokenChar;

  unsigned char *zTerm = (unsigned char*)&pText[nText];
  unsigned char *zCsr = (unsigned char *)pText;

  /* Output buffer */
  char *aFold = p->aFold;
  int nFold = p->nFold;
  const char *pEnd = &aFold[nFold-6];



  /* Each iteration of this loop gobbles up a contiguous run of separators,
  ** then the next token.  */
  while( rc==SQLITE_OK ){
    int iCode;                    /* non-ASCII codepoint read from input */
    char *zOut = aFold;
    int is;







|














>
>







185969
185970
185971
185972
185973
185974
185975
185976
185977
185978
185979
185980
185981
185982
185983
185984
185985
185986
185987
185988
185989
185990
185991
185992
185993
185994
185995
185996
185997
185998
185999
  assert( (sqlite3Fts5UnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
  return sqlite3Fts5UnicodeIsalnum(iCode) ^ fts5UnicodeIsException(p, iCode);
}

static int fts5UnicodeTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int iUnused,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  unsigned char *a = p->aTokenChar;

  unsigned char *zTerm = (unsigned char*)&pText[nText];
  unsigned char *zCsr = (unsigned char *)pText;

  /* Output buffer */
  char *aFold = p->aFold;
  int nFold = p->nFold;
  const char *pEnd = &aFold[nFold-6];

  UNUSED_PARAM(iUnused);

  /* Each iteration of this loop gobbles up a contiguous run of separators,
  ** then the next token.  */
  while( rc==SQLITE_OK ){
    int iCode;                    /* non-ASCII codepoint read from input */
    char *zOut = aFold;
    int is;
184711
184712
184713
184714
184715
184716
184717
184718
184719
184720
184721
184722
184723
184724
184725
    { "ascii",     {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
    { "porter",    {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
  };
  
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aBuiltin); i++){
    rc = pApi->xCreateTokenizer(pApi,
        aBuiltin[i].zName,
        (void*)pApi,
        &aBuiltin[i].x,
        0
    );
  }







|







186805
186806
186807
186808
186809
186810
186811
186812
186813
186814
186815
186816
186817
186818
186819
    { "ascii",     {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
    { "porter",    {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
  };
  
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
    rc = pApi->xCreateTokenizer(pApi,
        aBuiltin[i].zName,
        (void*)pApi,
        &aBuiltin[i].x,
        0
    );
  }
184852
184853
184854
184855
184856
184857
184858
184859
184860
184861
184862
184863
184864
184865
184866
184867
184868
    0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
    0x380400F0,
  };
  static const unsigned int aAscii[4] = {
    0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
  };

  if( c<128 ){
    return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
  }else if( c<(1<<22) ){
    unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
    int iRes = 0;
    int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
    int iLo = 0;
    while( iHi>=iLo ){
      int iTest = (iHi + iLo) / 2;
      if( key >= aEntry[iTest] ){







|

|







186946
186947
186948
186949
186950
186951
186952
186953
186954
186955
186956
186957
186958
186959
186960
186961
186962
    0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
    0x380400F0,
  };
  static const unsigned int aAscii[4] = {
    0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
  };

  if( (unsigned int)c<128 ){
    return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
  }else if( (unsigned int)c<(1<<22) ){
    unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
    int iRes = 0;
    int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
    int iLo = 0;
    while( iHi>=iLo ){
      int iTest = (iHi + iLo) / 2;
      if( key >= aEntry[iTest] ){
185421
185422
185423
185424
185425
185426
185427

185428


185429
185430
185431
185432
185433
185434
185435
    return 2;
  }
  return fts5PutVarint64(p,v);
}


static int sqlite3Fts5GetVarintLen(u32 iVal){

  if( iVal<(1 << 7 ) ) return 1;


  if( iVal<(1 << 14) ) return 2;
  if( iVal<(1 << 21) ) return 3;
  if( iVal<(1 << 28) ) return 4;
  return 5;
}









>

>
>







187515
187516
187517
187518
187519
187520
187521
187522
187523
187524
187525
187526
187527
187528
187529
187530
187531
187532
    return 2;
  }
  return fts5PutVarint64(p,v);
}


static int sqlite3Fts5GetVarintLen(u32 iVal){
#if 0
  if( iVal<(1 << 7 ) ) return 1;
#endif
  assert( iVal>=(1 << 7) );
  if( iVal<(1 << 14) ) return 2;
  if( iVal<(1 << 21) ) return 3;
  if( iVal<(1 << 28) ) return 4;
  return 5;
}


185615
185616
185617
185618
185619
185620
185621
185622
185623
185624
185625
185626
185627
185628
185629
    const char *zType = bDb ? argv[5] : argv[4];
    int nDb = (int)strlen(zDb)+1; 
    int nTab = (int)strlen(zTab)+1;
    int eType = 0;
    
    rc = fts5VocabTableType(zType, pzErr, &eType);
    if( rc==SQLITE_OK ){
      assert( eType>=0 && eType<sizeof(azSchema)/sizeof(azSchema[0]) );
      rc = sqlite3_declare_vtab(db, azSchema[eType]);
    }

    nByte = sizeof(Fts5VocabTable) + nDb + nTab;
    pRet = sqlite3Fts5MallocZero(&rc, nByte);
    if( pRet ){
      pRet->pGlobal = (Fts5Global*)pAux;







|







187712
187713
187714
187715
187716
187717
187718
187719
187720
187721
187722
187723
187724
187725
187726
    const char *zType = bDb ? argv[5] : argv[4];
    int nDb = (int)strlen(zDb)+1; 
    int nTab = (int)strlen(zTab)+1;
    int eType = 0;
    
    rc = fts5VocabTableType(zType, pzErr, &eType);
    if( rc==SQLITE_OK ){
      assert( eType>=0 && eType<ArraySize(azSchema) );
      rc = sqlite3_declare_vtab(db, azSchema[eType]);
    }

    nByte = sizeof(Fts5VocabTable) + nDb + nTab;
    pRet = sqlite3Fts5MallocZero(&rc, nByte);
    if( pRet ){
      pRet->pGlobal = (Fts5Global*)pAux;
185668
185669
185670
185671
185672
185673
185674
185675
185676
185677
185678
185679
185680
185681
185682
185683


185684
185685
185686
185687
185688
185689
185690
  return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
}

/* 
** Implementation of the xBestIndex method.
*/
static int fts5VocabBestIndexMethod(
  sqlite3_vtab *pVTab, 
  sqlite3_index_info *pInfo
){
  int i;
  int iTermEq = -1;
  int iTermGe = -1;
  int iTermLe = -1;
  int idxNum = 0;
  int nArg = 0;



  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    if( p->usable==0 ) continue;
    if( p->iColumn==0 ){          /* term column */
      if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;







|








>
>







187765
187766
187767
187768
187769
187770
187771
187772
187773
187774
187775
187776
187777
187778
187779
187780
187781
187782
187783
187784
187785
187786
187787
187788
187789
  return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
}

/* 
** Implementation of the xBestIndex method.
*/
static int fts5VocabBestIndexMethod(
  sqlite3_vtab *pUnused,
  sqlite3_index_info *pInfo
){
  int i;
  int iTermEq = -1;
  int iTermGe = -1;
  int iTermLe = -1;
  int idxNum = 0;
  int nArg = 0;

  UNUSED_PARAM(pUnused);

  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    if( p->usable==0 ) continue;
    if( p->iColumn==0 ){          /* term column */
      if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;
185810
185811
185812
185813
185814
185815
185816
185817
185818
185819
185820
185821
185822
185823
185824
  int rc = SQLITE_OK;
  int nCol = pCsr->pConfig->nCol;

  pCsr->rowid++;

  if( pTab->eType==FTS5_VOCAB_COL ){
    for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
      if( pCsr->aCnt[pCsr->iCol] ) break;
    }
  }

  if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=nCol ){
    if( sqlite3Fts5IterEof(pCsr->pIter) ){
      pCsr->bEof = 1;
    }else{







|







187909
187910
187911
187912
187913
187914
187915
187916
187917
187918
187919
187920
187921
187922
187923
  int rc = SQLITE_OK;
  int nCol = pCsr->pConfig->nCol;

  pCsr->rowid++;

  if( pTab->eType==FTS5_VOCAB_COL ){
    for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
      if( pCsr->aDoc[pCsr->iCol] ) break;
    }
  }

  if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=nCol ){
    if( sqlite3Fts5IterEof(pCsr->pIter) ){
      pCsr->bEof = 1;
    }else{
185838
185839
185840
185841
185842
185843
185844
185845
185846
185847
185848
185849
185850
185851




185852
185853
185854
185855
185856
185857
185858
185859
185860
185861
185862




185863
185864
185865
185866
185867
























185868
185869
185870
185871
185872
185873
185874
185875
185876
185877
185878
185879
185880
185881
185882
185883
185884
185885
185886
185887
185888
185889
185890
185891
185892
185893
185894
185895
185896
185897
185898
185899
185900
185901
185902
185903
185904
185905
185906
185907
185908
185909


185910
185911
185912
185913
185914
185915
185916
      sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
      memset(pCsr->aCnt, 0, nCol * sizeof(i64));
      memset(pCsr->aDoc, 0, nCol * sizeof(i64));
      pCsr->iCol = 0;

      assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
      while( rc==SQLITE_OK ){
        i64 dummy;
        const u8 *pPos; int nPos;   /* Position list */
        i64 iPos = 0;               /* 64-bit position read from poslist */
        int iOff = 0;               /* Current offset within position list */

        rc = sqlite3Fts5IterPoslist(pCsr->pIter, 0, &pPos, &nPos, &dummy);
        if( rc==SQLITE_OK ){




          if( pTab->eType==FTS5_VOCAB_ROW ){
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              pCsr->aCnt[0]++;
            }
            pCsr->aDoc[0]++;
          }else{
            int iCol = -1;
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              int ii = FTS5_POS2COLUMN(iPos);
              pCsr->aCnt[ii]++;
              if( iCol!=ii ){




                pCsr->aDoc[ii]++;
                iCol = ii;
              }
            }
          }
























          rc = sqlite3Fts5IterNextScan(pCsr->pIter);
        }

        if( rc==SQLITE_OK ){
          zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
          if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ){
            break;
          }
          if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
        }
      }
    }
  }

  if( pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
    while( pCsr->aCnt[pCsr->iCol]==0 ) pCsr->iCol++;
    assert( pCsr->iCol<pCsr->pConfig->nCol );
  }
  return rc;
}

/*
** This is the xFilter implementation for the virtual table.
*/
static int fts5VocabFilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int rc = SQLITE_OK;

  int iVal = 0;
  int f = FTS5INDEX_QUERY_SCAN;
  const char *zTerm = 0;
  int nTerm = 0;

  sqlite3_value *pEq = 0;
  sqlite3_value *pGe = 0;
  sqlite3_value *pLe = 0;



  fts5VocabResetCursor(pCsr);
  if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];

  if( pEq ){







<




|
|
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|
|











|
|













>
>







187937
187938
187939
187940
187941
187942
187943

187944
187945
187946
187947
187948
187949
187950
187951
187952
187953
187954
187955
187956
187957
187958
187959
187960
187961
187962
187963
187964
187965
187966
187967
187968
187969
187970
187971
187972
187973
187974
187975
187976
187977
187978
187979
187980
187981
187982
187983
187984
187985
187986
187987
187988
187989
187990
187991
187992
187993
187994
187995
187996
187997
187998
187999
188000
188001
188002
188003
188004
188005
188006
188007
188008
188009
188010
188011
188012
188013
188014
188015
188016
188017
188018
188019
188020
188021
188022
188023
188024
188025
188026
188027
188028
188029
188030
188031
188032
188033
188034
188035
188036
188037
188038
188039
188040
188041
188042
188043
188044
188045
188046
188047
188048
      sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
      memset(pCsr->aCnt, 0, nCol * sizeof(i64));
      memset(pCsr->aDoc, 0, nCol * sizeof(i64));
      pCsr->iCol = 0;

      assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
      while( rc==SQLITE_OK ){

        const u8 *pPos; int nPos;   /* Position list */
        i64 iPos = 0;               /* 64-bit position read from poslist */
        int iOff = 0;               /* Current offset within position list */

        pPos = pCsr->pIter->pData;
        nPos = pCsr->pIter->nData;
        switch( pCsr->pConfig->eDetail ){
          case FTS5_DETAIL_FULL:
            pPos = pCsr->pIter->pData;
            nPos = pCsr->pIter->nData;
            if( pTab->eType==FTS5_VOCAB_ROW ){
              while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
                pCsr->aCnt[0]++;
              }
              pCsr->aDoc[0]++;
            }else{
              int iCol = -1;
              while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
                int ii = FTS5_POS2COLUMN(iPos);
                pCsr->aCnt[ii]++;
                if( iCol!=ii ){
                  if( ii>=nCol ){
                    rc = FTS5_CORRUPT;
                    break;
                  }
                  pCsr->aDoc[ii]++;
                  iCol = ii;
                }
              }
            }
            break;

          case FTS5_DETAIL_COLUMNS:
            if( pTab->eType==FTS5_VOCAB_ROW ){
              pCsr->aDoc[0]++;
            }else{
              while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff,&iPos) ){
                assert_nc( iPos>=0 && iPos<nCol );
                if( iPos>=nCol ){
                  rc = FTS5_CORRUPT;
                  break;
                }
                pCsr->aDoc[iPos]++;
              }
            }
            break;

          default: 
            assert( pCsr->pConfig->eDetail==FTS5_DETAIL_NONE );
            pCsr->aDoc[0]++;
            break;
        }

        if( rc==SQLITE_OK ){
          rc = sqlite3Fts5IterNextScan(pCsr->pIter);
        }

        if( rc==SQLITE_OK ){
          zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
          if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ){
            break;
          }
          if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
        }
      }
    }
  }

  if( rc==SQLITE_OK && pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
    while( pCsr->aDoc[pCsr->iCol]==0 ) pCsr->iCol++;
    assert( pCsr->iCol<pCsr->pConfig->nCol );
  }
  return rc;
}

/*
** This is the xFilter implementation for the virtual table.
*/
static int fts5VocabFilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *zUnused,            /* Unused */
  int nUnused,                    /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int rc = SQLITE_OK;

  int iVal = 0;
  int f = FTS5INDEX_QUERY_SCAN;
  const char *zTerm = 0;
  int nTerm = 0;

  sqlite3_value *pEq = 0;
  sqlite3_value *pGe = 0;
  sqlite3_value *pLe = 0;

  UNUSED_PARAM2(zUnused, nUnused);

  fts5VocabResetCursor(pCsr);
  if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];

  if( pEq ){
185956
185957
185958
185959
185960
185961
185962



185963
185964
185965
185966
185967
185968
185969
185970
185971

185972
185973

185974
185975
185976
185977
185978
185979
185980
185981
185982
185983
185984
185985
185986


185987
185988
185989
185990
185991
185992
185993

static int fts5VocabColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;




  if( iCol==0 ){
    sqlite3_result_text(
        pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
    );
  }
  else if( ((Fts5VocabTable*)(pCursor->pVtab))->eType==FTS5_VOCAB_COL ){
    assert( iCol==1 || iCol==2 || iCol==3 );
    if( iCol==1 ){

      const char *z = pCsr->pConfig->azCol[pCsr->iCol];
      sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);

    }else if( iCol==2 ){
      sqlite3_result_int64(pCtx, pCsr->aDoc[pCsr->iCol]);
    }else{
      sqlite3_result_int64(pCtx, pCsr->aCnt[pCsr->iCol]);
    }
  }else{
    assert( iCol==1 || iCol==2 );
    if( iCol==1 ){
      sqlite3_result_int64(pCtx, pCsr->aDoc[0]);
    }else{
      sqlite3_result_int64(pCtx, pCsr->aCnt[0]);
    }
  }


  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. The
** rowid should be written to *pRowid.







>
>
>





<
|


>
|
|
>

|

|




|

|


>
>







188088
188089
188090
188091
188092
188093
188094
188095
188096
188097
188098
188099
188100
188101
188102

188103
188104
188105
188106
188107
188108
188109
188110
188111
188112
188113
188114
188115
188116
188117
188118
188119
188120
188121
188122
188123
188124
188125
188126
188127
188128
188129
188130
188131

static int fts5VocabColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int eDetail = pCsr->pConfig->eDetail;
  int eType = ((Fts5VocabTable*)(pCursor->pVtab))->eType;
  i64 iVal = 0;

  if( iCol==0 ){
    sqlite3_result_text(
        pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
    );

  }else if( eType==FTS5_VOCAB_COL ){
    assert( iCol==1 || iCol==2 || iCol==3 );
    if( iCol==1 ){
      if( eDetail!=FTS5_DETAIL_NONE ){
        const char *z = pCsr->pConfig->azCol[pCsr->iCol];
        sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
      }
    }else if( iCol==2 ){
      iVal = pCsr->aDoc[pCsr->iCol];
    }else{
      iVal = pCsr->aCnt[pCsr->iCol];
    }
  }else{
    assert( iCol==1 || iCol==2 );
    if( iCol==1 ){
      iVal = pCsr->aDoc[0];
    }else{
      iVal = pCsr->aCnt[0];
    }
  }

  if( iVal>0 ) sqlite3_result_int64(pCtx, iVal);
  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. The
** rowid should be written to *pRowid.
Changes to SQLite.Interop/src/core/sqlite3.h.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.10.2"
#define SQLITE_VERSION_NUMBER 3010002
#define SQLITE_SOURCE_ID      "2016-01-20 15:27:19 17efb4209f97fb4971656086b138599a91a75ff9"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.11.0"
#define SQLITE_VERSION_NUMBER 3011000
#define SQLITE_SOURCE_ID      "2016-02-12 18:48:09 a049fbbde5da2e43d41aa8c2b41f9eb21507ac76"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
** ^If an error occurs while evaluating the SQL statements passed into
** sqlite3_exec(), then execution of the current statement stops and
** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
** is not NULL then any error message is written into memory obtained
** from [sqlite3_malloc()] and passed back through the 5th parameter.
** To avoid memory leaks, the application should invoke [sqlite3_free()]
** on error message strings returned through the 5th parameter of
** of sqlite3_exec() after the error message string is no longer needed.
** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
** NULL before returning.
**
** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
** routine returns SQLITE_ABORT without invoking the callback again and
** without running any subsequent SQL statements.







|







343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
** ^If an error occurs while evaluating the SQL statements passed into
** sqlite3_exec(), then execution of the current statement stops and
** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
** is not NULL then any error message is written into memory obtained
** from [sqlite3_malloc()] and passed back through the 5th parameter.
** To avoid memory leaks, the application should invoke [sqlite3_free()]
** on error message strings returned through the 5th parameter of
** sqlite3_exec() after the error message string is no longer needed.
** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
** NULL before returning.
**
** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
** routine returns SQLITE_ABORT without invoking the callback again and
** without running any subsequent SQL statements.
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
** sqlite3_libversion_number() returns a value greater than or equal to
** 3009000.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */
     unsigned char usable;     /* True if this constraint is usable */
     int iTermOffset;          /* Used internally - xBestIndex should ignore */
  } *aConstraint;            /* Table of WHERE clause constraints */
  int nOrderBy;              /* Number of terms in the ORDER BY clause */
  struct sqlite3_index_orderby {
     int iColumn;              /* Column number */







|







5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
** sqlite3_libversion_number() returns a value greater than or equal to
** 3009000.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column constrained.  -1 for ROWID */
     unsigned char op;         /* Constraint operator */
     unsigned char usable;     /* True if this constraint is usable */
     int iTermOffset;          /* Used internally - xBestIndex should ignore */
  } *aConstraint;            /* Table of WHERE clause constraints */
  int nOrderBy;              /* Number of terms in the ORDER BY clause */
  struct sqlite3_index_orderby {
     int iColumn;              /* Column number */
8189
8190
8191
8192
8193
8194
8195



8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215





8216
8217
8218
8219
8220






8221
8222
8223



8224
8225
8226
8227
8228
8229
8230
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**



** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**





** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().






**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.



**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**







>
>
>




















>
>
>
>
>





>
>
>
>
>
>



>
>
>







8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**
**   This function may be quite inefficient if used with an FTS5 table
**   created with the "columnsize=0" option.
**
** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always returns 0.
**
** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().
**
**   Usually, output parameter *piPhrase is set to the phrase number, *piCol
**   to the column in which it occurs and *piOff the token offset of the
**   first token of the phrase. The exception is if the table was created
**   with the offsets=0 option specified. In this case *piOff is always
**   set to -1.
**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. 
**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316

8317






8318
8319































8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iOff>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods.

**






** xPhraseNext()
**   See xPhraseFirst above.































*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 1 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);








|







|
>

>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|







8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iCol>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods (and by
**   xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always iterates
**   through an empty set (all calls to xPhraseFirst() set iCol to -1).
**
** xPhraseNext()
**   See xPhraseFirst above.
**
** xPhraseFirstColumn()
**   This function and xPhraseNextColumn() are similar to the xPhraseFirst()
**   and xPhraseNext() APIs described above. The difference is that instead
**   of iterating through all instances of a phrase in the current row, these
**   APIs are used to iterate through the set of columns in the current row
**   that contain one or more instances of a specified phrase. For example:
**
**       Fts5PhraseIter iter;
**       int iCol;
**       for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
**           iCol>=0;
**           pApi->xPhraseNextColumn(pFts, &iter, &iCol)
**       ){
**         // Column iCol contains at least one instance of phrase iPhrase
**       }
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" option. If the FTS5 table is created with either 
**   "detail=none" "content=" option (i.e. if it is a contentless table), 
**   then this API always iterates through an empty set (all calls to 
**   xPhraseFirstColumn() set iCol to -1).
**
**   The information accessed using this API and its companion
**   xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
**   (or xInst/xInstCount). The chief advantage of this API is that it is
**   significantly more efficient than those alternatives when used with
**   "detail=column" tables.  
**
** xPhraseNextColumn()
**   See xPhraseFirstColumn above.
*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 3 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);

8345
8346
8347
8348
8349
8350
8351
8352
8353



8354
8355
8356
8357
8358
8359
8360

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  void (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);



};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************







|

>
>
>







8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);

  int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
  void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************
Changes to SQLite.Interop/src/ext/fts5.c.
92
93
94
95
96
97
98



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118





119
120
121
122
123






124
125
126



127
128
129
130
131
132
133
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**



** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**





** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().






**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.



**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**







>
>
>




















>
>
>
>
>





>
>
>
>
>
>



>
>
>







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
**   *pnToken to the number of tokens in column iCol of the current row.
**
**   If parameter iCol is greater than or equal to the number of columns
**   in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
**   an OOM condition or IO error), an appropriate SQLite error code is 
**   returned.
**
**   This function may be quite inefficient if used with an FTS5 table
**   created with the "columnsize=0" option.
**
** xColumnText:
**   This function attempts to retrieve the text of column iCol of the
**   current document. If successful, (*pz) is set to point to a buffer
**   containing the text in utf-8 encoding, (*pn) is set to the size in bytes
**   (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
**   if an error occurs, an SQLite error code is returned and the final values
**   of (*pz) and (*pn) are undefined.
**
** xPhraseCount:
**   Returns the number of phrases in the current query expression.
**
** xPhraseSize:
**   Returns the number of tokens in phrase iPhrase of the query. Phrases
**   are numbered starting from zero.
**
** xInstCount:
**   Set *pnInst to the total number of occurrences of all phrases within
**   the query within the current row. Return SQLITE_OK if successful, or
**   an error code (i.e. SQLITE_NOMEM) if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always returns 0.
**
** xInst:
**   Query for the details of phrase match iIdx within the current row.
**   Phrase matches are numbered starting from zero, so the iIdx argument
**   should be greater than or equal to zero and smaller than the value
**   output by xInstCount().
**
**   Usually, output parameter *piPhrase is set to the phrase number, *piCol
**   to the column in which it occurs and *piOff the token offset of the
**   first token of the phrase. The exception is if the table was created
**   with the offsets=0 option specified. In this case *piOff is always
**   set to -1.
**
**   Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM) 
**   if an error occurs.
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. 
**
** xRowid:
**   Returns the rowid of the current row.
**
** xTokenize:
**   Tokenize text using the tokenizer belonging to the FTS5 table.
**
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220






221
222































223
224
225
226
227
228
229
230
231
232
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iOff>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods.

**






** xPhraseNext()
**   See xPhraseFirst above.































*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 1 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);








|







|
>

>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|







221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
**   xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
**   to use, this API may be faster under some circumstances. To iterate 
**   through instances of phrase iPhrase, use the following code:
**
**       Fts5PhraseIter iter;
**       int iCol, iOff;
**       for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
**           iCol>=0;
**           pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
**       ){
**         // An instance of phrase iPhrase at offset iOff of column iCol
**       }
**
**   The Fts5PhraseIter structure is defined above. Applications should not
**   modify this structure directly - it should only be used as shown above
**   with the xPhraseFirst() and xPhraseNext() API methods (and by
**   xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" or "detail=column" option. If the FTS5 table is created 
**   with either "detail=none" or "detail=column" and "content=" option 
**   (i.e. if it is a contentless table), then this API always iterates
**   through an empty set (all calls to xPhraseFirst() set iCol to -1).
**
** xPhraseNext()
**   See xPhraseFirst above.
**
** xPhraseFirstColumn()
**   This function and xPhraseNextColumn() are similar to the xPhraseFirst()
**   and xPhraseNext() APIs described above. The difference is that instead
**   of iterating through all instances of a phrase in the current row, these
**   APIs are used to iterate through the set of columns in the current row
**   that contain one or more instances of a specified phrase. For example:
**
**       Fts5PhraseIter iter;
**       int iCol;
**       for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
**           iCol>=0;
**           pApi->xPhraseNextColumn(pFts, &iter, &iCol)
**       ){
**         // Column iCol contains at least one instance of phrase iPhrase
**       }
**
**   This API can be quite slow if used with an FTS5 table created with the
**   "detail=none" option. If the FTS5 table is created with either 
**   "detail=none" "content=" option (i.e. if it is a contentless table), 
**   then this API always iterates through an empty set (all calls to 
**   xPhraseFirstColumn() set iCol to -1).
**
**   The information accessed using this API and its companion
**   xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
**   (or xInst/xInstCount). The chief advantage of this API is that it is
**   significantly more efficient than those alternatives when used with
**   "detail=column" tables.  
**
** xPhraseNextColumn()
**   See xPhraseFirstColumn above.
*/
struct Fts5ExtensionApi {
  int iVersion;                   /* Currently always set to 3 */

  void *(*xUserData)(Fts5Context*);

  int (*xColumnCount)(Fts5Context*);
  int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
  int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);

248
249
250
251
252
253
254
255
256



257
258
259
260
261
262
263

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  void (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);



};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************







|

>
>
>







303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

  int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
    int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
  );
  int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
  void *(*xGetAuxdata)(Fts5Context*, int bClear);

  int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
  void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);

  int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
  void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
};

/* 
** CUSTOM AUXILIARY FUNCTIONS
*************************************************************************/

/*************************************************************************
556
557
558
559
560
561
562

563
564
565
566
567
568
569
570
571
572
573
#include <assert.h>

#ifndef SQLITE_AMALGAMATION

typedef unsigned char  u8;
typedef unsigned int   u32;
typedef unsigned short u16;

typedef sqlite3_int64 i64;
typedef sqlite3_uint64 u64;

#define ArraySize(x) (sizeof(x) / sizeof(x[0]))

#define testcase(x)
#define ALWAYS(x) 1
#define NEVER(x) 0

#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#define MAX(x,y) (((x) > (y)) ? (x) : (y))







>



|







614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
#include <assert.h>

#ifndef SQLITE_AMALGAMATION

typedef unsigned char  u8;
typedef unsigned int   u32;
typedef unsigned short u16;
typedef short i16;
typedef sqlite3_int64 i64;
typedef sqlite3_uint64 u64;

#define ArraySize(x) ((int)(sizeof(x) / sizeof(x[0])))

#define testcase(x)
#define ALWAYS(x) 1
#define NEVER(x) 0

#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#define MAX(x,y) (((x) > (y)) ? (x) : (y))
609
610
611
612
613
614
615










616
617
618
619
620
621
622
*/
#ifdef SQLITE_DEBUG
extern int sqlite3_fts5_may_be_corrupt;
# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
#else
# define assert_nc(x) assert(x)
#endif











typedef struct Fts5Global Fts5Global;
typedef struct Fts5Colset Fts5Colset;

/* If a NEAR() clump or phrase may only match a specific set of columns, 
** then an object of the following type is used to record the set of columns.
** Each entry in the aiCol[] array is a column that may be matched.







>
>
>
>
>
>
>
>
>
>







668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
*/
#ifdef SQLITE_DEBUG
extern int sqlite3_fts5_may_be_corrupt;
# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
#else
# define assert_nc(x) assert(x)
#endif

/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAM
# define UNUSED_PARAM(X)  (void)(X)
#endif

#ifndef UNUSED_PARAM2
# define UNUSED_PARAM2(X, Y)  (void)(X), (void)(Y)
#endif

typedef struct Fts5Global Fts5Global;
typedef struct Fts5Colset Fts5Colset;

/* If a NEAR() clump or phrase may only match a specific set of columns, 
** then an object of the following type is used to record the set of columns.
** Each entry in the aiCol[] array is a column that may be matched.
681
682
683
684
685
686
687

688
689
690
691
692
693
694
  u8 *abUnindexed;                /* True for unindexed columns */
  int nPrefix;                    /* Number of prefix indexes */
  int *aPrefix;                   /* Sizes in bytes of nPrefix prefix indexes */
  int eContent;                   /* An FTS5_CONTENT value */
  char *zContent;                 /* content table */ 
  char *zContentRowid;            /* "content_rowid=" option value */ 
  int bColumnsize;                /* "columnsize=" option value (dflt==1) */

  char *zContentExprlist;
  Fts5Tokenizer *pTok;
  fts5_tokenizer *pTokApi;

  /* Values loaded from the %_config table */
  int iCookie;                    /* Incremented when %_config is modified */
  int pgsz;                       /* Approximate page size used in %_data */







>







750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
  u8 *abUnindexed;                /* True for unindexed columns */
  int nPrefix;                    /* Number of prefix indexes */
  int *aPrefix;                   /* Sizes in bytes of nPrefix prefix indexes */
  int eContent;                   /* An FTS5_CONTENT value */
  char *zContent;                 /* content table */ 
  char *zContentRowid;            /* "content_rowid=" option value */ 
  int bColumnsize;                /* "columnsize=" option value (dflt==1) */
  int eDetail;                    /* FTS5_DETAIL_XXX value */
  char *zContentExprlist;
  Fts5Tokenizer *pTok;
  fts5_tokenizer *pTokApi;

  /* Values loaded from the %_config table */
  int iCookie;                    /* Incremented when %_config is modified */
  int pgsz;                       /* Approximate page size used in %_data */
709
710
711
712
713
714
715



716
717
718
719
720
721
722
/* Current expected value of %_config table 'version' field */
#define FTS5_CURRENT_VERSION 4

#define FTS5_CONTENT_NORMAL   0
#define FTS5_CONTENT_NONE     1
#define FTS5_CONTENT_EXTERNAL 2







static int sqlite3Fts5ConfigParse(
    Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
);
static void sqlite3Fts5ConfigFree(Fts5Config*);







>
>
>







779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/* Current expected value of %_config table 'version' field */
#define FTS5_CURRENT_VERSION 4

#define FTS5_CONTENT_NORMAL   0
#define FTS5_CONTENT_NONE     1
#define FTS5_CONTENT_EXTERNAL 2

#define FTS5_DETAIL_FULL    0
#define FTS5_DETAIL_NONE    1
#define FTS5_DETAIL_COLUMNS 2



static int sqlite3Fts5ConfigParse(
    Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
);
static void sqlite3Fts5ConfigFree(Fts5Config*);
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
typedef struct Fts5Buffer Fts5Buffer;
struct Fts5Buffer {
  u8 *p;
  int n;
  int nSpace;
};

static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, int);
static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
static void sqlite3Fts5BufferFree(Fts5Buffer*);
static void sqlite3Fts5BufferZero(Fts5Buffer*);
static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);

static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);

#define fts5BufferZero(x)             sqlite3Fts5BufferZero(x)
#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
#define fts5BufferFree(a)             sqlite3Fts5BufferFree(a)
#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
#define fts5BufferSet(a,b,c,d)        sqlite3Fts5BufferSet(a,b,c,d)

#define fts5BufferGrow(pRc,pBuf,nn) ( \
  (pBuf)->n + (nn) <= (pBuf)->nSpace ? 0 : \
    sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
)

/* Write and decode big-endian 32-bit integer values */
static void sqlite3Fts5Put32(u8*, int);
static int sqlite3Fts5Get32(const u8*);








|

|















|







828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
typedef struct Fts5Buffer Fts5Buffer;
struct Fts5Buffer {
  u8 *p;
  int n;
  int nSpace;
};

static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, u32);
static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, u32, const u8*);
static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
static void sqlite3Fts5BufferFree(Fts5Buffer*);
static void sqlite3Fts5BufferZero(Fts5Buffer*);
static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);

static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);

#define fts5BufferZero(x)             sqlite3Fts5BufferZero(x)
#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
#define fts5BufferFree(a)             sqlite3Fts5BufferFree(a)
#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
#define fts5BufferSet(a,b,c,d)        sqlite3Fts5BufferSet(a,b,c,d)

#define fts5BufferGrow(pRc,pBuf,nn) ( \
  (u32)((pBuf)->n) + (u32)(nn) <= (u32)((pBuf)->nSpace) ? 0 : \
    sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
)

/* Write and decode big-endian 32-bit integer values */
static void sqlite3Fts5Put32(u8*, int);
static int sqlite3Fts5Get32(const u8*);

808
809
810
811
812
813
814

815
816
817
818
819
820
821
822
823
824
825
826
827
828







829
830
831
832
833
834
835
836
837
838
839
840









841
842
843
844
845
846
847






848
849
850
851
852
853
854
855

856
857





858
859
860
861
862




863





864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);

typedef struct Fts5PoslistWriter Fts5PoslistWriter;
struct Fts5PoslistWriter {
  i64 iPrev;
};
static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);


static int sqlite3Fts5PoslistNext64(
  const u8 *a, int n,             /* Buffer containing poslist */
  int *pi,                        /* IN/OUT: Offset within a[] */
  i64 *piOff                      /* IN/OUT: Current offset */
);

/* Malloc utility */
static void *sqlite3Fts5MallocZero(int *pRc, int nByte);
static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);

/* Character set tests (like isspace(), isalpha() etc.) */
static int sqlite3Fts5IsBareword(char t);








/*
** End of interface to code in fts5_buffer.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_index.c. fts5_index.c contains contains code
** to access the data stored in the %_data table.
*/

typedef struct Fts5Index Fts5Index;
typedef struct Fts5IndexIter Fts5IndexIter;










/*
** Values used as part of the flags argument passed to IndexQuery().
*/
#define FTS5INDEX_QUERY_PREFIX     0x0001   /* Prefix query */
#define FTS5INDEX_QUERY_DESC       0x0002   /* Docs in descending rowid order */
#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004   /* Do not use prefix index */
#define FTS5INDEX_QUERY_SCAN       0x0008   /* Scan query (fts5vocab) */







/*
** Create/destroy an Fts5Index object.
*/
static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
static int sqlite3Fts5IndexClose(Fts5Index *p);

/*

** for(
**   sqlite3Fts5IndexQuery(p, "token", 5, 0, 0, &pIter);





**   0==sqlite3Fts5IterEof(pIter);
**   sqlite3Fts5IterNext(pIter)
** ){
**   i64 iRowid = sqlite3Fts5IterRowid(pIter);
** }




*/






/*
** Open a new iterator to iterate though all rowids that match the 
** specified token or token prefix.
*/
static int sqlite3Fts5IndexQuery(
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
);

/*
** The various operations on open token or token prefix iterators opened
** using sqlite3Fts5IndexQuery().
*/
static int sqlite3Fts5IterEof(Fts5IndexIter*);
static int sqlite3Fts5IterNext(Fts5IndexIter*);
static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
static i64 sqlite3Fts5IterRowid(Fts5IndexIter*);
static int sqlite3Fts5IterPoslist(Fts5IndexIter*,Fts5Colset*, const u8**, int*, i64*);
static int sqlite3Fts5IterPoslistBuffer(Fts5IndexIter *pIter, Fts5Buffer *pBuf);

/*
** Close an iterator opened by sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter*);

/*







>














>
>
>
>
>
>
>












>
>
>
>
>
>
>
>
>







>
>
>
>
>
>








>
|
|
>
>
>
>
>
|
<
|
|
<
>
>
>
>

>
>
>
>
>

















<


<
<
<







881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

961
962

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

990
991



992
993
994
995
996
997
998
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);

typedef struct Fts5PoslistWriter Fts5PoslistWriter;
struct Fts5PoslistWriter {
  i64 iPrev;
};
static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);
static void sqlite3Fts5PoslistSafeAppend(Fts5Buffer*, i64*, i64);

static int sqlite3Fts5PoslistNext64(
  const u8 *a, int n,             /* Buffer containing poslist */
  int *pi,                        /* IN/OUT: Offset within a[] */
  i64 *piOff                      /* IN/OUT: Current offset */
);

/* Malloc utility */
static void *sqlite3Fts5MallocZero(int *pRc, int nByte);
static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);

/* Character set tests (like isspace(), isalpha() etc.) */
static int sqlite3Fts5IsBareword(char t);


/* Bucket of terms object used by the integrity-check in offsets=0 mode. */
typedef struct Fts5Termset Fts5Termset;
static int sqlite3Fts5TermsetNew(Fts5Termset**);
static int sqlite3Fts5TermsetAdd(Fts5Termset*, int, const char*, int, int *pbPresent);
static void sqlite3Fts5TermsetFree(Fts5Termset*);

/*
** End of interface to code in fts5_buffer.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_index.c. fts5_index.c contains contains code
** to access the data stored in the %_data table.
*/

typedef struct Fts5Index Fts5Index;
typedef struct Fts5IndexIter Fts5IndexIter;

struct Fts5IndexIter {
  i64 iRowid;
  const u8 *pData;
  int nData;
  u8 bEof;
};

#define sqlite3Fts5IterEof(x) ((x)->bEof)

/*
** Values used as part of the flags argument passed to IndexQuery().
*/
#define FTS5INDEX_QUERY_PREFIX     0x0001   /* Prefix query */
#define FTS5INDEX_QUERY_DESC       0x0002   /* Docs in descending rowid order */
#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004   /* Do not use prefix index */
#define FTS5INDEX_QUERY_SCAN       0x0008   /* Scan query (fts5vocab) */

/* The following are used internally by the fts5_index.c module. They are
** defined here only to make it easier to avoid clashes with the flags
** above. */
#define FTS5INDEX_QUERY_SKIPEMPTY  0x0010
#define FTS5INDEX_QUERY_NOOUTPUT   0x0020

/*
** Create/destroy an Fts5Index object.
*/
static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
static int sqlite3Fts5IndexClose(Fts5Index *p);

/*
** Return a simple checksum value based on the arguments.
*/
static u64 sqlite3Fts5IndexEntryCksum(
  i64 iRowid, 
  int iCol, 
  int iPos, 
  int iIdx,
  const char *pTerm,
  int nTerm

);


/*
** Argument p points to a buffer containing utf-8 text that is n bytes in 
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int sqlite3Fts5IndexCharlenToBytelen(
  const char *p, 
  int nByte, 
  int nChar
);

/*
** Open a new iterator to iterate though all rowids that match the 
** specified token or token prefix.
*/
static int sqlite3Fts5IndexQuery(
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
);

/*
** The various operations on open token or token prefix iterators opened
** using sqlite3Fts5IndexQuery().
*/

static int sqlite3Fts5IterNext(Fts5IndexIter*);
static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);




/*
** Close an iterator opened by sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter*);

/*
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
*/
static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);

/*
** Functions called by the storage module as part of integrity-check.
*/
static u64 sqlite3Fts5IndexCksum(Fts5Config*,i64,int,int,const char*,int);
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum);

/* 
** Called during virtual module initialization to register UDF 
** fts5_decode() with SQLite 
*/
static int sqlite3Fts5IndexInit(sqlite3*);







<







1048
1049
1050
1051
1052
1053
1054

1055
1056
1057
1058
1059
1060
1061
*/
static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);

/*
** Functions called by the storage module as part of integrity-check.
*/

static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum);

/* 
** Called during virtual module initialization to register UDF 
** fts5_decode() with SQLite 
*/
static int sqlite3Fts5IndexInit(sqlite3*);
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
** Interface to code in fts5_hash.c. 
*/
typedef struct Fts5Hash Fts5Hash;

/*
** Create a hash table, free a hash table.
*/
static int sqlite3Fts5HashNew(Fts5Hash**, int *pnSize);
static void sqlite3Fts5HashFree(Fts5Hash*);

static int sqlite3Fts5HashWrite(
  Fts5Hash*,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */







|







1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
** Interface to code in fts5_hash.c. 
*/
typedef struct Fts5Hash Fts5Hash;

/*
** Create a hash table, free a hash table.
*/
static int sqlite3Fts5HashNew(Fts5Config*, Fts5Hash**, int *pnSize);
static void sqlite3Fts5HashFree(Fts5Hash*);

static int sqlite3Fts5HashWrite(
  Fts5Hash*,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
static int sqlite3Fts5StorageClose(Fts5Storage *p);
static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);

static int sqlite3Fts5DropAll(Fts5Config*);
static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);

static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64);
static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);

static int sqlite3Fts5StorageIntegrity(Fts5Storage *p);

static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);

static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);

static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit);
static int sqlite3Fts5StorageRollback(Fts5Storage *p);

static int sqlite3Fts5StorageConfigValue(
    Fts5Storage *p, const char*, sqlite3_value*, int
);

static int sqlite3Fts5StorageSpecialDelete(Fts5Storage *p, i64 iDel, sqlite3_value**);

static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);

/*
** End of interface to code in fts5_storage.c.







|



















<
<







1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211


1212
1213
1214
1215
1216
1217
1218
static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
static int sqlite3Fts5StorageClose(Fts5Storage *p);
static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);

static int sqlite3Fts5DropAll(Fts5Config*);
static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);

static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64, sqlite3_value**);
static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);

static int sqlite3Fts5StorageIntegrity(Fts5Storage *p);

static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);

static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);

static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit);
static int sqlite3Fts5StorageRollback(Fts5Storage *p);

static int sqlite3Fts5StorageConfigValue(
    Fts5Storage *p, const char*, sqlite3_value*, int
);



static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);

/*
** End of interface to code in fts5_storage.c.
1159
1160
1161
1162
1163
1164
1165








1166


1167
1168
1169
1170
1171
1172
1173
/* Called during startup to register a UDF with SQLite */
static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);

static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);









static int sqlite3Fts5ExprClonePhrase(Fts5Config*, Fts5Expr*, int, Fts5Expr**);



/*******************************************
** The fts5_expr.c API above this point is used by the other hand-written
** C code in this module. The interfaces below this point are called by
** the parser code in fts5parse.y.  */

static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);







>
>
>
>
>
>
>
>
|
>
>







1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
/* Called during startup to register a UDF with SQLite */
static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);

static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);

typedef struct Fts5PoslistPopulator Fts5PoslistPopulator;
static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr*, int);
static int sqlite3Fts5ExprPopulatePoslists(
    Fts5Config*, Fts5Expr*, Fts5PoslistPopulator*, int, const char*, int
);
static void sqlite3Fts5ExprCheckPoslists(Fts5Expr*, i64);
static void sqlite3Fts5ExprClearEof(Fts5Expr*);

static int sqlite3Fts5ExprClonePhrase(Fts5Expr*, int, Fts5Expr**);

static int sqlite3Fts5ExprPhraseCollist(Fts5Expr *, int, const u8 **, int *);

/*******************************************
** The fts5_expr.c API above this point is used by the other hand-written
** C code in this module. The interfaces below this point are called by
** the parser code in fts5parse.y.  */

static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
#include <stdio.h>
/************ Begin %include sections from the grammar ************************/
#line 46 "fts5parse.y"

/* #include "fts5Int.h" */
/* #include "fts5parse.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.







|







1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
#include <stdio.h>
/************ Begin %include sections from the grammar ************************/
#line 48 "fts5parse.y"

/* #include "fts5Int.h" */
/* #include "fts5parse.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are *not* used
    ** inside the C code.
    */
/********* Begin destructor definitions ***************************************/
    case 15: /* input */
{
#line 82 "fts5parse.y"
 (void)pParse; 
#line 491 "fts5parse.c"
}
      break;
    case 16: /* expr */
    case 17: /* cnearset */
    case 18: /* exprlist */
{
#line 88 "fts5parse.y"
 sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy18)); 
#line 500 "fts5parse.c"
}
      break;
    case 19: /* nearset */
    case 22: /* nearphrases */
{
#line 136 "fts5parse.y"
 sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy26)); 
#line 508 "fts5parse.c"
}
      break;
    case 20: /* colset */
    case 21: /* colsetlist */
{
#line 118 "fts5parse.y"
 sqlite3_free((fts5yypminor->fts5yy3)); 
#line 516 "fts5parse.c"
}
      break;
    case 23: /* phrase */
{
#line 167 "fts5parse.y"
 sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy11)); 
#line 523 "fts5parse.c"
}
      break;
/********* End destructor definitions *****************************************/
    default:  break;   /* If no destructor action specified: do nothing */
  }







|








|







|







|






|







1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are *not* used
    ** inside the C code.
    */
/********* Begin destructor definitions ***************************************/
    case 15: /* input */
{
#line 84 "fts5parse.y"
 (void)pParse; 
#line 491 "fts5parse.c"
}
      break;
    case 16: /* expr */
    case 17: /* cnearset */
    case 18: /* exprlist */
{
#line 90 "fts5parse.y"
 sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy18)); 
#line 500 "fts5parse.c"
}
      break;
    case 19: /* nearset */
    case 22: /* nearphrases */
{
#line 138 "fts5parse.y"
 sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy26)); 
#line 508 "fts5parse.c"
}
      break;
    case 20: /* colset */
    case 21: /* colsetlist */
{
#line 120 "fts5parse.y"
 sqlite3_free((fts5yypminor->fts5yy3)); 
#line 516 "fts5parse.c"
}
      break;
    case 23: /* phrase */
{
#line 169 "fts5parse.y"
 sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy11)); 
#line 523 "fts5parse.c"
}
      break;
/********* End destructor definitions *****************************************/
    default:  break;   /* If no destructor action specified: do nothing */
  }
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

1971
1972
1973
1974
1975
1976
1977
1978
     fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
   }
#endif
   while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
#line 35 "fts5parse.y"

  assert( 0 );

#line 699 "fts5parse.c"
/******** End %stack_overflow code ********************************************/
   sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/







|

|
>
|







2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
     fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
   }
#endif
   while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
#line 36 "fts5parse.y"

  UNUSED_PARAM(fts5yypMinor); /* Silence a compiler warning */
  sqlite3Fts5ParseError(pParse, "fts5: parser stack overflow");
#line 700 "fts5parse.c"
/******** End %stack_overflow code ********************************************/
   sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */
/********** Begin reduce actions **********************************************/
      case 0: /* input ::= expr */
#line 81 "fts5parse.y"
{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy18); }
#line 834 "fts5parse.c"
        break;
      case 1: /* expr ::= expr AND expr */
#line 91 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 841 "fts5parse.c"
        break;
      case 2: /* expr ::= expr OR expr */
#line 94 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 848 "fts5parse.c"
        break;
      case 3: /* expr ::= expr NOT expr */
#line 97 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 855 "fts5parse.c"
        break;
      case 4: /* expr ::= LP expr RP */
#line 101 "fts5parse.y"
{fts5yygotominor.fts5yy18 = fts5yymsp[-1].minor.fts5yy18;}
#line 860 "fts5parse.c"
        break;
      case 5: /* expr ::= exprlist */
      case 6: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==6);
#line 102 "fts5parse.y"
{fts5yygotominor.fts5yy18 = fts5yymsp[0].minor.fts5yy18;}
#line 866 "fts5parse.c"
        break;
      case 7: /* exprlist ::= exprlist cnearset */
#line 105 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-1].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 873 "fts5parse.c"
        break;
      case 8: /* cnearset ::= nearset */
#line 109 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy26); 
}
#line 880 "fts5parse.c"
        break;
      case 9: /* cnearset ::= colset COLON nearset */
#line 112 "fts5parse.y"
{ 
  sqlite3Fts5ParseSetColset(pParse, fts5yymsp[0].minor.fts5yy26, fts5yymsp[-2].minor.fts5yy3);
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy26); 
}
#line 888 "fts5parse.c"
        break;
      case 10: /* colset ::= LCP colsetlist RCP */
#line 122 "fts5parse.y"
{ fts5yygotominor.fts5yy3 = fts5yymsp[-1].minor.fts5yy3; }
#line 893 "fts5parse.c"
        break;
      case 11: /* colset ::= STRING */
#line 123 "fts5parse.y"
{
  fts5yygotominor.fts5yy3 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
}
#line 900 "fts5parse.c"
        break;
      case 12: /* colsetlist ::= colsetlist STRING */
#line 127 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy3 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy3, &fts5yymsp[0].minor.fts5yy0); }
#line 906 "fts5parse.c"
        break;
      case 13: /* colsetlist ::= STRING */
#line 129 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy3 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0); 
}
#line 913 "fts5parse.c"
        break;
      case 14: /* nearset ::= phrase */
#line 139 "fts5parse.y"
{ fts5yygotominor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy11); }
#line 918 "fts5parse.c"
        break;
      case 15: /* nearset ::= STRING LP nearphrases neardist_opt RP */
#line 140 "fts5parse.y"
{
  sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
  sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy26, &fts5yymsp[-1].minor.fts5yy0);
  fts5yygotominor.fts5yy26 = fts5yymsp[-2].minor.fts5yy26;
}
#line 927 "fts5parse.c"
        break;
      case 16: /* nearphrases ::= phrase */
#line 146 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy11); 
}
#line 934 "fts5parse.c"
        break;
      case 17: /* nearphrases ::= nearphrases phrase */
#line 149 "fts5parse.y"
{
  fts5yygotominor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy26, fts5yymsp[0].minor.fts5yy11);
}
#line 941 "fts5parse.c"
        break;
      case 18: /* neardist_opt ::= */
#line 156 "fts5parse.y"
{ fts5yygotominor.fts5yy0.p = 0; fts5yygotominor.fts5yy0.n = 0; }
#line 946 "fts5parse.c"
        break;
      case 19: /* neardist_opt ::= COMMA STRING */
#line 157 "fts5parse.y"
{ fts5yygotominor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
#line 951 "fts5parse.c"
        break;
      case 20: /* phrase ::= phrase PLUS STRING star_opt */
#line 169 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy11 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy11, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy20);
}
#line 958 "fts5parse.c"
        break;
      case 21: /* phrase ::= STRING star_opt */
#line 172 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy11 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy20);
}
#line 965 "fts5parse.c"
        break;
      case 22: /* star_opt ::= STAR */
#line 181 "fts5parse.y"
{ fts5yygotominor.fts5yy20 = 1; }
#line 970 "fts5parse.c"
        break;
      case 23: /* star_opt ::= */
#line 182 "fts5parse.y"
{ fts5yygotominor.fts5yy20 = 0; }
#line 975 "fts5parse.c"
        break;
      default:
        break;
/********** End reduce actions ************************************************/
  };
  assert( fts5yyruleno>=0 && fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );
  fts5yygoto = fts5yyRuleInfo[fts5yyruleno].lhs;







|

|


|



|


|



|


|



|


|

|



|

|


|



|


|



|


|




|


|

|


|



|


|


|


|



|


|

|


|





|


|



|


|



|


|

|


|

|


|



|


|



|


|

|


|

|







2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */
/********** Begin reduce actions **********************************************/
      case 0: /* input ::= expr */
#line 83 "fts5parse.y"
{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy18); }
#line 835 "fts5parse.c"
        break;
      case 1: /* expr ::= expr AND expr */
#line 93 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 842 "fts5parse.c"
        break;
      case 2: /* expr ::= expr OR expr */
#line 96 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 849 "fts5parse.c"
        break;
      case 3: /* expr ::= expr NOT expr */
#line 99 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 856 "fts5parse.c"
        break;
      case 4: /* expr ::= LP expr RP */
#line 103 "fts5parse.y"
{fts5yygotominor.fts5yy18 = fts5yymsp[-1].minor.fts5yy18;}
#line 861 "fts5parse.c"
        break;
      case 5: /* expr ::= exprlist */
      case 6: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==6);
#line 104 "fts5parse.y"
{fts5yygotominor.fts5yy18 = fts5yymsp[0].minor.fts5yy18;}
#line 867 "fts5parse.c"
        break;
      case 7: /* exprlist ::= exprlist cnearset */
#line 107 "fts5parse.y"
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-1].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
#line 874 "fts5parse.c"
        break;
      case 8: /* cnearset ::= nearset */
#line 111 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy26); 
}
#line 881 "fts5parse.c"
        break;
      case 9: /* cnearset ::= colset COLON nearset */
#line 114 "fts5parse.y"
{ 
  sqlite3Fts5ParseSetColset(pParse, fts5yymsp[0].minor.fts5yy26, fts5yymsp[-2].minor.fts5yy3);
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy26); 
}
#line 889 "fts5parse.c"
        break;
      case 10: /* colset ::= LCP colsetlist RCP */
#line 124 "fts5parse.y"
{ fts5yygotominor.fts5yy3 = fts5yymsp[-1].minor.fts5yy3; }
#line 894 "fts5parse.c"
        break;
      case 11: /* colset ::= STRING */
#line 125 "fts5parse.y"
{
  fts5yygotominor.fts5yy3 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
}
#line 901 "fts5parse.c"
        break;
      case 12: /* colsetlist ::= colsetlist STRING */
#line 129 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy3 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy3, &fts5yymsp[0].minor.fts5yy0); }
#line 907 "fts5parse.c"
        break;
      case 13: /* colsetlist ::= STRING */
#line 131 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy3 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0); 
}
#line 914 "fts5parse.c"
        break;
      case 14: /* nearset ::= phrase */
#line 141 "fts5parse.y"
{ fts5yygotominor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy11); }
#line 919 "fts5parse.c"
        break;
      case 15: /* nearset ::= STRING LP nearphrases neardist_opt RP */
#line 142 "fts5parse.y"
{
  sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
  sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy26, &fts5yymsp[-1].minor.fts5yy0);
  fts5yygotominor.fts5yy26 = fts5yymsp[-2].minor.fts5yy26;
}
#line 928 "fts5parse.c"
        break;
      case 16: /* nearphrases ::= phrase */
#line 148 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy11); 
}
#line 935 "fts5parse.c"
        break;
      case 17: /* nearphrases ::= nearphrases phrase */
#line 151 "fts5parse.y"
{
  fts5yygotominor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy26, fts5yymsp[0].minor.fts5yy11);
}
#line 942 "fts5parse.c"
        break;
      case 18: /* neardist_opt ::= */
#line 158 "fts5parse.y"
{ fts5yygotominor.fts5yy0.p = 0; fts5yygotominor.fts5yy0.n = 0; }
#line 947 "fts5parse.c"
        break;
      case 19: /* neardist_opt ::= COMMA STRING */
#line 159 "fts5parse.y"
{ fts5yygotominor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
#line 952 "fts5parse.c"
        break;
      case 20: /* phrase ::= phrase PLUS STRING star_opt */
#line 171 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy11 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy11, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy20);
}
#line 959 "fts5parse.c"
        break;
      case 21: /* phrase ::= STRING star_opt */
#line 174 "fts5parse.y"
{ 
  fts5yygotominor.fts5yy11 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy20);
}
#line 966 "fts5parse.c"
        break;
      case 22: /* star_opt ::= STAR */
#line 183 "fts5parse.y"
{ fts5yygotominor.fts5yy20 = 1; }
#line 971 "fts5parse.c"
        break;
      case 23: /* star_opt ::= */
#line 184 "fts5parse.y"
{ fts5yygotominor.fts5yy20 = 0; }
#line 976 "fts5parse.c"
        break;
      default:
        break;
/********** End reduce actions ************************************************/
  };
  assert( fts5yyruleno>=0 && fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );
  fts5yygoto = fts5yyRuleInfo[fts5yyruleno].lhs;
2308
2309
2310
2311
2312
2313
2314

2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
  fts5YYMINORTYPE fts5yyminor            /* The minor type of the error token */
){
  sqlite3Fts5ParserARG_FETCH;
#define FTS5TOKEN (fts5yyminor.fts5yy0)
/************ Begin %syntax_error code ****************************************/
#line 30 "fts5parse.y"


  sqlite3Fts5ParseError(
    pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
  );
#line 1046 "fts5parse.c"
/************ End %syntax_error code ******************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/*
** The following is executed when the parser accepts
*/







>



|







2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
  fts5YYMINORTYPE fts5yyminor            /* The minor type of the error token */
){
  sqlite3Fts5ParserARG_FETCH;
#define FTS5TOKEN (fts5yyminor.fts5yy0)
/************ Begin %syntax_error code ****************************************/
#line 30 "fts5parse.y"

  UNUSED_PARAM(fts5yymajor); /* Silence a compiler warning */
  sqlite3Fts5ParseError(
    pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
  );
#line 1048 "fts5parse.c"
/************ End %syntax_error code ******************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/*
** The following is executed when the parser accepts
*/
2686
2687
2688
2689
2690
2691
2692


2693
2694
2695
2696
2697
2698
2699
  int nToken,                     /* Size of token in bytes */
  int iStartOff,                  /* Start offset of token */
  int iEndOff                     /* End offset of token */
){
  HighlightContext *p = (HighlightContext*)pContext;
  int rc = SQLITE_OK;
  int iPos;



  if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
  iPos = p->iPos++;

  if( p->iRangeEnd>0 ){
    if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
    if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;







>
>







2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
  int nToken,                     /* Size of token in bytes */
  int iStartOff,                  /* Start offset of token */
  int iEndOff                     /* End offset of token */
){
  HighlightContext *p = (HighlightContext*)pContext;
  int rc = SQLITE_OK;
  int iPos;

  UNUSED_PARAM2(pToken, nToken);

  if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
  iPos = p->iPos++;

  if( p->iRangeEnd>0 ){
    if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
    if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;
2920
2921
2922
2923
2924
2925
2926

2927
2928
2929
2930
2931
2932
2933
*/
static int fts5CountCb(
  const Fts5ExtensionApi *pApi, 
  Fts5Context *pFts,
  void *pUserData                 /* Pointer to sqlite3_int64 variable */
){
  sqlite3_int64 *pn = (sqlite3_int64*)pUserData;

  (*pn)++;
  return SQLITE_OK;
}

/*
** Set *ppData to point to the Fts5Bm25Data object for the current query. 
** If the object has not already been allocated, allocate and populate it







>







3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
*/
static int fts5CountCb(
  const Fts5ExtensionApi *pApi, 
  Fts5Context *pFts,
  void *pUserData                 /* Pointer to sqlite3_int64 variable */
){
  sqlite3_int64 *pn = (sqlite3_int64*)pUserData;
  UNUSED_PARAM2(pApi, pFts);
  (*pn)++;
  return SQLITE_OK;
}

/*
** Set *ppData to point to the Fts5Bm25Data object for the current query. 
** If the object has not already been allocated, allocate and populate it
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
    { "snippet",   0, fts5SnippetFunction, 0 },
    { "highlight", 0, fts5HighlightFunction, 0 },
    { "bm25",      0, fts5Bm25Function,    0 },
  };
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aBuiltin); i++){
    rc = pApi->xCreateFunction(pApi,
        aBuiltin[i].zFunc,
        aBuiltin[i].pUserData,
        aBuiltin[i].xFunc,
        aBuiltin[i].xDestroy
    );
  }







|







3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
    { "snippet",   0, fts5SnippetFunction, 0 },
    { "highlight", 0, fts5HighlightFunction, 0 },
    { "bm25",      0, fts5Bm25Function,    0 },
  };
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
    rc = pApi->xCreateFunction(pApi,
        aBuiltin[i].zFunc,
        aBuiltin[i].pUserData,
        aBuiltin[i].xFunc,
        aBuiltin[i].xDestroy
    );
  }
3105
3106
3107
3108
3109
3110
3111
3112

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124

3125
3126
3127
3128
3129
3130
3131
******************************************************************************
*/



/* #include "fts5Int.h" */

static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, int nByte){

  int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;
  u8 *pNew;
  while( nNew<nByte ){
    nNew = nNew * 2;
  }
  pNew = sqlite3_realloc(pBuf->p, nNew);
  if( pNew==0 ){
    *pRc = SQLITE_NOMEM;
    return 1;
  }else{
    pBuf->nSpace = nNew;
    pBuf->p = pNew;

  }
  return 0;
}


/*
** Encode value iVal as an SQLite varint and append it to the buffer object







|
>
|
|
|
|
|
|
|
|
|
|
|
|
>







3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
******************************************************************************
*/



/* #include "fts5Int.h" */

static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, u32 nByte){
  if( (u32)pBuf->nSpace<nByte ){
    u32 nNew = pBuf->nSpace ? pBuf->nSpace : 64;
    u8 *pNew;
    while( nNew<nByte ){
      nNew = nNew * 2;
    }
    pNew = sqlite3_realloc(pBuf->p, nNew);
    if( pNew==0 ){
      *pRc = SQLITE_NOMEM;
      return 1;
    }else{
      pBuf->nSpace = nNew;
      pBuf->p = pNew;
    }
  }
  return 0;
}


/*
** Encode value iVal as an SQLite varint and append it to the buffer object
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set 
** the error code in p. If an error has already occurred when this function
** is called, it is a no-op.
*/
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  int nData, 
  const u8 *pData
){
  assert( *pRc || nData>=0 );
  if( fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function







|


|







3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set 
** the error code in p. If an error has already occurred when this function
** is called, it is a no-op.
*/
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  u32 nData, 
  const u8 *pData
){
  assert_nc( *pRc || nData>=0 );
  if( fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function
3297
3298
3299
3300
3301
3302
3303





















3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
){
  memset(pIter, 0, sizeof(*pIter));
  pIter->a = a;
  pIter->n = n;
  sqlite3Fts5PoslistReaderNext(pIter);
  return pIter->bEof;
}






















static int sqlite3Fts5PoslistWriterAppend(
  Fts5Buffer *pBuf, 
  Fts5PoslistWriter *pWriter,
  i64 iPos
){
  static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
  int rc = SQLITE_OK;
  if( 0==fts5BufferGrow(&rc, pBuf, 5+5+5) ){
    if( (iPos & colmask) != (pWriter->iPrev & colmask) ){
      pBuf->p[pBuf->n++] = 1;
      pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
      pWriter->iPrev = (iPos & colmask);
    }
    pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-pWriter->iPrev)+2);
    pWriter->iPrev = iPos;
  }
  return rc;
}

static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
  void *pRet = 0;
  if( *pRc==SQLITE_OK ){
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 && nByte>0 ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<
|
|
<
<
<
<
<
<
|
<
|







3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449

3450
3451






3452

3453
3454
3455
3456
3457
3458
3459
3460
){
  memset(pIter, 0, sizeof(*pIter));
  pIter->a = a;
  pIter->n = n;
  sqlite3Fts5PoslistReaderNext(pIter);
  return pIter->bEof;
}

/*
** Append position iPos to the position list being accumulated in buffer
** pBuf, which must be already be large enough to hold the new data.
** The previous position written to this list is *piPrev. *piPrev is set
** to iPos before returning.
*/
static void sqlite3Fts5PoslistSafeAppend(
  Fts5Buffer *pBuf, 
  i64 *piPrev, 
  i64 iPos
){
  static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
  if( (iPos & colmask) != (*piPrev & colmask) ){
    pBuf->p[pBuf->n++] = 1;
    pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
    *piPrev = (iPos & colmask);
  }
  pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-*piPrev)+2);
  *piPrev = iPos;
}

static int sqlite3Fts5PoslistWriterAppend(
  Fts5Buffer *pBuf, 
  Fts5PoslistWriter *pWriter,
  i64 iPos
){

  int rc = 0;   /* Initialized only to suppress erroneous warning from Clang */
  if( fts5BufferGrow(&rc, pBuf, 5+5+5) ) return rc;






  sqlite3Fts5PoslistSafeAppend(pBuf, &pWriter->iPrev, iPos);

  return SQLITE_OK;
}

static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
  void *pRet = 0;
  if( *pRc==SQLITE_OK ){
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 && nByte>0 ){
3382
3383
3384
3385
3386
3387
3388



















































































3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
    1, 1, 1, 1, 1, 1, 1, 1,    1, 1, 1, 0, 0, 0, 0, 0    /* 0x70 .. 0x7F */
  };

  return (t & 0x80) || aBareword[(int)t];
}






















































































#line 1 "fts5_config.c"
/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/



/* #include "fts5Int.h" */

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















<







3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619

3620
3621
3622
3623
3624
3625
3626
    1, 1, 1, 1, 1, 1, 1, 1,    1, 1, 1, 0, 0, 0, 0, 0    /* 0x70 .. 0x7F */
  };

  return (t & 0x80) || aBareword[(int)t];
}


/*************************************************************************
*/
typedef struct Fts5TermsetEntry Fts5TermsetEntry;
struct Fts5TermsetEntry {
  char *pTerm;
  int nTerm;
  int iIdx;                       /* Index (main or aPrefix[] entry) */
  Fts5TermsetEntry *pNext;
};

struct Fts5Termset {
  Fts5TermsetEntry *apHash[512];
};

static int sqlite3Fts5TermsetNew(Fts5Termset **pp){
  int rc = SQLITE_OK;
  *pp = sqlite3Fts5MallocZero(&rc, sizeof(Fts5Termset));
  return rc;
}

static int sqlite3Fts5TermsetAdd(
  Fts5Termset *p, 
  int iIdx,
  const char *pTerm, int nTerm, 
  int *pbPresent
){
  int rc = SQLITE_OK;
  *pbPresent = 0;
  if( p ){
    int i;
    u32 hash = 13;
    Fts5TermsetEntry *pEntry;

    /* Calculate a hash value for this term. This is the same hash checksum
    ** used by the fts5_hash.c module. This is not important for correct
    ** operation of the module, but is necessary to ensure that some tests
    ** designed to produce hash table collisions really do work.  */
    for(i=nTerm-1; i>=0; i--){
      hash = (hash << 3) ^ hash ^ pTerm[i];
    }
    hash = (hash << 3) ^ hash ^ iIdx;
    hash = hash % ArraySize(p->apHash);

    for(pEntry=p->apHash[hash]; pEntry; pEntry=pEntry->pNext){
      if( pEntry->iIdx==iIdx 
          && pEntry->nTerm==nTerm 
          && memcmp(pEntry->pTerm, pTerm, nTerm)==0 
      ){
        *pbPresent = 1;
        break;
      }
    }

    if( pEntry==0 ){
      pEntry = sqlite3Fts5MallocZero(&rc, sizeof(Fts5TermsetEntry) + nTerm);
      if( pEntry ){
        pEntry->pTerm = (char*)&pEntry[1];
        pEntry->nTerm = nTerm;
        pEntry->iIdx = iIdx;
        memcpy(pEntry->pTerm, pTerm, nTerm);
        pEntry->pNext = p->apHash[hash];
        p->apHash[hash] = pEntry;
      }
    }
  }

  return rc;
}

static void sqlite3Fts5TermsetFree(Fts5Termset *p){
  if( p ){
    u32 i;
    for(i=0; i<ArraySize(p->apHash); i++){
      Fts5TermsetEntry *pEntry = p->apHash[i];
      while( pEntry ){
        Fts5TermsetEntry *pDel = pEntry;
        pEntry = pEntry->pNext;
        sqlite3_free(pDel);
      }
    }
    sqlite3_free(p);
  }
}

#line 1 "fts5_config.c"
/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/



/* #include "fts5Int.h" */

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16
3581
3582
3583
3584
3585
3586
3587



























3588
3589
3590
3591
3592
3593
3594
  assert( 0==fts5_iswhitespace(z[0]) );
  quote = z[0];
  if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
    fts5Dequote(z);
  }
}




























/*
** Parse a "special" CREATE VIRTUAL TABLE directive and update
** configuration object pConfig as appropriate.
**
** If successful, object pConfig is updated and SQLITE_OK returned. If
** an error occurs, an SQLite error code is returned and an error message
** may be left in *pzErr. It is the responsibility of the caller to







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
  assert( 0==fts5_iswhitespace(z[0]) );
  quote = z[0];
  if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
    fts5Dequote(z);
  }
}


struct Fts5Enum {
  const char *zName;
  int eVal;
};
typedef struct Fts5Enum Fts5Enum;

static int fts5ConfigSetEnum(
  const Fts5Enum *aEnum, 
  const char *zEnum, 
  int *peVal
){
  int nEnum = (int)strlen(zEnum);
  int i;
  int iVal = -1;

  for(i=0; aEnum[i].zName; i++){
    if( sqlite3_strnicmp(aEnum[i].zName, zEnum, nEnum)==0 ){
      if( iVal>=0 ) return SQLITE_ERROR;
      iVal = aEnum[i].eVal;
    }
  }

  *peVal = iVal;
  return iVal<0 ? SQLITE_ERROR : SQLITE_OK;
}

/*
** Parse a "special" CREATE VIRTUAL TABLE directive and update
** configuration object pConfig as appropriate.
**
** If successful, object pConfig is updated and SQLITE_OK returned. If
** an error occurs, an SQLite error code is returned and an error message
** may be left in *pzErr. It is the responsibility of the caller to
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
      }

      while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
        nPre = nPre*10 + (p[0] - '0');
        p++;
      }

      if( rc==SQLITE_OK && (nPre<=0 || nPre>=1000) ){
        *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
        rc = SQLITE_ERROR;
        break;
      }

      pConfig->aPrefix[pConfig->nPrefix] = nPre;
      pConfig->nPrefix++;







|







3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
      }

      while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
        nPre = nPre*10 + (p[0] - '0');
        p++;
      }

      if( nPre<=0 || nPre>=1000 ){
        *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
        rc = SQLITE_ERROR;
        break;
      }

      pConfig->aPrefix[pConfig->nPrefix] = nPre;
      pConfig->nPrefix++;
3730
3731
3732
3733
3734
3735
3736














3737
3738
3739
3740
3741
3742
3743
      *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
      rc = SQLITE_ERROR;
    }else{
      pConfig->bColumnsize = (zArg[0]=='1');
    }
    return rc;
  }















  *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
  return SQLITE_ERROR;
}

/*
** Allocate an instance of the default tokenizer ("simple") at 







>
>
>
>
>
>
>
>
>
>
>
>
>
>







3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
      *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
      rc = SQLITE_ERROR;
    }else{
      pConfig->bColumnsize = (zArg[0]=='1');
    }
    return rc;
  }

  if( sqlite3_strnicmp("detail", zCmd, nCmd)==0 ){
    const Fts5Enum aDetail[] = {
      { "none", FTS5_DETAIL_NONE },
      { "full", FTS5_DETAIL_FULL },
      { "columns", FTS5_DETAIL_COLUMNS },
      { 0, 0 }
    };

    if( (rc = fts5ConfigSetEnum(aDetail, zArg, &pConfig->eDetail)) ){
      *pzErr = sqlite3_mprintf("malformed detail=... directive");
    }
    return rc;
  }

  *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
  return SQLITE_ERROR;
}

/*
** Allocate an instance of the default tokenizer ("simple") at 
3886
3887
3888
3889
3890
3891
3892

3893
3894
3895
3896
3897
3898
3899

  nByte = nArg * (sizeof(char*) + sizeof(u8));
  pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
  pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
  pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
  pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
  pRet->bColumnsize = 1;

#ifdef SQLITE_DEBUG
  pRet->bPrefixIndex = 1;
#endif
  if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
    *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
    rc = SQLITE_ERROR;
  }







>







4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155

  nByte = nArg * (sizeof(char*) + sizeof(u8));
  pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
  pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
  pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
  pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
  pRet->bColumnsize = 1;
  pRet->eDetail = FTS5_DETAIL_FULL;
#ifdef SQLITE_DEBUG
  pRet->bPrefixIndex = 1;
#endif
  if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
    *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
    rc = SQLITE_ERROR;
  }
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303

  if( rc==SQLITE_OK ){
    pConfig->iCookie = iCookie;
  }
  return rc;
}


#line 1 "fts5_expr.c"
/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**







<







4545
4546
4547
4548
4549
4550
4551

4552
4553
4554
4555
4556
4557
4558

  if( rc==SQLITE_OK ){
    pConfig->iCookie = iCookie;
  }
  return rc;
}


#line 1 "fts5_expr.c"
/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
4333
4334
4335
4336
4337
4338
4339

4340
4341
4342
4343
4344
4345
4346
#include <stdio.h>
static void sqlite3Fts5ParserTrace(FILE*, char*);
#endif


struct Fts5Expr {
  Fts5Index *pIndex;

  Fts5ExprNode *pRoot;
  int bDesc;                      /* Iterate in descending rowid order */
  int nPhrase;                    /* Number of phrases in expression */
  Fts5ExprPhrase **apExprPhrase;  /* Pointers to phrase objects */
};

/*







>







4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
#include <stdio.h>
static void sqlite3Fts5ParserTrace(FILE*, char*);
#endif


struct Fts5Expr {
  Fts5Index *pIndex;
  Fts5Config *pConfig;
  Fts5ExprNode *pRoot;
  int bDesc;                      /* Iterate in descending rowid order */
  int nPhrase;                    /* Number of phrases in expression */
  Fts5ExprPhrase **apExprPhrase;  /* Pointers to phrase objects */
};

/*
4354
4355
4356
4357
4358
4359
4360



4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371






4372
4373
4374
4375
4376
4377
4378
**       FTS5_TERM                (pNear valid)
*/
struct Fts5ExprNode {
  int eType;                      /* Node type */
  int bEof;                       /* True at EOF */
  int bNomatch;                   /* True if entry is not a match */




  i64 iRowid;                     /* Current rowid */
  Fts5ExprNearset *pNear;         /* For FTS5_STRING - cluster of phrases */

  /* Child nodes. For a NOT node, this array always contains 2 entries. For 
  ** AND or OR nodes, it contains 2 or more entries.  */
  int nChild;                     /* Number of child nodes */
  Fts5ExprNode *apChild[1];       /* Array of child nodes */
};

#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)







/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
  int bPrefix;                    /* True for a prefix term */
  char *zTerm;                    /* nul-terminated term */







>
>
>











>
>
>
>
>
>







4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
**       FTS5_TERM                (pNear valid)
*/
struct Fts5ExprNode {
  int eType;                      /* Node type */
  int bEof;                       /* True at EOF */
  int bNomatch;                   /* True if entry is not a match */

  /* Next method for this node. */
  int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);

  i64 iRowid;                     /* Current rowid */
  Fts5ExprNearset *pNear;         /* For FTS5_STRING - cluster of phrases */

  /* Child nodes. For a NOT node, this array always contains 2 entries. For 
  ** AND or OR nodes, it contains 2 or more entries.  */
  int nChild;                     /* Number of child nodes */
  Fts5ExprNode *apChild[1];       /* Array of child nodes */
};

#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)

/*
** Invoke the xNext method of an Fts5ExprNode object. This macro should be
** used as if it has the same signature as the xNext() methods themselves.
*/
#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))

/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
  int bPrefix;                    /* True for a prefix term */
  char *zTerm;                    /* nul-terminated term */
4526
4527
4528
4529
4530
4531
4532







4533

4534

4535
4536
4537
4538
4539
4540
4541
  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);
    }else{







      pNew->pRoot = sParse.pExpr;

      pNew->pIndex = 0;

      pNew->apExprPhrase = sParse.apPhrase;
      pNew->nPhrase = sParse.nPhrase;
      sParse.apPhrase = 0;
    }
  }

  sqlite3_free(sParse.apPhrase);







>
>
>
>
>
>
>
|
>

>







4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);
    }else{
      if( !sParse.pExpr ){
        const int nByte = sizeof(Fts5ExprNode);
        pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
        if( pNew->pRoot ){
          pNew->pRoot->bEof = 1;
        }
      }else{
        pNew->pRoot = sParse.pExpr;
      }
      pNew->pIndex = 0;
      pNew->pConfig = pConfig;
      pNew->apExprPhrase = sParse.apPhrase;
      pNew->nPhrase = sParse.nPhrase;
      sParse.apPhrase = 0;
    }
  }

  sqlite3_free(sParse.apPhrase);
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647

4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
  int bRetValid = 0;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  assert( bDesc==0 || bDesc==1 );
  for(p=pTerm; p; p=p->pSynonym){
    if( 0==sqlite3Fts5IterEof(p->pIter) ){
      i64 iRowid = sqlite3Fts5IterRowid(p->pIter);
      if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
        iRet = iRowid;
        bRetValid = 1;
      }
    }
  }

  if( pbEof && bRetValid==0 ) *pbEof = 1;
  return iRet;
}

/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  Fts5Colset *pColset,
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  for(p=pTerm; p; p=p->pSynonym){
    Fts5IndexIter *pIter = p->pIter;
    if( sqlite3Fts5IterEof(pIter)==0 && sqlite3Fts5IterRowid(pIter)==iRowid ){
      const u8 *a;
      int n;
      i64 dummy;
      rc = sqlite3Fts5IterPoslist(pIter, pColset, &a, &n, &dummy);
      if( rc!=SQLITE_OK ) goto synonym_poslist_out;
      if( nIter==nAlloc ){
        int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
        Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
          goto synonym_poslist_out;
        }
        memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
        nAlloc = nAlloc*2;
        if( aIter!=aStatic ) sqlite3_free(aIter);
        aIter = aNew;
      }
      sqlite3Fts5PoslistReaderInit(a, n, &aIter[nIter]);
      assert( aIter[nIter].bEof==0 );
      nIter++;
    }
  }

  assert( *pbDel==0 );
  if( nIter==1 ){
    *pa = (u8*)aIter[0].a;
    *pn = aIter[0].n;
  }else{
    Fts5PoslistWriter writer = {0};
    Fts5Buffer buf = {0,0,0};
    i64 iPrev = -1;

    while( 1 ){
      int i;
      i64 iMin = FTS5_LARGEST_INT64;
      for(i=0; i<nIter; i++){
        if( aIter[i].bEof==0 ){
          if( aIter[i].iPos==iPrev ){
            if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
          }
          if( aIter[i].iPos<iMin ){
            iMin = aIter[i].iPos;
          }
        }
      }
      if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
      rc = sqlite3Fts5PoslistWriterAppend(&buf, &writer, iMin);
      iPrev = iMin;
    }
    if( rc ){
      sqlite3_free(buf.p);
    }else{
      *pa = buf.p;
      *pn = buf.n;
      *pbDel = 1;
    }
  }

 synonym_poslist_out:
  if( aIter!=aStatic ) sqlite3_free(aIter);
  return rc;
}







|














|

<

|












|
|
<
<
<
<












|





<





<

>














|


|
<
<
|
|
<







4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874

4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890




4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908

4909
4910
4911
4912
4913

4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933


4934
4935

4936
4937
4938
4939
4940
4941
4942
  int bRetValid = 0;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  assert( bDesc==0 || bDesc==1 );
  for(p=pTerm; p; p=p->pSynonym){
    if( 0==sqlite3Fts5IterEof(p->pIter) ){
      i64 iRowid = p->pIter->iRowid;
      if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
        iRet = iRowid;
        bRetValid = 1;
      }
    }
  }

  if( pbEof && bRetValid==0 ) *pbEof = 1;
  return iRet;
}

/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymList(
  Fts5ExprTerm *pTerm, 

  i64 iRowid,
  Fts5Buffer *pBuf,               /* Use this buffer for space if required */
  u8 **pa, int *pn
){
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  for(p=pTerm; p; p=p->pSynonym){
    Fts5IndexIter *pIter = p->pIter;
    if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
      if( pIter->nData==0 ) continue;




      if( nIter==nAlloc ){
        int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
        Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
          goto synonym_poslist_out;
        }
        memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
        nAlloc = nAlloc*2;
        if( aIter!=aStatic ) sqlite3_free(aIter);
        aIter = aNew;
      }
      sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
      assert( aIter[nIter].bEof==0 );
      nIter++;
    }
  }


  if( nIter==1 ){
    *pa = (u8*)aIter[0].a;
    *pn = aIter[0].n;
  }else{
    Fts5PoslistWriter writer = {0};

    i64 iPrev = -1;
    fts5BufferZero(pBuf);
    while( 1 ){
      int i;
      i64 iMin = FTS5_LARGEST_INT64;
      for(i=0; i<nIter; i++){
        if( aIter[i].bEof==0 ){
          if( aIter[i].iPos==iPrev ){
            if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
          }
          if( aIter[i].iPos<iMin ){
            iMin = aIter[i].iPos;
          }
        }
      }
      if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
      rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
      iPrev = iMin;
    }
    if( rc==SQLITE_OK ){


      *pa = pBuf->p;
      *pn = pBuf->n;

    }
  }

 synonym_poslist_out:
  if( aIter!=aStatic ) sqlite3_free(aIter);
  return rc;
}
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721

4722
4723
4724



4725

4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if the current rowid is 
** not a match.
*/
static int fts5ExprPhraseIsMatch(
  Fts5ExprNode *pNode,            /* Node pPhrase belongs to */
  Fts5Colset *pColset,            /* Restrict matches to these columns */
  Fts5ExprPhrase *pPhrase,        /* Phrase object to initialize */
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;
  
  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>(int)ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
    aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
    if( !aIter ) return SQLITE_NOMEM;
  }
  memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);

  /* Initialize a term iterator for each term in the phrase */
  for(i=0; i<pPhrase->nTerm; i++){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
    i64 dummy;
    int n = 0;
    int bFlag = 0;
    const u8 *a = 0;
    if( pTerm->pSynonym ){

      rc = fts5ExprSynonymPoslist(
          pTerm, pColset, pNode->iRowid, &bFlag, (u8**)&a, &n
      );



    }else{

      rc = sqlite3Fts5IterPoslist(pTerm->pIter, pColset, &a, &n, &dummy);
    }
    if( rc!=SQLITE_OK ) goto ismatch_out;
    sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    aIter[i].bFlag = (u8)bFlag;
    if( aIter[i].bEof ) goto ismatch_out;
  }

  while( 1 ){
    int bMatch;







<













|









<


|

>
|
|
|
>
>
>

>
|

<







4951
4952
4953
4954
4955
4956
4957

4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980

4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995

4996
4997
4998
4999
5000
5001
5002
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if the current rowid is 
** not a match.
*/
static int fts5ExprPhraseIsMatch(
  Fts5ExprNode *pNode,            /* Node pPhrase belongs to */

  Fts5ExprPhrase *pPhrase,        /* Phrase object to initialize */
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;
  
  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
    aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
    if( !aIter ) return SQLITE_NOMEM;
  }
  memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);

  /* Initialize a term iterator for each term in the phrase */
  for(i=0; i<pPhrase->nTerm; i++){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];

    int n = 0;
    int bFlag = 0;
    u8 *a = 0;
    if( pTerm->pSynonym ){
      Fts5Buffer buf = {0, 0, 0};
      rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
      if( rc ){
        sqlite3_free(a);
        goto ismatch_out;
      }
      if( a==buf.p ) bFlag = 1;
    }else{
      a = (u8*)pTerm->pIter->pData;
      n = pTerm->pIter->nData;
    }

    sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    aIter[i].bFlag = (u8)bFlag;
    if( aIter[i].bEof ) goto ismatch_out;
  }

  while( 1 ){
    int bMatch;
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
  memset(p, 0, sizeof(Fts5LookaheadReader));
  p->a = a;
  p->n = n;
  fts5LookaheadReaderNext(p);
  return fts5LookaheadReaderNext(p);
}

#if 0
static int fts5LookaheadReaderEof(Fts5LookaheadReader *p){
  return (p->iPos==FTS5_LOOKAHEAD_EOF);
}
#endif

typedef struct Fts5NearTrimmer Fts5NearTrimmer;
struct Fts5NearTrimmer {
  Fts5LookaheadReader reader;     /* Input iterator */
  Fts5PoslistWriter writer;       /* Writer context */
  Fts5Buffer *pOut;               /* Output poslist */
};








<
<
<
<
<
<







5060
5061
5062
5063
5064
5065
5066






5067
5068
5069
5070
5071
5072
5073
  memset(p, 0, sizeof(Fts5LookaheadReader));
  p->a = a;
  p->n = n;
  fts5LookaheadReaderNext(p);
  return fts5LookaheadReaderNext(p);
}







typedef struct Fts5NearTrimmer Fts5NearTrimmer;
struct Fts5NearTrimmer {
  Fts5LookaheadReader reader;     /* Input iterator */
  Fts5PoslistWriter writer;       /* Writer context */
  Fts5Buffer *pOut;               /* Output poslist */
};

4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
  int rc = *pRc;
  int bMatch;

  assert( pNear->nPhrase>1 );

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pNear->nPhrase>(int)ArraySize(aStatic) ){
    int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
    a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
  }else{
    memset(aStatic, 0, sizeof(aStatic));
  }
  if( rc!=SQLITE_OK ){
    *pRc = rc;







|







5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
  int rc = *pRc;
  int bMatch;

  assert( pNear->nPhrase>1 );

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pNear->nPhrase>ArraySize(aStatic) ){
    int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
    a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
  }else{
    memset(aStatic, 0, sizeof(aStatic));
  }
  if( rc!=SQLITE_OK ){
    *pRc = rc;
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
    int bRet = a[0].pOut->n>0;
    *pRc = rc;
    if( a!=aStatic ) sqlite3_free(a);
    return bRet;
  }
}

/*
** Advance the first term iterator in the first phrase of pNear. Set output
** variable *pbEof to true if it reaches EOF or if an error occurs.
**
** Return SQLITE_OK if successful, or an SQLite error code if an error
** occurs.
*/
static int fts5ExprNearAdvanceFirst(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc = SQLITE_OK;

  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);

    /* Advance each iterator that currently points to iRowid. Or, if iFrom
    ** is valid - each iterator that points to a rowid before iFrom.  */
    for(p=pTerm; p; p=p->pSynonym){
      if( sqlite3Fts5IterEof(p->pIter)==0 ){
        i64 ii = sqlite3Fts5IterRowid(p->pIter);
        if( ii==iRowid 
         || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc) 
        ){
          if( bFromValid ){
            rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
          }else{
            rc = sqlite3Fts5IterNext(p->pIter);
          }
          if( rc!=SQLITE_OK ) break;
          if( sqlite3Fts5IterEof(p->pIter)==0 ){
            bEof = 0;
          }
        }else{
          bEof = 0;
        }
      }
    }

    /* Set the EOF flag if either all synonym iterators are at EOF or an
    ** error has occurred.  */
    pNode->bEof = (rc || bEof);
  }else{
    Fts5IndexIter *pIter = pTerm->pIter;

    assert( Fts5NodeIsString(pNode) );
    if( bFromValid ){
      rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
    }else{
      rc = sqlite3Fts5IterNext(pIter);
    }

    pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
  }

  return rc;
}

/*
** Advance iterator pIter until it points to a value equal to or laster
** than the initial value of *piLast. If this means the iterator points
** to a value laster than *piLast, update *piLast to the new lastest value.
**
** If the iterator reaches EOF, set *pbEof to true before returning. If
** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
** are set, return a non-zero value. Otherwise, return zero.
*/
static int fts5ExprAdvanceto(
  Fts5IndexIter *pIter,           /* Iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc,                       /* OUT: Error code */
  int *pbEof                      /* OUT: Set to true if EOF */
){
  i64 iLast = *piLast;
  i64 iRowid;

  iRowid = sqlite3Fts5IterRowid(pIter);
  if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
    int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
    if( rc || sqlite3Fts5IterEof(pIter) ){
      *pRc = rc;
      *pbEof = 1;
      return 1;
    }
    iRowid = sqlite3Fts5IterRowid(pIter);
    assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
  }
  *piLast = iRowid;

  return 0;
}

static int fts5ExprSynonymAdvanceto(
  Fts5ExprTerm *pTerm,            /* Term iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc                        /* OUT: Error code */
){
  int rc = SQLITE_OK;
  i64 iLast = *piLast;
  Fts5ExprTerm *p;
  int bEof = 0;

  for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
    if( sqlite3Fts5IterEof(p->pIter)==0 ){
      i64 iRowid = sqlite3Fts5IterRowid(p->pIter);
      if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
        rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
      }
    }
  }

  if( rc!=SQLITE_OK ){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



















|







|




















|







5174
5175
5176
5177
5178
5179
5180

































































5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
    int bRet = a[0].pOut->n>0;
    *pRc = rc;
    if( a!=aStatic ) sqlite3_free(a);
    return bRet;
  }
}


































































/*
** Advance iterator pIter until it points to a value equal to or laster
** than the initial value of *piLast. If this means the iterator points
** to a value laster than *piLast, update *piLast to the new lastest value.
**
** If the iterator reaches EOF, set *pbEof to true before returning. If
** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
** are set, return a non-zero value. Otherwise, return zero.
*/
static int fts5ExprAdvanceto(
  Fts5IndexIter *pIter,           /* Iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc,                       /* OUT: Error code */
  int *pbEof                      /* OUT: Set to true if EOF */
){
  i64 iLast = *piLast;
  i64 iRowid;

  iRowid = pIter->iRowid;
  if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
    int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
    if( rc || sqlite3Fts5IterEof(pIter) ){
      *pRc = rc;
      *pbEof = 1;
      return 1;
    }
    iRowid = pIter->iRowid;
    assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
  }
  *piLast = iRowid;

  return 0;
}

static int fts5ExprSynonymAdvanceto(
  Fts5ExprTerm *pTerm,            /* Term iterator to advance */
  int bDesc,                      /* True if iterator is "rowid DESC" */
  i64 *piLast,                    /* IN/OUT: Lastest rowid seen so far */
  int *pRc                        /* OUT: Error code */
){
  int rc = SQLITE_OK;
  i64 iLast = *piLast;
  Fts5ExprTerm *p;
  int bEof = 0;

  for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
    if( sqlite3Fts5IterEof(p->pIter)==0 ){
      i64 iRowid = p->pIter->iRowid;
      if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
        rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
      }
    }
  }

  if( rc!=SQLITE_OK ){
5050
5051
5052
5053
5054
5055
5056















5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071

5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193

5194
5195
5196
5197
5198
5199
5200
static int fts5ExprNearTest(
  int *pRc,
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_STRING) */
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int rc = *pRc;















  int i;

  /* Check that each phrase in the nearset matches the current row.
  ** Populate the pPhrase->poslist buffers at the same time. If any
  ** phrase is not a match, break out of the loop early.  */
  for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
    if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset ){
      int bMatch = 0;
      rc = fts5ExprPhraseIsMatch(pNode, pNear->pColset, pPhrase, &bMatch);
      if( bMatch==0 ) break;
    }else{
      rc = sqlite3Fts5IterPoslistBuffer(
          pPhrase->aTerm[0].pIter, &pPhrase->poslist
      );

    }
  }

  *pRc = rc;
  if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
    return 1;
  }

  return 0;
}

static int fts5ExprTokenTest(
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_TERM) */
){
  /* As this "NEAR" object is actually a single phrase that consists 
  ** of a single term only, grab pointers into the poslist managed by the
  ** fts5_index.c iterator object. This is much faster than synthesizing 
  ** a new poslist the way we have to for more complicated phrase or NEAR
  ** expressions.  */
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
  Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
  Fts5Colset *pColset = pNear->pColset;
  int rc;

  assert( pNode->eType==FTS5_TERM );
  assert( pNear->nPhrase==1 && pPhrase->nTerm==1 );
  assert( pPhrase->aTerm[0].pSynonym==0 );

  rc = sqlite3Fts5IterPoslist(pIter, pColset, 
      (const u8**)&pPhrase->poslist.p, &pPhrase->poslist.n, &pNode->iRowid
  );
  pNode->bNomatch = (pPhrase->poslist.n==0);
  return rc;
}

/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators
** point to the same rowid, and if not, advances them until they do.
** If an EOF is reached before this happens, *pbEof is set to true before
** returning.
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if an iterator reaches
** EOF.
*/
static int fts5ExprNearNextMatch(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
  int rc = SQLITE_OK;
  i64 iLast;                      /* Lastest rowid any iterator points to */
  int i, j;                       /* Phrase and token index, respectively */
  int bMatch;                     /* True if all terms are at the same rowid */
  const int bDesc = pExpr->bDesc;

  /* Check that this node should not be FTS5_TERM */
  assert( pNear->nPhrase>1 
       || pNear->apPhrase[0]->nTerm>1 
       || pNear->apPhrase[0]->aTerm[0].pSynonym
  );

  /* Initialize iLast, the "lastest" rowid any iterator points to. If the
  ** iterator skips through rowids in the default ascending order, this means
  ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
  ** means the minimum rowid.  */
  if( pLeft->aTerm[0].pSynonym ){
    iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
  }else{
    iLast = sqlite3Fts5IterRowid(pLeft->aTerm[0].pIter);
  }

  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bEof = 1;
            return rc;
          }
        }else{
          Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
          i64 iRowid = sqlite3Fts5IterRowid(pIter);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
            return rc;
          }
        }
      }
    }
  }while( bMatch==0 );

  pNode->iRowid = iLast;
  pNode->bNomatch = (0==fts5ExprNearTest(&rc, pExpr, pNode));

  return rc;
}

/*
** Initialize all term iterators in the pNear object. If any term is found
** to match no documents at all, return immediately without initializing any
** further iterators.
*/
static int fts5ExprNearInitAll(
  Fts5Expr *pExpr,
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int i, j;
  int rc = SQLITE_OK;


  for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
    for(j=0; j<pPhrase->nTerm; j++){
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
      Fts5ExprTerm *p;
      int bEof = 1;








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

|
|
|
|
|
|
|
|
|
|
<
|
<
>
|
|

|
|
|
|
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<














>







5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279

5280

5281
5282
5283
5284
5285
5286
5287
5288

5289
5290
5291














5292


















































































5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
static int fts5ExprNearTest(
  int *pRc,
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_STRING) */
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int rc = *pRc;

  if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
    Fts5ExprTerm *pTerm;
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
    pPhrase->poslist.n = 0;
    for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
      Fts5IndexIter *pIter = pTerm->pIter;
      if( sqlite3Fts5IterEof(pIter)==0 ){
        if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
          pPhrase->poslist.n = 1;
        }
      }
    }
    return pPhrase->poslist.n;
  }else{
    int i;

    /* Check that each phrase in the nearset matches the current row.
    ** Populate the pPhrase->poslist buffers at the same time. If any
    ** phrase is not a match, break out of the loop early.  */
    for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset ){
        int bMatch = 0;
        rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
        if( bMatch==0 ) break;
      }else{

        Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;

        fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
      }
    }

    *pRc = rc;
    if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
      return 1;
    }

    return 0;
  }
}


































































































/*
** Initialize all term iterators in the pNear object. If any term is found
** to match no documents at all, return immediately without initializing any
** further iterators.
*/
static int fts5ExprNearInitAll(
  Fts5Expr *pExpr,
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  int i, j;
  int rc = SQLITE_OK;

  assert( pNode->bNomatch==0 );
  for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
    Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
    for(j=0; j<pPhrase->nTerm; j++){
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
      Fts5ExprTerm *p;
      int bEof = 1;

5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
        return rc;
      }
    }
  }

  return rc;
}

/* fts5ExprNodeNext() calls fts5ExprNodeNextMatch(). And vice-versa. */
static int fts5ExprNodeNextMatch(Fts5Expr*, Fts5ExprNode*);


/*
** If pExpr is an ASC iterator, this function returns a value with the
** same sign as:
**
**   (iLhs - iRhs)
**







<
<
<
<







5335
5336
5337
5338
5339
5340
5341




5342
5343
5344
5345
5346
5347
5348
        return rc;
      }
    }
  }

  return rc;
}





/*
** If pExpr is an ASC iterator, this function returns a value with the
** same sign as:
**
**   (iLhs - iRhs)
**
5254
5255
5256
5257
5258
5259
5260

5261
5262
5263
5264
5265
5266
5267
    return (iLhs < iRhs);
  }
}

static void fts5ExprSetEof(Fts5ExprNode *pNode){
  int i;
  pNode->bEof = 1;

  for(i=0; i<pNode->nChild; i++){
    fts5ExprSetEof(pNode->apChild[i]);
  }
}

static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
  if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){







>







5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
    return (iLhs < iRhs);
  }
}

static void fts5ExprSetEof(Fts5ExprNode *pNode){
  int i;
  pNode->bEof = 1;
  pNode->bNomatch = 0;
  for(i=0; i<pNode->nChild; i++){
    fts5ExprSetEof(pNode->apChild[i]);
  }
}

static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
  if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
5276
5277
5278
5279
5280
5281
5282















































































































































































































































5283
























5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
    for(i=0; i<pNode->nChild; i++){
      fts5ExprNodeZeroPoslist(pNode->apChild[i]);
    }
  }
}

















































































































































































































































static int fts5ExprNodeNext(Fts5Expr*, Fts5ExprNode*, int, i64);

























/*
** Argument pNode is an FTS5_AND node.
*/
static int fts5ExprAndNextRowid(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pAnd              /* FTS5_AND node to advance */
){
  int iChild;
  i64 iLast = pAnd->iRowid;
  int rc = SQLITE_OK;
  int bMatch;

  assert( pAnd->bEof==0 );
  do {
    pAnd->bNomatch = 0;
    bMatch = 1;
    for(iChild=0; iChild<pAnd->nChild; iChild++){
      Fts5ExprNode *pChild = pAnd->apChild[iChild];
      if( 0 && pChild->eType==FTS5_STRING ){
        /* TODO */
      }else{
        int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
        if( cmp>0 ){
          /* Advance pChild until it points to iLast or laster */
          rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
          if( rc!=SQLITE_OK ) return rc;
        }
      }

      /* If the child node is now at EOF, so is the parent AND node. Otherwise,
      ** the child node is guaranteed to have advanced at least as far as
      ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
      ** new lastest rowid seen so far.  */
      assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|














<
<
<
|
|
|
|
|
<







5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676



5677
5678
5679
5680
5681

5682
5683
5684
5685
5686
5687
5688
    for(i=0; i<pNode->nChild; i++){
      fts5ExprNodeZeroPoslist(pNode->apChild[i]);
    }
  }
}



/*
** Compare the values currently indicated by the two nodes as follows:
**
**    res = (*p1) - (*p2)
**
** Nodes that point to values that come later in the iteration order are
** considered to be larger. Nodes at EOF are the largest of all.
**
** This means that if the iteration order is ASC, then numerically larger
** rowids are considered larger. Or if it is the default DESC, numerically
** smaller rowids are larger.
*/
static int fts5NodeCompare(
  Fts5Expr *pExpr,
  Fts5ExprNode *p1, 
  Fts5ExprNode *p2
){
  if( p2->bEof ) return -1;
  if( p1->bEof ) return +1;
  return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
}

/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators
** point to the same rowid, and if not, advances them until they do.
** If an EOF is reached before this happens, *pbEof is set to true before
** returning.
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code 
** otherwise. It is not considered an error code if an iterator reaches
** EOF.
*/
static int fts5ExprNodeTest_STRING(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode
){
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
  int rc = SQLITE_OK;
  i64 iLast;                      /* Lastest rowid any iterator points to */
  int i, j;                       /* Phrase and token index, respectively */
  int bMatch;                     /* True if all terms are at the same rowid */
  const int bDesc = pExpr->bDesc;

  /* Check that this node should not be FTS5_TERM */
  assert( pNear->nPhrase>1 
       || pNear->apPhrase[0]->nTerm>1 
       || pNear->apPhrase[0]->aTerm[0].pSynonym
  );

  /* Initialize iLast, the "lastest" rowid any iterator points to. If the
  ** iterator skips through rowids in the default ascending order, this means
  ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
  ** means the minimum rowid.  */
  if( pLeft->aTerm[0].pSynonym ){
    iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
  }else{
    iLast = pLeft->aTerm[0].pIter->iRowid;
  }

  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bNomatch = 0;
            pNode->bEof = 1;
            return rc;
          }
        }else{
          Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
          if( pIter->iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
            return rc;
          }
        }
      }
    }
  }while( bMatch==0 );

  pNode->iRowid = iLast;
  pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
  assert( pNode->bEof==0 || pNode->bNomatch==0 );

  return rc;
}

/*
** Advance the first term iterator in the first phrase of pNear. Set output
** variable *pbEof to true if it reaches EOF or if an error occurs.
**
** Return SQLITE_OK if successful, or an SQLite error code if an error
** occurs.
*/
static int fts5ExprNodeNext_STRING(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc = SQLITE_OK;

  pNode->bNomatch = 0;
  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);

    /* Advance each iterator that currently points to iRowid. Or, if iFrom
    ** is valid - each iterator that points to a rowid before iFrom.  */
    for(p=pTerm; p; p=p->pSynonym){
      if( sqlite3Fts5IterEof(p->pIter)==0 ){
        i64 ii = p->pIter->iRowid;
        if( ii==iRowid 
         || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc) 
        ){
          if( bFromValid ){
            rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
          }else{
            rc = sqlite3Fts5IterNext(p->pIter);
          }
          if( rc!=SQLITE_OK ) break;
          if( sqlite3Fts5IterEof(p->pIter)==0 ){
            bEof = 0;
          }
        }else{
          bEof = 0;
        }
      }
    }

    /* Set the EOF flag if either all synonym iterators are at EOF or an
    ** error has occurred.  */
    pNode->bEof = (rc || bEof);
  }else{
    Fts5IndexIter *pIter = pTerm->pIter;

    assert( Fts5NodeIsString(pNode) );
    if( bFromValid ){
      rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
    }else{
      rc = sqlite3Fts5IterNext(pIter);
    }

    pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
  }

  if( pNode->bEof==0 ){
    assert( rc==SQLITE_OK );
    rc = fts5ExprNodeTest_STRING(pExpr, pNode);
  }

  return rc;
}


static int fts5ExprNodeTest_TERM(
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_TERM) */
){
  /* As this "NEAR" object is actually a single phrase that consists 
  ** of a single term only, grab pointers into the poslist managed by the
  ** fts5_index.c iterator object. This is much faster than synthesizing 
  ** a new poslist the way we have to for more complicated phrase or NEAR
  ** expressions.  */
  Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
  Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;

  assert( pNode->eType==FTS5_TERM );
  assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
  assert( pPhrase->aTerm[0].pSynonym==0 );

  pPhrase->poslist.n = pIter->nData;
  if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
    pPhrase->poslist.p = (u8*)pIter->pData;
  }
  pNode->iRowid = pIter->iRowid;
  pNode->bNomatch = (pPhrase->poslist.n==0);
  return SQLITE_OK;
}

/*
** xNext() method for a node of type FTS5_TERM.
*/
static int fts5ExprNodeNext_TERM(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int rc;
  Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;

  assert( pNode->bEof==0 );
  if( bFromValid ){
    rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
  }else{
    rc = sqlite3Fts5IterNext(pIter);
  }
  if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
    rc = fts5ExprNodeTest_TERM(pExpr, pNode);
  }else{
    pNode->bEof = 1;
    pNode->bNomatch = 0;
  }
  return rc;
}

static void fts5ExprNodeTest_OR(
  Fts5Expr *pExpr,                /* Expression of which pNode is a part */
  Fts5ExprNode *pNode             /* Expression node to test */
){
  Fts5ExprNode *pNext = pNode->apChild[0];
  int i;

  for(i=1; i<pNode->nChild; i++){
    Fts5ExprNode *pChild = pNode->apChild[i];
    int cmp = fts5NodeCompare(pExpr, pNext, pChild);
    if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
      pNext = pChild;
    }
  }
  pNode->iRowid = pNext->iRowid;
  pNode->bEof = pNext->bEof;
  pNode->bNomatch = pNext->bNomatch;
}

static int fts5ExprNodeNext_OR(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int i;
  i64 iLast = pNode->iRowid;

  for(i=0; i<pNode->nChild; i++){
    Fts5ExprNode *p1 = pNode->apChild[i];
    assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
    if( p1->bEof==0 ){
      if( (p1->iRowid==iLast) 
       || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
      ){
        int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
        if( rc!=SQLITE_OK ) return rc;
      }
    }
  }

  fts5ExprNodeTest_OR(pExpr, pNode);
  return SQLITE_OK;
}

/*
** Argument pNode is an FTS5_AND node.
*/
static int fts5ExprNodeTest_AND(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pAnd              /* FTS5_AND node to advance */
){
  int iChild;
  i64 iLast = pAnd->iRowid;
  int rc = SQLITE_OK;
  int bMatch;

  assert( pAnd->bEof==0 );
  do {
    pAnd->bNomatch = 0;
    bMatch = 1;
    for(iChild=0; iChild<pAnd->nChild; iChild++){
      Fts5ExprNode *pChild = pAnd->apChild[iChild];



      int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
      if( cmp>0 ){
        /* Advance pChild until it points to iLast or laster */
        rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
        if( rc!=SQLITE_OK ) return rc;

      }

      /* If the child node is now at EOF, so is the parent AND node. Otherwise,
      ** the child node is guaranteed to have advanced at least as far as
      ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
      ** new lastest rowid seen so far.  */
      assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
5334
5335
5336
5337
5338
5339
5340









5341
5342
5343
5344
5345

5346
5347
5348
5349
5350
5351
5352
5353
5354
5355



5356
5357
5358
5359
5360
5361
5362





5363
5364




5365
5366
5367
5368





5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535

5536
5537
5538
5539
5540
5541

5542

5543


5544
5545















5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
  if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
    fts5ExprNodeZeroPoslist(pAnd);
  }
  pAnd->iRowid = iLast;
  return SQLITE_OK;
}











/*
** Compare the values currently indicated by the two nodes as follows:
**
**    res = (*p1) - (*p2)

**
** Nodes that point to values that come later in the iteration order are
** considered to be larger. Nodes at EOF are the largest of all.
**
** This means that if the iteration order is ASC, then numerically larger
** rowids are considered larger. Or if it is the default DESC, numerically
** smaller rowids are larger.
*/
static int fts5NodeCompare(
  Fts5Expr *pExpr,



  Fts5ExprNode *p1, 
  Fts5ExprNode *p2
){
  if( p2->bEof ) return -1;
  if( p1->bEof ) return +1;
  return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
}






/*




** Advance node iterator pNode, part of expression pExpr. If argument
** bFromValid is zero, then pNode is advanced exactly once. Or, if argument
** bFromValid is non-zero, then pNode is advanced until it is at or past
** rowid value iFrom. Whether "past" means "less than" or "greater than"





** depends on whether this is an ASC or DESC iterator.
*/
static int fts5ExprNodeNext(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int rc = SQLITE_OK;

  if( pNode->bEof==0 ){
    switch( pNode->eType ){
      case FTS5_STRING: {
        rc = fts5ExprNearAdvanceFirst(pExpr, pNode, bFromValid, iFrom);
        break;
      };

      case FTS5_TERM: {
        Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
        if( bFromValid ){
          rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
        }else{
          rc = sqlite3Fts5IterNext(pIter);
        }
        if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
          assert( rc==SQLITE_OK );
          rc = fts5ExprTokenTest(pExpr, pNode);
        }else{
          pNode->bEof = 1;
        }
        return rc;
      };

      case FTS5_AND: {
        Fts5ExprNode *pLeft = pNode->apChild[0];
        rc = fts5ExprNodeNext(pExpr, pLeft, bFromValid, iFrom);
        break;
      }

      case FTS5_OR: {
        int i;
        i64 iLast = pNode->iRowid;

        for(i=0; rc==SQLITE_OK && i<pNode->nChild; i++){
          Fts5ExprNode *p1 = pNode->apChild[i];
          assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
          if( p1->bEof==0 ){
            if( (p1->iRowid==iLast) 
             || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
            ){
              rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
            }
          }
        }

        break;
      }

      default: assert( pNode->eType==FTS5_NOT ); {
        assert( pNode->nChild==2 );
        rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
        break;
      }
    }

    if( rc==SQLITE_OK ){
      rc = fts5ExprNodeNextMatch(pExpr, pNode);
    }
  }

  /* Assert that if bFromValid was true, either:
  **
  **   a) an error occurred, or
  **   b) the node is now at EOF, or
  **   c) the node is now at or past rowid iFrom.
  */
  assert( bFromValid==0 
      || rc!=SQLITE_OK                                                  /* a */
      || pNode->bEof                                                    /* b */
      || pNode->iRowid==iFrom || pExpr->bDesc==(pNode->iRowid<iFrom)    /* c */
  );

  return rc;
}


/*
** If pNode currently points to a match, this function returns SQLITE_OK
** without modifying it. Otherwise, pNode is advanced until it does point
** to a match or EOF is reached.
*/
static int fts5ExprNodeNextMatch(
  Fts5Expr *pExpr,                /* Expression of which pNode is a part */
  Fts5ExprNode *pNode             /* Expression node to test */
){
  int rc = SQLITE_OK;
  if( pNode->bEof==0 ){
    switch( pNode->eType ){

      case FTS5_STRING: {
        /* Advance the iterators until they all point to the same rowid */
        rc = fts5ExprNearNextMatch(pExpr, pNode);
        break;
      }

      case FTS5_TERM: {
        rc = fts5ExprTokenTest(pExpr, pNode);
        break;
      }

      case FTS5_AND: {
        rc = fts5ExprAndNextRowid(pExpr, pNode);
        break;
      }

      case FTS5_OR: {
        Fts5ExprNode *pNext = pNode->apChild[0];
        int i;

        for(i=1; i<pNode->nChild; i++){
          Fts5ExprNode *pChild = pNode->apChild[i];
          int cmp = fts5NodeCompare(pExpr, pNext, pChild);
          if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
            pNext = pChild;
          }
        }
        pNode->iRowid = pNext->iRowid;
        pNode->bEof = pNext->bEof;
        pNode->bNomatch = pNext->bNomatch;
        break;
      }

      default: assert( pNode->eType==FTS5_NOT ); {
        Fts5ExprNode *p1 = pNode->apChild[0];
        Fts5ExprNode *p2 = pNode->apChild[1];
        assert( pNode->nChild==2 );

        while( rc==SQLITE_OK && p1->bEof==0 ){
          int cmp = fts5NodeCompare(pExpr, p1, p2);
          if( cmp>0 ){
            rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
            cmp = fts5NodeCompare(pExpr, p1, p2);
          }
          assert( rc!=SQLITE_OK || cmp<=0 );
          if( cmp || p2->bNomatch ) break;
          rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
        }
        pNode->bEof = p1->bEof;
        pNode->iRowid = p1->iRowid;
        break;
      }
    }
  }
  return rc;
}

 
/*
** Set node pNode, which is part of expression pExpr, to point to the first
** match. If there are no matches, set the Node.bEof flag to indicate EOF.
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
** It is not an error if there are no matches.
*/
static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
  int rc = SQLITE_OK;
  pNode->bEof = 0;


  if( Fts5NodeIsString(pNode) ){
    /* Initialize all term iterators in the NEAR object. */
    rc = fts5ExprNearInitAll(pExpr, pNode);
  }else{
    int i;

    for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){

      rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);


    }
    pNode->iRowid = pNode->apChild[0]->iRowid;















  }

  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeNextMatch(pExpr, pNode);
  }
  return rc;
}


/*
** Begin iterating through the set of documents in index pIdx matched by







>
>
>
>
>
>
>
>
>
|
<
<
<
|
>
|
<
<
<
<
<
<
<
|
|
>
>
>
|
|
<
|
<
<
|
>
>
>
>
>
|
<
>
>
>
>
|
<
|
|
>
>
>
>
>
|
<
|





<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<



<





|








<
|




|




|




<
<
|
<
<
<
<
<
<
<
<
<
<




<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<


















>






>

>

>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|







5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720



5721
5722
5723







5724
5725
5726
5727
5728
5729
5730

5731


5732
5733
5734
5735
5736
5737
5738

5739
5740
5741
5742
5743

5744
5745
5746
5747
5748
5749
5750
5751

5752
5753
5754
5755
5756
5757




















































5758




5759
5760
5761














5762
5763
5764

5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778

5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793


5794










5795
5796
5797
5798












5799



5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
  if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
    fts5ExprNodeZeroPoslist(pAnd);
  }
  pAnd->iRowid = iLast;
  return SQLITE_OK;
}

static int fts5ExprNodeNext_AND(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){
  int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeTest_AND(pExpr, pNode);
  }



  return rc;
}








static int fts5ExprNodeTest_NOT(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode             /* FTS5_NOT node to advance */
){
  int rc = SQLITE_OK;
  Fts5ExprNode *p1 = pNode->apChild[0];
  Fts5ExprNode *p2 = pNode->apChild[1];

  assert( pNode->nChild==2 );



  while( rc==SQLITE_OK && p1->bEof==0 ){
    int cmp = fts5NodeCompare(pExpr, p1, p2);
    if( cmp>0 ){
      rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
      cmp = fts5NodeCompare(pExpr, p1, p2);
    }

    assert( rc!=SQLITE_OK || cmp<=0 );
    if( cmp || p2->bNomatch ) break;
    rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
  }
  pNode->bEof = p1->bEof;

  pNode->bNomatch = p1->bNomatch;
  pNode->iRowid = p1->iRowid;
  if( p1->bEof ){
    fts5ExprNodeZeroPoslist(p2);
  }
  return rc;
}


static int fts5ExprNodeNext_NOT(
  Fts5Expr *pExpr, 
  Fts5ExprNode *pNode,
  int bFromValid,
  i64 iFrom
){




















































  int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);




  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeTest_NOT(pExpr, pNode);
  }














  return rc;
}


/*
** If pNode currently points to a match, this function returns SQLITE_OK
** without modifying it. Otherwise, pNode is advanced until it does point
** to a match or EOF is reached.
*/
static int fts5ExprNodeTest(
  Fts5Expr *pExpr,                /* Expression of which pNode is a part */
  Fts5ExprNode *pNode             /* Expression node to test */
){
  int rc = SQLITE_OK;
  if( pNode->bEof==0 ){
    switch( pNode->eType ){

      case FTS5_STRING: {

        rc = fts5ExprNodeTest_STRING(pExpr, pNode);
        break;
      }

      case FTS5_TERM: {
        rc = fts5ExprNodeTest_TERM(pExpr, pNode);
        break;
      }

      case FTS5_AND: {
        rc = fts5ExprNodeTest_AND(pExpr, pNode);
        break;
      }

      case FTS5_OR: {


        fts5ExprNodeTest_OR(pExpr, pNode);










        break;
      }

      default: assert( pNode->eType==FTS5_NOT ); {












        rc = fts5ExprNodeTest_NOT(pExpr, pNode);



        break;
      }
    }
  }
  return rc;
}

 
/*
** Set node pNode, which is part of expression pExpr, to point to the first
** match. If there are no matches, set the Node.bEof flag to indicate EOF.
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
** It is not an error if there are no matches.
*/
static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
  int rc = SQLITE_OK;
  pNode->bEof = 0;
  pNode->bNomatch = 0;

  if( Fts5NodeIsString(pNode) ){
    /* Initialize all term iterators in the NEAR object. */
    rc = fts5ExprNearInitAll(pExpr, pNode);
  }else{
    int i;
    int nEof = 0;
    for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
      Fts5ExprNode *pChild = pNode->apChild[i];
      rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
      assert( pChild->bEof==0 || pChild->bEof==1 );
      nEof += pChild->bEof;
    }
    pNode->iRowid = pNode->apChild[0]->iRowid;

    switch( pNode->eType ){
      case FTS5_AND:
        if( nEof>0 ) fts5ExprSetEof(pNode);
        break;

      case FTS5_OR:
        if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
        break;

      default:
        assert( pNode->eType==FTS5_NOT );
        pNode->bEof = pNode->apChild[0]->bEof;
        break;
    }
  }

  if( rc==SQLITE_OK ){
    rc = fts5ExprNodeTest(pExpr, pNode);
  }
  return rc;
}


/*
** Begin iterating through the set of documents in index pIdx matched by
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585

5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600

5601
5602

5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
  Fts5ExprNode *pRoot = p->pRoot;
  int rc = SQLITE_OK;
  if( pRoot ){
    p->pIndex = pIdx;
    p->bDesc = bDesc;
    rc = fts5ExprNodeFirst(p, pRoot);

    /* If not at EOF but the current rowid occurs earlier than iFirst in
    ** the iteration order, move to document iFirst or later. */
    if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){
      rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
    }

    /* If the iterator is not at a real match, skip forward until it is. */
    while( pRoot->bNomatch && rc==SQLITE_OK && pRoot->bEof==0 ){

      rc = fts5ExprNodeNext(p, pRoot, 0, 0);
    }
  }
  return rc;
}

/*
** Move to the next document 
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
  int rc;
  Fts5ExprNode *pRoot = p->pRoot;

  do {
    rc = fts5ExprNodeNext(p, pRoot, 0, 0);

  }while( pRoot->bNomatch && pRoot->bEof==0 && rc==SQLITE_OK );
  if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
    pRoot->bEof = 1;
  }
  return rc;
}

static int sqlite3Fts5ExprEof(Fts5Expr *p){
  return (p->pRoot==0 || p->pRoot->bEof);
}

static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
  return p->pRoot->iRowid;
}

static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){







|











|
>















>


>
|







|







5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
  Fts5ExprNode *pRoot = p->pRoot;
  int rc = SQLITE_OK;
  if( pRoot->xNext ){
    p->pIndex = pIdx;
    p->bDesc = bDesc;
    rc = fts5ExprNodeFirst(p, pRoot);

    /* If not at EOF but the current rowid occurs earlier than iFirst in
    ** the iteration order, move to document iFirst or later. */
    if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){
      rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
    }

    /* If the iterator is not at a real match, skip forward until it is. */
    while( pRoot->bNomatch ){
      assert( pRoot->bEof==0 && rc==SQLITE_OK );
      rc = fts5ExprNodeNext(p, pRoot, 0, 0);
    }
  }
  return rc;
}

/*
** Move to the next document 
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
  int rc;
  Fts5ExprNode *pRoot = p->pRoot;
  assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
  do {
    rc = fts5ExprNodeNext(p, pRoot, 0, 0);
    assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
  }while( pRoot->bNomatch );
  if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
    pRoot->bEof = 1;
  }
  return rc;
}

static int sqlite3Fts5ExprEof(Fts5Expr *p){
  return p->pRoot->bEof;
}

static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
  return p->pRoot->iRowid;
}

static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639

5640
5641
5642
5643
5644
5645
5646
    int i;
    for(i=0; i<pPhrase->nTerm; i++){
      Fts5ExprTerm *pSyn;
      Fts5ExprTerm *pNext;
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
      sqlite3_free(pTerm->zTerm);
      sqlite3Fts5IterClose(pTerm->pIter);

      for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
        pNext = pSyn->pSynonym;
        sqlite3Fts5IterClose(pSyn->pIter);

        sqlite3_free(pSyn);
      }
    }
    if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
    sqlite3_free(pPhrase);
  }
}







<



>







5934
5935
5936
5937
5938
5939
5940

5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
    int i;
    for(i=0; i<pPhrase->nTerm; i++){
      Fts5ExprTerm *pSyn;
      Fts5ExprTerm *pNext;
      Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
      sqlite3_free(pTerm->zTerm);
      sqlite3Fts5IterClose(pTerm->pIter);

      for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
        pNext = pSyn->pSynonym;
        sqlite3Fts5IterClose(pSyn->pIter);
        fts5BufferFree((Fts5Buffer*)&pSyn[1]);
        sqlite3_free(pSyn);
      }
    }
    if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
    sqlite3_free(pPhrase);
  }
}
5713
5714
5715
5716
5717
5718
5719


5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  int rc = SQLITE_OK;
  const int SZALLOC = 8;
  TokenCtx *pCtx = (TokenCtx*)pContext;
  Fts5ExprPhrase *pPhrase = pCtx->pPhrase;



  /* If an error has already occurred, this is a no-op */
  if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;

  assert( pPhrase==0 || pPhrase->nTerm>0 );
  if( pPhrase && (tflags & FTS5_TOKEN_COLOCATED) ){
    Fts5ExprTerm *pSyn;
    int nByte = sizeof(Fts5ExprTerm) + nToken+1;
    pSyn = (Fts5ExprTerm*)sqlite3_malloc(nByte);
    if( pSyn==0 ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pSyn, 0, nByte);
      pSyn->zTerm = (char*)&pSyn[1];
      memcpy(pSyn->zTerm, pToken, nToken);
      pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
      pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
    }
  }else{
    Fts5ExprTerm *pTerm;
    if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){







>
>







|





|







6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  int rc = SQLITE_OK;
  const int SZALLOC = 8;
  TokenCtx *pCtx = (TokenCtx*)pContext;
  Fts5ExprPhrase *pPhrase = pCtx->pPhrase;

  UNUSED_PARAM2(iUnused1, iUnused2);

  /* If an error has already occurred, this is a no-op */
  if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;

  assert( pPhrase==0 || pPhrase->nTerm>0 );
  if( pPhrase && (tflags & FTS5_TOKEN_COLOCATED) ){
    Fts5ExprTerm *pSyn;
    int nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
    pSyn = (Fts5ExprTerm*)sqlite3_malloc(nByte);
    if( pSyn==0 ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pSyn, 0, nByte);
      pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
      memcpy(pSyn->zTerm, pToken, nToken);
      pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
      pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
    }
  }else{
    Fts5ExprTerm *pTerm;
    if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
}

/*
** Create a new FTS5 expression by cloning phrase iPhrase of the
** expression passed as the second argument.
*/
static int sqlite3Fts5ExprClonePhrase(
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */
  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */

  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
  if( rc==SQLITE_OK ){
    pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc, 
        sizeof(Fts5ExprPhrase*));
  }
  if( rc==SQLITE_OK ){
    pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, 







<







<

<


<

<







6156
6157
6158
6159
6160
6161
6162

6163
6164
6165
6166
6167
6168
6169

6170

6171
6172

6173

6174
6175
6176
6177
6178
6179
6180
}

/*
** Create a new FTS5 expression by cloning phrase iPhrase of the
** expression passed as the second argument.
*/
static int sqlite3Fts5ExprClonePhrase(

  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */
  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */

  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
  if( rc==SQLITE_OK ){
    pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc, 
        sizeof(Fts5ExprPhrase*));
  }
  if( rc==SQLITE_OK ){
    pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, 
5896
5897
5898
5899
5900
5901
5902

5903
5904
5905
5906
5907
5908
5909
5910

5911
5912

5913
5914
5915
5916
5917
5918
5919
      sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
    }
  }

  if( rc==SQLITE_OK ){
    /* All the allocations succeeded. Put the expression object together. */
    pNew->pIndex = pExpr->pIndex;

    pNew->nPhrase = 1;
    pNew->apExprPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->nPhrase = 1;
    sCtx.pPhrase->pNode = pNew->pRoot;

    if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 ){
      pNew->pRoot->eType = FTS5_TERM;

    }else{
      pNew->pRoot->eType = FTS5_STRING;

    }
  }else{
    sqlite3Fts5ExprFree(pNew);
    fts5ExprPhraseFree(sCtx.pPhrase);
    pNew = 0;
  }








>








>


>







6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
      sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
    }
  }

  if( rc==SQLITE_OK ){
    /* All the allocations succeeded. Put the expression object together. */
    pNew->pIndex = pExpr->pIndex;
    pNew->pConfig = pExpr->pConfig;
    pNew->nPhrase = 1;
    pNew->apExprPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->nPhrase = 1;
    sCtx.pPhrase->pNode = pNew->pRoot;

    if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 ){
      pNew->pRoot->eType = FTS5_TERM;
      pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
    }else{
      pNew->pRoot->eType = FTS5_STRING;
      pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
    }
  }else{
    sqlite3Fts5ExprFree(pNew);
    fts5ExprPhraseFree(sCtx.pPhrase);
    pNew = 0;
  }

6037
6038
6039
6040
6041
6042
6043









6044
6045
6046
6047
6048
6049
































6050
6051
6052
6053
6054
6055
6056
}

static void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNearset *pNear, 
  Fts5Colset *pColset 
){









  if( pNear ){
    pNear->pColset = pColset;
  }else{
    sqlite3_free(pColset);
  }
}

































static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
  if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
    int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
    memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
    p->nChild += pSub->nChild;
    sqlite3_free(pSub);







>
>
>
>
>
>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
}

static void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNearset *pNear, 
  Fts5Colset *pColset 
){
  if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pParse->rc = SQLITE_ERROR;
    pParse->zErr = sqlite3_mprintf(
      "fts5: column queries are not supported (detail=none)"
    );
    sqlite3_free(pColset);
    return;
  }

  if( pNear ){
    pNear->pColset = pColset;
  }else{
    sqlite3_free(pColset);
  }
}

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 
       && pNear->apPhrase[0]->aTerm[0].pSynonym==0
      ){
        pNode->eType = FTS5_TERM;
        pNode->xNext = fts5ExprNodeNext_TERM;
      }else{
        pNode->xNext = fts5ExprNodeNext_STRING;
      }
      break;
    };

    case FTS5_OR: {
      pNode->xNext = fts5ExprNodeNext_OR;
      break;
    };

    case FTS5_AND: {
      pNode->xNext = fts5ExprNodeNext_AND;
      break;
    };

    default: assert( pNode->eType==FTS5_NOT ); {
      pNode->xNext = fts5ExprNodeNext_NOT;
      break;
    };
  }
}

static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
  if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
    int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
    memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
    p->nChild += pSub->nChild;
    sqlite3_free(pSub);
6093
6094
6095
6096
6097
6098
6099

6100
6101
6102
6103
6104
6105

6106
6107
6108








6109
6110

6111
6112
6113
6114
6115
6116
6117

    nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
    pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);

    if( pRet ){
      pRet->eType = eType;
      pRet->pNear = pNear;

      if( eType==FTS5_STRING ){
        int iPhrase;
        for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
          pNear->apPhrase[iPhrase]->pNode = pRet;
        }
        if( pNear->nPhrase==1 

         && pNear->apPhrase[0]->nTerm==1 
         && pNear->apPhrase[0]->aTerm[0].pSynonym==0
        ){








          pRet->eType = FTS5_TERM;
        }

      }else{
        fts5ExprAddChildren(pRet, pLeft);
        fts5ExprAddChildren(pRet, pRight);
      }
    }
  }








>





|
>
|
<

>
>
>
>
>
>
>
>
|

>







6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454

6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473

    nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
    pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);

    if( pRet ){
      pRet->eType = eType;
      pRet->pNear = pNear;
      fts5ExprAssignXNext(pRet);
      if( eType==FTS5_STRING ){
        int iPhrase;
        for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
          pNear->apPhrase[iPhrase]->pNode = pRet;
        }

        if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL 
         && (pNear->nPhrase!=1 || pNear->apPhrase[0]->nTerm!=1)

        ){
          assert( pParse->rc==SQLITE_OK );
          pParse->rc = SQLITE_ERROR;
          assert( pParse->zErr==0 );
          pParse->zErr = sqlite3_mprintf(
              "fts5: %s queries are not supported (detail!=full)", 
              pNear->nPhrase==1 ? "phrase": "NEAR"
          );
          sqlite3_free(pRet);
          pRet = 0;
        }

      }else{
        fts5ExprAddChildren(pRet, pLeft);
        fts5ExprAddChildren(pRet, pRight);
      }
    }
  }

6216
6217
6218
6219
6220
6221
6222



6223
6224
6225
6226
6227
6228
6229
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];

      zRet = fts5PrintfAppend(zRet, " {");
      for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
        char *zTerm = pPhrase->aTerm[iTerm].zTerm;
        zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);



      }

      if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
      if( zRet==0 ) return 0;
    }

  }else{







>
>
>







6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];

      zRet = fts5PrintfAppend(zRet, " {");
      for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
        char *zTerm = pPhrase->aTerm[iTerm].zTerm;
        zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
        if( pPhrase->aTerm[iTerm].bPrefix ){
          zRet = fts5PrintfAppend(zRet, "*");
        }
      }

      if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
      if( zRet==0 ) return 0;
    }

  }else{
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
    }else{
      zText = fts5ExprPrint(pConfig, pExpr->pRoot);
    }
    if( zText==0 ){







|







6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot->xNext==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
    }else{
      zText = fts5ExprPrint(pConfig, pExpr->pRoot);
    }
    if( zText==0 ){
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
    { "fts5_isalnum",  fts5ExprIsAlnum },
    { "fts5_fold",     fts5ExprFold },
  };
  int i;
  int rc = SQLITE_OK;
  void *pCtx = (void*)pGlobal;

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aFunc); i++){
    struct Fts5ExprFunc *p = &aFunc[i];
    rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
  }

  /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
#ifndef NDEBUG
  (void)sqlite3Fts5ParserTrace;







|







6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
    { "fts5_isalnum",  fts5ExprIsAlnum },
    { "fts5_fold",     fts5ExprFold },
  };
  int i;
  int rc = SQLITE_OK;
  void *pCtx = (void*)pGlobal;

  for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
    struct Fts5ExprFunc *p = &aFunc[i];
    rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
  }

  /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
#ifndef NDEBUG
  (void)sqlite3Fts5ParserTrace;
6528
6529
6530
6531
6532
6533
6534



























































































































































































































6535
6536
6537
6538
6539
6540
6541
    nRet = pPhrase->poslist.n;
  }else{
    *pa = 0;
    nRet = 0;
  }
  return nRet;
}




























































































































































































































#line 1 "fts5_hash.c"
/*
** 2014 August 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
    nRet = pPhrase->poslist.n;
  }else{
    *pa = 0;
    nRet = 0;
  }
  return nRet;
}

struct Fts5PoslistPopulator {
  Fts5PoslistWriter writer;
  int bOk;                        /* True if ok to populate */
  int bMiss;
};

static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
  Fts5PoslistPopulator *pRet;
  pRet = sqlite3_malloc(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
  if( pRet ){
    int i;
    memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
    for(i=0; i<pExpr->nPhrase; i++){
      Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
      Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
      assert( pExpr->apExprPhrase[i]->nTerm==1 );
      if( bLive && 
          (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
      ){
        pRet[i].bMiss = 1;
      }else{
        pBuf->n = 0;
      }
    }
  }
  return pRet;
}

struct Fts5ExprCtx {
  Fts5Expr *pExpr;
  Fts5PoslistPopulator *aPopulator;
  i64 iOff;
};
typedef struct Fts5ExprCtx Fts5ExprCtx;

/*
** TODO: Make this more efficient!
*/
static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
  int i;
  for(i=0; i<pColset->nCol; i++){
    if( pColset->aiCol[i]==iCol ) return 1;
  }
  return 0;
}

static int fts5ExprPopulatePoslistsCb(
  void *pCtx,                /* Copy of 2nd argument to xTokenize() */
  int tflags,                /* Mask of FTS5_TOKEN_* flags */
  const char *pToken,        /* Pointer to buffer containing token */
  int nToken,                /* Size of token in bytes */
  int iUnused1,              /* Byte offset of token within input text */
  int iUnused2               /* Byte offset of end of token within input text */
){
  Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
  Fts5Expr *pExpr = p->pExpr;
  int i;

  UNUSED_PARAM2(iUnused1, iUnused2);

  if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
  for(i=0; i<pExpr->nPhrase; i++){
    Fts5ExprTerm *pTerm;
    if( p->aPopulator[i].bOk==0 ) continue;
    for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
      int nTerm = strlen(pTerm->zTerm);
      if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix))
       && memcmp(pTerm->zTerm, pToken, nTerm)==0
      ){
        int rc = sqlite3Fts5PoslistWriterAppend(
            &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
        );
        if( rc ) return rc;
        break;
      }
    }
  }
  return SQLITE_OK;
}

static int sqlite3Fts5ExprPopulatePoslists(
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  Fts5PoslistPopulator *aPopulator,
  int iCol, 
  const char *z, int n
){
  int i;
  Fts5ExprCtx sCtx;
  sCtx.pExpr = pExpr;
  sCtx.aPopulator = aPopulator;
  sCtx.iOff = (((i64)iCol) << 32) - 1;

  for(i=0; i<pExpr->nPhrase; i++){
    Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
    Fts5Colset *pColset = pNode->pNear->pColset;
    if( (pColset && 0==fts5ExprColsetTest(pColset, iCol)) 
     || aPopulator[i].bMiss
    ){
      aPopulator[i].bOk = 0;
    }else{
      aPopulator[i].bOk = 1;
    }
  }

  return sqlite3Fts5Tokenize(pConfig, 
      FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
  );
}

static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
  if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
    pNode->pNear->apPhrase[0]->poslist.n = 0;
  }else{
    int i;
    for(i=0; i<pNode->nChild; i++){
      fts5ExprClearPoslists(pNode->apChild[i]);
    }
  }
}

static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
  pNode->iRowid = iRowid;
  pNode->bEof = 0;
  switch( pNode->eType ){
    case FTS5_TERM:
    case FTS5_STRING:
      return (pNode->pNear->apPhrase[0]->poslist.n>0);

    case FTS5_AND: {
      int i;
      for(i=0; i<pNode->nChild; i++){
        if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
          fts5ExprClearPoslists(pNode);
          return 0;
        }
      }
      break;
    }

    case FTS5_OR: {
      int i;
      int bRet = 0;
      for(i=0; i<pNode->nChild; i++){
        if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
          bRet = 1;
        }
      }
      return bRet;
    }

    default: {
      assert( pNode->eType==FTS5_NOT );
      if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
          || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
        ){
        fts5ExprClearPoslists(pNode);
        return 0;
      }
      break;
    }
  }
  return 1;
}

static void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
  fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
}

static void fts5ExprClearEof(Fts5ExprNode *pNode){
  int i;
  for(i=0; i<pNode->nChild; i++){
    fts5ExprClearEof(pNode->apChild[i]);
  }
  pNode->bEof = 0;
}
static void sqlite3Fts5ExprClearEof(Fts5Expr *pExpr){
  fts5ExprClearEof(pExpr->pRoot);
}

/*
** This function is only called for detail=columns tables. 
*/
static int sqlite3Fts5ExprPhraseCollist(
  Fts5Expr *pExpr, 
  int iPhrase, 
  const u8 **ppCollist, 
  int *pnCollist
){
  Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
  Fts5ExprNode *pNode = pPhrase->pNode;
  int rc = SQLITE_OK;

  assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
  assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );

  if( pNode->bEof==0 
   && pNode->iRowid==pExpr->pRoot->iRowid 
   && pPhrase->poslist.n>0
  ){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
    if( pTerm->pSynonym ){
      Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
      rc = fts5ExprSynonymList(
          pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
      );
    }else{
      *ppCollist = pPhrase->aTerm[0].pIter->pData;
      *pnCollist = pPhrase->aTerm[0].pIter->nData;
    }
  }else{
    *ppCollist = 0;
    *pnCollist = 0;
  }

  return rc;
}


#line 1 "fts5_hash.c"
/*
** 2014 August 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
6558
6559
6560
6561
6562
6563
6564

6565
6566
6567
6568
6569
6570
6571
** This file contains the implementation of an in-memory hash table used
** to accumuluate "term -> doclist" content before it is flused to a level-0
** segment.
*/


struct Fts5Hash {

  int *pnByte;                    /* Pointer to bytes counter */
  int nEntry;                     /* Number of entries currently in hash */
  int nSlot;                      /* Size of aSlot[] array */
  Fts5HashEntry *pScan;           /* Current ordered scan item */
  Fts5HashEntry **aSlot;          /* Array of hash slots */
};








>







7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
** This file contains the implementation of an in-memory hash table used
** to accumuluate "term -> doclist" content before it is flused to a level-0
** segment.
*/


struct Fts5Hash {
  int eDetail;                    /* Copy of Fts5Config.eDetail */
  int *pnByte;                    /* Pointer to bytes counter */
  int nEntry;                     /* Number of entries currently in hash */
  int nSlot;                      /* Size of aSlot[] array */
  Fts5HashEntry *pScan;           /* Current ordered scan item */
  Fts5HashEntry **aSlot;          /* Array of hash slots */
};

6593
6594
6595
6596
6597
6598
6599

6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628

6629
6630
6631
6632
6633
6634
6635
struct Fts5HashEntry {
  Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
  Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
  
  int nAlloc;                     /* Total size of allocation */
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */

  u8 bDel;                        /* Set delete-flag @ iSzPoslist */

  int iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*
** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
static int sqlite3Fts5HashNew(Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;

  *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    int nByte;
    memset(pNew, 0, sizeof(Fts5Hash));
    pNew->pnByte = pnByte;


    pNew->nSlot = 1024;
    nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
    pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc(nByte);
    if( pNew->aSlot==0 ){
      sqlite3_free(pNew);
      *ppNew = 0;







>

|
|















|










>







7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
struct Fts5HashEntry {
  Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
  Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
  
  int nAlloc;                     /* Total size of allocation */
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  int nKey;                       /* Length of zKey[] in bytes */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */
  u8 bContent;                    /* Set content-flag (detail=none mode) */
  i16 iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*
** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;

  *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    int nByte;
    memset(pNew, 0, sizeof(Fts5Hash));
    pNew->pnByte = pnByte;
    pNew->eDetail = pConfig->eDetail;

    pNew->nSlot = 1024;
    nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
    pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc(nByte);
    if( pNew->aSlot==0 ){
      sqlite3_free(pNew);
      *ppNew = 0;
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723









6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735

6736
6737


6738
6739
6740








6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752



6753
6754
6755
6756
6757

6758
6759
6760
6761
6762
6763
6764
6765
6766

6767
6768
6769

6770
6771
6772
6773
6774
6775

6776
6777
6778
6779
6780
6781
6782

6783
6784
6785
6786
6787
6788
6789
6790
6791





6792



6793
6794




6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816




6817
6818
6819
6820
6821
6822


6823

6824
6825
6826
6827
6828
6829

6830



6831
6832
6833

6834
6835
6836
6837



6838
6839

6840

6841
6842


6843
6844
6845
6846
6847
6848

6849
6850
6851
6852
6853
6854
6855

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
  pHash->aSlot = apNew;
  return SQLITE_OK;
}

static void fts5HashAddPoslistSize(Fts5HashEntry *p){
  if( p->iSzPoslist ){
    u8 *pPtr = (u8*)p;









    int nSz = (p->nData - p->iSzPoslist - 1);         /* Size in bytes */
    int nPos = nSz*2 + p->bDel;                       /* Value of nPos field */

    assert( p->bDel==0 || p->bDel==1 );
    if( nPos<=127 ){
      pPtr[p->iSzPoslist] = (u8)nPos;
    }else{
      int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
      memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
      sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
      p->nData += (nByte-1);
    }

    p->bDel = 0;
    p->iSzPoslist = 0;


  }
}









static int sqlite3Fts5HashWrite(
  Fts5Hash *pHash,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */
  char bByte,                     /* First byte of token */
  const char *pToken, int nToken  /* Token to add or remove to or from index */
){
  unsigned int iHash;
  Fts5HashEntry *p;
  u8 *pPtr;
  int nIncr = 0;                  /* Amount to increment (*pHash->pnByte) by */




  /* Attempt to locate an existing hash entry */
  iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( p->zKey[0]==bByte 

     && memcmp(&p->zKey[1], pToken, nToken)==0 
     && p->zKey[nToken+1]==0 
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){

    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;


    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
    }


    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, (u8*)p->zKey, nToken+1) );

    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iSzPoslist = p->nData;
    p->nData += 1;
    p->iRowid = iRowid;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;





    nIncr += p->nData;



  }





  /* Check there is enough space to append a new entry. Worst case scenario
  ** is:
  **
  **     + 9 bytes for a new rowid,
  **     + 4 byte reserved for the "poslist size" varint.
  **     + 1 byte for a "new column" byte,
  **     + 3 bytes for a new column number (16-bit max) as a varint,
  **     + 5 bytes for the new position offset (32-bit max).
  */
  if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
    int nNew = p->nAlloc * 2;
    Fts5HashEntry *pNew;
    Fts5HashEntry **pp;
    pNew = (Fts5HashEntry*)sqlite3_realloc(p, nNew);
    if( pNew==0 ) return SQLITE_NOMEM;
    pNew->nAlloc = nNew;
    for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
    *pp = pNew;
    p = pNew;
  }
  pPtr = (u8*)p;
  nIncr -= p->nData;





  /* If this is a new rowid, append the 4-byte size field for the previous
  ** entry, and the new rowid for this entry.  */
  if( iRowid!=p->iRowid ){
    fts5HashAddPoslistSize(p);
    p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iRowid - p->iRowid);


    p->iSzPoslist = p->nData;

    p->nData += 1;
    p->iCol = 0;
    p->iPos = 0;
    p->iRowid = iRowid;
  }


  if( iCol>=0 ){



    /* Append a new column value, if necessary */
    assert( iCol>=p->iCol );
    if( iCol!=p->iCol ){

      pPtr[p->nData++] = 0x01;
      p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
      p->iCol = iCol;
      p->iPos = 0;



    }


    /* Append the new position offset */

    p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
    p->iPos = iPos;


  }else{
    /* This is a delete. Set the delete flag. */
    p->bDel = 1;
  }
  nIncr += p->nData;


  *pHash->pnByte += nIncr;
  return SQLITE_OK;
}


/*
** Arguments pLeft and pRight point to linked-lists of hash-entry objects,







|


>
>
>
>
>
>
>
>
>
|
|

|
|
|
|
|
|
|
|
|
>
|

>
>



>
>
>
>
>
>
>
>












>
>
>





>

<







>



>






>







>


<
<
<
<



>
>
>
>
>
|
>
>
>
|

>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
>
>
>
>




|

>
>

>
|
|
|
<
|
|
>

>
>
>
|
|
|
>
|
|
|
|
>
>
>
|
|
>
|
>
|
|
>
>




<

>







7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363

7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392




7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430

7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448

7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479

7480
7481
7482
7483
7484
7485
7486
7487
7488

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
  pHash->aSlot = apNew;
  return SQLITE_OK;
}

static void fts5HashAddPoslistSize(Fts5Hash *pHash, Fts5HashEntry *p){
  if( p->iSzPoslist ){
    u8 *pPtr = (u8*)p;
    if( pHash->eDetail==FTS5_DETAIL_NONE ){
      assert( p->nData==p->iSzPoslist );
      if( p->bDel ){
        pPtr[p->nData++] = 0x00;
        if( p->bContent ){
          pPtr[p->nData++] = 0x00;
        }
      }
    }else{
      int nSz = (p->nData - p->iSzPoslist - 1);       /* Size in bytes */
      int nPos = nSz*2 + p->bDel;                     /* Value of nPos field */

      assert( p->bDel==0 || p->bDel==1 );
      if( nPos<=127 ){
        pPtr[p->iSzPoslist] = (u8)nPos;
      }else{
        int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
        memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
        sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
        p->nData += (nByte-1);
      }
    }

    p->iSzPoslist = 0;
    p->bDel = 0;
    p->bContent = 0;
  }
}

/*
** Add an entry to the in-memory hash table. The key is the concatenation
** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos).
**
**     (bByte || pToken) -> (iRowid,iCol,iPos)
**
** Or, if iCol is negative, then the value is a delete marker.
*/
static int sqlite3Fts5HashWrite(
  Fts5Hash *pHash,
  i64 iRowid,                     /* Rowid for this entry */
  int iCol,                       /* Column token appears in (-ve -> delete) */
  int iPos,                       /* Position of token within column */
  char bByte,                     /* First byte of token */
  const char *pToken, int nToken  /* Token to add or remove to or from index */
){
  unsigned int iHash;
  Fts5HashEntry *p;
  u8 *pPtr;
  int nIncr = 0;                  /* Amount to increment (*pHash->pnByte) by */
  int bNew;                       /* If non-delete entry should be written */
  
  bNew = (pHash->eDetail==FTS5_DETAIL_FULL);

  /* Attempt to locate an existing hash entry */
  iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( p->zKey[0]==bByte 
     && p->nKey==nToken
     && memcmp(&p->zKey[1], pToken, nToken)==0 

    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    /* Figure out how much space to allocate */
    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    /* Grow the Fts5Hash.aSlot[] array if necessary. */
    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
    }

    /* Allocate new Fts5HashEntry and add it to the hash table. */
    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, (u8*)p->zKey, nToken+1) );
    p->nKey = nToken;
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;




    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;

    /* Add the first rowid field to the hash-entry */
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iRowid = iRowid;

    p->iSzPoslist = p->nData;
    if( pHash->eDetail!=FTS5_DETAIL_NONE ){
      p->nData += 1;
      p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
    }

    nIncr += p->nData;
  }else{

    /* Appending to an existing hash-entry. Check that there is enough 
    ** space to append the largest possible new entry. Worst case scenario 
    ** is:
    **
    **     + 9 bytes for a new rowid,
    **     + 4 byte reserved for the "poslist size" varint.
    **     + 1 byte for a "new column" byte,
    **     + 3 bytes for a new column number (16-bit max) as a varint,
    **     + 5 bytes for the new position offset (32-bit max).
    */
    if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
      int nNew = p->nAlloc * 2;
      Fts5HashEntry *pNew;
      Fts5HashEntry **pp;
      pNew = (Fts5HashEntry*)sqlite3_realloc(p, nNew);
      if( pNew==0 ) return SQLITE_NOMEM;
      pNew->nAlloc = nNew;
      for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
      *pp = pNew;
      p = pNew;
    }

    nIncr -= p->nData;
  }
  assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) );

  pPtr = (u8*)p;

  /* If this is a new rowid, append the 4-byte size field for the previous
  ** entry, and the new rowid for this entry.  */
  if( iRowid!=p->iRowid ){
    fts5HashAddPoslistSize(pHash, p);
    p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iRowid - p->iRowid);
    p->iRowid = iRowid;
    bNew = 1;
    p->iSzPoslist = p->nData;
    if( pHash->eDetail!=FTS5_DETAIL_NONE ){
      p->nData += 1;
      p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
      p->iPos = 0;

    }
  }

  if( iCol>=0 ){
    if( pHash->eDetail==FTS5_DETAIL_NONE ){
      p->bContent = 1;
    }else{
      /* Append a new column value, if necessary */
      assert( iCol>=p->iCol );
      if( iCol!=p->iCol ){
        if( pHash->eDetail==FTS5_DETAIL_FULL ){
          pPtr[p->nData++] = 0x01;
          p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
          p->iCol = iCol;
          p->iPos = 0;
        }else{
          bNew = 1;
          p->iCol = iPos = iCol;
        }
      }

      /* Append the new position offset, if necessary */
      if( bNew ){
        p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
        p->iPos = iPos;
      }
    }
  }else{
    /* This is a delete. Set the delete flag. */
    p->bDel = 1;
  }


  nIncr += p->nData;
  *pHash->pnByte += nIncr;
  return SQLITE_OK;
}


/*
** Arguments pLeft and pRight point to linked-lists of hash-entry objects,
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
  Fts5HashEntry *p;

  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }








|







7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
  Fts5HashEntry *p;

  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(pHash, p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = (int)strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;







|







7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = (int)strlen(p->zKey);
    fts5HashAddPoslistSize(pHash, p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
7267
7268
7269
7270
7271
7272
7273

7274
7275
7276
7277
7278
7279
7280
#define FTS5_DATA_ZERO_PADDING 8
#define FTS5_DATA_PADDING 20

typedef struct Fts5Data Fts5Data;
typedef struct Fts5DlidxIter Fts5DlidxIter;
typedef struct Fts5DlidxLvl Fts5DlidxLvl;
typedef struct Fts5DlidxWriter Fts5DlidxWriter;

typedef struct Fts5PageWriter Fts5PageWriter;
typedef struct Fts5SegIter Fts5SegIter;
typedef struct Fts5DoclistIter Fts5DoclistIter;
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;







>







7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
#define FTS5_DATA_ZERO_PADDING 8
#define FTS5_DATA_PADDING 20

typedef struct Fts5Data Fts5Data;
typedef struct Fts5DlidxIter Fts5DlidxIter;
typedef struct Fts5DlidxLvl Fts5DlidxLvl;
typedef struct Fts5DlidxWriter Fts5DlidxWriter;
typedef struct Fts5Iter Fts5Iter;
typedef struct Fts5PageWriter Fts5PageWriter;
typedef struct Fts5SegIter Fts5SegIter;
typedef struct Fts5DoclistIter Fts5DoclistIter;
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;
7439
7440
7441
7442
7443
7444
7445



7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  int iLeafOffset;                /* Byte offset within current leaf */




  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
  int iTermLeafOffset;

  int iPgidxOff;                  /* Next offset in pgidx */
  int iEndofDoclist;

  /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
  int iRowidOffset;               /* Current entry in aRowidOffset[] */
  int nRowidOffset;               /* Allocated size of aRowidOffset[] array */
  int *aRowidOffset;              /* Array of offset to rowid fields */

  Fts5DlidxIter *pDlidx;          /* If there is a doclist-index */

  /* Variables populated based on current entry. */
  Fts5Buffer term;                /* Current term */
  i64 iRowid;                     /* Current rowid */
  int nPos;                       /* Number of bytes in current position list */
  int bDel;                       /* True if the delete flag is set */
};

/*
** Argument is a pointer to an Fts5Data structure that contains a 
** leaf page.
*/
#define ASSERT_SZLEAF_OK(x) assert( \
    (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
)

#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02


/* 
** Argument is a pointer to an Fts5Data structure that contains a leaf
** page. This macro evaluates to true if the leaf contains no terms, or
** false if it contains at least one term.
*/
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)







>
>
>



















|












<







8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114

8115
8116
8117
8118
8119
8120
8121
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  int iLeafOffset;                /* Byte offset within current leaf */

  /* Next method */
  void (*xNext)(Fts5Index*, Fts5SegIter*, int*);

  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
  int iTermLeafOffset;

  int iPgidxOff;                  /* Next offset in pgidx */
  int iEndofDoclist;

  /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
  int iRowidOffset;               /* Current entry in aRowidOffset[] */
  int nRowidOffset;               /* Allocated size of aRowidOffset[] array */
  int *aRowidOffset;              /* Array of offset to rowid fields */

  Fts5DlidxIter *pDlidx;          /* If there is a doclist-index */

  /* Variables populated based on current entry. */
  Fts5Buffer term;                /* Current term */
  i64 iRowid;                     /* Current rowid */
  int nPos;                       /* Number of bytes in current position list */
  u8 bDel;                        /* True if the delete flag is set */
};

/*
** Argument is a pointer to an Fts5Data structure that contains a 
** leaf page.
*/
#define ASSERT_SZLEAF_OK(x) assert( \
    (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
)

#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02


/* 
** Argument is a pointer to an Fts5Data structure that contains a leaf
** page. This macro evaluates to true if the leaf contains no terms, or
** false if it contains at least one term.
*/
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
7507
7508
7509
7510
7511
7512
7513
7514


7515
7516
7517




7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused. 
**
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5IndexIter {


  Fts5Index *pIndex;              /* Index that owns this iterator */
  Fts5Structure *pStruct;         /* Database structure for this iterator */
  Fts5Buffer poslist;             /* Buffer containing current poslist */





  int nSeg;                       /* Size of aSeg[] array */
  int bRev;                       /* True to iterate in reverse order */
  u8 bSkipEmpty;                  /* True to skip deleted entries */
  u8 bEof;                        /* True at EOF */
  u8 bFiltered;                   /* True if column-filter already applied */

  i64 iSwitchRowid;               /* Firstest rowid of other than aFirst[1] */
  Fts5CResult *aFirst;            /* Current merge state (see above) */
  Fts5SegIter aSeg[1];            /* Array of segment iterators */
};









|
>
>



>
>
>
>




<
<







8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163


8164
8165
8166
8167
8168
8169
8170
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused. 
**
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5Iter {
  Fts5IndexIter base;             /* Base class containing output vars */

  Fts5Index *pIndex;              /* Index that owns this iterator */
  Fts5Structure *pStruct;         /* Database structure for this iterator */
  Fts5Buffer poslist;             /* Buffer containing current poslist */
  Fts5Colset *pColset;            /* Restrict matches to these columns */

  /* Invoked to set output variables. */
  void (*xSetOutputs)(Fts5Iter*, Fts5SegIter*);

  int nSeg;                       /* Size of aSeg[] array */
  int bRev;                       /* True to iterate in reverse order */
  u8 bSkipEmpty;                  /* True to skip deleted entries */



  i64 iSwitchRowid;               /* Firstest rowid of other than aFirst[1] */
  Fts5CResult *aFirst;            /* Current merge state (see above) */
  Fts5SegIter aSeg[1];            /* Array of segment iterators */
};


7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
*/
static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
  int nCmp = MIN(pLeft->n, pRight->n);
  int res = memcmp(pLeft->p, pRight->p, nCmp);
  return (res==0 ? (pLeft->n - pRight->n) : res);
}

#ifdef SQLITE_DEBUG
static int fts5BlobCompare(
  const u8 *pLeft, int nLeft, 
  const u8 *pRight, int nRight
){
  int nCmp = MIN(nLeft, nRight);
  int res = memcmp(pLeft, pRight, nCmp);
  return (res==0 ? (nLeft - nRight) : res);
}
#endif

static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
  int ret;
  fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
  return ret;
}

/*







<
<
<
<
<
<
<
<
<
<
<







8246
8247
8248
8249
8250
8251
8252











8253
8254
8255
8256
8257
8258
8259
*/
static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
  int nCmp = MIN(pLeft->n, pRight->n);
  int res = memcmp(pLeft->p, pRight->p, nCmp);
  return (res==0 ? (pLeft->n - pRight->n) : res);
}












static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
  int ret;
  fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
  return ret;
}

/*
7878
7879
7880
7881
7882
7883
7884



7885
7886
7887
7888
7889
7890

7891
7892
7893
7894




7895
7896
7897
7898
7899



7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
    i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);

    for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
      Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
      int nTotal;
      int iSeg;




      i += fts5GetVarint32(&pData[i], pLvl->nMerge);
      i += fts5GetVarint32(&pData[i], nTotal);
      assert( nTotal>=pLvl->nMerge );
      pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc, 
          nTotal * sizeof(Fts5StructureSegment)
      );


      if( rc==SQLITE_OK ){
        pLvl->nSeg = nTotal;
        for(iSeg=0; iSeg<nTotal; iSeg++){




          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
        }
      }else{



        fts5StructureRelease(pRet);
        pRet = 0;
      }
    }
  }

  *ppOut = pRet;
  return rc;
}








>
>
>
|
|
|
|
|
|
>




>
>
>
>




<
>
>
>
|
|
<







8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535

8536
8537
8538
8539
8540

8541
8542
8543
8544
8545
8546
8547
    i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);

    for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
      Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
      int nTotal;
      int iSeg;

      if( i>=nData ){
        rc = FTS5_CORRUPT;
      }else{
        i += fts5GetVarint32(&pData[i], pLvl->nMerge);
        i += fts5GetVarint32(&pData[i], nTotal);
        assert( nTotal>=pLvl->nMerge );
        pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc, 
            nTotal * sizeof(Fts5StructureSegment)
        );
      }

      if( rc==SQLITE_OK ){
        pLvl->nSeg = nTotal;
        for(iSeg=0; iSeg<nTotal; iSeg++){
          if( i>=nData ){
            rc = FTS5_CORRUPT;
            break;
          }
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
        }

      }
    }
    if( rc!=SQLITE_OK ){
      fts5StructureRelease(pRet);
      pRet = 0;

    }
  }

  *ppOut = pRet;
  return rc;
}

8498
8499
8500
8501
8502
8503
8504
8505
8506
















8507
8508
8509
8510
8511


8512
8513
8514
8515
8516
8517
8518
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */
    int nSz;
    ASSERT_SZLEAF_OK(pIter->pLeaf);
















    fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
    pIter->bDel = (nSz & 0x0001);
    pIter->nPos = nSz>>1;
    pIter->iLeafOffset = iOff;
    assert_nc( pIter->nPos>=0 );


  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;








<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
<
|
>
>







9136
9137
9138
9139
9140
9141
9142

9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162

9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */

    ASSERT_SZLEAF_OK(pIter->pLeaf);
    if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
      int iEod = MIN(pIter->iEndofDoclist, pIter->pLeaf->szLeaf);
      pIter->bDel = 0;
      pIter->nPos = 1;
      if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
        pIter->bDel = 1;
        iOff++;
        if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
          pIter->nPos = 1;
          iOff++;
        }else{
          pIter->nPos = 0;
        }
      }
    }else{
      int nSz;
      fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
      pIter->bDel = (nSz & 0x0001);
      pIter->nPos = nSz>>1;

      assert_nc( pIter->nPos>=0 );
    }
    pIter->iLeafOffset = iOff;
  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;

8547
8548
8549
8550
8551
8552
8553




8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570














8571
8572
8573
8574
8575
8576
8577
*/
static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;  /* Offset to read at */
  int nNew;                       /* Bytes of new data */

  iOff += fts5GetVarint32(&a[iOff], nNew);




  pIter->term.n = nKeep;
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
  iOff += nNew;
  pIter->iTermLeafOffset = iOff;
  pIter->iTermLeafPgno = pIter->iLeafPgno;
  pIter->iLeafOffset = iOff;

  if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
  }else{
    int nExtra;
    pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
    pIter->iEndofDoclist += nExtra;
  }

  fts5SegIterLoadRowid(p, pIter);
}















/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
** this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 







>
>
>
>

















>
>
>
>
>
>
>
>
>
>
>
>
>
>







9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
*/
static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;  /* Offset to read at */
  int nNew;                       /* Bytes of new data */

  iOff += fts5GetVarint32(&a[iOff], nNew);
  if( iOff+nNew>pIter->pLeaf->nn ){
    p->rc = FTS5_CORRUPT;
    return;
  }
  pIter->term.n = nKeep;
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
  iOff += nNew;
  pIter->iTermLeafOffset = iOff;
  pIter->iTermLeafPgno = pIter->iLeafPgno;
  pIter->iLeafOffset = iOff;

  if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
  }else{
    int nExtra;
    pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
    pIter->iEndofDoclist += nExtra;
  }

  fts5SegIterLoadRowid(p, pIter);
}

static void fts5SegIterNext(Fts5Index*, Fts5SegIter*, int*);
static void fts5SegIterNext_Reverse(Fts5Index*, Fts5SegIter*, int*);
static void fts5SegIterNext_None(Fts5Index*, Fts5SegIter*, int*);

static void fts5SegIterSetNext(Fts5Index *p, Fts5SegIter *pIter){
  if( pIter->flags & FTS5_SEGITER_REVERSE ){
    pIter->xNext = fts5SegIterNext_Reverse;
  }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pIter->xNext = fts5SegIterNext_None;
  }else{
    pIter->xNext = fts5SegIterNext;
  }
}

/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
** this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
8590
8591
8592
8593
8594
8595
8596

8597
8598
8599
8600
8601
8602
8603
    ** at EOF already. */
    assert( pIter->pLeaf==0 );
    return;
  }

  if( p->rc==SQLITE_OK ){
    memset(pIter, 0, sizeof(*pIter));

    pIter->pSeg = pSeg;
    pIter->iLeafPgno = pSeg->pgnoFirst-1;
    fts5SegIterNextPage(p, pIter);
  }

  if( p->rc==SQLITE_OK ){
    pIter->iLeafOffset = 4;







>







9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
    ** at EOF already. */
    assert( pIter->pLeaf==0 );
    return;
  }

  if( p->rc==SQLITE_OK ){
    memset(pIter, 0, sizeof(*pIter));
    fts5SegIterSetNext(p, pIter);
    pIter->pSeg = pSeg;
    pIter->iLeafPgno = pSeg->pgnoFirst-1;
    fts5SegIterNextPage(p, pIter);
  }

  if( p->rc==SQLITE_OK ){
    pIter->iLeafOffset = 4;
8621
8622
8623
8624
8625
8626
8627

8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639








8640
8641
8642
8643
8644

8645
8646
8647
8648

8649
8650
8651
8652
8653
8654
8655
** This function advances the iterator so that it points to the last 
** relevant rowid on the page and, if necessary, initializes the 
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){

  int n = pIter->pLeaf->szLeaf;
  int i = pIter->iLeafOffset;
  u8 *a = pIter->pLeaf->p;
  int iRowidOffset = 0;

  if( n>pIter->iEndofDoclist ){
    n = pIter->iEndofDoclist;
  }

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  while( 1 ){
    i64 iDelta = 0;








    int nPos;
    int bDummy;

    i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
    i += nPos;

    if( i>=n ) break;
    i += fts5GetVarint(&a[i], (u64*)&iDelta);
    pIter->iRowid += iDelta;


    if( iRowidOffset>=pIter->nRowidOffset ){
      int nNew = pIter->nRowidOffset + 8;
      int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
      if( aNew==0 ){
        p->rc = SQLITE_NOMEM;
        break;
      }







>












>
>
>
>
>
>
>
>
|
|
<
|
|
>




>







9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323

9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
** This function advances the iterator so that it points to the last 
** relevant rowid on the page and, if necessary, initializes the 
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
  int eDetail = p->pConfig->eDetail;
  int n = pIter->pLeaf->szLeaf;
  int i = pIter->iLeafOffset;
  u8 *a = pIter->pLeaf->p;
  int iRowidOffset = 0;

  if( n>pIter->iEndofDoclist ){
    n = pIter->iEndofDoclist;
  }

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  while( 1 ){
    i64 iDelta = 0;

    if( eDetail==FTS5_DETAIL_NONE ){
      /* todo */
      if( i<n && a[i]==0 ){
        i++;
        if( i<n && a[i]==0 ) i++;
      }
    }else{
      int nPos;
      int bDummy;

      i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
      i += nPos;
    }
    if( i>=n ) break;
    i += fts5GetVarint(&a[i], (u64*)&iDelta);
    pIter->iRowid += iDelta;

    /* If necessary, grow the pIter->aRowidOffset[] array. */
    if( iRowidOffset>=pIter->nRowidOffset ){
      int nNew = pIter->nRowidOffset + 8;
      int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
      if( aNew==0 ){
        p->rc = SQLITE_NOMEM;
        break;
      }
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725








































































































8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764


8765



8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837

8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859




8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872





8873
8874
8875
8876
8877
8878
8879
}

/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte
** position-list.
*/
static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5IndexIter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
  return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
}









































































































/*
** Advance iterator pIter to the next entry. 
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. It 
** is not considered an error if the iterator reaches EOF. If an error has 
** already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterNext(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbNewTerm                  /* OUT: Set for new term */
){
  assert( pbNewTerm==0 || *pbNewTerm==0 );
  if( p->rc==SQLITE_OK ){
    if( pIter->flags & FTS5_SEGITER_REVERSE ){
      assert( pIter->pNextLeaf==0 );
      if( pIter->iRowidOffset>0 ){
        u8 *a = pIter->pLeaf->p;
        int iOff;
        int nPos;
        int bDummy;
        i64 iDelta;

        pIter->iRowidOffset--;
        pIter->iLeafOffset = iOff = pIter->aRowidOffset[pIter->iRowidOffset];
        iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
        iOff += nPos;
        fts5GetVarint(&a[iOff], (u64*)&iDelta);
        pIter->iRowid -= iDelta;
        fts5SegIterLoadNPos(p, pIter);
      }else{
        fts5SegIterReverseNewPage(p, pIter);
      }
    }else{
      Fts5Data *pLeaf = pIter->pLeaf;
      int iOff;
      int bNewTerm = 0;
      int nKeep = 0;






      /* Search for the end of the position list within the current page. */
      u8 *a = pLeaf->p;
      int n = pLeaf->szLeaf;

      ASSERT_SZLEAF_OK(pLeaf);
      iOff = pIter->iLeafOffset + pIter->nPos;

      if( iOff<n ){
        /* The next entry is on the current page. */
        assert_nc( iOff<=pIter->iEndofDoclist );
        if( iOff>=pIter->iEndofDoclist ){
          bNewTerm = 1;
          if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
            iOff += fts5GetVarint32(&a[iOff], nKeep);
          }
        }else{
          u64 iDelta;
          iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
          pIter->iRowid += iDelta;
          assert_nc( iDelta>0 );
        }
        pIter->iLeafOffset = iOff;

      }else if( pIter->pSeg==0 ){
        const u8 *pList = 0;
        const char *zTerm = 0;
        int nList = 0;
        assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
        if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
          sqlite3Fts5HashScanNext(p->pHash);
          sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
        }
        if( pList==0 ){
          fts5DataRelease(pIter->pLeaf);
          pIter->pLeaf = 0;
        }else{
          pIter->pLeaf->p = (u8*)pList;
          pIter->pLeaf->nn = nList;
          pIter->pLeaf->szLeaf = nList;
          pIter->iEndofDoclist = nList+1;
          sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
              (u8*)zTerm);
          pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
          *pbNewTerm = 1;
        }
      }else{
        iOff = 0;
        /* Next entry is not on the current page */
        while( iOff==0 ){
          fts5SegIterNextPage(p, pIter);
          pLeaf = pIter->pLeaf;
          if( pLeaf==0 ) break;
          ASSERT_SZLEAF_OK(pLeaf);
          if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
            iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
            pIter->iLeafOffset = iOff;

            if( pLeaf->nn>pLeaf->szLeaf ){
              pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
                  &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
              );
            }

          }
          else if( pLeaf->nn>pLeaf->szLeaf ){
            pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
                &pLeaf->p[pLeaf->szLeaf], iOff
            );
            pIter->iLeafOffset = iOff;
            pIter->iEndofDoclist = iOff;
            bNewTerm = 1;
          }

          if( iOff>=pLeaf->szLeaf ){
            p->rc = FTS5_CORRUPT;
            return;
          }
        }
      }

      /* Check if the iterator is now at EOF. If so, return early. */
      if( pIter->pLeaf ){
        if( bNewTerm ){
          if( pIter->flags & FTS5_SEGITER_ONETERM ){
            fts5DataRelease(pIter->pLeaf);
            pIter->pLeaf = 0;
          }else{
            fts5SegIterLoadTerm(p, pIter, nKeep);
            fts5SegIterLoadNPos(p, pIter);
            if( pbNewTerm ) *pbNewTerm = 1;
          }
        }else{
          /* The following could be done by calling fts5SegIterLoadNPos(). But
          ** this block is particularly performance critical, so equivalent
          ** code is inlined. */




          int nSz;
          assert( p->rc==SQLITE_OK );
          fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
          pIter->bDel = (nSz & 0x0001);
          pIter->nPos = nSz>>1;
          assert_nc( pIter->nPos>=0 );
        }
      }
    }
  }
}

#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }






/*
** Iterator pIter currently points to the first rowid in a doclist. This
** function sets the iterator up so that iterates in reverse order through
** the doclist.
*/
static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){







|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
>
>

>
>
>
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
>
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
|
|
|
|
|
<
<





>
>
>
>
>







9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525






















9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640


9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
}

/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte
** position-list.
*/
static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5Iter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
  return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
}

/*
** Advance iterator pIter to the next entry.
**
** This version of fts5SegIterNext() is only used by reverse iterators.
*/
static void fts5SegIterNext_Reverse(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbUnused                   /* Unused */
){
  assert( pIter->flags & FTS5_SEGITER_REVERSE );
  assert( pIter->pNextLeaf==0 );
  UNUSED_PARAM(pbUnused);

  if( pIter->iRowidOffset>0 ){
    u8 *a = pIter->pLeaf->p;
    int iOff;
    i64 iDelta;

    pIter->iRowidOffset--;
    pIter->iLeafOffset = pIter->aRowidOffset[pIter->iRowidOffset];
    fts5SegIterLoadNPos(p, pIter);
    iOff = pIter->iLeafOffset;
    if( p->pConfig->eDetail!=FTS5_DETAIL_NONE ){
      iOff += pIter->nPos;
    }
    fts5GetVarint(&a[iOff], (u64*)&iDelta);
    pIter->iRowid -= iDelta;
  }else{
    fts5SegIterReverseNewPage(p, pIter);
  }
}

/*
** Advance iterator pIter to the next entry.
**
** This version of fts5SegIterNext() is only used if detail=none and the
** iterator is not a reverse direction iterator.
*/
static void fts5SegIterNext_None(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbNewTerm                  /* OUT: Set for new term */
){
  int iOff;

  assert( p->rc==SQLITE_OK );
  assert( (pIter->flags & FTS5_SEGITER_REVERSE)==0 );
  assert( p->pConfig->eDetail==FTS5_DETAIL_NONE );

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  iOff = pIter->iLeafOffset;

  /* Next entry is on the next page */
  if( pIter->pSeg && iOff>=pIter->pLeaf->szLeaf ){
    fts5SegIterNextPage(p, pIter);
    if( p->rc || pIter->pLeaf==0 ) return;
    pIter->iRowid = 0;
    iOff = 4;
  }

  if( iOff<pIter->iEndofDoclist ){
    /* Next entry is on the current page */
    i64 iDelta;
    iOff += sqlite3Fts5GetVarint(&pIter->pLeaf->p[iOff], (u64*)&iDelta);
    pIter->iLeafOffset = iOff;
    pIter->iRowid += iDelta;
  }else if( (pIter->flags & FTS5_SEGITER_ONETERM)==0 ){
    if( pIter->pSeg ){
      int nKeep = 0;
      if( iOff!=fts5LeafFirstTermOff(pIter->pLeaf) ){
        iOff += fts5GetVarint32(&pIter->pLeaf->p[iOff], nKeep);
      }
      pIter->iLeafOffset = iOff;
      fts5SegIterLoadTerm(p, pIter, nKeep);
    }else{
      const u8 *pList = 0;
      const char *zTerm = 0;
      int nList;
      sqlite3Fts5HashScanNext(p->pHash);
      sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
      if( pList==0 ) goto next_none_eof;
      pIter->pLeaf->p = (u8*)pList;
      pIter->pLeaf->nn = nList;
      pIter->pLeaf->szLeaf = nList;
      pIter->iEndofDoclist = nList;
      sqlite3Fts5BufferSet(&p->rc,&pIter->term, (int)strlen(zTerm), (u8*)zTerm);
      pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
    }

    if( pbNewTerm ) *pbNewTerm = 1;
  }else{
    goto next_none_eof;
  }

  fts5SegIterLoadNPos(p, pIter);

  return;
 next_none_eof:
  fts5DataRelease(pIter->pLeaf);
  pIter->pLeaf = 0;
}


/*
** Advance iterator pIter to the next entry. 
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. It 
** is not considered an error if the iterator reaches EOF. If an error has 
** already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterNext(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter,             /* Iterator to advance */
  int *pbNewTerm                  /* OUT: Set for new term */
){






















  Fts5Data *pLeaf = pIter->pLeaf;
  int iOff;
  int bNewTerm = 0;
  int nKeep = 0;
  u8 *a;
  int n;

  assert( pbNewTerm==0 || *pbNewTerm==0 );
  assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );

  /* Search for the end of the position list within the current page. */
  a = pLeaf->p;
  n = pLeaf->szLeaf;

  ASSERT_SZLEAF_OK(pLeaf);
  iOff = pIter->iLeafOffset + pIter->nPos;

  if( iOff<n ){
    /* The next entry is on the current page. */
    assert_nc( iOff<=pIter->iEndofDoclist );
    if( iOff>=pIter->iEndofDoclist ){
      bNewTerm = 1;
      if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
        iOff += fts5GetVarint32(&a[iOff], nKeep);
      }
    }else{
      u64 iDelta;
      iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
      pIter->iRowid += iDelta;
      assert_nc( iDelta>0 );
    }
    pIter->iLeafOffset = iOff;

  }else if( pIter->pSeg==0 ){
    const u8 *pList = 0;
    const char *zTerm = 0;
    int nList = 0;
    assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
    if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
      sqlite3Fts5HashScanNext(p->pHash);
      sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
    }
    if( pList==0 ){
      fts5DataRelease(pIter->pLeaf);
      pIter->pLeaf = 0;
    }else{
      pIter->pLeaf->p = (u8*)pList;
      pIter->pLeaf->nn = nList;
      pIter->pLeaf->szLeaf = nList;
      pIter->iEndofDoclist = nList+1;
      sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
          (u8*)zTerm);
      pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
      *pbNewTerm = 1;
    }
  }else{
    iOff = 0;
    /* Next entry is not on the current page */
    while( iOff==0 ){
      fts5SegIterNextPage(p, pIter);
      pLeaf = pIter->pLeaf;
      if( pLeaf==0 ) break;
      ASSERT_SZLEAF_OK(pLeaf);
      if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
        iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
        pIter->iLeafOffset = iOff;

        if( pLeaf->nn>pLeaf->szLeaf ){
          pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
              &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
              );
        }

      }
      else if( pLeaf->nn>pLeaf->szLeaf ){
        pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
            &pLeaf->p[pLeaf->szLeaf], iOff
            );
        pIter->iLeafOffset = iOff;
        pIter->iEndofDoclist = iOff;
        bNewTerm = 1;
      }
      assert_nc( iOff<pLeaf->szLeaf );
      if( iOff>pLeaf->szLeaf ){
        p->rc = FTS5_CORRUPT;
        return;
      }
    }
  }

  /* Check if the iterator is now at EOF. If so, return early. */
  if( pIter->pLeaf ){
    if( bNewTerm ){
      if( pIter->flags & FTS5_SEGITER_ONETERM ){
        fts5DataRelease(pIter->pLeaf);
        pIter->pLeaf = 0;
      }else{
        fts5SegIterLoadTerm(p, pIter, nKeep);
        fts5SegIterLoadNPos(p, pIter);
        if( pbNewTerm ) *pbNewTerm = 1;
      }
    }else{
      /* The following could be done by calling fts5SegIterLoadNPos(). But
      ** this block is particularly performance critical, so equivalent
      ** code is inlined. 
      **
      ** Later: Switched back to fts5SegIterLoadNPos() because it supports
      ** detail=none mode. Not ideal.
      */
      int nSz;
      assert( p->rc==SQLITE_OK );
      fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
      pIter->bDel = (nSz & 0x0001);
      pIter->nPos = nSz>>1;
      assert_nc( pIter->nPos>=0 );


    }
  }
}

#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }

#define fts5IndexSkipVarint(a, iOff) {            \
  int iEnd = iOff+9;                              \
  while( (a[iOff++] & 0x80) && iOff<iEnd );       \
}

/*
** Iterator pIter currently points to the first rowid in a doclist. This
** function sets the iterator up so that iterates in reverse order through
** the doclist.
*/
static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){
8887
8888
8889
8890
8891
8892
8893







8894
8895
8896
8897
8898
8899
8900
8901
    pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
  }else{
    Fts5Data *pLeaf = pIter->pLeaf;         /* Current leaf data */

    /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
    ** position-list content for the current rowid. Back it up so that it
    ** points to the start of the position-list size field. */







    pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);

    /* If this condition is true then the largest rowid for the current
    ** term may not be stored on the current page. So search forward to
    ** see where said rowid really is.  */
    if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
      int pgno;
      Fts5StructureSegment *pSeg = pIter->pSeg;







>
>
>
>
>
>
>
|







9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
    pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
  }else{
    Fts5Data *pLeaf = pIter->pLeaf;         /* Current leaf data */

    /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
    ** position-list content for the current rowid. Back it up so that it
    ** points to the start of the position-list size field. */
    int iPoslist;
    if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
      iPoslist = pIter->iTermLeafOffset;
    }else{
      iPoslist = 4;
    }
    fts5IndexSkipVarint(pLeaf->p, iPoslist);
    pIter->iLeafOffset = iPoslist;

    /* If this condition is true then the largest rowid for the current
    ** term may not be stored on the current page. So search forward to
    ** see where said rowid really is.  */
    if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
      int pgno;
      Fts5StructureSegment *pSeg = pIter->pSeg;
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
  ){
    return;
  }

  pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
}

#define fts5IndexSkipVarint(a, iOff) {            \
  int iEnd = iOff+9;                              \
  while( (a[iOff++] & 0x80) && iOff<iEnd );       \
}

/*
** The iterator object passed as the second argument currently contains
** no valid values except for the Fts5SegIter.pLeaf member variable. This
** function searches the leaf page for a term matching (pTerm/nTerm).
**
** If the specified term is found on the page, then the iterator is left
** pointing to it. If argument bGe is zero and the term is not found,







<
<
<
<
<







9756
9757
9758
9759
9760
9761
9762





9763
9764
9765
9766
9767
9768
9769
  ){
    return;
  }

  pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
}






/*
** The iterator object passed as the second argument currently contains
** no valid values except for the Fts5SegIter.pLeaf member variable. This
** function searches the leaf page for a term matching (pTerm/nTerm).
**
** If the specified term is found on the page, then the iterator is left
** pointing to it. If argument bGe is zero and the term is not found,
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
** pSeg. If there is no such term in the index, the iterator is set to EOF.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterSeekInit(
  Fts5Index *p,                   /* FTS5 backend */
  Fts5Buffer *pBuf,               /* Buffer to use for loading pages */
  const u8 *pTerm, int nTerm,     /* Term to seek to */
  int flags,                      /* Mask of FTS5INDEX_XXX flags */
  Fts5StructureSegment *pSeg,     /* Description of segment */
  Fts5SegIter *pIter              /* Object to populate */
){
  int iPg = 1;
  int bGe = (flags & FTS5INDEX_QUERY_SCAN);
  int bDlidx = 0;                 /* True if there is a doclist-index */

  static int nCall = 0;
  nCall++;

  assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
  assert( pTerm && nTerm );
  memset(pIter, 0, sizeof(*pIter));
  pIter->pSeg = pSeg;

  /* This block sets stack variable iPg to the leaf page number that may
  ** contain term (pTerm/nTerm), if it is present in the segment. */







<









<
<
<







9893
9894
9895
9896
9897
9898
9899

9900
9901
9902
9903
9904
9905
9906
9907
9908



9909
9910
9911
9912
9913
9914
9915
** pSeg. If there is no such term in the index, the iterator is set to EOF.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
** an error has already occurred when this function is called, it is a no-op.
*/
static void fts5SegIterSeekInit(
  Fts5Index *p,                   /* FTS5 backend */

  const u8 *pTerm, int nTerm,     /* Term to seek to */
  int flags,                      /* Mask of FTS5INDEX_XXX flags */
  Fts5StructureSegment *pSeg,     /* Description of segment */
  Fts5SegIter *pIter              /* Object to populate */
){
  int iPg = 1;
  int bGe = (flags & FTS5INDEX_QUERY_SCAN);
  int bDlidx = 0;                 /* True if there is a doclist-index */




  assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
  assert( pTerm && nTerm );
  memset(pIter, 0, sizeof(*pIter));
  pIter->pSeg = pSeg;

  /* This block sets stack variable iPg to the leaf page number that may
  ** contain term (pTerm/nTerm), if it is present in the segment. */
9177
9178
9179
9180
9181
9182
9183


9184
9185
9186
9187
9188
9189
9190
        fts5SegIterLoadDlidx(p, pIter);
      }
      if( flags & FTS5INDEX_QUERY_DESC ){
        fts5SegIterReverse(p, pIter);
      }
    }
  }



  /* Either:
  **
  **   1) an error has occurred, or
  **   2) the iterator points to EOF, or
  **   3) the iterator points to an entry with term (pTerm/nTerm), or
  **   4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points







>
>







9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
        fts5SegIterLoadDlidx(p, pIter);
      }
      if( flags & FTS5INDEX_QUERY_DESC ){
        fts5SegIterReverse(p, pIter);
      }
    }
  }

  fts5SegIterSetNext(p, pIter);

  /* Either:
  **
  **   1) an error has occurred, or
  **   2) the iterator points to EOF, or
  **   3) the iterator points to an entry with term (pTerm/nTerm), or
  **   4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250


9251
9252
9253
9254
9255
9256
9257
    sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
    pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
    if( pLeaf==0 ) return;
    pLeaf->p = (u8*)pList;
    pLeaf->nn = pLeaf->szLeaf = nList;
    pIter->pLeaf = pLeaf;
    pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
    pIter->iEndofDoclist = pLeaf->nn+1;

    if( flags & FTS5INDEX_QUERY_DESC ){
      pIter->flags |= FTS5_SEGITER_REVERSE;
      fts5SegIterReverseInitPage(p, pIter);
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
  }


}

/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
  fts5BufferFree(&pIter->term);







|








>
>







10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
    sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
    pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
    if( pLeaf==0 ) return;
    pLeaf->p = (u8*)pList;
    pLeaf->nn = pLeaf->szLeaf = nList;
    pIter->pLeaf = pLeaf;
    pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
    pIter->iEndofDoclist = pLeaf->nn;

    if( flags & FTS5INDEX_QUERY_DESC ){
      pIter->flags |= FTS5_SEGITER_REVERSE;
      fts5SegIterReverseInitPage(p, pIter);
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
  }

  fts5SegIterSetNext(p, pIter);
}

/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
  fts5BufferFree(&pIter->term);
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
/*
** This function is used as part of the big assert() procedure implemented by
** fts5AssertMultiIterSetup(). It ensures that the result currently stored
** in *pRes is the correct result of comparing the current positions of the
** two iterators.
*/
static void fts5AssertComparisonResult(
  Fts5IndexIter *pIter, 
  Fts5SegIter *p1,
  Fts5SegIter *p2,
  Fts5CResult *pRes
){
  int i1 = p1 - pIter->aSeg;
  int i2 = p2 - pIter->aSeg;








|







10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
/*
** This function is used as part of the big assert() procedure implemented by
** fts5AssertMultiIterSetup(). It ensures that the result currently stored
** in *pRes is the correct result of comparing the current positions of the
** two iterators.
*/
static void fts5AssertComparisonResult(
  Fts5Iter *pIter, 
  Fts5SegIter *p1,
  Fts5SegIter *p2,
  Fts5CResult *pRes
){
  int i1 = p1 - pIter->aSeg;
  int i2 = p2 - pIter->aSeg;

9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327

/*
** This function is a no-op unless SQLITE_DEBUG is defined when this module
** is compiled. In that case, this function is essentially an assert() 
** statement used to verify that the contents of the pIter->aFirst[] array
** are correct.
*/
static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5IndexIter *pIter){
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int i;

    assert( (pFirst->pLeaf==0)==pIter->bEof );

    /* Check that pIter->iSwitchRowid is set correctly. */
    for(i=0; i<pIter->nSeg; i++){
      Fts5SegIter *p1 = &pIter->aSeg[i];
      assert( p1==pFirst 
           || p1->pLeaf==0 
           || fts5BufferCompare(&pFirst->term, &p1->term) 







|




|







10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107

/*
** This function is a no-op unless SQLITE_DEBUG is defined when this module
** is compiled. In that case, this function is essentially an assert() 
** statement used to verify that the contents of the pIter->aFirst[] array
** are correct.
*/
static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5Iter *pIter){
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int i;

    assert( (pFirst->pLeaf==0)==pIter->base.bEof );

    /* Check that pIter->iSwitchRowid is set correctly. */
    for(i=0; i<pIter->nSeg; i++){
      Fts5SegIter *p1 = &pIter->aSeg[i];
      assert( p1==pFirst 
           || p1->pLeaf==0 
           || fts5BufferCompare(&pFirst->term, &p1->term) 
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
** Do the comparison necessary to populate pIter->aFirst[iOut].
**
** If the returned value is non-zero, then it is the index of an entry
** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
** to a key that is a duplicate of another, higher priority, 
** segment-iterator in the pSeg->aSeg[] array.
*/
static int fts5MultiIterDoCompare(Fts5IndexIter *pIter, int iOut){
  int i1;                         /* Index of left-hand Fts5SegIter */
  int i2;                         /* Index of right-hand Fts5SegIter */
  int iRes;
  Fts5SegIter *p1;                /* Left-hand Fts5SegIter */
  Fts5SegIter *p2;                /* Right-hand Fts5SegIter */
  Fts5CResult *pRes = &pIter->aFirst[iOut];








|







10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
** Do the comparison necessary to populate pIter->aFirst[iOut].
**
** If the returned value is non-zero, then it is the index of an entry
** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
** to a key that is a duplicate of another, higher priority, 
** segment-iterator in the pSeg->aSeg[] array.
*/
static int fts5MultiIterDoCompare(Fts5Iter *pIter, int iOut){
  int i1;                         /* Index of left-hand Fts5SegIter */
  int i2;                         /* Index of right-hand Fts5SegIter */
  int iRes;
  Fts5SegIter *p1;                /* Left-hand Fts5SegIter */
  Fts5SegIter *p2;                /* Right-hand Fts5SegIter */
  Fts5CResult *pRes = &pIter->aFirst[iOut];

9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528


9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547

9548
9549
9550
9551
9552
9553
9554
      pIter->iLeafPgno = iLeafPgno+1;
      fts5SegIterReverseNewPage(p, pIter);
      bMove = 0;
    }
  }

  do{
    if( bMove ) fts5SegIterNext(p, pIter, 0);
    if( pIter->pLeaf==0 ) break;
    if( bRev==0 && pIter->iRowid>=iMatch ) break;
    if( bRev!=0 && pIter->iRowid<=iMatch ) break;
    bMove = 1;
  }while( p->rc==SQLITE_OK );
}


/*
** Free the iterator object passed as the second argument.
*/
static void fts5MultiIterFree(Fts5Index *p, Fts5IndexIter *pIter){
  if( pIter ){
    int i;
    for(i=0; i<pIter->nSeg; i++){
      fts5SegIterClear(&pIter->aSeg[i]);
    }
    fts5StructureRelease(pIter->pStruct);
    fts5BufferFree(&pIter->poslist);
    sqlite3_free(pIter);
  }
}

static void fts5MultiIterAdvanced(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5IndexIter *pIter,           /* Iterator to update aFirst[] array for */
  int iChanged,                   /* Index of sub-iterator just advanced */
  int iMinset                     /* Minimum entry in aFirst[] to set */
){
  int i;
  for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
    int iEq;
    if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
      fts5SegIterNext(p, &pIter->aSeg[iEq], 0);


      i = pIter->nSeg + iEq;
    }
  }
}

/*
** Sub-iterator iChanged of iterator pIter has just been advanced. It still
** points to the same term though - just a different rowid. This function
** attempts to update the contents of the pIter->aFirst[] accordingly.
** If it does so successfully, 0 is returned. Otherwise 1.
**
** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
** on the iterator instead. That function does the same as this one, except
** that it deals with more complicated cases as well.
*/ 
static int fts5MultiIterAdvanceRowid(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5IndexIter *pIter,           /* Iterator to update aFirst[] array for */
  int iChanged                    /* Index of sub-iterator just advanced */

){
  Fts5SegIter *pNew = &pIter->aSeg[iChanged];

  if( pNew->iRowid==pIter->iSwitchRowid
   || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
  ){
    int i;







|











|













|







|
>
>
















<
|
|
>







10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326

10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
      pIter->iLeafPgno = iLeafPgno+1;
      fts5SegIterReverseNewPage(p, pIter);
      bMove = 0;
    }
  }

  do{
    if( bMove && p->rc==SQLITE_OK ) pIter->xNext(p, pIter, 0);
    if( pIter->pLeaf==0 ) break;
    if( bRev==0 && pIter->iRowid>=iMatch ) break;
    if( bRev!=0 && pIter->iRowid<=iMatch ) break;
    bMove = 1;
  }while( p->rc==SQLITE_OK );
}


/*
** Free the iterator object passed as the second argument.
*/
static void fts5MultiIterFree(Fts5Iter *pIter){
  if( pIter ){
    int i;
    for(i=0; i<pIter->nSeg; i++){
      fts5SegIterClear(&pIter->aSeg[i]);
    }
    fts5StructureRelease(pIter->pStruct);
    fts5BufferFree(&pIter->poslist);
    sqlite3_free(pIter);
  }
}

static void fts5MultiIterAdvanced(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Iter *pIter,                /* Iterator to update aFirst[] array for */
  int iChanged,                   /* Index of sub-iterator just advanced */
  int iMinset                     /* Minimum entry in aFirst[] to set */
){
  int i;
  for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
    int iEq;
    if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
      Fts5SegIter *pSeg = &pIter->aSeg[iEq];
      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, 0);
      i = pIter->nSeg + iEq;
    }
  }
}

/*
** Sub-iterator iChanged of iterator pIter has just been advanced. It still
** points to the same term though - just a different rowid. This function
** attempts to update the contents of the pIter->aFirst[] accordingly.
** If it does so successfully, 0 is returned. Otherwise 1.
**
** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
** on the iterator instead. That function does the same as this one, except
** that it deals with more complicated cases as well.
*/ 
static int fts5MultiIterAdvanceRowid(

  Fts5Iter *pIter,                /* Iterator to update aFirst[] array for */
  int iChanged,                   /* Index of sub-iterator just advanced */
  Fts5SegIter **ppFirst
){
  Fts5SegIter *pNew = &pIter->aSeg[iChanged];

  if( pNew->iRowid==pIter->iSwitchRowid
   || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
  ){
    int i;
9573
9574
9575
9576
9577
9578
9579

9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607

9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622


9623

9624




9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642

9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658


9659

9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676

9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696

9697
9698
9699
9700
9701
9702
9703
9704



9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718



9719
9720
9721
9722
9723
9724
9725
9726





9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744

9745
9746
9747
9748
9749
9750
9751
9752


9753
9754
9755

9756
9757
9758
9759
9760

9761
9762
9763
9764




9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788


9789


9790
9791
9792


9793

9794
9795
9796
9797
9798

9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838



9839


9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851

9852



9853
9854
9855


9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866


9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880



9881
9882
9883
9884
9885
9886
9887
      pRes->iFirst = (u16)(pNew - pIter->aSeg);
      if( i==1 ) break;

      pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
    }
  }


  return 0;
}

/*
** Set the pIter->bEof variable based on the state of the sub-iterators.
*/
static void fts5MultiIterSetEof(Fts5IndexIter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  pIter->bEof = pSeg->pLeaf==0;
  pIter->iSwitchRowid = pSeg->iRowid;
}

/*
** Move the iterator to the next entry. 
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not 
** considered an error if the iterator reaches EOF, or if it is already at 
** EOF when this function is called.
*/
static void fts5MultiIterNext(
  Fts5Index *p, 
  Fts5IndexIter *pIter,
  int bFrom,                      /* True if argument iFrom is valid */
  i64 iFrom                       /* Advance at least as far as this */
){
  if( p->rc==SQLITE_OK ){
    int bUseFrom = bFrom;
    do {

      int iFirst = pIter->aFirst[1].iFirst;
      int bNewTerm = 0;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      assert( p->rc==SQLITE_OK );
      if( bUseFrom && pSeg->pDlidx ){
        fts5SegIterNextFrom(p, pSeg, iFrom);
      }else{
        fts5SegIterNext(p, pSeg, &bNewTerm);
      }

      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(p, pIter, iFirst)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);


      }

      fts5AssertMultiIterSetup(p, pIter);





      bUseFrom = 0;
    }while( pIter->bSkipEmpty && fts5MultiIterIsEmpty(p, pIter) );
  }
}

static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5IndexIter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;


      fts5SegIterNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(p, pIter, iFirst)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}





static Fts5IndexIter *fts5MultiIterAlloc(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  int nSeg
){
  Fts5IndexIter *pNew;
  int nSlot;                      /* Power of two >= nSeg */

  for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
  pNew = fts5IdxMalloc(p, 
      sizeof(Fts5IndexIter) +             /* pNew */
      sizeof(Fts5SegIter) * (nSlot-1) +   /* pNew->aSeg[] */
      sizeof(Fts5CResult) * nSlot         /* pNew->aFirst[] */
  );
  if( pNew ){
    pNew->nSeg = nSlot;
    pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
    pNew->pIndex = p;

  }
  return pNew;
}

/*
** Allocate a new Fts5IndexIter object.
**
** The new object will be used to iterate through data in structure pStruct.
** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
** is zero or greater, data from the first nSegment segments on level iLevel
** is merged.
**
** The iterator initially points to the first term/rowid entry in the 
** iterated data.
*/
static void fts5MultiIterNew(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Structure *pStruct,         /* Structure of specific index */
  int bSkipEmpty,                 /* True to ignore delete-keys */
  int flags,                      /* FTS5INDEX_QUERY_XXX flags */

  const u8 *pTerm, int nTerm,     /* Term to seek to (or NULL/0) */
  int iLevel,                     /* Level to iterate (-1 for all) */
  int nSegment,                   /* Number of segments to merge (iLevel>=0) */
  Fts5IndexIter **ppOut           /* New object */
){
  int nSeg = 0;                   /* Number of segment-iters in use */
  int iIter = 0;                  /* */
  int iSeg;                       /* Used to iterate through segments */



  Fts5Buffer buf = {0,0,0};       /* Buffer used by fts5SegIterSeekInit() */
  Fts5StructureLevel *pLvl;
  Fts5IndexIter *pNew;

  assert( (pTerm==0 && nTerm==0) || iLevel<0 );

  /* Allocate space for the new multi-seg-iterator. */
  if( p->rc==SQLITE_OK ){
    if( iLevel<0 ){
      assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
      nSeg = pStruct->nSegment;
      nSeg += (p->pHash ? 1 : 0);
    }else{
      nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);



    }
  }
  *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
  if( pNew==0 ) return;
  pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
  pNew->bSkipEmpty = (u8)bSkipEmpty;
  pNew->pStruct = pStruct;
  fts5StructureRef(pStruct);






  /* Initialize each of the component segment iterators. */
  if( iLevel<0 ){
    Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
    if( p->pHash ){
      /* Add a segment iterator for the current contents of the hash table. */
      Fts5SegIter *pIter = &pNew->aSeg[iIter++];
      fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
    }
    for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
      for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
        Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
        Fts5SegIter *pIter = &pNew->aSeg[iIter++];
        if( pTerm==0 ){
          fts5SegIterInit(p, pSeg, pIter);
        }else{
          fts5SegIterSeekInit(p, &buf, pTerm, nTerm, flags, pSeg, pIter);
        }

      }
    }
  }else{
    pLvl = &pStruct->aLevel[iLevel];
    for(iSeg=nSeg-1; iSeg>=0; iSeg--){
      fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
    }
  }


  assert( iIter==nSeg );

  /* If the above was successful, each component iterators now points 

  ** to the first entry in its segment. In this case initialize the 
  ** aFirst[] array. Or, if an error has occurred, free the iterator
  ** object and set the output variable to NULL.  */
  if( p->rc==SQLITE_OK ){
    for(iIter=pNew->nSeg-1; iIter>0; iIter--){

      int iEq;
      if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
        fts5SegIterNext(p, &pNew->aSeg[iEq], 0);
        fts5MultiIterAdvanced(p, pNew, iEq, iIter);




      }
    }
    fts5MultiIterSetEof(pNew);
    fts5AssertMultiIterSetup(p, pNew);

    if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
      fts5MultiIterNext(p, pNew, 0, 0);
    }
  }else{
    fts5MultiIterFree(p, pNew);
    *ppOut = 0;
  }
  fts5BufferFree(&buf);
}

/*
** Create an Fts5IndexIter that iterates through the doclist provided
** as the second argument.
*/
static void fts5MultiIterNew2(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Data *pData,                /* Doclist to iterate through */
  int bDesc,                      /* True for descending rowid order */
  Fts5IndexIter **ppOut           /* New object */


){


  Fts5IndexIter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){


    Fts5SegIter *pIter = &pNew->aSeg[1];


    pNew->bFiltered = 1;
    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;

      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
        pNew->bRev = 1;
        pIter->flags |= FTS5_SEGITER_REVERSE;
        fts5SegIterReverseInitPage(p, pIter);
      }else{
        fts5SegIterLoadNPos(p, pIter);
      }
      pData = 0;
    }else{
      pNew->bEof = 1;
    }

    *ppOut = pNew;
  }

  fts5DataRelease(pData);
}

/*
** Return true if the iterator is at EOF or if an error has occurred. 
** False otherwise.
*/
static int fts5MultiIterEof(Fts5Index *p, Fts5IndexIter *pIter){
  assert( p->rc 
      || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->bEof 
  );
  return (p->rc || pIter->bEof);
}

/*
** Return the rowid of the entry that the iterator currently points
** to. If the iterator points to EOF when this function is called the
** results are undefined.
*/
static i64 fts5MultiIterRowid(Fts5IndexIter *pIter){
  assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
  return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;



}



/*
** Move the iterator to the next entry at or following iMatch.
*/
static void fts5MultiIterNextFrom(
  Fts5Index *p, 
  Fts5IndexIter *pIter, 
  i64 iMatch
){
  while( 1 ){
    i64 iRowid;
    fts5MultiIterNext(p, pIter, 1, iMatch);

    if( fts5MultiIterEof(p, pIter) ) break;



    iRowid = fts5MultiIterRowid(pIter);
    if( pIter->bRev==0 && iRowid>=iMatch ) break;
    if( pIter->bRev!=0 && iRowid<=iMatch ) break;


  }
}

/*
** Return a pointer to a buffer containing the term associated with the 
** entry that the iterator currently points to.
*/
static const u8 *fts5MultiIterTerm(Fts5IndexIter *pIter, int *pn){
  Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  *pn = p->term.n;
  return p->term.p;


}

static void fts5ChunkIterate(
  Fts5Index *p,                   /* Index object */
  Fts5SegIter *pSeg,              /* Poslist of this iterator */
  void *pCtx,                     /* Context pointer for xChunk callback */
  void (*xChunk)(Fts5Index*, void*, const u8*, int)
){
  int nRem = pSeg->nPos;          /* Number of bytes still to come */
  Fts5Data *pData = 0;
  u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
  int pgno = pSeg->iLeafPgno;
  int pgnoSave = 0;




  if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
    pgnoSave = pgno+1;
  }

  while( 1 ){
    xChunk(p, pCtx, pChunk, nChunk);







>






|

|












|



<
|
<
>
|
|
|
|
|
|
|
|
|

|
|
|
|
|
>
>
|
>
|
>
>
>
>
|
|
<





|









>
|

|













>
>
|
>
|



|




|







>




<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
>
|
<
<
<

<
<
<
>
>
>
|
<
<
|
<
|
|
<
<
<
|
<
<
|
>
>
>
|
|
<
<
<
<
|
|
>
>
>
>
>

|
|
|
|
|
<
<
<
<
|
<
<
|
<
<
<
|
>
|
<
<
<
<
<
|
<
>
>
|
|
<
>
|
|
|
|
|
>
|
|
<
|
>
>
>
>


<
<
|
<
<
|
<
<
<
|
<
<
<
<
<
<
<
|
|
<
<
<
>
>

>
>
|
<
|
>
>
|
>

<
<
|
<
>
|
<
<
|
|
<
|

<
<
|
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
>
>
>
|
>
>
|
<
<
<
<
<
<
<
|
|
|
<
>
|
>
>
>
|
|
<
>
>
|
|
|
<
<
<
<
<
<
<
<
>
>














>
>
>







10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387

10388

10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415

10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473











10474
10475



10476
10477



10478



10479
10480
10481
10482


10483

10484
10485



10486


10487
10488
10489
10490
10491
10492




10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505




10506


10507



10508
10509
10510





10511

10512
10513
10514
10515

10516
10517
10518
10519
10520
10521
10522
10523
10524

10525
10526
10527
10528
10529
10530
10531


10532


10533



10534







10535
10536



10537
10538
10539
10540
10541
10542

10543
10544
10545
10546
10547
10548


10549

10550
10551


10552
10553

10554
10555


10556


10557
10558















10559
10560








10561
10562
10563
10564
10565
10566
10567







10568
10569
10570

10571
10572
10573
10574
10575
10576
10577

10578
10579
10580
10581
10582








10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
      pRes->iFirst = (u16)(pNew - pIter->aSeg);
      if( i==1 ) break;

      pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
    }
  }

  *ppFirst = pNew;
  return 0;
}

/*
** Set the pIter->bEof variable based on the state of the sub-iterators.
*/
static void fts5MultiIterSetEof(Fts5Iter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  pIter->base.bEof = pSeg->pLeaf==0;
  pIter->iSwitchRowid = pSeg->iRowid;
}

/*
** Move the iterator to the next entry. 
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not 
** considered an error if the iterator reaches EOF, or if it is already at 
** EOF when this function is called.
*/
static void fts5MultiIterNext(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int bFrom,                      /* True if argument iFrom is valid */
  i64 iFrom                       /* Advance at least as far as this */
){

  int bUseFrom = bFrom;

  while( p->rc==SQLITE_OK ){
    int iFirst = pIter->aFirst[1].iFirst;
    int bNewTerm = 0;
    Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
    assert( p->rc==SQLITE_OK );
    if( bUseFrom && pSeg->pDlidx ){
      fts5SegIterNextFrom(p, pSeg, iFrom);
    }else{
      pSeg->xNext(p, pSeg, &bNewTerm);
    }

    if( pSeg->pLeaf==0 || bNewTerm 
     || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
    ){
      fts5MultiIterAdvanced(p, pIter, iFirst, 1);
      fts5MultiIterSetEof(pIter);
      pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
      if( pSeg->pLeaf==0 ) return;
    }

    fts5AssertMultiIterSetup(p, pIter);
    assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
    if( pIter->bSkipEmpty==0 || pSeg->nPos ){
      pIter->xSetOutputs(pIter, pSeg);
      return;
    }
    bUseFrom = 0;

  }
}

static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}

static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
  UNUSED_PARAM2(pUnused1, pUnused2);
}

static Fts5Iter *fts5MultiIterAlloc(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  int nSeg
){
  Fts5Iter *pNew;
  int nSlot;                      /* Power of two >= nSeg */

  for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
  pNew = fts5IdxMalloc(p, 
      sizeof(Fts5Iter) +                  /* pNew */
      sizeof(Fts5SegIter) * (nSlot-1) +   /* pNew->aSeg[] */
      sizeof(Fts5CResult) * nSlot         /* pNew->aFirst[] */
  );
  if( pNew ){
    pNew->nSeg = nSlot;
    pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
    pNew->pIndex = p;
    pNew->xSetOutputs = fts5IterSetOutputs_Noop;
  }
  return pNew;
}












static void fts5PoslistCallback(
  Fts5Index *pUnused, 



  void *pContext, 
  const u8 *pChunk, int nChunk



){



  UNUSED_PARAM(pUnused);
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);


  }

}




typedef struct PoslistCallbackCtx PoslistCallbackCtx;


struct PoslistCallbackCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
  int eState;                     /* See above */
};





typedef struct PoslistOffsetsCtx PoslistOffsetsCtx;
struct PoslistOffsetsCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
  int iRead;
  int iWrite;
};

/*
** TODO: Make this more efficient!
*/
static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
  int i;




  for(i=0; i<pColset->nCol; i++){


    if( pColset->aiCol[i]==iCol ) return 1;



  }
  return 0;
}







static void fts5PoslistOffsetsCallback(
  Fts5Index *pUnused, 
  void *pContext, 
  const u8 *pChunk, int nChunk

){
  PoslistOffsetsCtx *pCtx = (PoslistOffsetsCtx*)pContext;
  UNUSED_PARAM(pUnused);
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    int i = 0;
    while( i<nChunk ){
      int iVal;
      i += fts5GetVarint32(&pChunk[i], iVal);

      iVal += pCtx->iRead - 2;
      pCtx->iRead = iVal;
      if( fts5IndexColsetTest(pCtx->pColset, iVal) ){
        fts5BufferSafeAppendVarint(pCtx->pBuf, iVal + 2 - pCtx->iWrite);
        pCtx->iWrite = iVal;
      }
    }


  }


}











static void fts5PoslistFilterCallback(
  Fts5Index *pUnused,



  void *pContext, 
  const u8 *pChunk, int nChunk
){
  PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
  UNUSED_PARAM(pUnused);
  assert_nc( nChunk>=0 );

  if( nChunk>0 ){
    /* Search through to find the first varint with value 1. This is the
    ** start of the next columns hits. */
    int i = 0;
    int iStart = 0;



    if( pCtx->eState==2 ){

      int iCol;
      fts5FastGetVarint32(pChunk, i, iCol);


      if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
        pCtx->eState = 1;

        fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
      }else{


        pCtx->eState = 0;


      }
    }
















    do {








      while( i<nChunk && pChunk[i]!=0x01 ){
        while( pChunk[i] & 0x80 ) i++;
        i++;
      }
      if( pCtx->eState ){
        fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
      }







      if( i<nChunk ){
        int iCol;
        iStart = i;

        i++;
        if( i>=nChunk ){
          pCtx->eState = 2;
        }else{
          fts5FastGetVarint32(pChunk, i, iCol);
          pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
          if( pCtx->eState ){

            fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
            iStart = i;
          }
        }
      }








    }while( i<nChunk );
  }
}

static void fts5ChunkIterate(
  Fts5Index *p,                   /* Index object */
  Fts5SegIter *pSeg,              /* Poslist of this iterator */
  void *pCtx,                     /* Context pointer for xChunk callback */
  void (*xChunk)(Fts5Index*, void*, const u8*, int)
){
  int nRem = pSeg->nPos;          /* Number of bytes still to come */
  Fts5Data *pData = 0;
  u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
  int pgno = pSeg->iLeafPgno;
  int pgnoSave = 0;

  /* This function does notmwork with detail=none databases. */
  assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );

  if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
    pgnoSave = pgno+1;
  }

  while( 1 ){
    xChunk(p, pCtx, pChunk, nChunk);
9900
9901
9902
9903
9904
9905
9906





























9907



































































































































































































































































































































































































































9908
9909
9910
9911
9912
9913
9914
        pSeg->pNextLeaf = pData;
        pData = 0;
      }
    }
  }
}



































































































































































































































































































































































































































































/*
** Allocate a new segment-id for the structure pStruct. The new segment
** id must be between 1 and 65335 inclusive, and must not be used by 
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
        pSeg->pNextLeaf = pData;
        pData = 0;
      }
    }
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
*/
static void fts5SegiterPoslist(
  Fts5Index *p,
  Fts5SegIter *pSeg,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){
  if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos) ){
    if( pColset==0 ){
      fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
    }else{
      if( p->pConfig->eDetail==FTS5_DETAIL_FULL ){
        PoslistCallbackCtx sCtx;
        sCtx.pBuf = pBuf;
        sCtx.pColset = pColset;
        sCtx.eState = fts5IndexColsetTest(pColset, 0);
        assert( sCtx.eState==0 || sCtx.eState==1 );
        fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
      }else{
        PoslistOffsetsCtx sCtx;
        memset(&sCtx, 0, sizeof(sCtx));
        sCtx.pBuf = pBuf;
        sCtx.pColset = pColset;
        fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistOffsetsCallback);
      }
    }
  }
}

/*
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
** the position list contains entries for column iCol, then (*pa) is set
** to point to the sub-position-list for that column and the number of
** bytes in it returned. Or, if the argument position list does not
** contain any entries for column iCol, return 0.
*/
static int fts5IndexExtractCol(
  const u8 **pa,                  /* IN/OUT: Pointer to poslist */
  int n,                          /* IN: Size of poslist in bytes */
  int iCol                        /* Column to extract from poslist */
){
  int iCurrent = 0;               /* Anything before the first 0x01 is col 0 */
  const u8 *p = *pa;
  const u8 *pEnd = &p[n];         /* One byte past end of position list */

  while( iCol>iCurrent ){
    /* Advance pointer p until it points to pEnd or an 0x01 byte that is
    ** not part of a varint. Note that it is not possible for a negative
    ** or extremely large varint to occur within an uncorrupted position 
    ** list. So the last byte of each varint may be assumed to have a clear
    ** 0x80 bit.  */
    while( *p!=0x01 ){
      while( *p++ & 0x80 );
      if( p>=pEnd ) return 0;
    }
    *pa = p++;
    iCurrent = *p++;
    if( iCurrent & 0x80 ){
      p--;
      p += fts5GetVarint32(p, iCurrent);
    }
  }
  if( iCol!=iCurrent ) return 0;

  /* Advance pointer p until it points to pEnd or an 0x01 byte that is
  ** not part of a varint */
  while( p<pEnd && *p!=0x01 ){
    while( *p++ & 0x80 );
  }

  return p - (*pa);
}

static int fts5IndexExtractColset (
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;
}

/*
** xSetOutputs callback used by detail=none tables.
*/
static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
  pIter->base.iRowid = pSeg->iRowid;
  pIter->base.nData = pSeg->nPos;
}

/*
** xSetOutputs callback used by detail=full and detail=col tables when no
** column filters are specified.
*/
static void fts5IterSetOutputs_Nocolset(Fts5Iter *pIter, Fts5SegIter *pSeg){
  pIter->base.iRowid = pSeg->iRowid;
  pIter->base.nData = pSeg->nPos;

  assert( pIter->pIndex->pConfig->eDetail!=FTS5_DETAIL_NONE );
  assert( pIter->pColset==0 );

  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    pIter->base.pData = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist);
    pIter->base.pData = pIter->poslist.p;
  }
}

/*
** xSetOutputs callback used by detail=col when there is a column filter
** and there are 100 or more columns. Also called as a fallback from
** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
*/
static void fts5IterSetOutputs_Col(Fts5Iter *pIter, Fts5SegIter *pSeg){
  fts5BufferZero(&pIter->poslist);
  fts5SegiterPoslist(pIter->pIndex, pSeg, pIter->pColset, &pIter->poslist);
  pIter->base.iRowid = pSeg->iRowid;
  pIter->base.pData = pIter->poslist.p;
  pIter->base.nData = pIter->poslist.n;
}

/*
** xSetOutputs callback used when: 
**
**   * detail=col,
**   * there is a column filter, and
**   * the table contains 100 or fewer columns. 
**
** The last point is to ensure all column numbers are stored as 
** single-byte varints.
*/
static void fts5IterSetOutputs_Col100(Fts5Iter *pIter, Fts5SegIter *pSeg){

  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
  assert( pIter->pColset );

  if( pSeg->iLeafOffset+pSeg->nPos>pSeg->pLeaf->szLeaf ){
    fts5IterSetOutputs_Col(pIter, pSeg);
  }else{
    u8 *a = (u8*)&pSeg->pLeaf->p[pSeg->iLeafOffset];
    u8 *pEnd = (u8*)&a[pSeg->nPos]; 
    int iPrev = 0;
    int *aiCol = pIter->pColset->aiCol;
    int *aiColEnd = &aiCol[pIter->pColset->nCol];

    u8 *aOut = pIter->poslist.p;
    int iPrevOut = 0;

    pIter->base.iRowid = pSeg->iRowid;

    while( a<pEnd ){
      iPrev += (int)a++[0] - 2;
      while( *aiCol<iPrev ){
        aiCol++;
        if( aiCol==aiColEnd ) goto setoutputs_col_out;
      }
      if( *aiCol==iPrev ){
        *aOut++ = (iPrev - iPrevOut) + 2;
        iPrevOut = iPrev;
      }
    }

setoutputs_col_out:
    pIter->base.pData = pIter->poslist.p;
    pIter->base.nData = aOut - pIter->poslist.p;
  }
}

/*
** xSetOutputs callback used by detail=full when there is a column filter.
*/
static void fts5IterSetOutputs_Full(Fts5Iter *pIter, Fts5SegIter *pSeg){
  Fts5Colset *pColset = pIter->pColset;
  pIter->base.iRowid = pSeg->iRowid;

  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_FULL );
  assert( pColset );

  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset->nCol==1 ){
      pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
      pIter->base.pData = a;
    }else{
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, a, pSeg->nPos, &pIter->poslist);
      pIter->base.pData = pIter->poslist.p;
      pIter->base.nData = pIter->poslist.n;
    }
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
    pIter->base.pData = pIter->poslist.p;
    pIter->base.nData = pIter->poslist.n;
  }
}

static void fts5IterSetOutputCb(int *pRc, Fts5Iter *pIter){
  if( *pRc==SQLITE_OK ){
    Fts5Config *pConfig = pIter->pIndex->pConfig;
    if( pConfig->eDetail==FTS5_DETAIL_NONE ){
      pIter->xSetOutputs = fts5IterSetOutputs_None;
    }

    else if( pIter->pColset==0 ){
      pIter->xSetOutputs = fts5IterSetOutputs_Nocolset;
    }

    else if( pConfig->eDetail==FTS5_DETAIL_FULL ){
      pIter->xSetOutputs = fts5IterSetOutputs_Full;
    }

    else{
      assert( pConfig->eDetail==FTS5_DETAIL_COLUMNS );
      if( pConfig->nCol<=100 ){
        pIter->xSetOutputs = fts5IterSetOutputs_Col100;
        sqlite3Fts5BufferSize(pRc, &pIter->poslist, pConfig->nCol);
      }else{
        pIter->xSetOutputs = fts5IterSetOutputs_Col;
      }
    }
  }
}


/*
** Allocate a new Fts5Iter object.
**
** The new object will be used to iterate through data in structure pStruct.
** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
** is zero or greater, data from the first nSegment segments on level iLevel
** is merged.
**
** The iterator initially points to the first term/rowid entry in the 
** iterated data.
*/
static void fts5MultiIterNew(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Structure *pStruct,         /* Structure of specific index */
  int flags,                      /* FTS5INDEX_QUERY_XXX flags */
  Fts5Colset *pColset,            /* Colset to filter on (or NULL) */
  const u8 *pTerm, int nTerm,     /* Term to seek to (or NULL/0) */
  int iLevel,                     /* Level to iterate (-1 for all) */
  int nSegment,                   /* Number of segments to merge (iLevel>=0) */
  Fts5Iter **ppOut                /* New object */
){
  int nSeg = 0;                   /* Number of segment-iters in use */
  int iIter = 0;                  /* */
  int iSeg;                       /* Used to iterate through segments */
  Fts5StructureLevel *pLvl;
  Fts5Iter *pNew;

  assert( (pTerm==0 && nTerm==0) || iLevel<0 );

  /* Allocate space for the new multi-seg-iterator. */
  if( p->rc==SQLITE_OK ){
    if( iLevel<0 ){
      assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
      nSeg = pStruct->nSegment;
      nSeg += (p->pHash ? 1 : 0);
    }else{
      nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
    }
  }
  *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
  if( pNew==0 ) return;
  pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
  pNew->bSkipEmpty = (0!=(flags & FTS5INDEX_QUERY_SKIPEMPTY));
  pNew->pStruct = pStruct;
  pNew->pColset = pColset;
  fts5StructureRef(pStruct);
  if( (flags & FTS5INDEX_QUERY_NOOUTPUT)==0 ){
    fts5IterSetOutputCb(&p->rc, pNew);
  }

  /* Initialize each of the component segment iterators. */
  if( p->rc==SQLITE_OK ){
    if( iLevel<0 ){
      Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
      if( p->pHash ){
        /* Add a segment iterator for the current contents of the hash table. */
        Fts5SegIter *pIter = &pNew->aSeg[iIter++];
        fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
      }
      for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
        for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
          Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
          Fts5SegIter *pIter = &pNew->aSeg[iIter++];
          if( pTerm==0 ){
            fts5SegIterInit(p, pSeg, pIter);
          }else{
            fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter);
          }
        }
      }
    }else{
      pLvl = &pStruct->aLevel[iLevel];
      for(iSeg=nSeg-1; iSeg>=0; iSeg--){
        fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
      }
    }
    assert( iIter==nSeg );
  }

  /* If the above was successful, each component iterators now points 
  ** to the first entry in its segment. In this case initialize the 
  ** aFirst[] array. Or, if an error has occurred, free the iterator
  ** object and set the output variable to NULL.  */
  if( p->rc==SQLITE_OK ){
    for(iIter=pNew->nSeg-1; iIter>0; iIter--){
      int iEq;
      if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
        Fts5SegIter *pSeg = &pNew->aSeg[iEq];
        if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
        fts5MultiIterAdvanced(p, pNew, iEq, iIter);
      }
    }
    fts5MultiIterSetEof(pNew);
    fts5AssertMultiIterSetup(p, pNew);

    if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
      fts5MultiIterNext(p, pNew, 0, 0);
    }else if( pNew->base.bEof==0 ){
      Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
      pNew->xSetOutputs(pNew, pSeg);
    }

  }else{
    fts5MultiIterFree(pNew);
    *ppOut = 0;
  }
}

/*
** Create an Fts5Iter that iterates through the doclist provided
** as the second argument.
*/
static void fts5MultiIterNew2(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  Fts5Data *pData,                /* Doclist to iterate through */
  int bDesc,                      /* True for descending rowid order */
  Fts5Iter **ppOut                /* New object */
){
  Fts5Iter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){
    Fts5SegIter *pIter = &pNew->aSeg[1];

    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;
      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
        pNew->bRev = 1;
        pIter->flags |= FTS5_SEGITER_REVERSE;
        fts5SegIterReverseInitPage(p, pIter);
      }else{
        fts5SegIterLoadNPos(p, pIter);
      }
      pData = 0;
    }else{
      pNew->base.bEof = 1;
    }
    fts5SegIterSetNext(p, pIter);

    *ppOut = pNew;
  }

  fts5DataRelease(pData);
}

/*
** Return true if the iterator is at EOF or if an error has occurred. 
** False otherwise.
*/
static int fts5MultiIterEof(Fts5Index *p, Fts5Iter *pIter){
  assert( p->rc 
      || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->base.bEof 
  );
  return (p->rc || pIter->base.bEof);
}

/*
** Return the rowid of the entry that the iterator currently points
** to. If the iterator points to EOF when this function is called the
** results are undefined.
*/
static i64 fts5MultiIterRowid(Fts5Iter *pIter){
  assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
  return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
}

/*
** Move the iterator to the next entry at or following iMatch.
*/
static void fts5MultiIterNextFrom(
  Fts5Index *p, 
  Fts5Iter *pIter, 
  i64 iMatch
){
  while( 1 ){
    i64 iRowid;
    fts5MultiIterNext(p, pIter, 1, iMatch);
    if( fts5MultiIterEof(p, pIter) ) break;
    iRowid = fts5MultiIterRowid(pIter);
    if( pIter->bRev==0 && iRowid>=iMatch ) break;
    if( pIter->bRev!=0 && iRowid<=iMatch ) break;
  }
}

/*
** Return a pointer to a buffer containing the term associated with the 
** entry that the iterator currently points to.
*/
static const u8 *fts5MultiIterTerm(Fts5Iter *pIter, int *pn){
  Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  *pn = p->term.n;
  return p->term.p;
}

/*
** Allocate a new segment-id for the structure pStruct. The new segment
** id must be between 1 and 65335 inclusive, and must not be used by 
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**
9948
9949
9950
9951
9952
9953
9954
9955



9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
  if( p->pHash ){
    sqlite3Fts5HashClear(p->pHash);
    p->nPendingData = 0;
  }
}

/*
** Return the size of the prefix, in bytes, that buffer (nNew/pNew) shares



** with buffer (nOld/pOld).
*/
static int fts5PrefixCompress(
  int nOld, const u8 *pOld,
  int nNew, const u8 *pNew
){
  int i;
  assert( fts5BlobCompare(pOld, nOld, pNew, nNew)<0 );
  for(i=0; i<nOld; i++){
    if( pOld[i]!=pNew[i] ) break;
  }
  return i;
}

static void fts5WriteDlidxClear(







|
>
>
>
|

|
<
<
<

<







11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130



11131

11132
11133
11134
11135
11136
11137
11138
  if( p->pHash ){
    sqlite3Fts5HashClear(p->pHash);
    p->nPendingData = 0;
  }
}

/*
** Return the size of the prefix, in bytes, that buffer 
** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
**
** Buffer (pNew/<length-unknown>) is guaranteed to be greater 
** than buffer (pOld/nOld).
*/
static int fts5PrefixCompress(int nOld, const u8 *pOld, const u8 *pNew){



  int i;

  for(i=0; i<nOld; i++){
    if( pOld[i]!=pNew[i] ) break;
  }
  return i;
}

static void fts5WriteDlidxClear(
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
      ** Usually, the previous term is available in pPage->term. The exception
      ** is if this is the first term written in an incremental-merge step.
      ** In this case the previous term is not available, so just write a
      ** copy of (pTerm/nTerm) into the parent node. This is slightly
      ** inefficient, but still correct.  */
      int n = nTerm;
      if( pPage->term.n ){
        n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
      }
      fts5WriteBtreeTerm(p, pWriter, n, pTerm);
      pPage = &pWriter->writer;
    }
  }else{
    nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
  }

  /* Append the number of bytes of new data, then the term data itself
  ** to the page. */
  fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
  fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);







|





|







11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
      ** Usually, the previous term is available in pPage->term. The exception
      ** is if this is the first term written in an incremental-merge step.
      ** In this case the previous term is not available, so just write a
      ** copy of (pTerm/nTerm) into the parent node. This is slightly
      ** inefficient, but still correct.  */
      int n = nTerm;
      if( pPage->term.n ){
        n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, pTerm);
      }
      fts5WriteBtreeTerm(p, pWriter, n, pTerm);
      pPage = &pWriter->writer;
    }
  }else{
    nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, pTerm);
    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
  }

  /* Append the number of bytes of new data, then the term data itself
  ** to the page. */
  fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
  fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313

/*
** Append a rowid and position-list size field to the writers output. 
*/
static void fts5WriteAppendRowid(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  i64 iRowid,
  int nPos
){
  if( p->rc==SQLITE_OK ){
    Fts5PageWriter *pPage = &pWriter->writer;

    if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
      fts5WriteFlushLeaf(p, pWriter);
    }







|
<







11466
11467
11468
11469
11470
11471
11472
11473

11474
11475
11476
11477
11478
11479
11480

/*
** Append a rowid and position-list size field to the writers output. 
*/
static void fts5WriteAppendRowid(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  i64 iRowid

){
  if( p->rc==SQLITE_OK ){
    Fts5PageWriter *pPage = &pWriter->writer;

    if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
      fts5WriteFlushLeaf(p, pWriter);
    }
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
    }else{
      assert( p->rc || iRowid>pWriter->iPrevRowid );
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
    }
    pWriter->iPrevRowid = iRowid;
    pWriter->bFirstRowidInDoclist = 0;
    pWriter->bFirstRowidInPage = 0;

    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPos);
  }
}

static void fts5WriteAppendPoslistData(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  const u8 *aData, 







<
<







11493
11494
11495
11496
11497
11498
11499


11500
11501
11502
11503
11504
11505
11506
    }else{
      assert( p->rc || iRowid>pWriter->iPrevRowid );
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
    }
    pWriter->iPrevRowid = iRowid;
    pWriter->bFirstRowidInDoclist = 0;
    pWriter->bFirstRowidInPage = 0;


  }
}

static void fts5WriteAppendPoslistData(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  const u8 *aData, 
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
}

/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental
** merge step has finished but the input has not been completely exhausted.
*/
static void fts5TrimSegments(Fts5Index *p, Fts5IndexIter *pIter){
  int i;
  Fts5Buffer buf;
  memset(&buf, 0, sizeof(Fts5Buffer));
  for(i=0; i<pIter->nSeg; i++){
    Fts5SegIter *pSeg = &pIter->aSeg[i];
    if( pSeg->pSeg==0 ){
      /* no-op */







|







11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
}

/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental
** merge step has finished but the input has not been completely exhausted.
*/
static void fts5TrimSegments(Fts5Index *p, Fts5Iter *pIter){
  int i;
  Fts5Buffer buf;
  memset(&buf, 0, sizeof(Fts5Buffer));
  for(i=0; i<pIter->nSeg; i++){
    Fts5SegIter *pSeg = &pIter->aSeg[i];
    if( pSeg->pSeg==0 ){
      /* no-op */
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529


10530
10531
10532
10533
10534
10535
10536
  Fts5Structure **ppStruct,       /* IN/OUT: Stucture of index */
  int iLvl,                       /* Level to read input from */
  int *pnRem                      /* Write up to this many output leaves */
){
  Fts5Structure *pStruct = *ppStruct;
  Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
  Fts5StructureLevel *pLvlOut;
  Fts5IndexIter *pIter = 0;       /* Iterator to read input data */
  int nRem = pnRem ? *pnRem : 0;  /* Output leaf pages left to write */
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bOldest;                    /* True if the output segment is the oldest */



  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
  if( pLvl->nMerge ){







|






>
>







11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
  Fts5Structure **ppStruct,       /* IN/OUT: Stucture of index */
  int iLvl,                       /* Level to read input from */
  int *pnRem                      /* Write up to this many output leaves */
){
  Fts5Structure *pStruct = *ppStruct;
  Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
  Fts5StructureLevel *pLvlOut;
  Fts5Iter *pIter = 0;       /* Iterator to read input data */
  int nRem = pnRem ? *pnRem : 0;  /* Output leaf pages left to write */
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bOldest;                    /* True if the output segment is the oldest */
  int eDetail = p->pConfig->eDetail;
  const int flags = FTS5INDEX_QUERY_NOOUTPUT;

  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
  if( pLvl->nMerge ){
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581

    /* Read input from all segments in the input level */
    nInput = pLvl->nSeg;
  }
  bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);

  assert( iLvl>=0 );
  for(fts5MultiIterNew(p, pStruct, 0, 0, 0, 0, iLvl, nInput, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int nPos;                     /* position-list size field value */
    int nTerm;
    const u8 *pTerm;







|







11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748

    /* Read input from all segments in the input level */
    nInput = pLvl->nSeg;
  }
  bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);

  assert( iLvl>=0 );
  for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int nPos;                     /* position-list size field value */
    int nTerm;
    const u8 *pTerm;
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601








10602


10603

10604
10605
10606
10607
10608
10609
10610
      /* This is a new term. Append a term to the output segment. */
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */
    nPos = pSegIter->nPos*2 + pSegIter->bDel;
    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter), nPos);









    /* Append the position-list data to the output */


    fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);

  }

  /* Flush the last leaf page to disk. Set the output segment b-tree height
  ** and last leaf page number at the same time.  */
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  if( fts5MultiIterEof(p, pIter) ){







<
|

>
>
>
>
>
>
>
>
|
>
>
|
>







11759
11760
11761
11762
11763
11764
11765

11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
      /* This is a new term. Append a term to the output segment. */
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */

    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));

    if( eDetail==FTS5_DETAIL_NONE ){
      if( pSegIter->bDel ){
        fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
        if( pSegIter->nPos>0 ){
          fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
        }
      }
    }else{
      /* Append the position-list data to the output */
      nPos = pSegIter->nPos*2 + pSegIter->bDel;
      fts5BufferAppendVarint(&p->rc, &writer.writer.buf, nPos);
      fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
    }
  }

  /* Flush the last leaf page to disk. Set the output segment b-tree height
  ** and last leaf page number at the same time.  */
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  if( fts5MultiIterEof(p, pIter) ){
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
    }
  }else{
    assert( pSeg->pgnoLast>0 );
    fts5TrimSegments(p, pIter);
    pLvl->nMerge = nInput;
  }

  fts5MultiIterFree(p, pIter);
  fts5BufferFree(&term);
  if( pnRem ) *pnRem -= writer.nLeafWritten;
}

/*
** Do up to nPg pages of automerge work on the index.
*/







|







11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
    }
  }else{
    assert( pSeg->pgnoLast>0 );
    fts5TrimSegments(p, pIter);
    pLvl->nMerge = nInput;
  }

  fts5MultiIterFree(pIter);
  fts5BufferFree(&term);
  if( pnRem ) *pnRem -= writer.nLeafWritten;
}

/*
** Do up to nPg pages of automerge work on the index.
*/
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
  /* Obtain a reference to the index structure and allocate a new segment-id
  ** for the new level-0 segment.  */
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);

  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;

    Fts5StructureSegment *pSeg;   /* New segment within pStruct */
    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */
    Fts5Buffer *pPgidx;           /* Buffer in which to assemble pgidx */

    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);








|







11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
  /* Obtain a reference to the index structure and allocate a new segment-id
  ** for the new level-0 segment.  */
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);

  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;
    int eDetail = p->pConfig->eDetail;
    Fts5StructureSegment *pSeg;   /* New segment within pStruct */
    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */
    Fts5Buffer *pPgidx;           /* Buffer in which to assemble pgidx */

    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);

10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851

















10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879

10880
10881
10882
10883
10884
10885
10886
        i64 iDelta = 0;
        int iOff = 0;

        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){
          int nPos;
          int nCopy;
          int bDummy;
          iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);
          nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
          nCopy += nPos;
          iRowid += iDelta;
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );


















          if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
            /* The entire poslist will fit on the current leaf. So copy
            ** it in one go. */
            fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
          }else{
            /* The entire poslist will not fit on this leaf. So it needs
            ** to be broken into sections. The only qualification being
            ** that each varint must be stored contiguously.  */
            const u8 *pPoslist = &pDoclist[iOff];
            int iPos = 0;
            while( p->rc==SQLITE_OK ){
              int nSpace = pgsz - pBuf->n - pPgidx->n;
              int n = 0;
              if( (nCopy - iPos)<=nSpace ){
                n = nCopy - iPos;
              }else{
                n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
              }
              assert( n>0 );
              fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
              iPos += n;
              if( (pBuf->n + pPgidx->n)>=pgsz ){
                fts5WriteFlushLeaf(p, &writer);
              }
              if( iPos>=nCopy ) break;
            }
          }
          iOff += nCopy;

        }
      }

      /* TODO2: Doclist terminator written here. */
      /* pBuf->p[pBuf->n++] = '\0'; */
      assert( pBuf->n<=pBuf->nSpace );
      sqlite3Fts5HashScanNext(pHash);







<
<
<

<
<












>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







12004
12005
12006
12007
12008
12009
12010



12011


12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
        i64 iDelta = 0;
        int iOff = 0;

        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){



          iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);


          iRowid += iDelta;
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );

          if( eDetail==FTS5_DETAIL_NONE ){
            if( iOff<nDoclist && pDoclist[iOff]==0 ){
              pBuf->p[pBuf->n++] = 0;
              iOff++;
              if( iOff<nDoclist && pDoclist[iOff]==0 ){
                pBuf->p[pBuf->n++] = 0;
                iOff++;
              }
            }
            if( (pBuf->n + pPgidx->n)>=pgsz ){
              fts5WriteFlushLeaf(p, &writer);
            }
          }else{
            int bDummy;
            int nPos;
            int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
            nCopy += nPos;
            if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
              /* The entire poslist will fit on the current leaf. So copy
              ** it in one go. */
              fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
            }else{
              /* The entire poslist will not fit on this leaf. So it needs
              ** to be broken into sections. The only qualification being
              ** that each varint must be stored contiguously.  */
              const u8 *pPoslist = &pDoclist[iOff];
              int iPos = 0;
              while( p->rc==SQLITE_OK ){
                int nSpace = pgsz - pBuf->n - pPgidx->n;
                int n = 0;
                if( (nCopy - iPos)<=nSpace ){
                  n = nCopy - iPos;
                }else{
                  n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
                }
                assert( n>0 );
                fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
                iPos += n;
                if( (pBuf->n + pPgidx->n)>=pgsz ){
                  fts5WriteFlushLeaf(p, &writer);
                }
                if( iPos>=nCopy ) break;
              }
            }
            iOff += nCopy;
          }
        }
      }

      /* TODO2: Doclist terminator written here. */
      /* pBuf->p[pBuf->n++] = '\0'; */
      assert( pBuf->n<=pBuf->nSpace );
      sqlite3Fts5HashScanNext(pHash);
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087

11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161


11162





11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
    fts5StructureWrite(p, pStruct);
  }
  fts5StructureRelease(pStruct);

  return fts5IndexReturn(p);
}

static void fts5PoslistCallback(
  Fts5Index *p, 
  void *pContext, 
  const u8 *pChunk, int nChunk
){
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);
  }
}

typedef struct PoslistCallbackCtx PoslistCallbackCtx;
struct PoslistCallbackCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
  int eState;                     /* See above */
};

/*
** TODO: Make this more efficient!
*/
static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
  int i;
  for(i=0; i<pColset->nCol; i++){
    if( pColset->aiCol[i]==iCol ) return 1;
  }
  return 0;
}

static void fts5PoslistFilterCallback(
  Fts5Index *p, 
  void *pContext, 
  const u8 *pChunk, int nChunk
){
  PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    /* Search through to find the first varint with value 1. This is the
    ** start of the next columns hits. */
    int i = 0;
    int iStart = 0;

    if( pCtx->eState==2 ){
      int iCol;
      fts5FastGetVarint32(pChunk, i, iCol);
      if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
        pCtx->eState = 1;
        fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
      }else{
        pCtx->eState = 0;
      }
    }

    do {
      while( i<nChunk && pChunk[i]!=0x01 ){
        while( pChunk[i] & 0x80 ) i++;
        i++;
      }
      if( pCtx->eState ){
        fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
      }
      if( i<nChunk ){
        int iCol;
        iStart = i;
        i++;
        if( i>=nChunk ){
          pCtx->eState = 2;
        }else{
          fts5FastGetVarint32(pChunk, i, iCol);
          pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
          if( pCtx->eState ){
            fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
            iStart = i;
          }
        }
      }
    }while( i<nChunk );
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
*/
static void fts5SegiterPoslist(
  Fts5Index *p,
  Fts5SegIter *pSeg,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){

  if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos) ){
    if( pColset==0 ){
      fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
    }else{
      PoslistCallbackCtx sCtx;
      sCtx.pBuf = pBuf;
      sCtx.pColset = pColset;
      sCtx.eState = fts5IndexColsetTest(pColset, 0);
      assert( sCtx.eState==0 || sCtx.eState==1 );
      fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
    }
  }
}

/*
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
** the position list contains entries for column iCol, then (*pa) is set
** to point to the sub-position-list for that column and the number of
** bytes in it returned. Or, if the argument position list does not
** contain any entries for column iCol, return 0.
*/
static int fts5IndexExtractCol(
  const u8 **pa,                  /* IN/OUT: Pointer to poslist */
  int n,                          /* IN: Size of poslist in bytes */
  int iCol                        /* Column to extract from poslist */
){
  int iCurrent = 0;               /* Anything before the first 0x01 is col 0 */
  const u8 *p = *pa;
  const u8 *pEnd = &p[n];         /* One byte past end of position list */
  u8 prev = 0;

  while( iCol>iCurrent ){
    /* Advance pointer p until it points to pEnd or an 0x01 byte that is
    ** not part of a varint */
    while( (prev & 0x80) || *p!=0x01 ){
      prev = *p++;
      if( p==pEnd ) return 0;
    }
    *pa = p++;
    p += fts5GetVarint32(p, iCurrent);
  }
  if( iCol!=iCurrent ) return 0;

  /* Advance pointer p until it points to pEnd or an 0x01 byte that is
  ** not part of a varint */
  assert( (prev & 0x80)==0 );
  while( p<pEnd && ((prev & 0x80) || *p!=0x01) ){
    prev = *p++;
  }
  return p - (*pa);
}


/*
** Iterator pMulti currently points to a valid entry (not EOF). This
** function appends the following to buffer pBuf:
**
**   * The varint iDelta, and
**   * the position list that currently points to, including the size field.
**
** If argument pColset is NULL, then the position list is filtered according
** to pColset before being appended to the buffer. If this means there are
** no entries in the position list, nothing is appended to the buffer (not
** even iDelta).
**
** If an error occurs, an error code is left in p->rc. 
*/
static int fts5AppendPoslist(
  Fts5Index *p,
  i64 iDelta,
  Fts5IndexIter *pMulti,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){


  if( p->rc==SQLITE_OK ){





    Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
    assert( fts5MultiIterEof(p, pMulti)==0 );
    assert( pSeg->nPos>0 );
    if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos+9+9) ){

      if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf 
       && (pColset==0 || pColset->nCol==1)
      ){
        const u8 *pPos = &pSeg->pLeaf->p[pSeg->iLeafOffset];
        int nPos;
        if( pColset ){
          nPos = fts5IndexExtractCol(&pPos, pSeg->nPos, pColset->aiCol[0]);
          if( nPos==0 ) return 1;
        }else{
          nPos = pSeg->nPos;
        }
        assert( nPos>0 );
        fts5BufferSafeAppendVarint(pBuf, iDelta);
        fts5BufferSafeAppendVarint(pBuf, nPos*2);
        fts5BufferSafeAppendBlob(pBuf, pPos, nPos);
      }else{
        int iSv1;
        int iSv2;
        int iData;

        /* Append iDelta */
        iSv1 = pBuf->n;
        fts5BufferSafeAppendVarint(pBuf, iDelta);

        /* WRITEPOSLISTSIZE */
        iSv2 = pBuf->n;
        fts5BufferSafeAppendVarint(pBuf, pSeg->nPos*2);
        iData = pBuf->n;

        fts5SegiterPoslist(p, pSeg, pColset, pBuf);

        if( pColset ){
          int nActual = pBuf->n - iData;
          if( nActual!=pSeg->nPos ){
            if( nActual==0 ){
              pBuf->n = iSv1;
              return 1;
            }else{
              int nReq = sqlite3Fts5GetVarintLen((u32)(nActual*2));
              while( iSv2<(iData-nReq) ){ pBuf->p[iSv2++] = 0x80; }
              sqlite3Fts5PutVarint(&pBuf->p[iSv2], nActual*2);
            }
          }
        }
      }

    }
  }

  return 0;
}

static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
  u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;

  assert( pIter->aPoslist );
  if( p>=pIter->aEof ){
    pIter->aPoslist = 0;







|
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<


>
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|


|
<


>
>
|
>
>
>
>
>
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







12179
12180
12181
12182
12183
12184
12185
12186
12187








12188













































































12189

12190
12191
12192
12193









12194



















12195




































12196
12197
12198
12199

12200
12201
12202
12203
12204
12205
12206
12207
12208
12209




12210



















































12211
12212
12213
12214
12215
12216
12217
    fts5StructureWrite(p, pStruct);
  }
  fts5StructureRelease(pStruct);

  return fts5IndexReturn(p);
}

static void fts5AppendRowid(
  Fts5Index *p,








  i64 iDelta,













































































  Fts5Iter *pUnused,

  Fts5Buffer *pBuf
){
  UNUSED_PARAM(pUnused);
  fts5BufferAppendVarint(&p->rc, pBuf, iDelta);









}
























































static void fts5AppendPoslist(
  Fts5Index *p,
  i64 iDelta,
  Fts5Iter *pMulti,

  Fts5Buffer *pBuf
){
  int nData = pMulti->base.nData;
  assert( nData>0 );
  if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nData+9+9) ){
    fts5BufferSafeAppendVarint(pBuf, iDelta);
    fts5BufferSafeAppendVarint(pBuf, nData*2);
    fts5BufferSafeAppendBlob(pBuf, pMulti->base.pData, nData);
  }
}

























































static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
  u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;

  assert( pIter->aPoslist );
  if( p>=pIter->aEof ){
    pIter->aPoslist = 0;
11272
11273
11274
11275
11276
11277
11278































































11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305

11306
11307
11308
11309
11310

11311
11312
11313
11314
11315
11316

11317
11318

11319
11320
11321
11322
11323
11324
11325

11326
11327
11328
11329
11330
11331


11332
11333
11334

11335
11336
11337
11338
11339
11340
11341
11342
11343




11344



11345






11346
11347

11348









11349
11350
11351
11352
11353
11354
11355

11356
11357









11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381










11382
11383
11384
11385
11386
11387


11388
11389
11390
11391
11392
11393
11394
11395
11396


11397
11398
11399
11400
11401
11402


11403
11404
11405
11406
11407


11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
#endif

#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) {       \
  assert( (pBuf)->n!=0 || (iLastRowid)==0 );                   \
  fts5BufferSafeAppendVarint((pBuf), (iRowid) - (iLastRowid)); \
  (iLastRowid) = (iRowid);                                     \
}
































































/*
** Buffers p1 and p2 contain doclists. This function merges the content
** of the two doclists together and sets buffer p1 to the result before
** returning.
**
** If an error occurs, an error code is left in p->rc. If an error has
** already occurred, this function is a no-op.
*/
static void fts5MergePrefixLists(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Buffer *p1,                 /* First list to merge */
  Fts5Buffer *p2                  /* Second list to merge */
){
  if( p2->n ){
    i64 iLastRowid = 0;
    Fts5DoclistIter i1;
    Fts5DoclistIter i2;
    Fts5Buffer out;
    Fts5Buffer tmp;
    memset(&out, 0, sizeof(out));
    memset(&tmp, 0, sizeof(tmp));

    sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
    fts5DoclistIterInit(p1, &i1);
    fts5DoclistIterInit(p2, &i2);
    while( p->rc==SQLITE_OK && (i1.aPoslist!=0 || i2.aPoslist!=0) ){

      if( i2.aPoslist==0 || (i1.aPoslist && i1.iRowid<i2.iRowid) ){
        /* Copy entry from i1 */
        fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
        fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);
        fts5DoclistIterNext(&i1);

      }
      else if( i1.aPoslist==0 || i2.iRowid!=i1.iRowid ){
        /* Copy entry from i2 */
        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.nPoslist+i2.nSize);
        fts5DoclistIterNext(&i2);

      }
      else{

        i64 iPos1 = 0;
        i64 iPos2 = 0;
        int iOff1 = 0;
        int iOff2 = 0;
        u8 *a1 = &i1.aPoslist[i1.nSize];
        u8 *a2 = &i2.aPoslist[i2.nSize];


        Fts5PoslistWriter writer;
        memset(&writer, 0, sizeof(writer));

        /* Merge the two position lists. */ 
        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferZero(&tmp);



        sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
        sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);


        while( p->rc==SQLITE_OK && (iPos1>=0 || iPos2>=0) ){
          i64 iNew;
          if( iPos2<0 || (iPos1>=0 && iPos1<iPos2) ){
            iNew = iPos1;
            sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
          }else{
            iNew = iPos2;
            sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);




            if( iPos1==iPos2 ){



              sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1,&iPos1);






            }
          }

          p->rc = sqlite3Fts5PoslistWriterAppend(&tmp, &writer, iNew);









        }

        /* WRITEPOSLISTSIZE */
        fts5BufferSafeAppendVarint(&out, tmp.n * 2);
        fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
        fts5DoclistIterNext(&i1);
        fts5DoclistIterNext(&i2);

      }
    }










    fts5BufferSet(&p->rc, p1, out.n, out.p);
    fts5BufferFree(&tmp);
    fts5BufferFree(&out);
  }
}

static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
  Fts5Buffer tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}

static void fts5SetupPrefixIter(
  Fts5Index *p,                   /* Index to read from */
  int bDesc,                      /* True for "ORDER BY rowid DESC" */
  const u8 *pToken,               /* Buffer containing prefix to match */
  int nToken,                     /* Size of buffer pToken in bytes */
  Fts5Colset *pColset,            /* Restrict matches to these columns */
  Fts5IndexIter **ppIter          /* OUT: New iterator */
){
  Fts5Structure *pStruct;
  Fts5Buffer *aBuf;
  const int nBuf = 32;











  aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
  pStruct = fts5StructureRead(p);

  if( aBuf && pStruct ){
    const int flags = FTS5INDEX_QUERY_SCAN;


    int i;
    i64 iLastRowid = 0;
    Fts5IndexIter *p1 = 0;     /* Iterator used to gather data from index */
    Fts5Data *pData;
    Fts5Buffer doclist;
    int bNewTerm = 1;

    memset(&doclist, 0, sizeof(doclist));
    for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);


        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext2(p, p1, &bNewTerm)
    ){
      i64 iRowid = fts5MultiIterRowid(p1);
      int nTerm;
      const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);


      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( bNewTerm ){
        if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
      }



      if( doclist.n>0 && iRowid<=iLastRowid ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
            fts5BufferZero(&doclist);
          }else{
            fts5MergePrefixLists(p, &doclist, &aBuf[i]);
            fts5BufferZero(&aBuf[i]);
          }
        }
        iLastRowid = 0;
      }

      if( !fts5AppendPoslist(p, iRowid-iLastRowid, p1, pColset, &doclist) ){
        iLastRowid = iRowid;
      }
    }

    for(i=0; i<nBuf; i++){
      if( p->rc==SQLITE_OK ){
        fts5MergePrefixLists(p, &doclist, &aBuf[i]);
      }
      fts5BufferFree(&aBuf[i]);
    }
    fts5MultiIterFree(p, p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















|
|
<
<

|


|
>
|




>

|




>


>







>



<


>
>



>

<
<
|
|
|
|
|
|
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>


>
|
>
>
>
>
>
>
>
>
>







>


>
>
>
>
>
>
>
>
>







<
<
<
<
<
<






|




>
>
>
>
>
>
>
>
>
>





|
>
>


|





|
>
>



|
|
|
>
>





>
>
|






|






|
|
<




|



|







12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353


12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386

12387
12388
12389
12390
12391
12392
12393
12394
12395


12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455






12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526

12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
#endif

#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) {       \
  assert( (pBuf)->n!=0 || (iLastRowid)==0 );                   \
  fts5BufferSafeAppendVarint((pBuf), (iRowid) - (iLastRowid)); \
  (iLastRowid) = (iRowid);                                     \
}

/*
** Swap the contents of buffer *p1 with that of *p2.
*/
static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
  Fts5Buffer tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}

static void fts5NextRowid(Fts5Buffer *pBuf, int *piOff, i64 *piRowid){
  int i = *piOff;
  if( i>=pBuf->n ){
    *piOff = -1;
  }else{
    u64 iVal;
    *piOff = i + sqlite3Fts5GetVarint(&pBuf->p[i], &iVal);
    *piRowid += iVal;
  }
}

/*
** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
** In this case the buffers consist of a delta-encoded list of rowids only.
*/
static void fts5MergeRowidLists(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Buffer *p1,                 /* First list to merge */
  Fts5Buffer *p2                  /* Second list to merge */
){
  int i1 = 0;
  int i2 = 0;
  i64 iRowid1 = 0;
  i64 iRowid2 = 0;
  i64 iOut = 0;

  Fts5Buffer out;
  memset(&out, 0, sizeof(out));
  sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
  if( p->rc ) return;

  fts5NextRowid(p1, &i1, &iRowid1);
  fts5NextRowid(p2, &i2, &iRowid2);
  while( i1>=0 || i2>=0 ){
    if( i1>=0 && (i2<0 || iRowid1<iRowid2) ){
      assert( iOut==0 || iRowid1>iOut );
      fts5BufferSafeAppendVarint(&out, iRowid1 - iOut);
      iOut = iRowid1;
      fts5NextRowid(p1, &i1, &iRowid1);
    }else{
      assert( iOut==0 || iRowid2>iOut );
      fts5BufferSafeAppendVarint(&out, iRowid2 - iOut);
      iOut = iRowid2;
      if( i1>=0 && iRowid1==iRowid2 ){
        fts5NextRowid(p1, &i1, &iRowid1);
      }
      fts5NextRowid(p2, &i2, &iRowid2);
    }
  }

  fts5BufferSwap(&out, p1);
  fts5BufferFree(&out);
}

/*
** Buffers p1 and p2 contain doclists. This function merges the content
** of the two doclists together and sets buffer p1 to the result before
** returning.
**
** If an error occurs, an error code is left in p->rc. If an error has
** already occurred, this function is a no-op.
*/
static void fts5MergePrefixLists(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Buffer *p1,                 /* First list to merge */
  Fts5Buffer *p2                  /* Second list to merge */
){
  if( p2->n ){
    i64 iLastRowid = 0;
    Fts5DoclistIter i1;
    Fts5DoclistIter i2;
    Fts5Buffer out = {0, 0, 0};
    Fts5Buffer tmp = {0, 0, 0};



    if( sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n) ) return;
    fts5DoclistIterInit(p1, &i1);
    fts5DoclistIterInit(p2, &i2);

    while( 1 ){
      if( i1.iRowid<i2.iRowid ){
        /* Copy entry from i1 */
        fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
        fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);
        fts5DoclistIterNext(&i1);
        if( i1.aPoslist==0 ) break;
      }
      else if( i2.iRowid!=i1.iRowid ){
        /* Copy entry from i2 */
        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.nPoslist+i2.nSize);
        fts5DoclistIterNext(&i2);
        if( i2.aPoslist==0 ) break;
      }
      else{
        /* Merge the two position lists. */ 
        i64 iPos1 = 0;
        i64 iPos2 = 0;
        int iOff1 = 0;
        int iOff2 = 0;
        u8 *a1 = &i1.aPoslist[i1.nSize];
        u8 *a2 = &i2.aPoslist[i2.nSize];

        i64 iPrev = 0;
        Fts5PoslistWriter writer;
        memset(&writer, 0, sizeof(writer));


        fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
        fts5BufferZero(&tmp);
        sqlite3Fts5BufferSize(&p->rc, &tmp, i1.nPoslist + i2.nPoslist);
        if( p->rc ) break;

        sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
        sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
        assert( iPos1>=0 && iPos2>=0 );



        if( iPos1<iPos2 ){
          sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
          sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
        }else{
          sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
          sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
        }

        if( iPos1>=0 && iPos2>=0 ){
          while( 1 ){
            if( iPos1<iPos2 ){
              if( iPos1!=iPrev ){
                sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
              }
              sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
              if( iPos1<0 ) break;
            }else{
              assert( iPos2!=iPrev );
              sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
              sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
              if( iPos2<0 ) break;
            }
          }
        }

        if( iPos1>=0 ){
          if( iPos1!=iPrev ){
            sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
          }
          fts5BufferSafeAppendBlob(&tmp, &a1[iOff1], i1.nPoslist-iOff1);
        }else{
          assert( iPos2>=0 && iPos2!=iPrev );
          sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
          fts5BufferSafeAppendBlob(&tmp, &a2[iOff2], i2.nPoslist-iOff2);
        }

        /* WRITEPOSLISTSIZE */
        fts5BufferSafeAppendVarint(&out, tmp.n * 2);
        fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
        fts5DoclistIterNext(&i1);
        fts5DoclistIterNext(&i2);
        if( i1.aPoslist==0 || i2.aPoslist==0 ) break;
      }
    }

    if( i1.aPoslist ){
      fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
      fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.aEof - i1.aPoslist);
    }
    else if( i2.aPoslist ){
      fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
      fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.aEof - i2.aPoslist);
    }

    fts5BufferSet(&p->rc, p1, out.n, out.p);
    fts5BufferFree(&tmp);
    fts5BufferFree(&out);
  }
}







static void fts5SetupPrefixIter(
  Fts5Index *p,                   /* Index to read from */
  int bDesc,                      /* True for "ORDER BY rowid DESC" */
  const u8 *pToken,               /* Buffer containing prefix to match */
  int nToken,                     /* Size of buffer pToken in bytes */
  Fts5Colset *pColset,            /* Restrict matches to these columns */
  Fts5Iter **ppIter          /* OUT: New iterator */
){
  Fts5Structure *pStruct;
  Fts5Buffer *aBuf;
  const int nBuf = 32;

  void (*xMerge)(Fts5Index*, Fts5Buffer*, Fts5Buffer*);
  void (*xAppend)(Fts5Index*, i64, Fts5Iter*, Fts5Buffer*);
  if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
    xMerge = fts5MergeRowidLists;
    xAppend = fts5AppendRowid;
  }else{
    xMerge = fts5MergePrefixLists;
    xAppend = fts5AppendPoslist;
  }

  aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
  pStruct = fts5StructureRead(p);

  if( aBuf && pStruct ){
    const int flags = FTS5INDEX_QUERY_SCAN 
                    | FTS5INDEX_QUERY_SKIPEMPTY 
                    | FTS5INDEX_QUERY_NOOUTPUT;
    int i;
    i64 iLastRowid = 0;
    Fts5Iter *p1 = 0;     /* Iterator used to gather data from index */
    Fts5Data *pData;
    Fts5Buffer doclist;
    int bNewTerm = 1;

    memset(&doclist, 0, sizeof(doclist));
    fts5MultiIterNew(p, pStruct, flags, pColset, pToken, nToken, -1, 0, &p1);
    fts5IterSetOutputCb(&p->rc, p1);
    for( /* no-op */ ;
        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext2(p, p1, &bNewTerm)
    ){
      Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
      int nTerm = pSeg->term.n;
      const u8 *pTerm = pSeg->term.p;
      p1->xSetOutputs(p1, pSeg);

      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( bNewTerm ){
        if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
      }

      if( p1->base.nData==0 ) continue;

      if( p1->base.iRowid<=iLastRowid && doclist.n>0 ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
            fts5BufferZero(&doclist);
          }else{
            xMerge(p, &doclist, &aBuf[i]);
            fts5BufferZero(&aBuf[i]);
          }
        }
        iLastRowid = 0;
      }

      xAppend(p, p1->base.iRowid-iLastRowid, p1, &doclist);
      iLastRowid = p1->base.iRowid;

    }

    for(i=0; i<nBuf; i++){
      if( p->rc==SQLITE_OK ){
        xMerge(p, &doclist, &aBuf[i]);
      }
      fts5BufferFree(&aBuf[i]);
    }
    fts5MultiIterFree(p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
** to the document with rowid iRowid.
*/
static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
  assert( p->rc==SQLITE_OK );

  /* Allocate the hash table if it has not already been allocated */
  if( p->pHash==0 ){
    p->rc = sqlite3Fts5HashNew(&p->pHash, &p->nPendingData);
  }

  /* Flush the hash table to disk if required */
  if( iRowid<p->iWriteRowid 
   || (iRowid==p->iWriteRowid && p->bDelete==0)
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){







|







12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
** to the document with rowid iRowid.
*/
static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
  assert( p->rc==SQLITE_OK );

  /* Allocate the hash table if it has not already been allocated */
  if( p->pHash==0 ){
    p->rc = sqlite3Fts5HashNew(p->pConfig, &p->pHash, &p->nPendingData);
  }

  /* Flush the hash table to disk if required */
  if( iRowid<p->iWriteRowid 
   || (iRowid==p->iWriteRowid && p->bDelete==0)
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
static int sqlite3Fts5IndexRollback(Fts5Index *p){
  fts5CloseReader(p);
  fts5IndexDiscardData(p);
  assert( p->rc==SQLITE_OK );
  return SQLITE_OK;
}

/*
** The %_data table is completely empty when this function is called. This
** function populates it with the initial structure objects for each index,
** and the initial version of the "averages" record (a zero-byte blob).







|







12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
static int sqlite3Fts5IndexRollback(Fts5Index *p){
  fts5CloseReader(p);
  fts5IndexDiscardData(p);
  /* assert( p->rc==SQLITE_OK ); */
  return SQLITE_OK;
}

/*
** The %_data table is completely empty when this function is called. This
** function populates it with the initial structure objects for each index,
** and the initial version of the "averages" record (a zero-byte blob).
11573
11574
11575
11576
11577
11578
11579
11580




11581
11582
11583
11584
11585
11586
11587
}

/*
** Argument p points to a buffer containing utf-8 text that is n bytes in 
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int fts5IndexCharlenToBytelen(const char *p, int nByte, int nChar){




  int n = 0;
  int i;
  for(i=0; i<nChar; i++){
    if( n>=nByte ) return 0;      /* Input contains fewer than nChar chars */
    if( (unsigned char)p[n++]>=0xc0 ){
      while( (p[n] & 0xc0)==0x80 ) n++;
    }







|
>
>
>
>







12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
}

/*
** Argument p points to a buffer containing utf-8 text that is n bytes in 
** size. Return the number of bytes in the nChar character prefix of the
** buffer, or 0 if there are less than nChar characters in total.
*/
static int sqlite3Fts5IndexCharlenToBytelen(
  const char *p, 
  int nByte, 
  int nChar
){
  int n = 0;
  int i;
  for(i=0; i<nChar; i++){
    if( n>=nByte ) return 0;      /* Input contains fewer than nChar chars */
    if( (unsigned char)p[n++]>=0xc0 ){
      while( (p[n] & 0xc0)==0x80 ) n++;
    }
11630
11631
11632
11633
11634
11635
11636

11637
11638
11639
11640
11641
11642
11643
11644

  /* Add the entry to the main terms index. */
  rc = sqlite3Fts5HashWrite(
      p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
  );

  for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){

    int nByte = fts5IndexCharlenToBytelen(pToken, nToken, pConfig->aPrefix[i]);
    if( nByte ){
      rc = sqlite3Fts5HashWrite(p->pHash, 
          p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
          nByte
      );
    }
  }







>
|







12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751

  /* Add the entry to the main terms index. */
  rc = sqlite3Fts5HashWrite(
      p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
  );

  for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
    const int nChar = pConfig->aPrefix[i];
    int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
    if( nByte ){
      rc = sqlite3Fts5HashWrite(p->pHash, 
          p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
          nByte
      );
    }
  }
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668

11669
11670
11671





11672
11673
11674
11675
11676

11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689

11690
11691
11692

11693

11694
11695
11696

11697
11698
11699






11700
11701
11702
11703
11704
11705
11706

11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724

11725
11726
11727
11728
11729
11730
11731
11732
11733

11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756

11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858

11859
11860
11861
11862
11863
11864
11865
11866
11867
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
){
  Fts5Config *pConfig = p->pConfig;
  Fts5IndexIter *pRet = 0;
  int iIdx = 0;
  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){

    memcpy(&buf.p[1], pToken, nToken);

#ifdef SQLITE_DEBUG





    /* If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 
    ** mode only.  */

    if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
      assert( flags & FTS5INDEX_QUERY_PREFIX );
      iIdx = 1+pConfig->nPrefix;
    }else
#endif
    if( flags & FTS5INDEX_QUERY_PREFIX ){
      int nChar = fts5IndexCharlen(pToken, nToken);
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
        if( pConfig->aPrefix[iIdx-1]==nChar ) break;
      }
    }

    if( iIdx<=pConfig->nPrefix ){

      Fts5Structure *pStruct = fts5StructureRead(p);
      buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
      if( pStruct ){

        fts5MultiIterNew(p, pStruct, 1, flags, buf.p, nToken+1, -1, 0, &pRet);

        fts5StructureRelease(pStruct);
      }
    }else{

      int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
      buf.p[0] = FTS5_MAIN_PREFIX;
      fts5SetupPrefixIter(p, bDesc, buf.p, nToken+1, pColset, &pRet);






    }

    if( p->rc ){
      sqlite3Fts5IterClose(pRet);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = pRet;
    sqlite3Fts5BufferFree(&buf);
  }
  return fts5IndexReturn(p);
}

/*
** Return true if the iterator passed as the only argument is at EOF.
*/
static int sqlite3Fts5IterEof(Fts5IndexIter *pIter){
  assert( pIter->pIndex->rc==SQLITE_OK );
  return pIter->bEof;
}

/*
** Move to the next matching rowid. 
*/
static int sqlite3Fts5IterNext(Fts5IndexIter *pIter){

  assert( pIter->pIndex->rc==SQLITE_OK );
  fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching term/rowid. Used by the fts5vocab module.
*/
static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIter){

  Fts5Index *p = pIter->pIndex;

  assert( pIter->pIndex->rc==SQLITE_OK );

  fts5MultiIterNext(p, pIter, 0, 0);
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
      fts5DataRelease(pSeg->pLeaf);
      pSeg->pLeaf = 0;
      pIter->bEof = 1;
    }
  }

  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching rowid that occurs at or after iMatch. The
** definition of "at or after" depends on whether this iterator iterates
** in ascending or descending rowid order.
*/
static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIter, i64 iMatch){

  fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
  return fts5IndexReturn(pIter->pIndex);
}

/*
** Return the current rowid.
*/
static i64 sqlite3Fts5IterRowid(Fts5IndexIter *pIter){
  return fts5MultiIterRowid(pIter);
}

/*
** Return the current term.
*/
static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIter, int *pn){
  int n;
  const char *z = (const char*)fts5MultiIterTerm(pIter, &n);
  *pn = n-1;
  return &z[1];
}


static int fts5IndexExtractColset (
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;
}


/*
** Return a pointer to a buffer containing a copy of the position list for
** the current entry. Output variable *pn is set to the size of the buffer 
** in bytes before returning.
**
** The returned position list does not include the "number of bytes" varint
** field that starts the position list on disk.
*/
static int sqlite3Fts5IterPoslist(
  Fts5IndexIter *pIter, 
  Fts5Colset *pColset,            /* Column filter (or NULL) */
  const u8 **pp,                  /* OUT: Pointer to position-list data */
  int *pn,                        /* OUT: Size of position-list in bytes */
  i64 *piRowid                    /* OUT: Current rowid */
){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( pIter->pIndex->rc==SQLITE_OK );
  *piRowid = pSeg->iRowid;
  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    u8 *pPos = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset==0 || pIter->bFiltered ){
      *pn = pSeg->nPos;
      *pp = pPos;
    }else if( pColset->nCol==1 ){
      *pp = pPos;
      *pn = fts5IndexExtractCol(pp, pSeg->nPos, pColset->aiCol[0]);
    }else{
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, pPos, pSeg->nPos, &pIter->poslist);
      *pp = pIter->poslist.p;
      *pn = pIter->poslist.n;
    }
  }else{
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
    *pp = pIter->poslist.p;
    *pn = pIter->poslist.n;
  }
  return fts5IndexReturn(pIter->pIndex);
}

/*
** This function is similar to sqlite3Fts5IterPoslist(), except that it
** copies the position list into the buffer supplied as the second 
** argument.
*/
static int sqlite3Fts5IterPoslistBuffer(Fts5IndexIter *pIter, Fts5Buffer *pBuf){
  Fts5Index *p = pIter->pIndex;
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( p->rc==SQLITE_OK );
  fts5BufferZero(pBuf);
  fts5SegiterPoslist(p, pSeg, 0, pBuf);
  return fts5IndexReturn(p);
}

/*
** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter *pIter){
  if( pIter ){

    Fts5Index *pIndex = pIter->pIndex;
    fts5MultiIterFree(pIter->pIndex, pIter);
    fts5CloseReader(pIndex);
  }
}

/*
** Read and decode the "averages" record from the database. 
**







|
<






>


<
>
>
>
>
>
|




>













>



>
|
>



>



>
>
>
>
>
>



|



>
|








<
<
<
<
<



|
>








|
>










|











|
>




<
<
<
<
<
<
<



|

|




<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


|
|
>

|







12761
12762
12763
12764
12765
12766
12767
12768

12769
12770
12771
12772
12773
12774
12775
12776
12777

12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838





12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881







12882
12883
12884
12885
12886
12887
12888
12889
12890
12891





















12892























































12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
  Fts5Index *p,                   /* FTS index to query */
  const char *pToken, int nToken, /* Token (or prefix) to query for */
  int flags,                      /* Mask of FTS5INDEX_QUERY_X flags */
  Fts5Colset *pColset,            /* Match these columns only */
  Fts5IndexIter **ppIter          /* OUT: New iterator object */
){
  Fts5Config *pConfig = p->pConfig;
  Fts5Iter *pRet = 0;

  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    int iIdx = 0;                 /* Index to search */
    memcpy(&buf.p[1], pToken, nToken);


    /* Figure out which index to search and set iIdx accordingly. If this
    ** is a prefix query for which there is no prefix index, set iIdx to
    ** greater than pConfig->nPrefix to indicate that the query will be
    ** satisfied by scanning multiple terms in the main index.
    **
    ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 
    ** mode only.  */
#ifdef SQLITE_DEBUG
    if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
      assert( flags & FTS5INDEX_QUERY_PREFIX );
      iIdx = 1+pConfig->nPrefix;
    }else
#endif
    if( flags & FTS5INDEX_QUERY_PREFIX ){
      int nChar = fts5IndexCharlen(pToken, nToken);
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
        if( pConfig->aPrefix[iIdx-1]==nChar ) break;
      }
    }

    if( iIdx<=pConfig->nPrefix ){
      /* Straight index lookup */
      Fts5Structure *pStruct = fts5StructureRead(p);
      buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
      if( pStruct ){
        fts5MultiIterNew(p, pStruct, flags | FTS5INDEX_QUERY_SKIPEMPTY, 
            pColset, buf.p, nToken+1, -1, 0, &pRet
        );
        fts5StructureRelease(pStruct);
      }
    }else{
      /* Scan multiple terms in the main index */
      int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
      buf.p[0] = FTS5_MAIN_PREFIX;
      fts5SetupPrefixIter(p, bDesc, buf.p, nToken+1, pColset, &pRet);
      assert( p->rc!=SQLITE_OK || pRet->pColset==0 );
      fts5IterSetOutputCb(&p->rc, pRet);
      if( p->rc==SQLITE_OK ){
        Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
        if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
      }
    }

    if( p->rc ){
      sqlite3Fts5IterClose(&pRet->base);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = &pRet->base;
    sqlite3Fts5BufferFree(&buf);
  }
  return fts5IndexReturn(p);
}

/*
** Return true if the iterator passed as the only argument is at EOF.
*/





/*
** Move to the next matching rowid. 
*/
static int sqlite3Fts5IterNext(Fts5IndexIter *pIndexIter){
  Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
  assert( pIter->pIndex->rc==SQLITE_OK );
  fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching term/rowid. Used by the fts5vocab module.
*/
static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIndexIter){
  Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
  Fts5Index *p = pIter->pIndex;

  assert( pIter->pIndex->rc==SQLITE_OK );

  fts5MultiIterNext(p, pIter, 0, 0);
  if( p->rc==SQLITE_OK ){
    Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
      fts5DataRelease(pSeg->pLeaf);
      pSeg->pLeaf = 0;
      pIter->base.bEof = 1;
    }
  }

  return fts5IndexReturn(pIter->pIndex);
}

/*
** Move to the next matching rowid that occurs at or after iMatch. The
** definition of "at or after" depends on whether this iterator iterates
** in ascending or descending rowid order.
*/
static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIndexIter, i64 iMatch){
  Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
  fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
  return fts5IndexReturn(pIter->pIndex);
}








/*
** Return the current term.
*/
static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIndexIter, int *pn){
  int n;
  const char *z = (const char*)fts5MultiIterTerm((Fts5Iter*)pIndexIter, &n);
  *pn = n-1;
  return &z[1];
}






















/*























































** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter *pIndexIter){
  if( pIndexIter ){
    Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
    Fts5Index *pIndex = pIter->pIndex;
    fts5MultiIterFree(pIter);
    fts5CloseReader(pIndex);
  }
}

/*
** Read and decode the "averages" record from the database. 
**
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
** Below this point is the implementation of the integrity-check 
** functionality.
*/

/*
** Return a simple checksum value based on the arguments.
*/
static u64 fts5IndexEntryCksum(
  i64 iRowid, 
  int iCol, 
  int iPos, 
  int iIdx,
  const char *pTerm,
  int nTerm
){







|







12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
** Below this point is the implementation of the integrity-check 
** functionality.
*/

/*
** Return a simple checksum value based on the arguments.
*/
static u64 sqlite3Fts5IndexEntryCksum(
  i64 iRowid, 
  int iCol, 
  int iPos, 
  int iIdx,
  const char *pTerm,
  int nTerm
){
12016
12017
12018
12019
12020
12021
12022

12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033


12034
12035
12036
12037
12038
12039
12040
12041
12042


12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
  Fts5Index *p,                   /* Fts5 index object */
  int iIdx,
  const char *z,                  /* Index key to query for */
  int n,                          /* Size of index key in bytes */
  int flags,                      /* Flags for Fts5IndexQuery */
  u64 *pCksum                     /* IN/OUT: Checksum value */
){

  u64 cksum = *pCksum;
  Fts5IndexIter *pIdxIter = 0;
  int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIdxIter);

  while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIdxIter) ){
    i64 dummy;
    const u8 *pPos;
    int nPos;
    i64 rowid = sqlite3Fts5IterRowid(pIdxIter);
    rc = sqlite3Fts5IterPoslist(pIdxIter, 0, &pPos, &nPos, &dummy);
    if( rc==SQLITE_OK ){


      Fts5PoslistReader sReader;
      for(sqlite3Fts5PoslistReaderInit(pPos, nPos, &sReader);
          sReader.bEof==0;
          sqlite3Fts5PoslistReaderNext(&sReader)
      ){
        int iCol = FTS5_POS2COLUMN(sReader.iPos);
        int iOff = FTS5_POS2OFFSET(sReader.iPos);
        cksum ^= fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
      }


      rc = sqlite3Fts5IterNext(pIdxIter);
    }
  }
  sqlite3Fts5IterClose(pIdxIter);

  *pCksum = cksum;
  return rc;
}


/*







>

|
|

|
<
<
<
|
|
|
>
>

|





|

>
>
|


|







13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067



13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
  Fts5Index *p,                   /* Fts5 index object */
  int iIdx,
  const char *z,                  /* Index key to query for */
  int n,                          /* Size of index key in bytes */
  int flags,                      /* Flags for Fts5IndexQuery */
  u64 *pCksum                     /* IN/OUT: Checksum value */
){
  int eDetail = p->pConfig->eDetail;
  u64 cksum = *pCksum;
  Fts5IndexIter *pIter = 0;
  int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIter);

  while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIter) ){



    i64 rowid = pIter->iRowid;

    if( eDetail==FTS5_DETAIL_NONE ){
      cksum ^= sqlite3Fts5IndexEntryCksum(rowid, 0, 0, iIdx, z, n);
    }else{
      Fts5PoslistReader sReader;
      for(sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &sReader);
          sReader.bEof==0;
          sqlite3Fts5PoslistReaderNext(&sReader)
      ){
        int iCol = FTS5_POS2COLUMN(sReader.iPos);
        int iOff = FTS5_POS2OFFSET(sReader.iPos);
        cksum ^= sqlite3Fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
      }
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts5IterNext(pIter);
    }
  }
  sqlite3Fts5IterClose(pIter);

  *pCksum = cksum;
  return rc;
}


/*
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347

12348
12349
12350
12351
12352
12353
12354
12355
12356
12357

12358
12359
12360
12361
12362
12363
12364
#endif
}


/*
** Run internal checks to ensure that the FTS index (a) is internally 
** consistent and (b) contains entries for which the XOR of the checksums
** as calculated by fts5IndexEntryCksum() is cksum.
**
** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
** checksum does not match. Return SQLITE_OK if all checks pass without
** error, or some other SQLite error code if another error (e.g. OOM)
** occurs.
*/
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){

  u64 cksum2 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer poslist = {0,0,0};   /* Buffer used to hold a poslist */
  Fts5IndexIter *pIter;           /* Used to iterate through entire index */
  Fts5Structure *pStruct;         /* Index structure */

#ifdef SQLITE_DEBUG
  /* Used by extra internal tests only run if NDEBUG is not defined */
  u64 cksum3 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer term = {0,0,0};      /* Buffer used to hold most recent term */
#endif

  
  /* Load the FTS index structure */
  pStruct = fts5StructureRead(p);

  /* Check that the internal nodes of each segment match the leaves */
  if( pStruct ){
    int iLvl, iSeg;







|







>


|







>







13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
#endif
}


/*
** Run internal checks to ensure that the FTS index (a) is internally 
** consistent and (b) contains entries for which the XOR of the checksums
** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
**
** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
** checksum does not match. Return SQLITE_OK if all checks pass without
** error, or some other SQLite error code if another error (e.g. OOM)
** occurs.
*/
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
  int eDetail = p->pConfig->eDetail;
  u64 cksum2 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer poslist = {0,0,0};   /* Buffer used to hold a poslist */
  Fts5Iter *pIter;                /* Used to iterate through entire index */
  Fts5Structure *pStruct;         /* Index structure */

#ifdef SQLITE_DEBUG
  /* Used by extra internal tests only run if NDEBUG is not defined */
  u64 cksum3 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer term = {0,0,0};      /* Buffer used to hold most recent term */
#endif
  const int flags = FTS5INDEX_QUERY_NOOUTPUT;
  
  /* Load the FTS index structure */
  pStruct = fts5StructureRead(p);

  /* Check that the internal nodes of each segment match the leaves */
  if( pStruct ){
    int iLvl, iSeg;
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398





12399
12400
12401
12402
12403
12404

12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
  ** variable cksum2) based on entries extracted from the full-text index
  ** while doing a linear scan of each individual index in turn. 
  **
  ** As each term visited by the linear scans, a separate query for the
  ** same term is performed. cksum3 is calculated based on the entries
  ** extracted by these queries.
  */
  for(fts5MultiIterNew(p, pStruct, 0, 0, 0, 0, -1, 0, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    int n;                      /* Size of term in bytes */
    i64 iPos = 0;               /* Position read from poslist */
    int iOff = 0;               /* Offset within poslist */
    i64 iRowid = fts5MultiIterRowid(pIter);
    char *z = (char*)fts5MultiIterTerm(pIter, &n);

    /* If this is a new term, query for it. Update cksum3 with the results. */
    fts5TestTerm(p, &term, z, n, cksum2, &cksum3);






    poslist.n = 0;
    fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst] , 0, &poslist);
    while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
      int iCol = FTS5_POS2COLUMN(iPos);
      int iTokOff = FTS5_POS2OFFSET(iPos);
      cksum2 ^= fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);

    }
  }
  fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);

  fts5MultiIterFree(p, pIter);
  if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;

  fts5StructureRelease(pStruct);
#ifdef SQLITE_DEBUG
  fts5BufferFree(&term);
#endif
  fts5BufferFree(&poslist);
  return fts5IndexReturn(p);
}


/*
** Calculate and return a checksum that is the XOR of the index entry
** checksum of all entries that would be generated by the token specified
** by the final 5 arguments.
*/
static u64 sqlite3Fts5IndexCksum(
  Fts5Config *pConfig,            /* Configuration object */
  i64 iRowid,                     /* Document term appears in */
  int iCol,                       /* Column term appears in */
  int iPos,                       /* Position term appears in */
  const char *pTerm, int nTerm    /* Term at iPos */
){
  u64 ret = 0;                    /* Return value */
  int iIdx;                       /* For iterating through indexes */

  ret = fts5IndexEntryCksum(iRowid, iCol, iPos, 0, pTerm, nTerm);

  for(iIdx=0; iIdx<pConfig->nPrefix; iIdx++){
    int nByte = fts5IndexCharlenToBytelen(pTerm, nTerm, pConfig->aPrefix[iIdx]);
    if( nByte ){
      ret ^= fts5IndexEntryCksum(iRowid, iCol, iPos, iIdx+1, pTerm, nByte);
    }
  }

  return ret;
}

/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/

/*







|












>
>
>
>
>
|
|
|
|
|
|
>




|










<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468




























13469
13470
13471
13472
13473
13474
13475
  ** variable cksum2) based on entries extracted from the full-text index
  ** while doing a linear scan of each individual index in turn. 
  **
  ** As each term visited by the linear scans, a separate query for the
  ** same term is performed. cksum3 is calculated based on the entries
  ** extracted by these queries.
  */
  for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, -1, 0, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    int n;                      /* Size of term in bytes */
    i64 iPos = 0;               /* Position read from poslist */
    int iOff = 0;               /* Offset within poslist */
    i64 iRowid = fts5MultiIterRowid(pIter);
    char *z = (char*)fts5MultiIterTerm(pIter, &n);

    /* If this is a new term, query for it. Update cksum3 with the results. */
    fts5TestTerm(p, &term, z, n, cksum2, &cksum3);

    if( eDetail==FTS5_DETAIL_NONE ){
      if( 0==fts5MultiIterIsEmpty(p, pIter) ){
        cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, 0, 0, -1, z, n);
      }
    }else{
      poslist.n = 0;
      fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst], 0, &poslist);
      while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
        int iCol = FTS5_POS2COLUMN(iPos);
        int iTokOff = FTS5_POS2OFFSET(iPos);
        cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);
      }
    }
  }
  fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);

  fts5MultiIterFree(pIter);
  if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;

  fts5StructureRelease(pStruct);
#ifdef SQLITE_DEBUG
  fts5BufferFree(&term);
#endif
  fts5BufferFree(&poslist);
  return fts5IndexReturn(p);
}





























/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/

/*
12607
12608
12609
12610
12611
12612
12613









































12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629

12630
12631

12632
12633
12634
12635
12636
12637
12638
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}










































/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
){
  i64 iRowid;                     /* Rowid for record being decoded */
  int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
  const u8 *aBlob; int n;         /* Record to decode */
  u8 *a = 0;
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  int nSpace = 0;


  assert( nArg==2 );

  memset(&s, 0, sizeof(Fts5Buffer));
  iRowid = sqlite3_value_int64(apVal[0]);

  /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
  ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
  ** buffer overreads even if the record is corrupt.  */
  n = sqlite3_value_bytes(apVal[1]);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>


>







13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}

/*
** This function is part of the fts5_decode() debugging function. It is 
** only ever used with detail=none tables.
**
** Buffer (pData/nData) contains a doclist in the format used by detail=none
** tables. This function appends a human-readable version of that list to
** buffer pBuf.
**
** If *pRc is other than SQLITE_OK when this function is called, it is a
** no-op. If an OOM or other error occurs within this function, *pRc is
** set to an SQLite error code before returning. The final state of buffer
** pBuf is undefined in this case.
*/
static void fts5DecodeRowidList(
  int *pRc,                       /* IN/OUT: Error code */
  Fts5Buffer *pBuf,               /* Buffer to append text to */
  const u8 *pData, int nData      /* Data to decode list-of-rowids from */
){
  int i = 0;
  i64 iRowid = 0;

  while( i<nData ){
    const char *zApp = "";
    u64 iVal;
    i += sqlite3Fts5GetVarint(&pData[i], &iVal);
    iRowid += iVal;

    if( i<nData && pData[i]==0x00 ){
      i++;
      if( i<nData && pData[i]==0x00 ){
        i++;
        zApp = "+";
      }else{
        zApp = "*";
      }
    }

    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
  }
}

/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
){
  i64 iRowid;                     /* Rowid for record being decoded */
  int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
  const u8 *aBlob; int n;         /* Record to decode */
  u8 *a = 0;
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  int nSpace = 0;
  int eDetailNone = (sqlite3_user_data(pCtx)!=0);

  assert( nArg==2 );
  UNUSED_PARAM(nArg);
  memset(&s, 0, sizeof(Fts5Buffer));
  iRowid = sqlite3_value_int64(apVal[0]);

  /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
  ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
  ** buffer overreads even if the record is corrupt.  */
  n = sqlite3_value_bytes(apVal[1]);
12664
12665
12666
12667
12668
12669
12670
















































12671
12672
12673
12674
12675
12676
12677
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      fts5DecodeAverages(&rc, &s, a, n);
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
















































  }else{
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;                   /* Offset of pgidx in a[] */
    int iPgidxOff;
    int iPgidxPrev = 0;           /* Previous value read from pgidx */
    int iTermOff = 0;
    int iRowidOff = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      fts5DecodeAverages(&rc, &s, a, n);
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
  }else if( eDetailNone ){
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;
    int iPgidxOff = szLeaf = fts5GetU16(&a[2]);
    int iTermOff;
    int nKeep = 0;
    int iOff;

    memset(&term, 0, sizeof(Fts5Buffer));

    /* Decode any entries that occur before the first term. */
    if( szLeaf<n ){
      iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff);
    }else{
      iTermOff = szLeaf;
    }
    fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4);

    iOff = iTermOff;
    while( iOff<szLeaf ){
      int nAppend;

      /* Read the term data for the next term*/
      iOff += fts5GetVarint32(&a[iOff], nAppend);
      term.n = nKeep;
      fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]);
      sqlite3Fts5BufferAppendPrintf(
          &rc, &s, " term=%.*s", term.n, (const char*)term.p
      );
      iOff += nAppend;

      /* Figure out where the doclist for this term ends */
      if( iPgidxOff<n ){
        int nIncr;
        iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr);
        iTermOff += nIncr;
      }else{
        iTermOff = szLeaf;
      }

      fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff);
      iOff = iTermOff;
      if( iOff<szLeaf ){
        iOff += fts5GetVarint32(&a[iOff], nKeep);
      }
    }

    fts5BufferFree(&term);
  }else{
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;                   /* Offset of pgidx in a[] */
    int iPgidxOff;
    int iPgidxPrev = 0;           /* Previous value read from pgidx */
    int iTermOff = 0;
    int iRowidOff = 0;
12791
12792
12793
12794
12795
12796
12797








12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
static int sqlite3Fts5IndexInit(sqlite3 *db){
  int rc = sqlite3_create_function(
      db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
  );








  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
    );
  }
  return rc;
}


#line 1 "fts5_main.c"
/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:







>
>
>
>
>
>
>
>







<







13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924

13925
13926
13927
13928
13929
13930
13931
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
static int sqlite3Fts5IndexInit(sqlite3 *db){
  int rc = sqlite3_create_function(
      db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
  );

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_decode_none", 2, 
        SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
    );
  }

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
    );
  }
  return rc;
}


#line 1 "fts5_main.c"
/*
** 2014 Jun 09
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
13023
13024
13025
13026
13027
13028
13029

13030
13031
13032
13033
13034
13035

13036
13037
13038
13039
13040
13041
13042
#define FTS5_BI_ORDER_RANK   0x0020
#define FTS5_BI_ORDER_ROWID  0x0040
#define FTS5_BI_ORDER_DESC   0x0080

/*
** Values for Fts5Cursor.csrflags
*/

#define FTS5CSR_REQUIRE_CONTENT   0x01
#define FTS5CSR_REQUIRE_DOCSIZE   0x02
#define FTS5CSR_REQUIRE_INST      0x04
#define FTS5CSR_EOF               0x08
#define FTS5CSR_FREE_ZRANK        0x10
#define FTS5CSR_REQUIRE_RESEEK    0x20


#define BitFlagAllTest(x,y) (((x) & (y))==(y))
#define BitFlagTest(x,y)    (((x) & (y))!=0)


/*
** Macros to Set(), Clear() and Test() cursor flags.







>
|
|
|
<


>







14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152

14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
#define FTS5_BI_ORDER_RANK   0x0020
#define FTS5_BI_ORDER_ROWID  0x0040
#define FTS5_BI_ORDER_DESC   0x0080

/*
** Values for Fts5Cursor.csrflags
*/
#define FTS5CSR_EOF               0x01
#define FTS5CSR_REQUIRE_CONTENT   0x02
#define FTS5CSR_REQUIRE_DOCSIZE   0x04
#define FTS5CSR_REQUIRE_INST      0x08

#define FTS5CSR_FREE_ZRANK        0x10
#define FTS5CSR_REQUIRE_RESEEK    0x20
#define FTS5CSR_REQUIRE_POSLIST   0x40

#define BitFlagAllTest(x,y) (((x) & (y))==(y))
#define BitFlagTest(x,y)    (((x) & (y))!=0)


/*
** Macros to Set(), Clear() and Test() cursor flags.
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<(int)ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
        if( p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 







|







14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
        if( p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<(int)ArraySize(aConstraint); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
    }
  }








|







14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<ArraySize(aConstraint); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
    }
  }

13442
13443
13444
13445
13446
13447
13448

13449
13450
13451
13452
13453
13454
13455
** specific to the previous row stored by the cursor object.
*/
static void fts5CsrNewrow(Fts5Cursor *pCsr){
  CsrFlagSet(pCsr, 
      FTS5CSR_REQUIRE_CONTENT 
    | FTS5CSR_REQUIRE_DOCSIZE 
    | FTS5CSR_REQUIRE_INST 

  );
}

static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  Fts5Auxdata *pData;
  Fts5Auxdata *pNext;







>







14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
** specific to the previous row stored by the cursor object.
*/
static void fts5CsrNewrow(Fts5Cursor *pCsr){
  CsrFlagSet(pCsr, 
      FTS5CSR_REQUIRE_CONTENT 
    | FTS5CSR_REQUIRE_DOCSIZE 
    | FTS5CSR_REQUIRE_INST 
    | FTS5CSR_REQUIRE_POSLIST 
  );
}

static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  Fts5Auxdata *pData;
  Fts5Auxdata *pNext;
13524
13525
13526
13527
13528
13529
13530


13531
13532
13533
13534
13535
13536
13537

13538
13539
13540
13541
13542
13543
13544
13545
13546
    int iOff = 0;
    rc = SQLITE_OK;

    pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
    nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
    aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);



    for(i=0; i<(pSorter->nIdx-1); i++){
      int iVal;
      a += fts5GetVarint32(a, iVal);
      iOff += iVal;
      pSorter->aIdx[i] = iOff;
    }
    pSorter->aIdx[i] = &aBlob[nBlob] - a;


    pSorter->aPoslist = a;
    fts5CsrNewrow(pCsr);
  }

  return rc;
}









>
>
|
|
|
|
|
|
|
>
|
|







14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
    int iOff = 0;
    rc = SQLITE_OK;

    pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
    nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
    aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);

    /* nBlob==0 in detail=none mode. */
    if( nBlob>0 ){
      for(i=0; i<(pSorter->nIdx-1); i++){
        int iVal;
        a += fts5GetVarint32(a, iVal);
        iOff += iVal;
        pSorter->aIdx[i] = iOff;
      }
      pSorter->aIdx[i] = &aBlob[nBlob] - a;
      pSorter->aPoslist = a;
    }

    fts5CsrNewrow(pCsr);
  }

  return rc;
}


13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590

13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611

13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624

13625
13626
13627
13628
13629
13630
13631
  assert( *pbSkip==0 );
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
    Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
    int bDesc = pCsr->bDesc;
    i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);

    rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->pIndex, iRowid, bDesc);
    if( rc==SQLITE_OK && iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
      *pbSkip = 1;
    }

    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
    fts5CsrNewrow(pCsr);
    if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
      CsrFlagSet(pCsr, FTS5CSR_EOF);

    }
  }
  return rc;
}


/*
** Advance the cursor to the next row in the table that matches the 
** search criteria.
**
** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
** even if we reach end-of-file.  The fts5EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;

  assert( (pCsr->ePlan<3)==
          (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE) 
  );


  if( pCsr->ePlan<3 ){
    int bSkip = 0;
    if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
    rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
    if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
      CsrFlagSet(pCsr, FTS5CSR_EOF);
    }
    fts5CsrNewrow(pCsr);
  }else{
    switch( pCsr->ePlan ){
      case FTS5_PLAN_SPECIAL: {
        CsrFlagSet(pCsr, FTS5CSR_EOF);

        break;
      }
  
      case FTS5_PLAN_SORTED_MATCH: {
        rc = fts5SorterNext(pCsr);
        break;
      }







|







>
















|




>





|
<
<





>







14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743


14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
  assert( *pbSkip==0 );
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
    Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
    int bDesc = pCsr->bDesc;
    i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);

    rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->pIndex, iRowid, bDesc);
    if( rc==SQLITE_OK &&  iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
      *pbSkip = 1;
    }

    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
    fts5CsrNewrow(pCsr);
    if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
      CsrFlagSet(pCsr, FTS5CSR_EOF);
      *pbSkip = 1;
    }
  }
  return rc;
}


/*
** Advance the cursor to the next row in the table that matches the 
** search criteria.
**
** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
** even if we reach end-of-file.  The fts5EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc;

  assert( (pCsr->ePlan<3)==
          (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE) 
  );
  assert( !CsrFlagTest(pCsr, FTS5CSR_EOF) );

  if( pCsr->ePlan<3 ){
    int bSkip = 0;
    if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
    rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
    CsrFlagSet(pCsr, sqlite3Fts5ExprEof(pCsr->pExpr));


    fts5CsrNewrow(pCsr);
  }else{
    switch( pCsr->ePlan ){
      case FTS5_PLAN_SPECIAL: {
        CsrFlagSet(pCsr, FTS5CSR_EOF);
        rc = SQLITE_OK;
        break;
      }
  
      case FTS5_PLAN_SORTED_MATCH: {
        rc = fts5SorterNext(pCsr);
        break;
      }
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655


13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674

13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
    }
  }
  
  return rc;
}


static sqlite3_stmt *fts5PrepareStatement(
  int *pRc,
  Fts5Config *pConfig, 
  const char *zFmt,
  ...
){
  sqlite3_stmt *pRet = 0;


  va_list ap;
  va_start(ap, zFmt);

  if( *pRc==SQLITE_OK ){
    int rc;
    char *zSql = sqlite3_vmprintf(zFmt, ap);
    if( zSql==0 ){
      rc = SQLITE_NOMEM; 
    }else{
      rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pRet, 0);
      if( rc!=SQLITE_OK ){
        *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
      }
      sqlite3_free(zSql);
    }
    *pRc = rc;
  }

  va_end(ap);

  return pRet;
} 

static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Sorter *pSorter;
  int nPhrase;
  int nByte;
  int rc = SQLITE_OK;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that
  ** is not possible as SQLite reference counts the virtual table objects.
  ** And since the statement required here reads from this very virtual 
  ** table, saving it creates a circular reference.
  **
  ** If SQLite a built-in statement cache, this wouldn't be a problem. */
  pSorter->pStmt = fts5PrepareStatement(&rc, pConfig,
      "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
      pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
      (zRankArgs ? ", " : ""),
      (zRankArgs ? zRankArgs : ""),
      bDesc ? "DESC" : "ASC"
  );








|
|





>
>

<

<
|
|
|
|
|
|
|
|
|
|
|
<
|
<

>
|







|

















|







14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783

14784

14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795

14796

14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
    }
  }
  
  return rc;
}


static int fts5PrepareStatement(
  sqlite3_stmt **ppStmt,
  Fts5Config *pConfig, 
  const char *zFmt,
  ...
){
  sqlite3_stmt *pRet = 0;
  int rc;
  char *zSql;
  va_list ap;



  va_start(ap, zFmt);
  zSql = sqlite3_vmprintf(zFmt, ap);
  if( zSql==0 ){
    rc = SQLITE_NOMEM; 
  }else{
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pRet, 0);
    if( rc!=SQLITE_OK ){
      *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
    }
    sqlite3_free(zSql);
  }



  va_end(ap);
  *ppStmt = pRet;
  return rc;
} 

static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Sorter *pSorter;
  int nPhrase;
  int nByte;
  int rc;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that
  ** is not possible as SQLite reference counts the virtual table objects.
  ** And since the statement required here reads from this very virtual 
  ** table, saving it creates a circular reference.
  **
  ** If SQLite a built-in statement cache, this wouldn't be a problem. */
  rc = fts5PrepareStatement(&pSorter->pStmt, pConfig,
      "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
      pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
      (zRankArgs ? ", " : ""),
      (zRankArgs ? zRankArgs : ""),
      bDesc ? "DESC" : "ASC"
  );

13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917



13918
13919
13920
13921
13922
13923
13924
**   1. Full-text search using a MATCH operator.
**   2. A by-rowid lookup.
**   3. A full-table scan.
*/
static int fts5FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;             /* Error code */
  int iVal = 0;                   /* Counter for apVal[] */
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  char **pzErrmsg = pConfig->pzErrmsg;




  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
    memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
  }

  assert( pCsr->pStmt==0 );







|
















>
>
>







15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
**   1. Full-text search using a MATCH operator.
**   2. A by-rowid lookup.
**   3. A full-table scan.
*/
static int fts5FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *zUnused,            /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;             /* Error code */
  int iVal = 0;                   /* Counter for apVal[] */
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
    memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
  }

  assert( pCsr->pStmt==0 );
13970
13971
13972
13973
13974
13975
13976

13977
13978
13979
13980
13981
13982
13983
    assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
    assert( nVal==0 && pMatch==0 && bOrderByRank==0 && bDesc==0 );
    assert( pCsr->iLastRowid==LARGEST_INT64 );
    assert( pCsr->iFirstRowid==SMALLEST_INT64 );
    pCsr->ePlan = FTS5_PLAN_SOURCE;
    pCsr->pExpr = pTab->pSortCsr->pExpr;
    rc = fts5CursorFirst(pTab, pCsr, bDesc);

  }else if( pMatch ){
    const char *zExpr = (const char*)sqlite3_value_text(apVal[0]);
    if( zExpr==0 ) zExpr = "";

    rc = fts5CursorParseRank(pConfig, pCsr, pRank);
    if( rc==SQLITE_OK ){
      if( zExpr[0]=='*' ){







>







15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
    assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
    assert( nVal==0 && pMatch==0 && bOrderByRank==0 && bDesc==0 );
    assert( pCsr->iLastRowid==LARGEST_INT64 );
    assert( pCsr->iFirstRowid==SMALLEST_INT64 );
    pCsr->ePlan = FTS5_PLAN_SOURCE;
    pCsr->pExpr = pTab->pSortCsr->pExpr;
    rc = fts5CursorFirst(pTab, pCsr, bDesc);
    sqlite3Fts5ExprClearEof(pCsr->pExpr);
  }else if( pMatch ){
    const char *zExpr = (const char*)sqlite3_value_text(apVal[0]);
    if( zExpr==0 ) zExpr = "";

    rc = fts5CursorParseRank(pConfig, pCsr, pRank);
    if( rc==SQLITE_OK ){
      if( zExpr[0]=='*' ){
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
    }
  }
  return rc;
}

static int fts5SpecialDelete(
  Fts5Table *pTab, 
  sqlite3_value **apVal, 
  sqlite3_int64 *piRowid
){
  int rc = SQLITE_OK;
  int eType1 = sqlite3_value_type(apVal[1]);
  if( eType1==SQLITE_INTEGER ){
    sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
    rc = sqlite3Fts5StorageSpecialDelete(pTab->pStorage, iDel, &apVal[2]);
  }
  return rc;
}

static void fts5StorageInsert(
  int *pRc, 
  Fts5Table *pTab, 







|
<





|







15323
15324
15325
15326
15327
15328
15329
15330

15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
    }
  }
  return rc;
}

static int fts5SpecialDelete(
  Fts5Table *pTab, 
  sqlite3_value **apVal

){
  int rc = SQLITE_OK;
  int eType1 = sqlite3_value_type(apVal[1]);
  if( eType1==SQLITE_INTEGER ){
    sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
    rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, &apVal[2]);
  }
  return rc;
}

static void fts5StorageInsert(
  int *pRc, 
  Fts5Table *pTab, 
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
   && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL 
  ){
    /* A "special" INSERT op. These are handled separately. */
    const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
    if( pConfig->eContent!=FTS5_CONTENT_NORMAL 
      && 0==sqlite3_stricmp("delete", z) 
    ){
      rc = fts5SpecialDelete(pTab, apVal, pRowid);
    }else{
      rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
    }
  }else{
    /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
    ** any conflict on the rowid value must be detected before any 
    ** modifications are made to the database file. There are 4 cases:







|







15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
   && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL 
  ){
    /* A "special" INSERT op. These are handled separately. */
    const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
    if( pConfig->eContent!=FTS5_CONTENT_NORMAL 
      && 0==sqlite3_stricmp("delete", z) 
    ){
      rc = fts5SpecialDelete(pTab, apVal);
    }else{
      rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
    }
  }else{
    /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
    ** any conflict on the rowid value must be detected before any 
    ** modifications are made to the database file. There are 4 cases:
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
      );
      rc = SQLITE_ERROR;
    }

    /* Case 1: DELETE */
    else if( nArg==1 ){
      i64 iDel = sqlite3_value_int64(apVal[0]);  /* Rowid to delete */
      rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel);
    }

    /* Case 2: INSERT */
    else if( eType0!=SQLITE_INTEGER ){     
      /* If this is a REPLACE, first remove the current entry (if any) */
      if( eConflict==SQLITE_REPLACE 
       && sqlite3_value_type(apVal[1])==SQLITE_INTEGER 
      ){
        i64 iNew = sqlite3_value_int64(apVal[1]);  /* Rowid to delete */
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew);
      }
      fts5StorageInsert(&rc, pTab, apVal, pRowid);
    }

    /* Case 2: UPDATE */
    else{
      i64 iOld = sqlite3_value_int64(apVal[0]);  /* Old rowid */
      i64 iNew = sqlite3_value_int64(apVal[1]);  /* New rowid */
      if( iOld!=iNew ){
        if( eConflict==SQLITE_REPLACE ){
          rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew);
          }
          fts5StorageInsert(&rc, pTab, apVal, pRowid);
        }else{
          rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld);
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *pRowid);
          }
        }
      }else{
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld);
        fts5StorageInsert(&rc, pTab, apVal, pRowid);
      }
    }
  }

  pTab->pConfig->pzErrmsg = 0;
  return rc;







|









|










|

|





|






|







15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
      );
      rc = SQLITE_ERROR;
    }

    /* Case 1: DELETE */
    else if( nArg==1 ){
      i64 iDel = sqlite3_value_int64(apVal[0]);  /* Rowid to delete */
      rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, 0);
    }

    /* Case 2: INSERT */
    else if( eType0!=SQLITE_INTEGER ){     
      /* If this is a REPLACE, first remove the current entry (if any) */
      if( eConflict==SQLITE_REPLACE 
       && sqlite3_value_type(apVal[1])==SQLITE_INTEGER 
      ){
        i64 iNew = sqlite3_value_int64(apVal[1]);  /* Rowid to delete */
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
      }
      fts5StorageInsert(&rc, pTab, apVal, pRowid);
    }

    /* Case 2: UPDATE */
    else{
      i64 iOld = sqlite3_value_int64(apVal[0]);  /* Old rowid */
      i64 iNew = sqlite3_value_int64(apVal[1]);  /* New rowid */
      if( iOld!=iNew ){
        if( eConflict==SQLITE_REPLACE ){
          rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
          }
          fts5StorageInsert(&rc, pTab, apVal, pRowid);
        }else{
          rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *pRowid);
          }
        }
      }else{
        rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
        fts5StorageInsert(&rc, pTab, apVal, pRowid);
      }
    }
  }

  pTab->pConfig->pzErrmsg = 0;
  return rc;
14373
14374
14375
14376
14377
14378
14379

14380
14381
14382
14383
14384
14385
14386
14387
14388
14389

14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404


14405
14406
14407
14408
14409
14410
14411
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
static int fts5BeginMethod(sqlite3_vtab *pVtab){

  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_BEGIN, 0);
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts5SyncMethod().
*/
static int fts5CommitMethod(sqlite3_vtab *pVtab){

  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_COMMIT, 0);
  return SQLITE_OK;
}

/*
** Implementation of xRollback(). Discard the contents of the pending-terms
** hash-table. Any changes made to the database are reverted by SQLite.
*/
static int fts5RollbackMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5Table *pTab = (Fts5Table*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
  rc = sqlite3Fts5StorageRollback(pTab->pStorage);
  return rc;
}



static void *fts5ApiUserData(Fts5Context *pCtx){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return pCsr->pAux->pUserData;
}

static int fts5ApiColumnCount(Fts5Context *pCtx){







>










>















>
>







15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
static int fts5BeginMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAM(pVtab);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_BEGIN, 0);
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts5SyncMethod().
*/
static int fts5CommitMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAM(pVtab);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_COMMIT, 0);
  return SQLITE_OK;
}

/*
** Implementation of xRollback(). Discard the contents of the pending-terms
** hash-table. Any changes made to the database are reverted by SQLite.
*/
static int fts5RollbackMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5Table *pTab = (Fts5Table*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
  rc = sqlite3Fts5StorageRollback(pTab->pStorage);
  return rc;
}

static int fts5CsrPoslist(Fts5Cursor*, int, const u8**, int*);

static void *fts5ApiUserData(Fts5Context *pCtx){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return pCsr->pAux->pUserData;
}

static int fts5ApiColumnCount(Fts5Context *pCtx){
14448
14449
14450
14451
14452
14453
14454





















14455

















14456









14457







14458
14459
14460
14461
14462
14463
14464

14465
14466
14467
14468
14469
14470
14471
14472
}

static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
}






















static int fts5CsrPoslist(Fts5Cursor *pCsr, int iPhrase, const u8 **pa){

















  int n;









  if( pCsr->pSorter ){







    Fts5Sorter *pSorter = pCsr->pSorter;
    int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
    n = pSorter->aIdx[iPhrase] - i1;
    *pa = &pSorter->aPoslist[i1];
  }else{
    n = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
  }

  return n;
}

/*
** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
** correctly for the current view. Return SQLITE_OK if successful, or an
** SQLite error code otherwise.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>


|


|

>
|







15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
}

static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
}

static int fts5ApiColumnText(
  Fts5Context *pCtx, 
  int iCol, 
  const char **pz, 
  int *pn
){
  int rc = SQLITE_OK;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  if( fts5IsContentless((Fts5Table*)(pCsr->base.pVtab)) ){
    *pz = 0;
    *pn = 0;
  }else{
    rc = fts5SeekCursor(pCsr, 0);
    if( rc==SQLITE_OK ){
      *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
      *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
    }
  }
  return rc;
}

static int fts5CsrPoslist(
  Fts5Cursor *pCsr, 
  int iPhrase, 
  const u8 **pa,
  int *pn
){
  Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
  int rc = SQLITE_OK;
  int bLive = (pCsr->pSorter==0);

  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_POSLIST) ){

    if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
      Fts5PoslistPopulator *aPopulator;
      int i;
      aPopulator = sqlite3Fts5ExprClearPoslists(pCsr->pExpr, bLive);
      if( aPopulator==0 ) rc = SQLITE_NOMEM;
      for(i=0; i<pConfig->nCol && rc==SQLITE_OK; i++){
        int n; const char *z;
        rc = fts5ApiColumnText((Fts5Context*)pCsr, i, &z, &n);
        if( rc==SQLITE_OK ){
          rc = sqlite3Fts5ExprPopulatePoslists(
              pConfig, pCsr->pExpr, aPopulator, i, z, n
          );
        }
      }
      sqlite3_free(aPopulator);

      if( pCsr->pSorter ){
        sqlite3Fts5ExprCheckPoslists(pCsr->pExpr, pCsr->pSorter->iRowid);
      }
    }
    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_POSLIST);
  }

  if( pCsr->pSorter && pConfig->eDetail==FTS5_DETAIL_FULL ){
    Fts5Sorter *pSorter = pCsr->pSorter;
    int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
    *pn = pSorter->aIdx[iPhrase] - i1;
    *pa = &pSorter->aPoslist[i1];
  }else{
    *pn = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
  }

  return rc;
}

/*
** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
** correctly for the current view. Return SQLITE_OK if successful, or an
** SQLite error code otherwise.
*/
14483
14484
14485
14486
14487
14488
14489
14490
14491

14492

14493
14494
14495


14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526

14527
14528
14529
14530
14531
14532
14533
  aIter = pCsr->aInstIter;

  if( aIter ){
    int nInst = 0;                /* Number instances seen so far */
    int i;

    /* Initialize all iterators */
    for(i=0; i<nIter; i++){
      const u8 *a;

      int n = fts5CsrPoslist(pCsr, i, &a);

      sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    }



    while( 1 ){
      int *aInst;
      int iBest = -1;
      for(i=0; i<nIter; i++){
        if( (aIter[i].bEof==0) 
         && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos) 
        ){
          iBest = i;
        }
      }
      if( iBest<0 ) break;

      nInst++;
      if( nInst>=pCsr->nInstAlloc ){
        pCsr->nInstAlloc = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
        aInst = (int*)sqlite3_realloc(
            pCsr->aInst, pCsr->nInstAlloc*sizeof(int)*3
        );
        if( aInst ){
          pCsr->aInst = aInst;
        }else{
          rc = SQLITE_NOMEM;
          break;
        }
      }

      aInst = &pCsr->aInst[3 * (nInst-1)];
      aInst[0] = iBest;
      aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
      aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
      sqlite3Fts5PoslistReaderNext(&aIter[iBest]);

    }

    pCsr->nInstCount = nInst;
    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
  }
  return rc;
}







|

>
|
>
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
>







15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
  aIter = pCsr->aInstIter;

  if( aIter ){
    int nInst = 0;                /* Number instances seen so far */
    int i;

    /* Initialize all iterators */
    for(i=0; i<nIter && rc==SQLITE_OK; i++){
      const u8 *a;
      int n; 
      rc = fts5CsrPoslist(pCsr, i, &a, &n);
      if( rc==SQLITE_OK ){
        sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
      }
    }

    if( rc==SQLITE_OK ){
      while( 1 ){
        int *aInst;
        int iBest = -1;
        for(i=0; i<nIter; i++){
          if( (aIter[i].bEof==0) 
              && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos) 
            ){
            iBest = i;
          }
        }
        if( iBest<0 ) break;

        nInst++;
        if( nInst>=pCsr->nInstAlloc ){
          pCsr->nInstAlloc = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
          aInst = (int*)sqlite3_realloc(
              pCsr->aInst, pCsr->nInstAlloc*sizeof(int)*3
              );
          if( aInst ){
            pCsr->aInst = aInst;
          }else{
            rc = SQLITE_NOMEM;
            break;
          }
        }

        aInst = &pCsr->aInst[3 * (nInst-1)];
        aInst[0] = iBest;
        aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
        aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
        sqlite3Fts5PoslistReaderNext(&aIter[iBest]);
      }
    }

    pCsr->nInstCount = nInst;
    CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
  }
  return rc;
}
14552
14553
14554
14555
14556
14557
14558






14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601


14602
14603
14604
14605
14606
14607
14608
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  int rc = SQLITE_OK;
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0 
   || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) 
  ){
    if( iIdx<0 || iIdx>=pCsr->nInstCount ){
      rc = SQLITE_RANGE;






    }else{
      *piPhrase = pCsr->aInst[iIdx*3];
      *piCol = pCsr->aInst[iIdx*3 + 1];
      *piOff = pCsr->aInst[iIdx*3 + 2];
    }
  }
  return rc;
}

static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
  return fts5CursorRowid((Fts5Cursor*)pCtx);
}

static int fts5ApiColumnText(
  Fts5Context *pCtx, 
  int iCol, 
  const char **pz, 
  int *pn
){
  int rc = SQLITE_OK;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  if( fts5IsContentless((Fts5Table*)(pCsr->base.pVtab)) ){
    *pz = 0;
    *pn = 0;
  }else{
    rc = fts5SeekCursor(pCsr, 0);
    if( rc==SQLITE_OK ){
      *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
      *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
    }
  }
  return rc;
}

static int fts5ColumnSizeCb(
  void *pContext,                 /* Pointer to int */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iStart,                     /* Start offset of token */
  int iEnd                        /* End offset of token */
){
  int *pCnt = (int*)pContext;


  if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
    (*pCnt)++;
  }
  return SQLITE_OK;
}

static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){







>
>
>
>
>
>













<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



|
|
|
|


>
>







15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768





















15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  int rc = SQLITE_OK;
  if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0 
   || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) 
  ){
    if( iIdx<0 || iIdx>=pCsr->nInstCount ){
      rc = SQLITE_RANGE;
#if 0
    }else if( fts5IsOffsetless((Fts5Table*)pCsr->base.pVtab) ){
      *piPhrase = pCsr->aInst[iIdx*3];
      *piCol = pCsr->aInst[iIdx*3 + 2];
      *piOff = -1;
#endif
    }else{
      *piPhrase = pCsr->aInst[iIdx*3];
      *piCol = pCsr->aInst[iIdx*3 + 1];
      *piOff = pCsr->aInst[iIdx*3 + 2];
    }
  }
  return rc;
}

static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
  return fts5CursorRowid((Fts5Cursor*)pCtx);
}






















static int fts5ColumnSizeCb(
  void *pContext,                 /* Pointer to int */
  int tflags,
  const char *pUnused,            /* Buffer containing token */
  int nUnused,                    /* Size of token in bytes */
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  int *pCnt = (int*)pContext;
  UNUSED_PARAM2(pUnused, nUnused);
  UNUSED_PARAM2(iUnused1, iUnused2);
  if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
    (*pCnt)++;
  }
  return SQLITE_OK;
}

static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720

14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743

14744

14745
14746
14747
14748
14749












































































14750
14751
14752
14753
14754
14755
14756
    }
  }

  return pRet;
}

static void fts5ApiPhraseNext(
  Fts5Context *pCtx, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){

  if( pIter->a>=pIter->b ){
    *piCol = -1;
    *piOff = -1;
  }else{
    int iVal;
    pIter->a += fts5GetVarint32(pIter->a, iVal);
    if( iVal==1 ){
      pIter->a += fts5GetVarint32(pIter->a, iVal);
      *piCol = iVal;
      *piOff = 0;
      pIter->a += fts5GetVarint32(pIter->a, iVal);
    }
    *piOff += (iVal-2);
  }
}

static void fts5ApiPhraseFirst(
  Fts5Context *pCtx, 
  int iPhrase, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;

  int n = fts5CsrPoslist(pCsr, iPhrase, &pIter->a);

  pIter->b = &pIter->a[n];
  *piCol = 0;
  *piOff = 0;
  fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
}













































































static int fts5ApiQueryPhrase(Fts5Context*, int, void*, 
    int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
);

static const Fts5ExtensionApi sFts5Api = {
  2,                            /* iVersion */







|



>
















|






>
|
>
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
    }
  }

  return pRet;
}

static void fts5ApiPhraseNext(
  Fts5Context *pUnused, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){
  UNUSED_PARAM(pUnused);
  if( pIter->a>=pIter->b ){
    *piCol = -1;
    *piOff = -1;
  }else{
    int iVal;
    pIter->a += fts5GetVarint32(pIter->a, iVal);
    if( iVal==1 ){
      pIter->a += fts5GetVarint32(pIter->a, iVal);
      *piCol = iVal;
      *piOff = 0;
      pIter->a += fts5GetVarint32(pIter->a, iVal);
    }
    *piOff += (iVal-2);
  }
}

static int fts5ApiPhraseFirst(
  Fts5Context *pCtx, 
  int iPhrase, 
  Fts5PhraseIter *pIter, 
  int *piCol, int *piOff
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  int n;
  int rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
  if( rc==SQLITE_OK ){
    pIter->b = &pIter->a[n];
    *piCol = 0;
    *piOff = 0;
    fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
  }
  return rc;
}

static void fts5ApiPhraseNextColumn(
  Fts5Context *pCtx, 
  Fts5PhraseIter *pIter, 
  int *piCol
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;

  if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
    if( pIter->a>=pIter->b ){
      *piCol = -1;
    }else{
      int iIncr;
      pIter->a += fts5GetVarint32(&pIter->a[0], iIncr);
      *piCol += (iIncr-2);
    }
  }else{
    while( 1 ){
      int dummy;
      if( pIter->a>=pIter->b ){
        *piCol = -1;
        return;
      }
      if( pIter->a[0]==0x01 ) break;
      pIter->a += fts5GetVarint32(pIter->a, dummy);
    }
    pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
  }
}

static int fts5ApiPhraseFirstColumn(
  Fts5Context *pCtx, 
  int iPhrase, 
  Fts5PhraseIter *pIter, 
  int *piCol
){
  int rc = SQLITE_OK;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;

  if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
    Fts5Sorter *pSorter = pCsr->pSorter;
    int n;
    if( pSorter ){
      int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
      n = pSorter->aIdx[iPhrase] - i1;
      pIter->a = &pSorter->aPoslist[i1];
    }else{
      rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, iPhrase, &pIter->a, &n);
    }
    if( rc==SQLITE_OK ){
      pIter->b = &pIter->a[n];
      *piCol = 0;
      fts5ApiPhraseNextColumn(pCtx, pIter, piCol);
    }
  }else{
    int n;
    rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
    if( rc==SQLITE_OK ){
      pIter->b = &pIter->a[n];
      if( n<=0 ){
        *piCol = -1;
      }else if( pIter->a[0]==0x01 ){
        pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
      }else{
        *piCol = 0;
      }
    }
  }

  return rc;
}


static int fts5ApiQueryPhrase(Fts5Context*, int, void*, 
    int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
);

static const Fts5ExtensionApi sFts5Api = {
  2,                            /* iVersion */
14767
14768
14769
14770
14771
14772
14773


14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
  fts5ApiColumnText,
  fts5ApiColumnSize,
  fts5ApiQueryPhrase,
  fts5ApiSetAuxdata,
  fts5ApiGetAuxdata,
  fts5ApiPhraseFirst,
  fts5ApiPhraseNext,


};


/*
** Implementation of API function xQueryPhrase().
*/
static int fts5ApiQueryPhrase(
  Fts5Context *pCtx, 
  int iPhrase, 
  void *pUserData,
  int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  int rc;
  Fts5Cursor *pNew = 0;

  rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
  if( rc==SQLITE_OK ){
    Fts5Config *pConf = pTab->pConfig;
    pNew->ePlan = FTS5_PLAN_MATCH;
    pNew->iFirstRowid = SMALLEST_INT64;
    pNew->iLastRowid = LARGEST_INT64;
    pNew->base.pVtab = (sqlite3_vtab*)pTab;
    rc = sqlite3Fts5ExprClonePhrase(pConf, pCsr->pExpr, iPhrase, &pNew->pExpr);
  }

  if( rc==SQLITE_OK ){
    for(rc = fts5CursorFirst(pTab, pNew, 0);
        rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
        rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
    ){







>
>

<

















<




|







16024
16025
16026
16027
16028
16029
16030
16031
16032
16033

16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050

16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
  fts5ApiColumnText,
  fts5ApiColumnSize,
  fts5ApiQueryPhrase,
  fts5ApiSetAuxdata,
  fts5ApiGetAuxdata,
  fts5ApiPhraseFirst,
  fts5ApiPhraseNext,
  fts5ApiPhraseFirstColumn,
  fts5ApiPhraseNextColumn,
};


/*
** Implementation of API function xQueryPhrase().
*/
static int fts5ApiQueryPhrase(
  Fts5Context *pCtx, 
  int iPhrase, 
  void *pUserData,
  int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
){
  Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
  Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
  int rc;
  Fts5Cursor *pNew = 0;

  rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
  if( rc==SQLITE_OK ){

    pNew->ePlan = FTS5_PLAN_MATCH;
    pNew->iFirstRowid = SMALLEST_INT64;
    pNew->iLastRowid = LARGEST_INT64;
    pNew->base.pVtab = (sqlite3_vtab*)pTab;
    rc = sqlite3Fts5ExprClonePhrase(pCsr->pExpr, iPhrase, &pNew->pExpr);
  }

  if( rc==SQLITE_OK ){
    for(rc = fts5CursorFirst(pTab, pNew, 0);
        rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
        rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
    ){
14901
14902
14903
14904
14905
14906
14907


14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
























14922
14923
14924
14925
14926
14927
14928
static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
  int i;
  int rc = SQLITE_OK;
  int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  Fts5Buffer val;

  memset(&val, 0, sizeof(Fts5Buffer));



  /* Append the varints */
  for(i=0; i<(nPhrase-1); i++){
    const u8 *dummy;
    int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
    sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
  }

  /* Append the position lists */
  for(i=0; i<nPhrase; i++){
    const u8 *pPoslist;
    int nPoslist;
    nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
    sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
























  }

  sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
  return rc;
}

/* 







>
>

|
|
|
|
|
|

|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
  int i;
  int rc = SQLITE_OK;
  int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  Fts5Buffer val;

  memset(&val, 0, sizeof(Fts5Buffer));
  switch( ((Fts5Table*)(pCsr->base.pVtab))->pConfig->eDetail ){
    case FTS5_DETAIL_FULL:

      /* Append the varints */
      for(i=0; i<(nPhrase-1); i++){
        const u8 *dummy;
        int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
        sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
      }

      /* Append the position lists */
      for(i=0; i<nPhrase; i++){
        const u8 *pPoslist;
        int nPoslist;
        nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
        sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
      }
      break;

    case FTS5_DETAIL_COLUMNS:

      /* Append the varints */
      for(i=0; rc==SQLITE_OK && i<(nPhrase-1); i++){
        const u8 *dummy;
        int nByte;
        rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &dummy, &nByte);
        sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
      }

      /* Append the position lists */
      for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
        const u8 *pPoslist;
        int nPoslist;
        rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &pPoslist, &nPoslist);
        sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
      }
      break;

    default:
      break;
  }

  sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
  return rc;
}

/* 
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992

14993
14994
14995
14996
14997
14998
14999

/*
** This routine implements the xFindFunction method for the FTS3
** virtual table.
*/
static int fts5FindFunctionMethod(
  sqlite3_vtab *pVtab,            /* Virtual table handle */
  int nArg,                       /* Number of SQL function arguments */
  const char *zName,              /* Name of SQL function */
  void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
  void **ppArg                    /* OUT: User data for *pxFunc */
){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  Fts5Auxiliary *pAux;


  pAux = fts5FindAuxiliary(pTab, zName);
  if( pAux ){
    *pxFunc = fts5ApiCallback;
    *ppArg = (void*)pAux;
    return 1;
  }








|







>







16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283

/*
** This routine implements the xFindFunction method for the FTS3
** virtual table.
*/
static int fts5FindFunctionMethod(
  sqlite3_vtab *pVtab,            /* Virtual table handle */
  int nUnused,                    /* Number of SQL function arguments */
  const char *zName,              /* Name of SQL function */
  void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
  void **ppArg                    /* OUT: User data for *pxFunc */
){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  Fts5Auxiliary *pAux;

  UNUSED_PARAM(nUnused);
  pAux = fts5FindAuxiliary(pTab, zName);
  if( pAux ){
    *pxFunc = fts5ApiCallback;
    *ppArg = (void*)pAux;
    return 1;
  }

15015
15016
15017
15018
15019
15020
15021

15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033

15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045

15046
15047
15048
15049
15050
15051
15052
/*
** The xSavepoint() method.
**
** Flush the contents of the pending-terms table to disk.
*/
static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;

  fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;

  fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/
static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;

  fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageRollback(pTab->pStorage);
}

/*
** Register a new auxiliary function with global context pGlobal.







>












>












>







16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
/*
** The xSavepoint() method.
**
** Flush the contents of the pending-terms table to disk.
*/
static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/
static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageRollback(pTab->pStorage);
}

/*
** Register a new auxiliary function with global context pGlobal.
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228

15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243

15244
15245
15246
15247
15248
15249
15250
15251

  sqlite3_free(pGlobal);
}

static void fts5Fts5Func(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apVal           /* Function arguments */
){
  Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
  char buf[8];

  assert( nArg==0 );
  assert( sizeof(buf)>=sizeof(pGlobal) );
  memcpy(buf, (void*)&pGlobal, sizeof(pGlobal));
  sqlite3_result_blob(pCtx, buf, sizeof(pGlobal), SQLITE_TRANSIENT);
}

/*
** Implementation of fts5_source_id() function.
*/
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apVal           /* Function arguments */
){
  assert( nArg==0 );

  sqlite3_result_text(pCtx, "fts5: 2016-01-20 15:27:19 17efb4209f97fb4971656086b138599a91a75ff9", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,







|



>












|


>
|







16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540

  sqlite3_free(pGlobal);
}

static void fts5Fts5Func(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
  char buf[8];
  UNUSED_PARAM2(nArg, apUnused);
  assert( nArg==0 );
  assert( sizeof(buf)>=sizeof(pGlobal) );
  memcpy(buf, (void*)&pGlobal, sizeof(pGlobal));
  sqlite3_result_blob(pCtx, buf, sizeof(pGlobal), SQLITE_TRANSIENT);
}

/*
** Implementation of fts5_source_id() function.
*/
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2016-02-12 18:48:09 a049fbbde5da2e43d41aa8c2b41f9eb21507ac76", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
*/
static int sqlite3Fts5StorageClose(Fts5Storage *p){
  int rc = SQLITE_OK;
  if( p ){
    int i;

    /* Finalize all SQL statements */
    for(i=0; i<(int)ArraySize(p->aStmt); i++){
      sqlite3_finalize(p->aStmt[i]);
    }

    sqlite3_free(p);
  }
  return rc;
}







|







16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
*/
static int sqlite3Fts5StorageClose(Fts5Storage *p){
  int rc = SQLITE_OK;
  if( p ){
    int i;

    /* Finalize all SQL statements */
    for(i=0; i<ArraySize(p->aStmt); i++){
      sqlite3_finalize(p->aStmt[i]);
    }

    sqlite3_free(p);
  }
  return rc;
}
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718

15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730




15731
15732
15733



15734

15735
15736
15737
15738
15739
15740


15741
15742
15743
15744
15745
15746
15747
15748
15749


15750
15751




15752

15753
15754
15755
15756

15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
** Tokenization callback used when inserting tokens into the FTS index.
*/
static int fts5StorageInsertCallback(
  void *pContext,                 /* Pointer to Fts5InsertCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iStart,                     /* Start offset of token */
  int iEnd                        /* End offset of token */
){
  Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
  Fts5Index *pIdx = pCtx->pStorage->pIndex;

  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }
  return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
}

/*
** If a row with rowid iDel is present in the %_content table, add the
** delete-markers to the FTS index necessary to delete it. Do not actually
** remove the %_content row at this time though.
*/
static int fts5StorageDeleteFromIndex(Fts5Storage *p, i64 iDel){




  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pSeek;            /* SELECT to read row iDel from %_data */
  int rc;                         /* Return code */





  rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
  if( rc==SQLITE_OK ){
    int rc2;
    sqlite3_bind_int64(pSeek, 1, iDel);
    if( sqlite3_step(pSeek)==SQLITE_ROW ){
      int iCol;


      Fts5InsertCtx ctx;
      ctx.pStorage = p;
      ctx.iCol = -1;
      rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
      for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
        if( pConfig->abUnindexed[iCol-1] ) continue;
        ctx.szCol = 0;
        rc = sqlite3Fts5Tokenize(pConfig, 
            FTS5_TOKENIZE_DOCUMENT,


            (const char*)sqlite3_column_text(pSeek, iCol),
            sqlite3_column_bytes(pSeek, iCol),




            (void*)&ctx,

            fts5StorageInsertCallback
        );
        p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
      }

      p->nTotalRow--;
    }
    rc2 = sqlite3_reset(pSeek);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  return rc;
}


/*
** Insert a record into the %_docsize table. Specifically, do:
**







|
|



>











|
>
>
>
>

|

>
>
>

>
|
|
<

|
|
>
>
|
|
|
|
|
|
<
<
|
>
>
|
|
>
>
>
>
|
>
|
|
|
|
>
|
|
|
|
<
<







16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034

17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045


17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065


17066
17067
17068
17069
17070
17071
17072
** Tokenization callback used when inserting tokens into the FTS index.
*/
static int fts5StorageInsertCallback(
  void *pContext,                 /* Pointer to Fts5InsertCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
  Fts5Index *pIdx = pCtx->pStorage->pIndex;
  UNUSED_PARAM2(iUnused1, iUnused2);
  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }
  return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
}

/*
** If a row with rowid iDel is present in the %_content table, add the
** delete-markers to the FTS index necessary to delete it. Do not actually
** remove the %_content row at this time though.
*/
static int fts5StorageDeleteFromIndex(
  Fts5Storage *p, 
  i64 iDel, 
  sqlite3_value **apVal
){
  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pSeek = 0;        /* SELECT to read row iDel from %_data */
  int rc;                         /* Return code */
  int rc2;                        /* sqlite3_reset() return code */
  int iCol;
  Fts5InsertCtx ctx;

  if( apVal==0 ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
    if( rc!=SQLITE_OK ) return rc;

    sqlite3_bind_int64(pSeek, 1, iDel);
    if( sqlite3_step(pSeek)!=SQLITE_ROW ){
      return sqlite3_reset(pSeek);
    }
  }

  ctx.pStorage = p;
  ctx.iCol = -1;
  rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
  for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
    if( pConfig->abUnindexed[iCol-1]==0 ){


      const char *zText;
      int nText;
      if( pSeek ){
        zText = (const char*)sqlite3_column_text(pSeek, iCol);
        nText = sqlite3_column_bytes(pSeek, iCol);
      }else{
        zText = (const char*)sqlite3_value_text(apVal[iCol-1]);
        nText = sqlite3_value_bytes(apVal[iCol-1]);
      }
      ctx.szCol = 0;
      rc = sqlite3Fts5Tokenize(pConfig, FTS5_TOKENIZE_DOCUMENT, 
          zText, nText, (void*)&ctx, fts5StorageInsertCallback
      );
      p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
    }
  }
  p->nTotalRow--;

  rc2 = sqlite3_reset(pSeek);
  if( rc==SQLITE_OK ) rc = rc2;


  return rc;
}


/*
** Insert a record into the %_docsize table. Specifically, do:
**
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846

15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930

  return rc;
}

/*
** Remove a row from the FTS table.
*/
static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel){
  Fts5Config *pConfig = p->pConfig;
  int rc;
  sqlite3_stmt *pDel = 0;


  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    rc = fts5StorageDeleteFromIndex(p, iDel);
  }

  /* Delete the %_docsize record */
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Delete the %_content record */
  if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
    }
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Write the averages record */
  if( rc==SQLITE_OK ){
    rc = fts5StorageSaveTotals(p);
  }

  return rc;
}

static int sqlite3Fts5StorageSpecialDelete(
  Fts5Storage *p, 
  i64 iDel, 
  sqlite3_value **apVal
){
  Fts5Config *pConfig = p->pConfig;
  int rc;
  sqlite3_stmt *pDel = 0;

  assert( pConfig->eContent!=FTS5_CONTENT_NORMAL );
  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    int iCol;
    Fts5InsertCtx ctx;
    ctx.pStorage = p;
    ctx.iCol = -1;

    rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
    for(iCol=0; rc==SQLITE_OK && iCol<pConfig->nCol; iCol++){
      if( pConfig->abUnindexed[iCol] ) continue;
      ctx.szCol = 0;
      rc = sqlite3Fts5Tokenize(pConfig, 
        FTS5_TOKENIZE_DOCUMENT,
        (const char*)sqlite3_value_text(apVal[iCol]),
        sqlite3_value_bytes(apVal[iCol]),
        (void*)&ctx,
        fts5StorageInsertCallback
      );
      p->aTotalSize[iCol] -= (i64)ctx.szCol;
    }
    p->nTotalRow--;
  }

  /* Delete the %_docsize record */
  if( pConfig->bColumnsize ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    }
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }








|




>




|

















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172























































17173
17174
17175
17176
17177
17178
17179

  return rc;
}

/*
** Remove a row from the FTS table.
*/
static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel, sqlite3_value **apVal){
  Fts5Config *pConfig = p->pConfig;
  int rc;
  sqlite3_stmt *pDel = 0;

  assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    rc = fts5StorageDeleteFromIndex(p, iDel, apVal);
  }

  /* Delete the %_docsize record */
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Delete the %_content record */
  if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
    }























































    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

16170
16171
16172
16173
16174
16175
16176

16177
16178

16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191









16192
16193
16194





















16195



16196








16197




16198
16199
16200
16201
16202
16203
16204
16205
*/
typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
struct Fts5IntegrityCtx {
  i64 iRowid;
  int iCol;
  int szCol;
  u64 cksum;

  Fts5Config *pConfig;
};


/*
** Tokenization callback used by integrity check.
*/
static int fts5StorageIntegrityCallback(
  void *pContext,                 /* Pointer to Fts5InsertCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iStart,                     /* Start offset of token */
  int iEnd                        /* End offset of token */
){
  Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;









  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }





















  pCtx->cksum ^= sqlite3Fts5IndexCksum(



      pCtx->pConfig, pCtx->iRowid, pCtx->iCol, pCtx->szCol-1, pToken, nToken








  );




  return SQLITE_OK;
}

/*
** Check that the contents of the FTS index match that of the %_content
** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
** some other SQLite error code if an error occurs while attempting to
** determine this.







>


>





|



|
|


>
>
>
>
>
>
>
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
|
>
>
>
>
|







17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
*/
typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
struct Fts5IntegrityCtx {
  i64 iRowid;
  int iCol;
  int szCol;
  u64 cksum;
  Fts5Termset *pTermset;
  Fts5Config *pConfig;
};


/*
** Tokenization callback used by integrity check.
*/
static int fts5StorageIntegrityCallback(
  void *pContext,                 /* Pointer to Fts5IntegrityCtx object */
  int tflags,
  const char *pToken,             /* Buffer containing token */
  int nToken,                     /* Size of token in bytes */
  int iUnused1,                   /* Start offset of token */
  int iUnused2                    /* End offset of token */
){
  Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;
  Fts5Termset *pTermset = pCtx->pTermset;
  int bPresent;
  int ii;
  int rc = SQLITE_OK;
  int iPos;
  int iCol;

  UNUSED_PARAM2(iUnused1, iUnused2);

  if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
    pCtx->szCol++;
  }

  switch( pCtx->pConfig->eDetail ){
    case FTS5_DETAIL_FULL:
      iPos = pCtx->szCol-1;
      iCol = pCtx->iCol;
      break;

    case FTS5_DETAIL_COLUMNS:
      iPos = pCtx->iCol;
      iCol = 0;
      break;

    default:
      assert( pCtx->pConfig->eDetail==FTS5_DETAIL_NONE );
      iPos = 0;
      iCol = 0;
      break;
  }

  rc = sqlite3Fts5TermsetAdd(pTermset, 0, pToken, nToken, &bPresent);
  if( rc==SQLITE_OK && bPresent==0 ){
    pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
        pCtx->iRowid, iCol, iPos, 0, pToken, nToken
    );
  }

  for(ii=0; rc==SQLITE_OK && ii<pCtx->pConfig->nPrefix; ii++){
    const int nChar = pCtx->pConfig->aPrefix[ii];
    int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
    if( nByte ){
      rc = sqlite3Fts5TermsetAdd(pTermset, ii+1, pToken, nByte, &bPresent);
      if( bPresent==0 ){
        pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
            pCtx->iRowid, iCol, iPos, ii+1, pToken, nByte
        );
      }
    }
  }

  return rc;
}

/*
** Check that the contents of the FTS index match that of the %_content
** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
** some other SQLite error code if an error occurs while attempting to
** determine this.
16226
16227
16228
16229
16230
16231
16232



16233
16234
16235
16236
16237




16238
16239
16240
16241
16242
16243
16244

16245
16246
16247
16248



16249




16250
16251
16252
16253
16254
16255
16256
    int rc2;
    while( SQLITE_ROW==sqlite3_step(pScan) ){
      int i;
      ctx.iRowid = sqlite3_column_int64(pScan, 0);
      ctx.szCol = 0;
      if( pConfig->bColumnsize ){
        rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);



      }
      for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
        if( pConfig->abUnindexed[i] ) continue;
        ctx.iCol = i;
        ctx.szCol = 0;




        rc = sqlite3Fts5Tokenize(pConfig, 
            FTS5_TOKENIZE_DOCUMENT,
            (const char*)sqlite3_column_text(pScan, i+1),
            sqlite3_column_bytes(pScan, i+1),
            (void*)&ctx,
            fts5StorageIntegrityCallback
        );

        if( pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
          rc = FTS5_CORRUPT;
        }
        aTotalSize[i] += ctx.szCol;



      }




      if( rc!=SQLITE_OK ) break;
    }
    rc2 = sqlite3_reset(pScan);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  /* Test that the "totals" (sometimes called "averages") record looks Ok */







>
>
>





>
>
>
>
|
|
|
|
|
|
|
>
|



>
>
>
|
>
>
>
>







17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
    int rc2;
    while( SQLITE_ROW==sqlite3_step(pScan) ){
      int i;
      ctx.iRowid = sqlite3_column_int64(pScan, 0);
      ctx.szCol = 0;
      if( pConfig->bColumnsize ){
        rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);
      }
      if( rc==SQLITE_OK && pConfig->eDetail==FTS5_DETAIL_NONE ){
        rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
      }
      for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
        if( pConfig->abUnindexed[i] ) continue;
        ctx.iCol = i;
        ctx.szCol = 0;
        if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
          rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
        }
        if( rc==SQLITE_OK ){
          rc = sqlite3Fts5Tokenize(pConfig, 
              FTS5_TOKENIZE_DOCUMENT,
              (const char*)sqlite3_column_text(pScan, i+1),
              sqlite3_column_bytes(pScan, i+1),
              (void*)&ctx,
              fts5StorageIntegrityCallback
          );
        }
        if( rc==SQLITE_OK && pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
          rc = FTS5_CORRUPT;
        }
        aTotalSize[i] += ctx.szCol;
        if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
          sqlite3Fts5TermsetFree(ctx.pTermset);
          ctx.pTermset = 0;
        }
      }
      sqlite3Fts5TermsetFree(ctx.pTermset);
      ctx.pTermset = 0;

      if( rc!=SQLITE_OK ) break;
    }
    rc2 = sqlite3_reset(pScan);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  /* Test that the "totals" (sometimes called "averages") record looks Ok */
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524

16525
16526
16527
16528
16529
16530
16531
  sqlite3_free(p);
}

/*
** Create an "ascii" tokenizer.
*/
static int fts5AsciiCreate(
  void *pCtx, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;
  AsciiTokenizer *p = 0;

  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = sqlite3_malloc(sizeof(AsciiTokenizer));
    if( p==0 ){
      rc = SQLITE_NOMEM;
    }else{







|





>







17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
  sqlite3_free(p);
}

/*
** Create an "ascii" tokenizer.
*/
static int fts5AsciiCreate(
  void *pUnused, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;
  AsciiTokenizer *p = 0;
  UNUSED_PARAM(pUnused);
  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = sqlite3_malloc(sizeof(AsciiTokenizer));
    if( p==0 ){
      rc = SQLITE_NOMEM;
    }else{
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585


16586
16587
16588
16589
16590
16591
16592

/*
** Tokenize some text using the ascii tokenizer.
*/
static int fts5AsciiTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int flags,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  int ie;
  int is = 0;

  char aFold[64];
  int nFold = sizeof(aFold);
  char *pFold = aFold;
  unsigned char *a = p->aTokenChar;



  while( is<nText && rc==SQLITE_OK ){
    int nByte;

    /* Skip any leading divider characters. */
    while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
      is++;







|












>
>







17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906

/*
** Tokenize some text using the ascii tokenizer.
*/
static int fts5AsciiTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int iUnused,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  int ie;
  int is = 0;

  char aFold[64];
  int nFold = sizeof(aFold);
  char *pFold = aFold;
  unsigned char *a = p->aTokenChar;

  UNUSED_PARAM(iUnused);

  while( is<nText && rc==SQLITE_OK ){
    int nByte;

    /* Skip any leading divider characters. */
    while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
      is++;
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785


16786
16787
16788
16789
16790
16791
16792
  return;
}

/*
** Create a "unicode61" tokenizer.
*/
static int fts5UnicodeCreate(
  void *pCtx, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;             /* Return code */
  Unicode61Tokenizer *p = 0;      /* New tokenizer object */ 



  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
    if( p ){
      int i;







|





>
>







18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
  return;
}

/*
** Create a "unicode61" tokenizer.
*/
static int fts5UnicodeCreate(
  void *pUnused, 
  const char **azArg, int nArg,
  Fts5Tokenizer **ppOut
){
  int rc = SQLITE_OK;             /* Return code */
  Unicode61Tokenizer *p = 0;      /* New tokenizer object */ 

  UNUSED_PARAM(pUnused);

  if( nArg%2 ){
    rc = SQLITE_ERROR;
  }else{
    p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
    if( p ){
      int i;
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857


16858
16859
16860
16861
16862
16863
16864
  assert( (sqlite3Fts5UnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
  return sqlite3Fts5UnicodeIsalnum(iCode) ^ fts5UnicodeIsException(p, iCode);
}

static int fts5UnicodeTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int flags,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  unsigned char *a = p->aTokenChar;

  unsigned char *zTerm = (unsigned char*)&pText[nText];
  unsigned char *zCsr = (unsigned char *)pText;

  /* Output buffer */
  char *aFold = p->aFold;
  int nFold = p->nFold;
  const char *pEnd = &aFold[nFold-6];



  /* Each iteration of this loop gobbles up a contiguous run of separators,
  ** then the next token.  */
  while( rc==SQLITE_OK ){
    int iCode;                    /* non-ASCII codepoint read from input */
    char *zOut = aFold;
    int is;







|














>
>







18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
  assert( (sqlite3Fts5UnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
  return sqlite3Fts5UnicodeIsalnum(iCode) ^ fts5UnicodeIsException(p, iCode);
}

static int fts5UnicodeTokenize(
  Fts5Tokenizer *pTokenizer,
  void *pCtx,
  int iUnused,
  const char *pText, int nText,
  int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
){
  Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
  int rc = SQLITE_OK;
  unsigned char *a = p->aTokenChar;

  unsigned char *zTerm = (unsigned char*)&pText[nText];
  unsigned char *zCsr = (unsigned char *)pText;

  /* Output buffer */
  char *aFold = p->aFold;
  int nFold = p->nFold;
  const char *pEnd = &aFold[nFold-6];

  UNUSED_PARAM(iUnused);

  /* Each iteration of this loop gobbles up a contiguous run of separators,
  ** then the next token.  */
  while( rc==SQLITE_OK ){
    int iCode;                    /* non-ASCII codepoint read from input */
    char *zOut = aFold;
    int is;
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
    { "ascii",     {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
    { "porter",    {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
  };
  
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aBuiltin); i++){
    rc = pApi->xCreateTokenizer(pApi,
        aBuiltin[i].zName,
        (void*)pApi,
        &aBuiltin[i].x,
        0
    );
  }







|







18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
    { "ascii",     {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
    { "porter",    {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
  };
  
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
    rc = pApi->xCreateTokenizer(pApi,
        aBuiltin[i].zName,
        (void*)pApi,
        &aBuiltin[i].x,
        0
    );
  }
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
    0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
    0x380400F0,
  };
  static const unsigned int aAscii[4] = {
    0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
  };

  if( c<128 ){
    return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
  }else if( c<(1<<22) ){
    unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
    int iRes = 0;
    int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
    int iLo = 0;
    while( iHi>=iLo ){
      int iTest = (iHi + iLo) / 2;
      if( key >= aEntry[iTest] ){







|

|







19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
    0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
    0x380400F0,
  };
  static const unsigned int aAscii[4] = {
    0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
  };

  if( (unsigned int)c<128 ){
    return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
  }else if( (unsigned int)c<(1<<22) ){
    unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
    int iRes = 0;
    int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
    int iLo = 0;
    while( iHi>=iLo ){
      int iTest = (iHi + iLo) / 2;
      if( key >= aEntry[iTest] ){
18382
18383
18384
18385
18386
18387
18388

18389


18390
18391
18392
18393
18394
18395
18396
    return 2;
  }
  return fts5PutVarint64(p,v);
}


static int sqlite3Fts5GetVarintLen(u32 iVal){

  if( iVal<(1 << 7 ) ) return 1;


  if( iVal<(1 << 14) ) return 2;
  if( iVal<(1 << 21) ) return 3;
  if( iVal<(1 << 28) ) return 4;
  return 5;
}









>

>
>







19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
    return 2;
  }
  return fts5PutVarint64(p,v);
}


static int sqlite3Fts5GetVarintLen(u32 iVal){
#if 0
  if( iVal<(1 << 7 ) ) return 1;
#endif
  assert( iVal>=(1 << 7) );
  if( iVal<(1 << 14) ) return 2;
  if( iVal<(1 << 21) ) return 3;
  if( iVal<(1 << 28) ) return 4;
  return 5;
}


18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
    const char *zType = bDb ? argv[5] : argv[4];
    int nDb = (int)strlen(zDb)+1; 
    int nTab = (int)strlen(zTab)+1;
    int eType = 0;
    
    rc = fts5VocabTableType(zType, pzErr, &eType);
    if( rc==SQLITE_OK ){
      assert( eType>=0 && eType<sizeof(azSchema)/sizeof(azSchema[0]) );
      rc = sqlite3_declare_vtab(db, azSchema[eType]);
    }

    nByte = sizeof(Fts5VocabTable) + nDb + nTab;
    pRet = sqlite3Fts5MallocZero(&rc, nByte);
    if( pRet ){
      pRet->pGlobal = (Fts5Global*)pAux;







|







19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
    const char *zType = bDb ? argv[5] : argv[4];
    int nDb = (int)strlen(zDb)+1; 
    int nTab = (int)strlen(zTab)+1;
    int eType = 0;
    
    rc = fts5VocabTableType(zType, pzErr, &eType);
    if( rc==SQLITE_OK ){
      assert( eType>=0 && eType<ArraySize(azSchema) );
      rc = sqlite3_declare_vtab(db, azSchema[eType]);
    }

    nByte = sizeof(Fts5VocabTable) + nDb + nTab;
    pRet = sqlite3Fts5MallocZero(&rc, nByte);
    if( pRet ){
      pRet->pGlobal = (Fts5Global*)pAux;
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645


18646
18647
18648
18649
18650
18651
18652
  return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
}

/* 
** Implementation of the xBestIndex method.
*/
static int fts5VocabBestIndexMethod(
  sqlite3_vtab *pVTab, 
  sqlite3_index_info *pInfo
){
  int i;
  int iTermEq = -1;
  int iTermGe = -1;
  int iTermLe = -1;
  int idxNum = 0;
  int nArg = 0;



  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    if( p->usable==0 ) continue;
    if( p->iColumn==0 ){          /* term column */
      if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;







|








>
>







19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
  return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
}

/* 
** Implementation of the xBestIndex method.
*/
static int fts5VocabBestIndexMethod(
  sqlite3_vtab *pUnused,
  sqlite3_index_info *pInfo
){
  int i;
  int iTermEq = -1;
  int iTermGe = -1;
  int iTermLe = -1;
  int idxNum = 0;
  int nArg = 0;

  UNUSED_PARAM(pUnused);

  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    if( p->usable==0 ) continue;
    if( p->iColumn==0 ){          /* term column */
      if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
  int rc = SQLITE_OK;
  int nCol = pCsr->pConfig->nCol;

  pCsr->rowid++;

  if( pTab->eType==FTS5_VOCAB_COL ){
    for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
      if( pCsr->aCnt[pCsr->iCol] ) break;
    }
  }

  if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=nCol ){
    if( sqlite3Fts5IterEof(pCsr->pIter) ){
      pCsr->bEof = 1;
    }else{







|







20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
  int rc = SQLITE_OK;
  int nCol = pCsr->pConfig->nCol;

  pCsr->rowid++;

  if( pTab->eType==FTS5_VOCAB_COL ){
    for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
      if( pCsr->aDoc[pCsr->iCol] ) break;
    }
  }

  if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=nCol ){
    if( sqlite3Fts5IterEof(pCsr->pIter) ){
      pCsr->bEof = 1;
    }else{
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813




18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824




18825
18826
18827
18828
18829
























18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871


18872
18873
18874
18875
18876
18877
18878
      sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
      memset(pCsr->aCnt, 0, nCol * sizeof(i64));
      memset(pCsr->aDoc, 0, nCol * sizeof(i64));
      pCsr->iCol = 0;

      assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
      while( rc==SQLITE_OK ){
        i64 dummy;
        const u8 *pPos; int nPos;   /* Position list */
        i64 iPos = 0;               /* 64-bit position read from poslist */
        int iOff = 0;               /* Current offset within position list */

        rc = sqlite3Fts5IterPoslist(pCsr->pIter, 0, &pPos, &nPos, &dummy);
        if( rc==SQLITE_OK ){




          if( pTab->eType==FTS5_VOCAB_ROW ){
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              pCsr->aCnt[0]++;
            }
            pCsr->aDoc[0]++;
          }else{
            int iCol = -1;
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              int ii = FTS5_POS2COLUMN(iPos);
              pCsr->aCnt[ii]++;
              if( iCol!=ii ){




                pCsr->aDoc[ii]++;
                iCol = ii;
              }
            }
          }
























          rc = sqlite3Fts5IterNextScan(pCsr->pIter);
        }

        if( rc==SQLITE_OK ){
          zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
          if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ){
            break;
          }
          if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
        }
      }
    }
  }

  if( pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
    while( pCsr->aCnt[pCsr->iCol]==0 ) pCsr->iCol++;
    assert( pCsr->iCol<pCsr->pConfig->nCol );
  }
  return rc;
}

/*
** This is the xFilter implementation for the virtual table.
*/
static int fts5VocabFilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int rc = SQLITE_OK;

  int iVal = 0;
  int f = FTS5INDEX_QUERY_SCAN;
  const char *zTerm = 0;
  int nTerm = 0;

  sqlite3_value *pEq = 0;
  sqlite3_value *pGe = 0;
  sqlite3_value *pLe = 0;



  fts5VocabResetCursor(pCsr);
  if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];

  if( pEq ){







<




|
|
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|
|











|
|













>
>







20123
20124
20125
20126
20127
20128
20129

20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
      sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
      memset(pCsr->aCnt, 0, nCol * sizeof(i64));
      memset(pCsr->aDoc, 0, nCol * sizeof(i64));
      pCsr->iCol = 0;

      assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
      while( rc==SQLITE_OK ){

        const u8 *pPos; int nPos;   /* Position list */
        i64 iPos = 0;               /* 64-bit position read from poslist */
        int iOff = 0;               /* Current offset within position list */

        pPos = pCsr->pIter->pData;
        nPos = pCsr->pIter->nData;
        switch( pCsr->pConfig->eDetail ){
          case FTS5_DETAIL_FULL:
            pPos = pCsr->pIter->pData;
            nPos = pCsr->pIter->nData;
            if( pTab->eType==FTS5_VOCAB_ROW ){
              while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
                pCsr->aCnt[0]++;
              }
              pCsr->aDoc[0]++;
            }else{
              int iCol = -1;
              while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
                int ii = FTS5_POS2COLUMN(iPos);
                pCsr->aCnt[ii]++;
                if( iCol!=ii ){
                  if( ii>=nCol ){
                    rc = FTS5_CORRUPT;
                    break;
                  }
                  pCsr->aDoc[ii]++;
                  iCol = ii;
                }
              }
            }
            break;

          case FTS5_DETAIL_COLUMNS:
            if( pTab->eType==FTS5_VOCAB_ROW ){
              pCsr->aDoc[0]++;
            }else{
              while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff,&iPos) ){
                assert_nc( iPos>=0 && iPos<nCol );
                if( iPos>=nCol ){
                  rc = FTS5_CORRUPT;
                  break;
                }
                pCsr->aDoc[iPos]++;
              }
            }
            break;

          default: 
            assert( pCsr->pConfig->eDetail==FTS5_DETAIL_NONE );
            pCsr->aDoc[0]++;
            break;
        }

        if( rc==SQLITE_OK ){
          rc = sqlite3Fts5IterNextScan(pCsr->pIter);
        }

        if( rc==SQLITE_OK ){
          zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
          if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ){
            break;
          }
          if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
        }
      }
    }
  }

  if( rc==SQLITE_OK && pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
    while( pCsr->aDoc[pCsr->iCol]==0 ) pCsr->iCol++;
    assert( pCsr->iCol<pCsr->pConfig->nCol );
  }
  return rc;
}

/*
** This is the xFilter implementation for the virtual table.
*/
static int fts5VocabFilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *zUnused,            /* Unused */
  int nUnused,                    /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int rc = SQLITE_OK;

  int iVal = 0;
  int f = FTS5INDEX_QUERY_SCAN;
  const char *zTerm = 0;
  int nTerm = 0;

  sqlite3_value *pEq = 0;
  sqlite3_value *pGe = 0;
  sqlite3_value *pLe = 0;

  UNUSED_PARAM2(zUnused, nUnused);

  fts5VocabResetCursor(pCsr);
  if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];

  if( pEq ){
18918
18919
18920
18921
18922
18923
18924



18925
18926
18927
18928
18929
18930
18931
18932
18933

18934
18935

18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948


18949
18950
18951
18952
18953
18954
18955

static int fts5VocabColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;




  if( iCol==0 ){
    sqlite3_result_text(
        pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
    );
  }
  else if( ((Fts5VocabTable*)(pCursor->pVtab))->eType==FTS5_VOCAB_COL ){
    assert( iCol==1 || iCol==2 || iCol==3 );
    if( iCol==1 ){

      const char *z = pCsr->pConfig->azCol[pCsr->iCol];
      sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);

    }else if( iCol==2 ){
      sqlite3_result_int64(pCtx, pCsr->aDoc[pCsr->iCol]);
    }else{
      sqlite3_result_int64(pCtx, pCsr->aCnt[pCsr->iCol]);
    }
  }else{
    assert( iCol==1 || iCol==2 );
    if( iCol==1 ){
      sqlite3_result_int64(pCtx, pCsr->aDoc[0]);
    }else{
      sqlite3_result_int64(pCtx, pCsr->aCnt[0]);
    }
  }


  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. The
** rowid should be written to *pRowid.







>
>
>





<
|


>
|
|
>

|

|




|

|


>
>







20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288

20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317

static int fts5VocabColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int eDetail = pCsr->pConfig->eDetail;
  int eType = ((Fts5VocabTable*)(pCursor->pVtab))->eType;
  i64 iVal = 0;

  if( iCol==0 ){
    sqlite3_result_text(
        pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
    );

  }else if( eType==FTS5_VOCAB_COL ){
    assert( iCol==1 || iCol==2 || iCol==3 );
    if( iCol==1 ){
      if( eDetail!=FTS5_DETAIL_NONE ){
        const char *z = pCsr->pConfig->azCol[pCsr->iCol];
        sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
      }
    }else if( iCol==2 ){
      iVal = pCsr->aDoc[pCsr->iCol];
    }else{
      iVal = pCsr->aCnt[pCsr->iCol];
    }
  }else{
    assert( iCol==1 || iCol==2 );
    if( iCol==1 ){
      iVal = pCsr->aDoc[0];
    }else{
      iVal = pCsr->aCnt[0];
    }
  }

  if( iVal>0 ) sqlite3_result_int64(pCtx, iVal);
  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. The
** rowid should be written to *pRowid.
Changes to SQLite.Interop/src/ext/json1.c.
27
28
29
30
31
32
33



34

35
36
37
38
39
40
41
#endif
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>




#define UNUSED_PARAM(X)  (void)(X)


#ifndef LARGEST_INT64
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*







>
>
>
|
>







27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#endif
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>

/* Mark a function parameter as unused, to suppress nuisance compiler
** warnings. */
#ifndef UNUSED_PARAM
# define UNUSED_PARAM(X)  (void)(X)
#endif

#ifndef LARGEST_INT64
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*
272
273
274
275
276
277
278
279
280

281
282






















283
284
285
286
287
288
289
** string.
*/
static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
  u32 i;
  if( (N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0 ) return;
  p->zBuf[p->nUsed++] = '"';
  for(i=0; i<N; i++){
    char c = zIn[i];
    if( c=='"' || c=='\\' ){

      if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';






















    }
    p->zBuf[p->nUsed++] = c;
  }
  p->zBuf[p->nUsed++] = '"';
  assert( p->nUsed<p->nAlloc );
}








|

>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
** string.
*/
static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
  u32 i;
  if( (N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0 ) return;
  p->zBuf[p->nUsed++] = '"';
  for(i=0; i<N; i++){
    unsigned char c = ((unsigned const char*)zIn)[i];
    if( c=='"' || c=='\\' ){
      json_simple_escape:
      if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
    }else if( c<=0x1f ){
      static const char aSpecial[] = {
         0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0,   0,   0,   0, 0,   0,   0, 0, 0
      };
      assert( sizeof(aSpecial)==32 );
      assert( aSpecial['\b']=='b' );
      assert( aSpecial['\f']=='f' );
      assert( aSpecial['\n']=='n' );
      assert( aSpecial['\r']=='r' );
      assert( aSpecial['\t']=='t' );
      if( aSpecial[c] ){
        c = aSpecial[c];
        goto json_simple_escape;
      }
      if( (p->nUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
      p->zBuf[p->nUsed++] = 'u';
      p->zBuf[p->nUsed++] = '0';
      p->zBuf[p->nUsed++] = '0';
      p->zBuf[p->nUsed++] = '0' + (c>>4);
      c = "0123456789abcdef"[c&0xf];
    }
    p->zBuf[p->nUsed++] = c;
  }
  p->zBuf[p->nUsed++] = '"';
  assert( p->nUsed<p->nAlloc );
}

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        jsonAppendString(p, z, n);
      }
      break;
    }
    default: {
      if( p->bErr==0 ){
        sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
        p->bErr = 1;
        jsonReset(p);
      }
      break;
    }
  }
}








|







343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        jsonAppendString(p, z, n);
      }
      break;
    }
    default: {
      if( p->bErr==0 ){
        sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
        p->bErr = 2;
        jsonReset(p);
      }
      break;
    }
  }
}

1525
1526
1527
1528
1529
1530
1531

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
*/
static void jsonArrayStep(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;

  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{







>



















|







1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
*/
static void jsonArrayStep(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{
1570
1571
1572
1573
1574
1575
1576

1577
1578
1579
1580
1581
1582
1583
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  const char *z;
  u32 n;

  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else{
      jsonAppendChar(pStr, ',');







>







1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  const char *z;
  u32 n;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else{
      jsonAppendChar(pStr, ',');
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
}
static void jsonObjectFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{







|







1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
}
static void jsonObjectFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      if( pStr->bErr==0 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{
Changes to SQLite.Interop/src/win/interop.c.
182
183
184
185
186
187
188



189

190
191
192
193
194
195
196
  va_start(ap, zFormat);
#if SQLITE_VERSION_NUMBER >= 3008010
  sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
#else
  sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0);
  acc.useMalloc = 0;
#endif



  sqlite3VXPrintf(&acc, 0, zFormat, ap);

  va_end(ap);
#if SQLITE_VERSION_NUMBER >= 3007013
  sqlite3_win32_write_debug(sqlite3StrAccumFinish(&acc), -1);
#elif defined(SQLITE_WIN32_HAS_ANSI)
  OutputDebugStringA(sqlite3StrAccumFinish(&acc));
#elif defined(SQLITE_WIN32_HAS_WIDE)
  {







>
>
>

>







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  va_start(ap, zFormat);
#if SQLITE_VERSION_NUMBER >= 3008010
  sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
#else
  sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0);
  acc.useMalloc = 0;
#endif
#if SQLITE_VERSION_NUMBER >= 3011000
  sqlite3VXPrintf(&acc, zFormat, ap);
#else
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
#endif
  va_end(ap);
#if SQLITE_VERSION_NUMBER >= 3007013
  sqlite3_win32_write_debug(sqlite3StrAccumFinish(&acc), -1);
#elif defined(SQLITE_WIN32_HAS_ANSI)
  OutputDebugStringA(sqlite3StrAccumFinish(&acc));
#elif defined(SQLITE_WIN32_HAS_WIDE)
  {
967
968
969
970
971
972
973



974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992



993

994
995
996
997
998
999
1000
}

SQLITE_API int WINAPI sqlite3_cursor_rowid_interop(sqlite3_stmt *pstmt, int cursor, sqlite_int64 *prowid)
{
  Vdbe *p = (Vdbe *)pstmt;
  sqlite3 *db = (p == NULL) ? NULL : p->db;
  VdbeCursor *pC;



  int ret = SQLITE_OK;

  if (!p || !db) return SQLITE_ERROR;
  sqlite3_mutex_enter(db->mutex);
  while (1)
  {
    if (cursor < 0 || cursor >= p->nCursor)
    {
      ret = SQLITE_ERROR;
      break;
    }
    if (p->apCsr[cursor] == NULL)
    {
      ret = SQLITE_ERROR;
      break;
    }

    pC = p->apCsr[cursor];




    ret = sqlite3VdbeCursorMoveto(pC);

    if(ret)
      break;

#if SQLITE_VERSION_NUMBER < 3008007
    if(pC->rowidIsValid)
    {
      if (prowid) *prowid = pC->lastRowid;







>
>
>



















>
>
>

>







971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
}

SQLITE_API int WINAPI sqlite3_cursor_rowid_interop(sqlite3_stmt *pstmt, int cursor, sqlite_int64 *prowid)
{
  Vdbe *p = (Vdbe *)pstmt;
  sqlite3 *db = (p == NULL) ? NULL : p->db;
  VdbeCursor *pC;
#if SQLITE_VERSION_NUMBER >= 3011000
  int p2 = 0;
#endif
  int ret = SQLITE_OK;

  if (!p || !db) return SQLITE_ERROR;
  sqlite3_mutex_enter(db->mutex);
  while (1)
  {
    if (cursor < 0 || cursor >= p->nCursor)
    {
      ret = SQLITE_ERROR;
      break;
    }
    if (p->apCsr[cursor] == NULL)
    {
      ret = SQLITE_ERROR;
      break;
    }

    pC = p->apCsr[cursor];

#if SQLITE_VERSION_NUMBER >= 3011000
    ret = sqlite3VdbeCursorMoveto(&pC, &p2);
#else
    ret = sqlite3VdbeCursorMoveto(pC);
#endif
    if(ret)
      break;

#if SQLITE_VERSION_NUMBER < 3008007
    if(pC->rowidIsValid)
    {
      if (prowid) *prowid = pC->lastRowid;
Changes to readme.htm.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title></title>
</head>
<body>
ADO.NET SQLite Data Provider<br />
Version 1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font><br />
Using <a href="https://www.sqlite.org/releaselog/3_10_2.html">SQLite 3.10.2</a><br />
Originally written by Robert Simpson<br />
Released to the public domain, use at your own risk!<br />
Official provider website:&nbsp;<a href="https://system.data.sqlite.org/">https://system.data.sqlite.org/</a><br />
Legacy versions:&nbsp;<a href="http://sqlite.phxsoftware.com/">http://sqlite.phxsoftware.com/</a><br />
<br />
The current development version can be downloaded from <a href="https://system.data.sqlite.org/index.html/timeline?y=ci">
https://system.data.sqlite.org/index.html/timeline?y=ci</a>








|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title></title>
</head>
<body>
ADO.NET SQLite Data Provider<br />
Version 1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font><br />
Using <a href="https://www.sqlite.org/releaselog/3_11_0.html">SQLite 3.11</a><br />
Originally written by Robert Simpson<br />
Released to the public domain, use at your own risk!<br />
Official provider website:&nbsp;<a href="https://system.data.sqlite.org/">https://system.data.sqlite.org/</a><br />
Legacy versions:&nbsp;<a href="http://sqlite.phxsoftware.com/">http://sqlite.phxsoftware.com/</a><br />
<br />
The current development version can be downloaded from <a href="https://system.data.sqlite.org/index.html/timeline?y=ci">
https://system.data.sqlite.org/index.html/timeline?y=ci</a>
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

<h2><b>Version History</b></h2>

<p>
    <b>1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font></b>
</p>
<ul>
    <li>Updated to <a href="https://www.sqlite.org/releaselog/3_10_2.html">SQLite 3.10.2</a>.</li>
    <li>Properly handle NULL values in the &quot;name&quot; column of the results returned by PRAGMA index_info(). Fix for [5251bd0878].</li>
    <li>For column types that resolve to boolean, recognize case-insensitive prefixes of &quot;True&quot; and &quot;False&quot;. Fix for [dbd65441a5].</li>
    <li>Add NoVerifyTextAffinity connection flag to skip type affinity checking when fetching a column value as a string. Pursuant to [dbd65441a5].</li>
</ul>
<p>
    <b>1.0.99.0 - December 9, 2015</b>
</p>







|







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

<h2><b>Version History</b></h2>

<p>
    <b>1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font></b>
</p>
<ul>
    <li>Updated to <a href="https://www.sqlite.org/releaselog/3_11_0.html">SQLite 3.11</a>.</li>
    <li>Properly handle NULL values in the &quot;name&quot; column of the results returned by PRAGMA index_info(). Fix for [5251bd0878].</li>
    <li>For column types that resolve to boolean, recognize case-insensitive prefixes of &quot;True&quot; and &quot;False&quot;. Fix for [dbd65441a5].</li>
    <li>Add NoVerifyTextAffinity connection flag to skip type affinity checking when fetching a column value as a string. Pursuant to [dbd65441a5].</li>
</ul>
<p>
    <b>1.0.99.0 - December 9, 2015</b>
</p>
Changes to www/news.wiki.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<title>News</title>

<b>Version History</b>

<p>
    <b>1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font></b>
</p>
<ul>
    <li>Updated to <a href="https://www.sqlite.org/releaselog/3_10_2.html">SQLite 3.10.2</a>.</li>
    <li>Properly handle NULL values in the &quot;name&quot; column of the results returned by PRAGMA index_info(). Fix for [5251bd0878].</li>
    <li>For column types that resolve to boolean, recognize case-insensitive prefixes of &quot;True&quot; and &quot;False&quot;. Fix for [dbd65441a5].</li>
    <li>Add NoVerifyTextAffinity connection flag to skip type affinity checking when fetching a column value as a string. Pursuant to [dbd65441a5].</li>
</ul>
<p>
    <b>1.0.99.0 - December 9, 2015</b>
</p>








|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<title>News</title>

<b>Version History</b>

<p>
    <b>1.0.100.0 - February XX, 2016 <font color="red">(release scheduled)</font></b>
</p>
<ul>
    <li>Updated to <a href="https://www.sqlite.org/releaselog/3_11_0.html">SQLite 3.11</a>.</li>
    <li>Properly handle NULL values in the &quot;name&quot; column of the results returned by PRAGMA index_info(). Fix for [5251bd0878].</li>
    <li>For column types that resolve to boolean, recognize case-insensitive prefixes of &quot;True&quot; and &quot;False&quot;. Fix for [dbd65441a5].</li>
    <li>Add NoVerifyTextAffinity connection flag to skip type affinity checking when fetching a column value as a string. Pursuant to [dbd65441a5].</li>
</ul>
<p>
    <b>1.0.99.0 - December 9, 2015</b>
</p>