Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update SQLite core to the latest trunk code. Also, update Eagle script library in externals to the latest. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
4295b942f10af63e3f06215c939f99eb |
User & Date: | mistachkin 2012-08-17 11:55:06.240 |
Context
2012-08-24
| ||
10:00 | Add support for testing the sqlite3_win32_set_directory function. Also, add the ToFullPath connection string property. check-in: 7e3aa2f8bb user: mistachkin tags: trunk | |
2012-08-17
| ||
11:55 | Update SQLite core to the latest trunk code. Also, update Eagle script library in externals to the latest. check-in: 4295b942f1 user: mistachkin tags: trunk | |
2012-07-27
| ||
00:52 | Modify release archive verification tool to use environment variables that do not interfere with the operation of the called tools themselves. check-in: 4dedf50acc user: mistachkin tags: trunk | |
Changes
Changes to Externals/Eagle/lib/Test1.0/constraints.eagle.
︙ | ︙ | |||
56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # foreach constraint $constraints { addConstraint $constraint } } } } proc checkForTclOptions { channel } { tputs $channel "---- checking for Tcl options..." if {![isEagle]} then { set result [list] | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | # foreach constraint $constraints { addConstraint $constraint } } } } proc checkForVariable { channel name {notEmpty true} {constraint ""} } { tputs $channel [appendArgs "---- checking for variable \"" $name \ "\"... "] # # NOTE: First, normalize the variable name to be in the global scope. # set newName [appendArgs :: [string trimleft $name :]] # # NOTE: Next, always check if it actually exists (as of right now). # if {[info exists $newName]} then { # # NOTE: Next, optionally check if it constains anything. # if {!$notEmpty || [string length [set $newName]] > 0} then { # # NOTE: The variable exists and it either contains something # or we do not care about its contents. # if {[string length $constraint] > 0} then { addConstraint [appendArgs variable_ $constraint] } else { addConstraint [appendArgs variable_ [string trimleft $newName :]] } # # NOTE: Show that we found the variable and whether it actually # contained anything. # tputs $channel [appendArgs "yes (" \ [expr {$notEmpty ? "exists, not empty" : "exists"}] ")\n"] # # NOTE: We are done here, return now. # return } } tputs $channel no\n } proc checkForTclOptions { channel } { tputs $channel "---- checking for Tcl options..." if {![isEagle]} then { set result [list] |
︙ | ︙ | |||
137 138 139 140 141 142 143 144 145 146 147 148 149 150 | # # NOTE: We are done here, return now. # return } } tputs $channel no\n } proc checkForEagle { channel } { tputs $channel "---- checking for Eagle... " | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | # # NOTE: We are done here, return now. # return } } tputs $channel no\n } proc checkForFossil { channel } { tputs $channel "---- checking for Fossil... " if {[catch {set version [exec -- fossil version]}] == 0} then { set version [string trim $version] set pattern {^This is fossil version (.*) \[([0-9a-f]+)\]\ \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2} UTC$} if {[regexp -- $pattern $version dummy version sourceId]} then { # # NOTE: Add a constraint to show that the Fossil executable # itself is available. # addConstraint fossil_version # # NOTE: Append the version of Fossil currently in use. # append result version " " $version " \[" $sourceId \] if {[catch {set remote [exec -- fossil remote]}] == 0} then { set remote [string trim $remote]; set valid false if {[isEagle]} then { # # NOTE: With Eagle, we can actually validate the URI. # if {[uri isvalid $remote]} then { set valid true } } else { # # HACK: Currently, there is no simple way to validate # an arbitrary URI with Tcl (i.e. without using # some hideously complex regular expression). # if {[string length $remote] > 0} then { set valid true } } if {$valid} then { # # NOTE: Add a constraint to show that a valid Fossil # repository URI appears to be available. # addConstraint fossil_repository # # NOTE: If we are not prevented from doing so, save the # test repository to the repository URI currently # in use to a suitably named global variable. # if {![info exists ::no(setRepository)]} then { set ::test_repository $remote } # # NOTE: Append the repository URI currently in use. # append result ", repository \"" $remote \" # # NOTE: Show the result of the checking. # tputs $channel [appendArgs "yes (" $result ")\n"] # # NOTE: We are done here, return now. # return } } } } tputs $channel no\n } proc checkForEagle { channel } { tputs $channel "---- checking for Eagle... " |
︙ | ︙ | |||
1995 1996 1997 1998 1999 2000 2001 | exportAndImportPackageCommands [namespace current] [list checkForPlatform \ checkForEagle checkForGaruda checkForShell checkForDebug checkForTk \ checkForVersion checkForCommand checkForFile checkForNativeCode \ checkForTip127 checkForTip194 checkForTip241 checkForTip285 \ checkForPerformance checkForTiming checkForInteractive checkForSymbols \ checkForLogFile checkForNetwork checkForCompileOption \ checkForWindowsCommandProcessor checkForUserInteraction \ | | > | 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 | exportAndImportPackageCommands [namespace current] [list checkForPlatform \ checkForEagle checkForGaruda checkForShell checkForDebug checkForTk \ checkForVersion checkForCommand checkForFile checkForNativeCode \ checkForTip127 checkForTip194 checkForTip241 checkForTip285 \ checkForPerformance checkForTiming checkForInteractive checkForSymbols \ checkForLogFile checkForNetwork checkForCompileOption \ checkForWindowsCommandProcessor checkForUserInteraction \ checkForTclOptions checkForTestConfiguration checkForVariable \ checkForFossil] false false ########################################################################### ############################## END Tcl ONLY ############################### ########################################################################### } # # NOTE: Provide the Eagle test constraints package to the interpreter. # package provide Eagle.Test.Constraints \ [expr {[isEagle] ? [info engine PatchLevel] : "1.0"}] } |
Changes to Externals/Eagle/lib/Test1.0/prologue.eagle.
︙ | ︙ | |||
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 | if {![info exists no(tclOptions)]} then { checkForTclOptions $test_channel } if {![info exists no(windowsCommandProcessor)]} then { checkForWindowsCommandProcessor $test_channel cmd.exe } if {![info exists no(version)]} then { checkForVersion $test_channel } if {![info exists no(eagle)]} then { checkForEagle $test_channel | > > > > > > > > | 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 | if {![info exists no(tclOptions)]} then { checkForTclOptions $test_channel } if {![info exists no(windowsCommandProcessor)]} then { checkForWindowsCommandProcessor $test_channel cmd.exe } if {![info exists no(fossil)]} then { checkForFossil $test_channel } if {![info exists no(testRepository)]} then { checkForVariable $test_channel test_repository } if {![info exists no(version)]} then { checkForVersion $test_channel } if {![info exists no(eagle)]} then { checkForEagle $test_channel |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.c.
︙ | ︙ | |||
671 672 673 674 675 676 677 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.14" #define SQLITE_VERSION_NUMBER 3007014 | | | 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.14" #define SQLITE_VERSION_NUMBER 3007014 #define SQLITE_SOURCE_ID "2012-08-17 11:47:32 61b1ae121782525b37882a559d0fbb7c85237fd5" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
4719 4720 4721 4722 4723 4724 4725 | ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. ** ^The sqlite3_result_error_code() function changes the error code ** returned by SQLite as a result of an error in a function. ^By default, ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** | | | | | | 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 | ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. ** ^The sqlite3_result_error_code() function changes the error code ** returned by SQLite as a result of an error in a function. ^By default, ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** ** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an ** error indicating that a string or BLOB is too long to represent. ** ** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an ** error indicating that a memory allocation failed. ** ** ^The sqlite3_result_int() interface sets the return value ** of the application-defined function to be the 32-bit signed integer ** value given in the 2nd argument. ** ^The sqlite3_result_int64() interface sets the return value ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. |
︙ | ︙ | |||
8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 | #define BTREE_FILE_FORMAT 2 #define BTREE_DEFAULT_CACHE_SIZE 3 #define BTREE_LARGEST_ROOT_PAGE 4 #define BTREE_TEXT_ENCODING 5 #define BTREE_USER_VERSION 6 #define BTREE_INCR_VACUUM 7 SQLITE_PRIVATE int sqlite3BtreeCursor( Btree*, /* BTree containing table to open */ int iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ struct KeyInfo*, /* First argument to compare function */ BtCursor *pCursor /* Space to write cursor structure */ ); | > > > > > > | 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 | #define BTREE_FILE_FORMAT 2 #define BTREE_DEFAULT_CACHE_SIZE 3 #define BTREE_LARGEST_ROOT_PAGE 4 #define BTREE_TEXT_ENCODING 5 #define BTREE_USER_VERSION 6 #define BTREE_INCR_VACUUM 7 /* ** Values that may be OR'd together to form the second argument of an ** sqlite3BtreeCursorHints() call. */ #define BTREE_BULKLOAD 0x00000001 SQLITE_PRIVATE int sqlite3BtreeCursor( Btree*, /* BTree containing table to open */ int iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ struct KeyInfo*, /* First argument to compare function */ BtCursor *pCursor /* Space to write cursor structure */ ); |
︙ | ︙ | |||
8438 8439 8440 8441 8442 8443 8444 | SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); | < > | 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 | SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask); #ifndef NDEBUG SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); #endif #ifndef SQLITE_OMIT_BTREECOUNT SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *); |
︙ | ︙ | |||
9382 9383 9384 9385 9386 9387 9388 | #if defined(_WIN32_WCE) # define SQLITE_OS_WINCE 1 #else # define SQLITE_OS_WINCE 0 #endif /* | | | | 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 | #if defined(_WIN32_WCE) # define SQLITE_OS_WINCE 1 #else # define SQLITE_OS_WINCE 0 #endif /* ** Determine if we are dealing with WinRT, which provides only a subset of ** the full Win32 API. */ #if !defined(SQLITE_OS_WINRT) # define SQLITE_OS_WINRT 0 #endif /* ** When compiled for WinCE or WinRT, there is no concept of the current |
︙ | ︙ | |||
11083 11084 11085 11086 11087 11088 11089 | /* ** A structure used to customize the behavior of sqlite3Select(). See ** comments above sqlite3Select() for details. */ typedef struct SelectDest SelectDest; struct SelectDest { u8 eDest; /* How to dispose of the results */ | | | | | | 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 | /* ** A structure used to customize the behavior of sqlite3Select(). See ** comments above sqlite3Select() for details. */ typedef struct SelectDest SelectDest; struct SelectDest { u8 eDest; /* How to dispose of the results */ u8 affSdst; /* Affinity used when eDest==SRT_Set */ int iSDParm; /* A parameter used by the eDest disposal method */ int iSdst; /* Base register where results are written */ int nSdst; /* Number of registers allocated */ }; /* ** During code generation of statements that do inserts into AUTOINCREMENT ** tables, the following information is attached to the Table.u.autoInc.p ** pointer of each autoincrement table to record some side information that ** the code generator needs. We have to keep per-table autoincrement |
︙ | ︙ | |||
11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 | #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ /* * Each trigger present in the database schema is stored as an instance of * struct Trigger. * * Pointers to instances of struct Trigger are stored in two ways. * 1. In the "trigHash" hash table (part of the sqlite3* that represents the | > > | 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 | #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ /* * Each trigger present in the database schema is stored as an instance of * struct Trigger. * * Pointers to instances of struct Trigger are stored in two ways. * 1. In the "trigHash" hash table (part of the sqlite3* that represents the |
︙ | ︙ | |||
13352 13353 13354 13355 13356 13357 13358 | # define sqlite3VdbeSorterRowkey(Y,Z) SQLITE_OK # define sqlite3VdbeSorterRewind(X,Y,Z) SQLITE_OK # define sqlite3VdbeSorterNext(X,Y,Z) SQLITE_OK # define sqlite3VdbeSorterCompare(X,Y,Z) SQLITE_OK #else SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); | | | | | | | 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 | # define sqlite3VdbeSorterRowkey(Y,Z) SQLITE_OK # define sqlite3VdbeSorterRewind(X,Y,Z) SQLITE_OK # define sqlite3VdbeSorterNext(X,Y,Z) SQLITE_OK # define sqlite3VdbeSorterCompare(X,Y,Z) SQLITE_OK #else SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *); SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *); SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int *); #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeEnter(X) |
︙ | ︙ | |||
22183 22184 22185 22186 22187 22188 22189 | new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); } if( new_size==pH->htsize ) return 0; #endif /* The inability to allocates space for a larger hash table is ** a performance hit but it is not a fatal error. So mark the | | > > > > | 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 | new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); } if( new_size==pH->htsize ) return 0; #endif /* The inability to allocates space for a larger hash table is ** a performance hit but it is not a fatal error. So mark the ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero() ** only zeroes the requested number of bytes whereas this module will ** use the actual amount of space allocated for the hash table (which ** may be larger than the requested amount). */ sqlite3BeginBenignMalloc(); new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); sqlite3EndBenignMalloc(); if( new_ht==0 ) return 0; sqlite3_free(pH->ht); |
︙ | ︙ | |||
29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 | # define FILE_FLAG_MASK (0xFF3C0000) #endif #ifndef FILE_ATTRIBUTE_MASK # define FILE_ATTRIBUTE_MASK (0x0003FFF7) #endif /* Forward references */ typedef struct winShm winShm; /* A connection to shared-memory */ typedef struct winShmNode winShmNode; /* A region of shared-memory */ /* ** WinCE lacks native support for file locking so we have to fake it ** with some code of our own. */ #if SQLITE_OS_WINCE typedef struct winceLock { | > > | 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 | # define FILE_FLAG_MASK (0xFF3C0000) #endif #ifndef FILE_ATTRIBUTE_MASK # define FILE_ATTRIBUTE_MASK (0x0003FFF7) #endif #ifndef SQLITE_OMIT_WAL /* Forward references */ typedef struct winShm winShm; /* A connection to shared-memory */ typedef struct winShmNode winShmNode; /* A region of shared-memory */ #endif /* ** WinCE lacks native support for file locking so we have to fake it ** with some code of our own. */ #if SQLITE_OS_WINCE typedef struct winceLock { |
︙ | ︙ | |||
29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 | const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ u8 ctrlFlags; /* Flags. See WINFILE_* below */ DWORD lastErrno; /* The Windows errno from the last I/O error */ winShm *pShm; /* Instance of shared memory on this file */ const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE LPWSTR zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ | > > | 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 | const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ u8 ctrlFlags; /* Flags. See WINFILE_* below */ DWORD lastErrno; /* The Windows errno from the last I/O error */ #ifndef SQLITE_OMIT_WAL winShm *pShm; /* Instance of shared memory on this file */ #endif const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE LPWSTR zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ |
︙ | ︙ | |||
30107 30108 30109 30110 30111 30112 30113 | #else { "CreateFileW", (SYSCALL)0, 0 }, #endif #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) | | > | 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 | #else { "CreateFileW", (SYSCALL)0, 0 }, #endif #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ !defined(SQLITE_OMIT_WAL)) { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 }, #else { "CreateFileMappingW", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCWSTR))aSyscall[6].pCurrent) |
︙ | ︙ | |||
30419 30420 30421 30422 30423 30424 30425 | #endif #ifndef osLockFileEx #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[45].pCurrent) #endif | | | 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 | #endif #ifndef osLockFileEx #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[45].pCurrent) #endif #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)) { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 }, #else { "MapViewOfFile", (SYSCALL)0, 0 }, #endif #define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ SIZE_T))aSyscall[46].pCurrent) |
︙ | ︙ | |||
30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 | #else { "UnlockFileEx", (SYSCALL)0, 0 }, #endif #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[55].pCurrent) { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 }, #define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[56].pCurrent) { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 }, #define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \ LPCSTR,LPBOOL))aSyscall[57].pCurrent) | > > > > | 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 | #else { "UnlockFileEx", (SYSCALL)0, 0 }, #endif #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[55].pCurrent) #if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 }, #else { "UnmapViewOfFile", (SYSCALL)0, 0 }, #endif #define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[56].pCurrent) { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 }, #define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \ LPCSTR,LPBOOL))aSyscall[57].pCurrent) |
︙ | ︙ | |||
30521 30522 30523 30524 30525 30526 30527 | #else { "WaitForSingleObject", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \ DWORD))aSyscall[60].pCurrent) | | | | | 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 | #else { "WaitForSingleObject", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \ DWORD))aSyscall[60].pCurrent) #if SQLITE_OS_WINRT { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 }, #else { "WaitForSingleObjectEx", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \ BOOL))aSyscall[61].pCurrent) #if SQLITE_OS_WINRT { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 }, #else { "SetFilePointerEx", (SYSCALL)0, 0 }, #endif #define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \ PLARGE_INTEGER,DWORD))aSyscall[62].pCurrent) #if SQLITE_OS_WINRT { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 }, #else { "GetFileInformationByHandleEx", (SYSCALL)0, 0 }, #endif #define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[63].pCurrent) #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL) { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 }, #else { "MapViewOfFileFromApp", (SYSCALL)0, 0 }, #endif #define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \ SIZE_T))aSyscall[64].pCurrent) |
︙ | ︙ | |||
30612 30613 30614 30615 30616 30617 30618 | #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[70].pCurrent) { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[71].pCurrent) | | | 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 | #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[70].pCurrent) { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[71].pCurrent) #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL) { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, #else { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[72].pCurrent) |
︙ | ︙ | |||
31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 | */ #define MX_CLOSE_ATTEMPT 3 static int winClose(sqlite3_file *id){ int rc, cnt = 0; winFile *pFile = (winFile*)id; assert( id!=0 ); assert( pFile->pShm==0 ); OSTRACE(("CLOSE %d\n", pFile->h)); do{ rc = osCloseHandle(pFile->h); /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) ); #if SQLITE_OS_WINCE #define WINCE_DELETION_ATTEMPTS 3 | > > | 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 | */ #define MX_CLOSE_ATTEMPT 3 static int winClose(sqlite3_file *id){ int rc, cnt = 0; winFile *pFile = (winFile*)id; assert( id!=0 ); #ifndef SQLITE_OMIT_WAL assert( pFile->pShm==0 ); #endif OSTRACE(("CLOSE %d\n", pFile->h)); do{ rc = osCloseHandle(pFile->h); /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) ); #if SQLITE_OS_WINCE #define WINCE_DELETION_ATTEMPTS 3 |
︙ | ︙ | |||
33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 | } memset(pFile, 0, sizeof(*pFile)); pFile->pMethod = &winIoMethod; pFile->h = h; pFile->lastErrno = NO_ERROR; pFile->pVfs = pVfs; pFile->pShm = 0; pFile->zPath = zName; if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pFile->ctrlFlags |= WINFILE_PSOW; } #if SQLITE_OS_WINCE if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB | > > | 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 | } memset(pFile, 0, sizeof(*pFile)); pFile->pMethod = &winIoMethod; pFile->h = h; pFile->lastErrno = NO_ERROR; pFile->pVfs = pVfs; #ifndef SQLITE_OMIT_WAL pFile->pShm = 0; #endif pFile->zPath = zName; if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pFile->ctrlFlags |= WINFILE_PSOW; } #if SQLITE_OS_WINCE if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB |
︙ | ︙ | |||
34470 34471 34472 34473 34474 34475 34476 | int rc = -1; int i, nx, pc, op; void *pTmpSpace; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); | | < | 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 | int rc = -1; int i, nx, pc, op; void *pTmpSpace; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); pV = sqlite3MallocZero( (sz+7)/8 + 1 ); pTmpSpace = sqlite3_malloc(BITVEC_SZ); if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; /* NULL pBitvec tests */ sqlite3BitvecSet(0, 1); sqlite3BitvecClear(0, 1, pTmpSpace); /* Run the program */ pc = 0; |
︙ | ︙ | |||
35557 35558 35559 35560 35561 35562 35563 | nNew = p->nHash*2; if( nNew<256 ){ nNew = 256; } pcache1LeaveMutex(p->pGroup); if( p->nHash ){ sqlite3BeginBenignMalloc(); } | | < | 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 | nNew = p->nHash*2; if( nNew<256 ){ nNew = 256; } pcache1LeaveMutex(p->pGroup); if( p->nHash ){ sqlite3BeginBenignMalloc(); } apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); if( p->nHash ){ sqlite3EndBenignMalloc(); } pcache1EnterMutex(p->pGroup); if( apNew ){ for(i=0; i<p->nHash; i++){ PgHdr1 *pPage; PgHdr1 *pNext = p->apHash[i]; while( (pPage = pNext)!=0 ){ unsigned int h = pPage->iKey % nNew; pNext = pPage->pNext; pPage->pNext = apNew[h]; |
︙ | ︙ | |||
35745 35746 35747 35748 35749 35750 35751 | int separateCache = sqlite3GlobalConfig.bCoreMutex>0; #endif assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); assert( szExtra < 300 ); sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; | | < | 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 | int separateCache = sqlite3GlobalConfig.bCoreMutex>0; #endif assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); assert( szExtra < 300 ); sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; pCache = (PCache1 *)sqlite3MallocZero(sz); if( pCache ){ if( separateCache ){ pGroup = (PGroup*)&pCache[1]; pGroup->mxPinned = 10; }else{ pGroup = &pcache1.grp; } pCache->pGroup = pGroup; |
︙ | ︙ | |||
47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 | u8 wrFlag; /* True if writable */ u8 atLast; /* Cursor pointing to the last entry */ u8 validNKey; /* True if info.nKey is valid */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ #ifndef SQLITE_OMIT_INCRBLOB u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ #endif i16 iPage; /* Index of current page in apPage */ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Potential values for BtCursor.eState. | > | 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 | u8 wrFlag; /* True if writable */ u8 atLast; /* Cursor pointing to the last entry */ u8 validNKey; /* True if info.nKey is valid */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ #ifndef SQLITE_OMIT_INCRBLOB u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ #endif u8 hints; /* As configured by CursorSetHints() */ i16 iPage; /* Index of current page in apPage */ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Potential values for BtCursor.eState. |
︙ | ︙ | |||
53737 53738 53739 53740 53741 53742 53743 | ** If aOvflSpace is set to a null pointer, this function returns ** SQLITE_NOMEM. */ static int balance_nonroot( MemPage *pParent, /* Parent page of siblings being balanced */ int iParentIdx, /* Index of "the page" in pParent */ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ | | > | 53760 53761 53762 53763 53764 53765 53766 53767 53768 53769 53770 53771 53772 53773 53774 53775 | ** If aOvflSpace is set to a null pointer, this function returns ** SQLITE_NOMEM. */ static int balance_nonroot( MemPage *pParent, /* Parent page of siblings being balanced */ int iParentIdx, /* Index of "the page" in pParent */ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ int isRoot, /* True if pParent is a root-page */ int bBulk /* True if this call is part of a bulk load */ ){ BtShared *pBt; /* The whole database */ int nCell = 0; /* Number of cells in apCell[] */ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ int nNew = 0; /* Number of pages in apNew[] */ int nOld; /* Number of pages in apOld[] */ int i, j, k; /* Loop counters */ |
︙ | ︙ | |||
53801 53802 53803 53804 53805 53806 53807 | ** way, the remainder of the function does not have to deal with any ** overflow cells in the parent page, since if any existed they will ** have already been removed. */ i = pParent->nOverflow + pParent->nCell; if( i<2 ){ nxDiv = 0; | < < > | > | > | 53825 53826 53827 53828 53829 53830 53831 53832 53833 53834 53835 53836 53837 53838 53839 53840 53841 53842 53843 53844 53845 53846 53847 53848 53849 53850 53851 | ** way, the remainder of the function does not have to deal with any ** overflow cells in the parent page, since if any existed they will ** have already been removed. */ i = pParent->nOverflow + pParent->nCell; if( i<2 ){ nxDiv = 0; }else{ assert( bBulk==0 || bBulk==1 ); if( iParentIdx==0 ){ nxDiv = 0; }else if( iParentIdx==i ){ nxDiv = i-2+bBulk; }else{ assert( bBulk==0 ); nxDiv = iParentIdx-1; } i = 2-bBulk; } nOld = i+1; if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ |
︙ | ︙ | |||
54021 54022 54023 54024 54025 54026 54027 | int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; assert( d<nMaxCells ); assert( r<nMaxCells ); | > | > | 54046 54047 54048 54049 54050 54051 54052 54053 54054 54055 54056 54057 54058 54059 54060 54061 54062 | int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; assert( d<nMaxCells ); assert( r<nMaxCells ); while( szRight==0 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2)) ){ szRight += szCell[d] + 2; szLeft -= szCell[r] + 2; cntNew[i-1]--; r = cntNew[i-1] - 1; d = r + 1 - leafData; } szNew[i] = szRight; |
︙ | ︙ | |||
54068 54069 54070 54071 54072 54073 54074 | pNew = apNew[i] = apOld[i]; apOld[i] = 0; rc = sqlite3PagerWrite(pNew->pDbPage); nNew++; if( rc ) goto balance_cleanup; }else{ assert( i>0 ); | | | 54095 54096 54097 54098 54099 54100 54101 54102 54103 54104 54105 54106 54107 54108 54109 | pNew = apNew[i] = apOld[i]; apOld[i] = 0; rc = sqlite3PagerWrite(pNew->pDbPage); nNew++; if( rc ) goto balance_cleanup; }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; apNew[i] = pNew; nNew++; /* Set the pointer-map entry for the new sibling page. */ if( ISAUTOVACUUM ){ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
︙ | ︙ | |||
54280 54281 54282 54283 54284 54285 54286 54287 54288 54289 54290 54291 54292 54293 | for(i=0; i<nCell; i++){ int isDivider = 0; while( i==iNextOld ){ /* Cell i is the cell immediately following the last cell on old ** sibling page j. If the siblings are not leaf pages of an ** intkey b-tree, then cell i was a divider cell. */ assert( j+1 < ArraySize(apCopy) ); pOld = apCopy[++j]; iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; if( pOld->nOverflow ){ nOverflow = pOld->nOverflow; iOverflow = i + !leafData + pOld->aiOvfl[0]; } isDivider = !leafData; | > | 54307 54308 54309 54310 54311 54312 54313 54314 54315 54316 54317 54318 54319 54320 54321 | for(i=0; i<nCell; i++){ int isDivider = 0; while( i==iNextOld ){ /* Cell i is the cell immediately following the last cell on old ** sibling page j. If the siblings are not leaf pages of an ** intkey b-tree, then cell i was a divider cell. */ assert( j+1 < ArraySize(apCopy) ); assert( j+1 < nOld ); pOld = apCopy[++j]; iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; if( pOld->nOverflow ){ nOverflow = pOld->nOverflow; iOverflow = i + !leafData + pOld->aiOvfl[0]; } isDivider = !leafData; |
︙ | ︙ | |||
54518 54519 54520 54521 54522 54523 54524 | ** different page). Once this subsequent call to balance_nonroot() ** has completed, it is safe to release the pSpace buffer used by ** the previous call, as the overflow cell data will have been ** copied either into the body of a database page or into the new ** pSpace buffer passed to the latter call to balance_nonroot(). */ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); | | | 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 | ** different page). Once this subsequent call to balance_nonroot() ** has completed, it is safe to release the pSpace buffer used by ** the previous call, as the overflow cell data will have been ** copied either into the body of a database page or into the new ** pSpace buffer passed to the latter call to balance_nonroot(). */ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints); if( pFree ){ /* If pFree is not NULL, it points to the pSpace buffer used ** by a previous call to balance_nonroot(). Its contents are ** now stored either on real database pages or within the ** new pSpace buffer, so it may be safely freed here. */ sqlite3PageFree(pFree); } |
︙ | ︙ | |||
56105 56106 56107 56108 56109 56110 56111 56112 56113 56114 56115 56116 56117 56118 | } } } pBt->btsFlags &= ~BTS_NO_WAL; return rc; } /************** End of btree.c ***********************************************/ /************** Begin file backup.c ******************************************/ /* ** 2009 January 28 ** ** The author disclaims copyright to this source code. In place of | > > > > > > > > > | 56133 56134 56135 56136 56137 56138 56139 56140 56141 56142 56143 56144 56145 56146 56147 56148 56149 56150 56151 56152 56153 56154 56155 | } } } pBt->btsFlags &= ~BTS_NO_WAL; return rc; } /* ** set the mask of hint flags for cursor pCsr. Currently the only valid ** values are 0 and BTREE_BULKLOAD. */ SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){ assert( mask==BTREE_BULKLOAD || mask==0 ); pCsr->hints = mask; } /************** End of btree.c ***********************************************/ /************** Begin file backup.c ******************************************/ /* ** 2009 January 28 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
56272 56273 56274 56275 56276 56277 56278 | ); p = 0; }else { /* Allocate space for a new sqlite3_backup object... ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ | | < | 56309 56310 56311 56312 56313 56314 56315 56316 56317 56318 56319 56320 56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 | ); p = 0; }else { /* Allocate space for a new sqlite3_backup object... ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup)); if( !p ){ sqlite3Error(pDestDb, SQLITE_NOMEM, 0); } } /* If the allocation succeeded, populate the new object. */ if( p ){ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; p->iNext = 1; p->isAttached = 0; |
︙ | ︙ | |||
62704 62705 62706 62707 62708 62709 62710 | /* ** Allocate a new Explain object */ SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe *pVdbe){ if( pVdbe ){ Explain *p; sqlite3BeginBenignMalloc(); | | < | 62740 62741 62742 62743 62744 62745 62746 62747 62748 62749 62750 62751 62752 62753 62754 62755 | /* ** Allocate a new Explain object */ SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe *pVdbe){ if( pVdbe ){ Explain *p; sqlite3BeginBenignMalloc(); p = (Explain *)sqlite3MallocZero( sizeof(Explain) ); if( p ){ p->pVdbe = pVdbe; sqlite3_free(pVdbe->pExplain); pVdbe->pExplain = p; sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase), SQLITE_MAX_LENGTH); p->str.useMalloc = 2; }else{ |
︙ | ︙ | |||
66487 66488 66489 66490 66491 66492 66493 66494 66495 66496 66497 66498 66499 66500 | int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; #endif /* local variables moved into u.ax */ if( p->expired ){ rc = SQLITE_ABORT; break; } u.ax.nField = 0; u.ax.pKeyInfo = 0; | > > > | 66522 66523 66524 66525 66526 66527 66528 66529 66530 66531 66532 66533 66534 66535 66536 66537 66538 | int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; #endif /* local variables moved into u.ax */ assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); if( p->expired ){ rc = SQLITE_ABORT; break; } u.ax.nField = 0; u.ax.pKeyInfo = 0; |
︙ | ︙ | |||
66510 66511 66512 66513 66514 66515 66516 | assert( sqlite3SchemaMutexHeld(db, u.ax.iDb, 0) ); if( u.ax.pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = u.ax.pDb->pSchema->file_format; } }else{ u.ax.wrFlag = 0; } | | | 66548 66549 66550 66551 66552 66553 66554 66555 66556 66557 66558 66559 66560 66561 66562 | assert( sqlite3SchemaMutexHeld(db, u.ax.iDb, 0) ); if( u.ax.pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = u.ax.pDb->pSchema->file_format; } }else{ u.ax.wrFlag = 0; } if( pOp->p5 & OPFLAG_P2ISREG ){ assert( u.ax.p2>0 ); assert( u.ax.p2<=p->nMem ); pIn2 = &aMem[u.ax.p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); u.ax.p2 = (int)pIn2->u.i; |
︙ | ︙ | |||
66541 66542 66543 66544 66545 66546 66547 66548 66549 66550 66551 66552 66553 66554 | assert( pOp->p1>=0 ); u.ax.pCur = allocateCursor(p, pOp->p1, u.ax.nField, u.ax.iDb, 1); if( u.ax.pCur==0 ) goto no_mem; u.ax.pCur->nullRow = 1; u.ax.pCur->isOrdered = 1; rc = sqlite3BtreeCursor(u.ax.pX, u.ax.p2, u.ax.wrFlag, u.ax.pKeyInfo, u.ax.pCur->pCursor); u.ax.pCur->pKeyInfo = u.ax.pKeyInfo; /* Since it performs no memory allocation or IO, the only value that ** sqlite3BtreeCursor() may return is SQLITE_OK. */ assert( rc==SQLITE_OK ); /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of ** SQLite used to check if the root-page flags were sane at this point | > > | 66579 66580 66581 66582 66583 66584 66585 66586 66587 66588 66589 66590 66591 66592 66593 66594 | assert( pOp->p1>=0 ); u.ax.pCur = allocateCursor(p, pOp->p1, u.ax.nField, u.ax.iDb, 1); if( u.ax.pCur==0 ) goto no_mem; u.ax.pCur->nullRow = 1; u.ax.pCur->isOrdered = 1; rc = sqlite3BtreeCursor(u.ax.pX, u.ax.p2, u.ax.wrFlag, u.ax.pKeyInfo, u.ax.pCur->pCursor); u.ax.pCur->pKeyInfo = u.ax.pKeyInfo; assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); sqlite3BtreeCursorHints(u.ax.pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); /* Since it performs no memory allocation or IO, the only value that ** sqlite3BtreeCursor() may return is SQLITE_OK. */ assert( rc==SQLITE_OK ); /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of ** SQLite used to check if the root-page flags were sane at this point |
︙ | ︙ | |||
70160 70161 70162 70163 70164 70165 70166 70167 70168 70169 70170 70171 70172 70173 | */ #ifndef SQLITE_OMIT_MERGE_SORT typedef struct VdbeSorterIter VdbeSorterIter; typedef struct SorterRecord SorterRecord; /* ** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES: ** ** As keys are added to the sorter, they are written to disk in a series ** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly ** the same as the cache-size allowed for temporary databases. In order | > | 70200 70201 70202 70203 70204 70205 70206 70207 70208 70209 70210 70211 70212 70213 70214 | */ #ifndef SQLITE_OMIT_MERGE_SORT typedef struct VdbeSorterIter VdbeSorterIter; typedef struct SorterRecord SorterRecord; typedef struct FileWriter FileWriter; /* ** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES: ** ** As keys are added to the sorter, they are written to disk in a series ** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly ** the same as the cache-size allowed for temporary databases. In order |
︙ | ︙ | |||
70257 70258 70259 70260 70261 70262 70263 70264 70265 70266 70267 70268 70269 70270 | i64 iReadOff; /* Current read offset */ i64 iEof; /* 1 byte past EOF for this iterator */ int nAlloc; /* Bytes of space at aAlloc */ int nKey; /* Number of bytes in key */ sqlite3_file *pFile; /* File iterator is reading from */ u8 *aAlloc; /* Allocated space */ u8 *aKey; /* Pointer to current key */ }; /* ** A structure to store a single record. All in-memory records are connected ** together into a linked list headed at VdbeSorter.pRecord using the ** SorterRecord.pNext pointer. */ | > > > > > > > > > > > > > > > > > > | 70298 70299 70300 70301 70302 70303 70304 70305 70306 70307 70308 70309 70310 70311 70312 70313 70314 70315 70316 70317 70318 70319 70320 70321 70322 70323 70324 70325 70326 70327 70328 70329 | i64 iReadOff; /* Current read offset */ i64 iEof; /* 1 byte past EOF for this iterator */ int nAlloc; /* Bytes of space at aAlloc */ int nKey; /* Number of bytes in key */ sqlite3_file *pFile; /* File iterator is reading from */ u8 *aAlloc; /* Allocated space */ u8 *aKey; /* Pointer to current key */ u8 *aBuffer; /* Current read buffer */ int nBuffer; /* Size of read buffer in bytes */ }; /* ** An instance of this structure is used to organize the stream of records ** being written to files by the merge-sort code into aligned, page-sized ** blocks. Doing all I/O in aligned page-sized blocks helps I/O to go ** faster on many operating systems. */ struct FileWriter { int eFWErr; /* Non-zero if in an error state */ u8 *aBuffer; /* Pointer to write buffer */ int nBuffer; /* Size of write buffer in bytes */ int iBufStart; /* First byte of buffer to write */ int iBufEnd; /* Last byte of buffer to write */ i64 iWriteOff; /* Offset of start of buffer in file */ sqlite3_file *pFile; /* File to write to */ }; /* ** A structure to store a single record. All in-memory records are connected ** together into a linked list headed at VdbeSorter.pRecord using the ** SorterRecord.pNext pointer. */ |
︙ | ︙ | |||
70282 70283 70284 70285 70286 70287 70288 70289 70290 70291 70292 70293 70294 70295 70296 70297 70298 70299 70300 | /* ** Free all memory belonging to the VdbeSorterIter object passed as the second ** argument. All structure fields are set to zero before returning. */ static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){ sqlite3DbFree(db, pIter->aAlloc); memset(pIter, 0, sizeof(VdbeSorterIter)); } /* ** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if ** no error occurs, or an SQLite error code if one does. */ static int vdbeSorterIterNext( sqlite3 *db, /* Database handle (for sqlite3DbMalloc() ) */ VdbeSorterIter *pIter /* Iterator to advance */ ){ int rc; /* Return Code */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < | < < | < < < < < | < < < < < < < < < < < < < < < < < < < < | < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | > > > > > > > | > | > > > > > > > | > > > | > > > > | > | > > | 70341 70342 70343 70344 70345 70346 70347 70348 70349 70350 70351 70352 70353 70354 70355 70356 70357 70358 70359 70360 70361 70362 70363 70364 70365 70366 70367 70368 70369 70370 70371 70372 70373 70374 70375 70376 70377 70378 70379 70380 70381 70382 70383 70384 70385 70386 70387 70388 70389 70390 70391 70392 70393 70394 70395 70396 70397 70398 70399 70400 70401 70402 70403 70404 70405 70406 70407 70408 70409 70410 70411 70412 70413 70414 70415 70416 70417 70418 70419 70420 70421 70422 70423 70424 70425 70426 70427 70428 70429 70430 70431 70432 70433 70434 70435 70436 70437 70438 70439 70440 70441 70442 70443 70444 70445 70446 70447 70448 70449 70450 70451 70452 70453 70454 70455 70456 70457 70458 70459 70460 70461 70462 70463 70464 70465 70466 70467 70468 70469 70470 70471 70472 70473 70474 70475 70476 70477 70478 70479 70480 70481 70482 70483 70484 70485 70486 70487 70488 70489 70490 70491 70492 70493 70494 70495 70496 70497 70498 70499 70500 70501 70502 70503 70504 70505 70506 70507 70508 70509 70510 70511 70512 70513 70514 70515 70516 70517 70518 70519 70520 70521 70522 70523 70524 70525 70526 70527 70528 70529 70530 70531 70532 70533 70534 70535 70536 70537 70538 70539 70540 70541 70542 70543 70544 70545 70546 70547 70548 70549 70550 70551 | /* ** Free all memory belonging to the VdbeSorterIter object passed as the second ** argument. All structure fields are set to zero before returning. */ static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){ sqlite3DbFree(db, pIter->aAlloc); sqlite3DbFree(db, pIter->aBuffer); memset(pIter, 0, sizeof(VdbeSorterIter)); } /* ** Read nByte bytes of data from the stream of data iterated by object p. ** If successful, set *ppOut to point to a buffer containing the data ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite ** error code. ** ** The buffer indicated by *ppOut may only be considered valid until the ** next call to this function. */ static int vdbeSorterIterRead( sqlite3 *db, /* Database handle (for malloc) */ VdbeSorterIter *p, /* Iterator */ int nByte, /* Bytes of data to read */ u8 **ppOut /* OUT: Pointer to buffer containing data */ ){ int iBuf; /* Offset within buffer to read from */ int nAvail; /* Bytes of data available in buffer */ assert( p->aBuffer ); /* If there is no more data to be read from the buffer, read the next ** p->nBuffer bytes of data from the file into it. Or, if there are less ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ iBuf = p->iReadOff % p->nBuffer; if( iBuf==0 ){ int nRead; /* Bytes to read from disk */ int rc; /* sqlite3OsRead() return code */ /* Determine how many bytes of data to read. */ nRead = (int)(p->iEof - p->iReadOff); if( nRead>p->nBuffer ) nRead = p->nBuffer; assert( nRead>0 ); /* Read data from the file. Return early if an error occurs. */ rc = sqlite3OsRead(p->pFile, p->aBuffer, nRead, p->iReadOff); assert( rc!=SQLITE_IOERR_SHORT_READ ); if( rc!=SQLITE_OK ) return rc; } nAvail = p->nBuffer - iBuf; if( nByte<=nAvail ){ /* The requested data is available in the in-memory buffer. In this ** case there is no need to make a copy of the data, just return a ** pointer into the buffer to the caller. */ *ppOut = &p->aBuffer[iBuf]; p->iReadOff += nByte; }else{ /* The requested data is not all available in the in-memory buffer. ** In this case, allocate space at p->aAlloc[] to copy the requested ** range into. Then return a copy of pointer p->aAlloc to the caller. */ int nRem; /* Bytes remaining to copy */ /* Extend the p->aAlloc[] allocation if required. */ if( p->nAlloc<nByte ){ int nNew = p->nAlloc*2; while( nByte>nNew ) nNew = nNew*2; p->aAlloc = sqlite3DbReallocOrFree(db, p->aAlloc, nNew); if( !p->aAlloc ) return SQLITE_NOMEM; p->nAlloc = nNew; } /* Copy as much data as is available in the buffer into the start of ** p->aAlloc[]. */ memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); p->iReadOff += nAvail; nRem = nByte - nAvail; /* The following loop copies up to p->nBuffer bytes per iteration into ** the p->aAlloc[] buffer. */ while( nRem>0 ){ int rc; /* vdbeSorterIterRead() return code */ int nCopy; /* Number of bytes to copy */ u8 *aNext; /* Pointer to buffer to copy data from */ nCopy = nRem; if( nRem>p->nBuffer ) nCopy = p->nBuffer; rc = vdbeSorterIterRead(db, p, nCopy, &aNext); if( rc!=SQLITE_OK ) return rc; assert( aNext!=p->aAlloc ); memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); nRem -= nCopy; } *ppOut = p->aAlloc; } return SQLITE_OK; } /* ** Read a varint from the stream of data accessed by p. Set *pnOut to ** the value read. */ static int vdbeSorterIterVarint(sqlite3 *db, VdbeSorterIter *p, u64 *pnOut){ int iBuf; iBuf = p->iReadOff % p->nBuffer; if( iBuf && (p->nBuffer-iBuf)>=9 ){ p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); }else{ u8 aVarint[16], *a; int i = 0, rc; do{ rc = vdbeSorterIterRead(db, p, 1, &a); if( rc ) return rc; aVarint[(i++)&0xf] = a[0]; }while( (a[0]&0x80)!=0 ); sqlite3GetVarint(aVarint, pnOut); } return SQLITE_OK; } /* ** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if ** no error occurs, or an SQLite error code if one does. */ static int vdbeSorterIterNext( sqlite3 *db, /* Database handle (for sqlite3DbMalloc() ) */ VdbeSorterIter *pIter /* Iterator to advance */ ){ int rc; /* Return Code */ u64 nRec = 0; /* Size of record in bytes */ if( pIter->iReadOff>=pIter->iEof ){ /* This is an EOF condition */ vdbeSorterIterZero(db, pIter); return SQLITE_OK; } rc = vdbeSorterIterVarint(db, pIter, &nRec); if( rc==SQLITE_OK ){ pIter->nKey = (int)nRec; rc = vdbeSorterIterRead(db, pIter, (int)nRec, &pIter->aKey); } return rc; } /* ** Initialize iterator pIter to scan through the PMA stored in file pFile ** starting at offset iStart and ending at offset iEof-1. This function ** leaves the iterator pointing to the first key in the PMA (or EOF if the ** PMA is empty). */ static int vdbeSorterIterInit( sqlite3 *db, /* Database handle */ const VdbeSorter *pSorter, /* Sorter object */ i64 iStart, /* Start offset in pFile */ VdbeSorterIter *pIter, /* Iterator to populate */ i64 *pnByte /* IN/OUT: Increment this value by PMA size */ ){ int rc = SQLITE_OK; int nBuf; nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); assert( pSorter->iWriteOff>iStart ); assert( pIter->aAlloc==0 ); assert( pIter->aBuffer==0 ); pIter->pFile = pSorter->pTemp1; pIter->iReadOff = iStart; pIter->nAlloc = 128; pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc); pIter->nBuffer = nBuf; pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); if( !pIter->aBuffer ){ rc = SQLITE_NOMEM; }else{ int iBuf; iBuf = iStart % nBuf; if( iBuf ){ int nRead = nBuf - iBuf; if( (iStart + nRead) > pSorter->iWriteOff ){ nRead = (int)(pSorter->iWriteOff - iStart); } rc = sqlite3OsRead( pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart ); assert( rc!=SQLITE_IOERR_SHORT_READ ); } if( rc==SQLITE_OK ){ u64 nByte; /* Size of PMA in bytes */ pIter->iEof = pSorter->iWriteOff; rc = vdbeSorterIterVarint(db, pIter, &nByte); pIter->iEof = pIter->iReadOff + nByte; *pnByte += nByte; } } if( rc==SQLITE_OK ){ rc = vdbeSorterIterNext(db, pIter); } return rc; } |
︙ | ︙ | |||
70441 70442 70443 70444 70445 70446 70447 | ** is true and key1 contains even a single NULL value, it is considered to ** be less than key2. Even if key2 also contains NULL values. ** ** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace ** has been allocated and contains an unpacked record that is used as key2. */ static void vdbeSorterCompare( | | | | | 70561 70562 70563 70564 70565 70566 70567 70568 70569 70570 70571 70572 70573 70574 70575 70576 70577 70578 | ** is true and key1 contains even a single NULL value, it is considered to ** be less than key2. Even if key2 also contains NULL values. ** ** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace ** has been allocated and contains an unpacked record that is used as key2. */ static void vdbeSorterCompare( const VdbeCursor *pCsr, /* Cursor object (for pKeyInfo) */ int bOmitRowid, /* Ignore rowid field at end of keys */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2, /* Right side of comparison */ int *pRes /* OUT: Result of comparison */ ){ KeyInfo *pKeyInfo = pCsr->pKeyInfo; VdbeSorter *pSorter = pCsr->pSorter; UnpackedRecord *r2 = pSorter->pUnpacked; int i; |
︙ | ︙ | |||
70476 70477 70478 70479 70480 70481 70482 | } /* ** This function is called to compare two iterator keys when merging ** multiple b-tree segments. Parameter iOut is the index of the aTree[] ** value to recalculate. */ | | | 70596 70597 70598 70599 70600 70601 70602 70603 70604 70605 70606 70607 70608 70609 70610 | } /* ** This function is called to compare two iterator keys when merging ** multiple b-tree segments. Parameter iOut is the index of the aTree[] ** value to recalculate. */ static int vdbeSorterDoCompare(const VdbeCursor *pCsr, int iOut){ VdbeSorter *pSorter = pCsr->pSorter; int i1; int i2; int iRes; VdbeSorterIter *p1; VdbeSorterIter *p2; |
︙ | ︙ | |||
70602 70603 70604 70605 70606 70607 70608 | } /* ** Merge the two sorted lists p1 and p2 into a single list. ** Set *ppOut to the head of the new list. */ static void vdbeSorterMerge( | | | 70722 70723 70724 70725 70726 70727 70728 70729 70730 70731 70732 70733 70734 70735 70736 | } /* ** Merge the two sorted lists p1 and p2 into a single list. ** Set *ppOut to the head of the new list. */ static void vdbeSorterMerge( const VdbeCursor *pCsr, /* For pKeyInfo */ SorterRecord *p1, /* First list to merge */ SorterRecord *p2, /* Second list to merge */ SorterRecord **ppOut /* OUT: Head of merged list */ ){ SorterRecord *pFinal = 0; SorterRecord **pp = &pFinal; void *pVal2 = p2 ? p2->pVal : 0; |
︙ | ︙ | |||
70636 70637 70638 70639 70640 70641 70642 | } /* ** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK ** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error ** occurs. */ | | | 70756 70757 70758 70759 70760 70761 70762 70763 70764 70765 70766 70767 70768 70769 70770 | } /* ** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK ** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error ** occurs. */ static int vdbeSorterSort(const VdbeCursor *pCsr){ int i; SorterRecord **aSlot; SorterRecord *p; VdbeSorter *pSorter = pCsr->pSorter; aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *)); if( !aSlot ){ |
︙ | ︙ | |||
70669 70670 70671 70672 70673 70674 70675 70676 70677 70678 70679 70680 70681 70682 70683 70684 70685 70686 70687 70688 70689 | } pSorter->pRecord = p; sqlite3_free(aSlot); return SQLITE_OK; } /* ** Write the current contents of the in-memory linked-list to a PMA. Return ** SQLITE_OK if successful, or an SQLite error code otherwise. ** ** The format of a PMA is: ** ** * A varint. This varint contains the total number of bytes of content ** in the PMA (not including the varint itself). ** ** * One or more records packed end-to-end in order of ascending keys. ** Each record consists of a varint followed by a blob of data (the ** key). The varint is the number of bytes in the blob of data. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > < < > | | < | < | < < < < < < < < < < < < < < < < < > | | 70789 70790 70791 70792 70793 70794 70795 70796 70797 70798 70799 70800 70801 70802 70803 70804 70805 70806 70807 70808 70809 70810 70811 70812 70813 70814 70815 70816 70817 70818 70819 70820 70821 70822 70823 70824 70825 70826 70827 70828 70829 70830 70831 70832 70833 70834 70835 70836 70837 70838 70839 70840 70841 70842 70843 70844 70845 70846 70847 70848 70849 70850 70851 70852 70853 70854 70855 70856 70857 70858 70859 70860 70861 70862 70863 70864 70865 70866 70867 70868 70869 70870 70871 70872 70873 70874 70875 70876 70877 70878 70879 70880 70881 70882 70883 70884 70885 70886 70887 70888 70889 70890 70891 70892 70893 70894 70895 70896 70897 70898 70899 70900 70901 70902 70903 70904 70905 70906 70907 70908 70909 70910 70911 70912 70913 70914 70915 70916 70917 70918 70919 70920 70921 70922 70923 70924 70925 70926 70927 70928 70929 70930 70931 70932 70933 70934 70935 70936 70937 70938 70939 70940 70941 70942 70943 70944 70945 70946 70947 70948 70949 | } pSorter->pRecord = p; sqlite3_free(aSlot); return SQLITE_OK; } /* ** Initialize a file-writer object. */ static void fileWriterInit( sqlite3 *db, /* Database (for malloc) */ sqlite3_file *pFile, /* File to write to */ FileWriter *p, /* Object to populate */ i64 iStart /* Offset of pFile to begin writing at */ ){ int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); memset(p, 0, sizeof(FileWriter)); p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); if( !p->aBuffer ){ p->eFWErr = SQLITE_NOMEM; }else{ p->iBufEnd = p->iBufStart = (iStart % nBuf); p->iWriteOff = iStart - p->iBufStart; p->nBuffer = nBuf; p->pFile = pFile; } } /* ** Write nData bytes of data to the file-write object. Return SQLITE_OK ** if successful, or an SQLite error code if an error occurs. */ static void fileWriterWrite(FileWriter *p, u8 *pData, int nData){ int nRem = nData; while( nRem>0 && p->eFWErr==0 ){ int nCopy = nRem; if( nCopy>(p->nBuffer - p->iBufEnd) ){ nCopy = p->nBuffer - p->iBufEnd; } memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); p->iBufEnd += nCopy; if( p->iBufEnd==p->nBuffer ){ p->eFWErr = sqlite3OsWrite(p->pFile, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); p->iBufStart = p->iBufEnd = 0; p->iWriteOff += p->nBuffer; } assert( p->iBufEnd<p->nBuffer ); nRem -= nCopy; } } /* ** Flush any buffered data to disk and clean up the file-writer object. ** The results of using the file-writer after this call are undefined. ** Return SQLITE_OK if flushing the buffered data succeeds or is not ** required. Otherwise, return an SQLite error code. ** ** Before returning, set *piEof to the offset immediately following the ** last byte written to the file. */ static int fileWriterFinish(sqlite3 *db, FileWriter *p, i64 *piEof){ int rc; if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ p->eFWErr = sqlite3OsWrite(p->pFile, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); } *piEof = (p->iWriteOff + p->iBufEnd); sqlite3DbFree(db, p->aBuffer); rc = p->eFWErr; memset(p, 0, sizeof(FileWriter)); return rc; } /* ** Write value iVal encoded as a varint to the file-write object. Return ** SQLITE_OK if successful, or an SQLite error code if an error occurs. */ static void fileWriterWriteVarint(FileWriter *p, u64 iVal){ int nByte; u8 aByte[10]; nByte = sqlite3PutVarint(aByte, iVal); fileWriterWrite(p, aByte, nByte); } /* ** Write the current contents of the in-memory linked-list to a PMA. Return ** SQLITE_OK if successful, or an SQLite error code otherwise. ** ** The format of a PMA is: ** ** * A varint. This varint contains the total number of bytes of content ** in the PMA (not including the varint itself). ** ** * One or more records packed end-to-end in order of ascending keys. ** Each record consists of a varint followed by a blob of data (the ** key). The varint is the number of bytes in the blob of data. */ static int vdbeSorterListToPMA(sqlite3 *db, const VdbeCursor *pCsr){ int rc = SQLITE_OK; /* Return code */ VdbeSorter *pSorter = pCsr->pSorter; FileWriter writer; memset(&writer, 0, sizeof(FileWriter)); if( pSorter->nInMemory==0 ){ assert( pSorter->pRecord==0 ); return rc; } rc = vdbeSorterSort(pCsr); /* If the first temporary PMA file has not been opened, open it now. */ if( rc==SQLITE_OK && pSorter->pTemp1==0 ){ rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1); assert( rc!=SQLITE_OK || pSorter->pTemp1 ); assert( pSorter->iWriteOff==0 ); assert( pSorter->nPMA==0 ); } if( rc==SQLITE_OK ){ SorterRecord *p; SorterRecord *pNext = 0; fileWriterInit(db, pSorter->pTemp1, &writer, pSorter->iWriteOff); pSorter->nPMA++; fileWriterWriteVarint(&writer, pSorter->nInMemory); for(p=pSorter->pRecord; p; p=pNext){ pNext = p->pNext; fileWriterWriteVarint(&writer, p->nVal); fileWriterWrite(&writer, p->pVal, p->nVal); sqlite3DbFree(db, p); } pSorter->pRecord = p; rc = fileWriterFinish(db, &writer, &pSorter->iWriteOff); } return rc; } /* ** Add a record to the sorter. */ SQLITE_PRIVATE int sqlite3VdbeSorterWrite( sqlite3 *db, /* Database handle */ const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal /* Memory cell containing record */ ){ VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ assert( pSorter ); |
︙ | ︙ | |||
70780 70781 70782 70783 70784 70785 70786 70787 70788 70789 70790 70791 70792 70793 70794 70795 70796 70797 70798 | ** * The total memory allocated for the in-memory list is greater ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. */ if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && ( (pSorter->nInMemory>pSorter->mxPmaSize) || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull()) )){ rc = vdbeSorterListToPMA(db, pCsr); pSorter->nInMemory = 0; } return rc; } /* ** Helper function for sqlite3VdbeSorterRewind(). */ static int vdbeSorterInitMerge( sqlite3 *db, /* Database handle */ | > > > > > > | | 70969 70970 70971 70972 70973 70974 70975 70976 70977 70978 70979 70980 70981 70982 70983 70984 70985 70986 70987 70988 70989 70990 70991 70992 70993 70994 70995 70996 70997 70998 70999 71000 71001 | ** * The total memory allocated for the in-memory list is greater ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. */ if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && ( (pSorter->nInMemory>pSorter->mxPmaSize) || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull()) )){ #ifdef SQLITE_DEBUG i64 nExpect = pSorter->iWriteOff + sqlite3VarintLen(pSorter->nInMemory) + pSorter->nInMemory; #endif rc = vdbeSorterListToPMA(db, pCsr); pSorter->nInMemory = 0; assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) ); } return rc; } /* ** Helper function for sqlite3VdbeSorterRewind(). */ static int vdbeSorterInitMerge( sqlite3 *db, /* Database handle */ const VdbeCursor *pCsr, /* Cursor handle for this sorter */ i64 *pnByte /* Sum of bytes in all opened PMAs */ ){ VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterator through aIter[] */ i64 nByte = 0; /* Total bytes in all opened PMAs */ |
︙ | ︙ | |||
70822 70823 70824 70825 70826 70827 70828 | return rc; } /* ** Once the sorter has been populated, this function is called to prepare ** for iterating through its contents in sorted order. */ | | | | 71017 71018 71019 71020 71021 71022 71023 71024 71025 71026 71027 71028 71029 71030 71031 71032 71033 71034 71035 71036 71037 71038 71039 71040 71041 71042 71043 71044 71045 71046 71047 71048 71049 71050 71051 | return rc; } /* ** Once the sorter has been populated, this function is called to prepare ** for iterating through its contents in sorted order. */ SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter = pCsr->pSorter; int rc; /* Return code */ sqlite3_file *pTemp2 = 0; /* Second temp file to use */ i64 iWrite2 = 0; /* Write offset for pTemp2 */ int nIter; /* Number of iterators used */ int nByte; /* Bytes of space required for aIter/aTree */ int N = 2; /* Power of 2 >= nIter */ assert( pSorter ); /* If no data has been written to disk, then do not do so now. Instead, ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly ** from the in-memory list. */ if( pSorter->nPMA==0 ){ *pbEof = !pSorter->pRecord; assert( pSorter->aTree==0 ); return vdbeSorterSort(pCsr); } /* Write the current in-memory list to a PMA. */ rc = vdbeSorterListToPMA(db, pCsr); if( rc!=SQLITE_OK ) return rc; /* Allocate space for aIter[] and aTree[]. */ nIter = pSorter->nPMA; if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT; assert( nIter>0 ); |
︙ | ︙ | |||
70864 70865 70866 70867 70868 70869 70870 70871 70872 70873 70874 70875 70876 70877 70878 | do { int iNew; /* Index of new, merged, PMA */ for(iNew=0; rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA; iNew++ ){ i64 nWrite; /* Number of bytes in new PMA */ /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1, ** initialize an iterator for each of them and break out of the loop. ** These iterators will be incrementally merged as the VDBE layer calls ** sqlite3VdbeSorterNext(). ** ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs, | > > > > | 71059 71060 71061 71062 71063 71064 71065 71066 71067 71068 71069 71070 71071 71072 71073 71074 71075 71076 71077 | do { int iNew; /* Index of new, merged, PMA */ for(iNew=0; rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA; iNew++ ){ int rc2; /* Return code from fileWriterFinish() */ FileWriter writer; /* Object used to write to disk */ i64 nWrite; /* Number of bytes in new PMA */ memset(&writer, 0, sizeof(FileWriter)); /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1, ** initialize an iterator for each of them and break out of the loop. ** These iterators will be incrementally merged as the VDBE layer calls ** sqlite3VdbeSorterNext(). ** ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs, |
︙ | ︙ | |||
70887 70888 70889 70890 70891 70892 70893 70894 | /* Open the second temp file, if it is not already open. */ if( pTemp2==0 ){ assert( iWrite2==0 ); rc = vdbeSorterOpenTempFile(db, &pTemp2); } if( rc==SQLITE_OK ){ | < < < < > > < | | | < | | < > > | 71086 71087 71088 71089 71090 71091 71092 71093 71094 71095 71096 71097 71098 71099 71100 71101 71102 71103 71104 71105 71106 71107 71108 71109 71110 71111 71112 71113 | /* Open the second temp file, if it is not already open. */ if( pTemp2==0 ){ assert( iWrite2==0 ); rc = vdbeSorterOpenTempFile(db, &pTemp2); } if( rc==SQLITE_OK ){ int bEof = 0; fileWriterInit(db, pTemp2, &writer, iWrite2); fileWriterWriteVarint(&writer, nWrite); while( rc==SQLITE_OK && bEof==0 ){ VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ]; assert( pIter->pFile ); fileWriterWriteVarint(&writer, pIter->nKey); fileWriterWrite(&writer, pIter->aKey, pIter->nKey); rc = sqlite3VdbeSorterNext(db, pCsr, &bEof); } rc2 = fileWriterFinish(db, &writer, &iWrite2); if( rc==SQLITE_OK ) rc = rc2; } } if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){ break; }else{ sqlite3_file *pTmp = pSorter->pTemp1; |
︙ | ︙ | |||
70930 70931 70932 70933 70934 70935 70936 | *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0); return rc; } /* ** Advance to the next element in the sorter. */ | | | 71126 71127 71128 71129 71130 71131 71132 71133 71134 71135 71136 71137 71138 71139 71140 | *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0); return rc; } /* ** Advance to the next element in the sorter. */ SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter = pCsr->pSorter; int rc; /* Return code */ if( pSorter->aTree ){ int iPrev = pSorter->aTree[1];/* Index of iterator to advance */ int i; /* Index of aTree[] to recalculate */ |
︙ | ︙ | |||
70960 70961 70962 70963 70964 70965 70966 | } /* ** Return a pointer to a buffer owned by the sorter that contains the ** current key. */ static void *vdbeSorterRowkey( | | | | 71156 71157 71158 71159 71160 71161 71162 71163 71164 71165 71166 71167 71168 71169 71170 71171 71172 71173 71174 71175 71176 71177 71178 71179 71180 71181 71182 71183 71184 71185 71186 71187 71188 71189 | } /* ** Return a pointer to a buffer owned by the sorter that contains the ** current key. */ static void *vdbeSorterRowkey( const VdbeSorter *pSorter, /* Sorter object */ int *pnKey /* OUT: Size of current key in bytes */ ){ void *pKey; if( pSorter->aTree ){ VdbeSorterIter *pIter; pIter = &pSorter->aIter[ pSorter->aTree[1] ]; *pnKey = pIter->nKey; pKey = pIter->aKey; }else{ *pnKey = pSorter->pRecord->nVal; pKey = pSorter->pRecord->pVal; } return pKey; } /* ** Copy the current sorter key into the memory cell pOut. */ SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ VdbeSorter *pSorter = pCsr->pSorter; void *pKey; int nKey; /* Sorter key to copy into pOut */ pKey = vdbeSorterRowkey(pSorter, &nKey); if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){ return SQLITE_NOMEM; } |
︙ | ︙ | |||
71005 71006 71007 71008 71009 71010 71011 | ** ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). ** Otherwise, set *pRes to a negative, zero or positive value if the ** key in pVal is smaller than, equal to or larger than the current sorter ** key. */ SQLITE_PRIVATE int sqlite3VdbeSorterCompare( | | | 71201 71202 71203 71204 71205 71206 71207 71208 71209 71210 71211 71212 71213 71214 71215 | ** ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). ** Otherwise, set *pRes to a negative, zero or positive value if the ** key in pVal is smaller than, equal to or larger than the current sorter ** key. */ SQLITE_PRIVATE int sqlite3VdbeSorterCompare( const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal, /* Value to compare to current sorter key */ int *pRes /* OUT: Result of comparison */ ){ VdbeSorter *pSorter = pCsr->pSorter; void *pKey; int nKey; /* Sorter key to compare pVal with */ pKey = vdbeSorterRowkey(pSorter, &nKey); |
︙ | ︙ | |||
74592 74593 74594 74595 74596 74597 74598 | ** table allocated and opened above. */ SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); | | | 74788 74789 74790 74791 74792 74793 74794 74795 74796 74797 74798 74799 74800 74801 74802 | ** table allocated and opened above. */ SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); pExpr->x.pSelect->iLimit = 0; if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ return 0; } pEList = pExpr->x.pSelect->pEList; if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ |
︙ | ︙ | |||
74685 74686 74687 74688 74689 74690 74691 | assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; | | | | | 74881 74882 74883 74884 74885 74886 74887 74888 74889 74890 74891 74892 74893 74894 74895 74896 74897 74898 74899 74900 74901 74902 74903 74904 74905 74906 74907 74908 74909 | assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } sqlite3ExprDelete(pParse->db, pSel->pLimit); pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[1]); pSel->iLimit = 0; if( sqlite3Select(pParse, pSel, &dest) ){ return 0; } rReg = dest.iSDParm; ExprSetIrreducible(pExpr); break; } } if( testAddr>=0 ){ sqlite3VdbeJumpHere(v, testAddr); |
︙ | ︙ | |||
78013 78014 78015 78016 78017 78018 78019 | ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); aRoot[i] = pParse->regRoot; | | | 78209 78210 78211 78212 78213 78214 78215 78216 78217 78218 78219 78220 78221 78222 78223 | ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); aRoot[i] = pParse->regRoot; aCreateTbl[i] = OPFLAG_P2ISREG; }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ |
︙ | ︙ | |||
78093 78094 78095 78096 78097 78098 78099 | int mxSample; int n; UNUSED_PARAMETER(argc); nRow = (tRowcnt)sqlite3_value_int64(argv[0]); mxSample = sqlite3_value_int(argv[1]); n = sizeof(*p) + sizeof(p->a[0])*mxSample; | | < | 78289 78290 78291 78292 78293 78294 78295 78296 78297 78298 78299 78300 78301 78302 78303 78304 78305 78306 78307 | int mxSample; int n; UNUSED_PARAMETER(argc); nRow = (tRowcnt)sqlite3_value_int64(argv[0]); mxSample = sqlite3_value_int(argv[1]); n = sizeof(*p) + sizeof(p->a[0])*mxSample; p = sqlite3MallocZero( n ); if( p==0 ){ sqlite3_result_error_nomem(context); return; } p->a = (struct Stat3Sample*)&p[1]; p->nRow = nRow; p->mxSample = mxSample; p->nPSample = p->nRow/(mxSample/3+1) + 1; sqlite3_randomness(sizeof(p->iPrn), &p->iPrn); sqlite3_result_blob(context, p, sizeof(p), sqlite3_free); } |
︙ | ︙ | |||
81355 81356 81357 81358 81359 81360 81361 | */ if( pSelect ){ SelectDest dest; Table *pSelTab; assert(pParse->nTab==1); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); | | | 81550 81551 81552 81553 81554 81555 81556 81557 81558 81559 81560 81561 81562 81563 81564 | */ if( pSelect ){ SelectDest dest; Table *pSelTab; assert(pParse->nTab==1); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); pParse->nTab = 2; sqlite3SelectDestInit(&dest, SRT_Table, 1); sqlite3Select(pParse, pSelect, &dest); sqlite3VdbeAddOp1(v, OP_Close, 1); if( pParse->nErr==0 ){ pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); if( pSelTab==0 ) return; |
︙ | ︙ | |||
82171 82172 82173 82174 82175 82176 82177 | }else{ tnum = pIndex->tnum; sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); } pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); | < | < | 82366 82367 82368 82369 82370 82371 82372 82373 82374 82375 82376 82377 82378 82379 82380 | }else{ tnum = pIndex->tnum; sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); } pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); #ifndef SQLITE_OMIT_MERGE_SORT /* Open the sorter cursor if we are to use one. */ iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO); #else iSorter = iTab; |
︙ | ︙ | |||
88192 88193 88194 88195 88196 88197 88198 | int rc, j1; regEof = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ VdbeComment((v, "SELECT eof flag")); sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); addrSelect = sqlite3VdbeCurrentAddr(v)+2; | | | | | | 88385 88386 88387 88388 88389 88390 88391 88392 88393 88394 88395 88396 88397 88398 88399 88400 88401 88402 88403 88404 88405 88406 88407 88408 88409 88410 88411 88412 88413 88414 88415 88416 88417 88418 | int rc, j1; regEof = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ VdbeComment((v, "SELECT eof flag")); sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); addrSelect = sqlite3VdbeCurrentAddr(v)+2; sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iSDParm); j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); VdbeComment((v, "Jump over SELECT coroutine")); /* Resolve the expressions in the SELECT statement and execute it. */ rc = sqlite3Select(pParse, pSelect, &dest); assert( pParse->nErr==0 || rc ); if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ goto insert_cleanup; } sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); /* yield X */ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); VdbeComment((v, "End of SELECT coroutine")); sqlite3VdbeJumpHere(v, j1); /* label B: */ regFromSelect = dest.iSdst; assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; assert( dest.nSdst==nColumn ); /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each* row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one |
︙ | ︙ | |||
88247 88248 88249 88250 88251 88252 88253 | int addrTop; /* Label "L" */ int addrIf; /* Address of jump to M */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); | | | 88440 88441 88442 88443 88444 88445 88446 88447 88448 88449 88450 88451 88452 88453 88454 | int addrTop; /* Label "L" */ int addrIf; /* Address of jump to M */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); sqlite3VdbeJumpHere(v, addrIf); sqlite3ReleaseTempReg(pParse, regRec); |
︙ | ︙ | |||
88384 88385 88386 88387 88388 88389 88390 | ** ** C: yield X ** if EOF goto D ** insert the select result into <table> from R..R+n ** goto C ** D: ... */ | | | 88577 88578 88579 88580 88581 88582 88583 88584 88585 88586 88587 88588 88589 88590 88591 | ** ** C: yield X ** if EOF goto D ** insert the select result into <table> from R..R+n ** goto C ** D: ... */ addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); } /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assemblied row record. */ regRowid = regIns = pParse->nMem+1; |
︙ | ︙ | |||
93239 93240 93241 93242 93243 93244 93245 | } /* ** Initialize a SelectDest structure. */ SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ pDest->eDest = (u8)eDest; | | | | | | 93432 93433 93434 93435 93436 93437 93438 93439 93440 93441 93442 93443 93444 93445 93446 93447 93448 93449 | } /* ** Initialize a SelectDest structure. */ SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ pDest->eDest = (u8)eDest; pDest->iSDParm = iParm; pDest->affSdst = 0; pDest->iSdst = 0; pDest->nSdst = 0; } /* ** Allocate a new Select structure and return a pointer to that ** structure. */ |
︙ | ︙ | |||
93754 93755 93756 93757 93758 93759 93760 | int iBreak /* Jump here to break out of the inner loop */ ){ Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int regResult; /* Start of memory holding result set */ int eDest = pDest->eDest; /* How to dispose of results */ | | | | | | | | 93947 93948 93949 93950 93951 93952 93953 93954 93955 93956 93957 93958 93959 93960 93961 93962 93963 93964 93965 93966 93967 93968 93969 93970 93971 93972 93973 93974 93975 93976 93977 93978 93979 93980 93981 93982 93983 93984 93985 93986 | int iBreak /* Jump here to break out of the inner loop */ ){ Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int regResult; /* Start of memory holding result set */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iSDParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ assert( v ); if( NEVER(v==0) ) return; assert( pEList!=0 ); hasDistinct = distinct>=0; if( pOrderBy==0 && !hasDistinct ){ codeOffset(v, p, iContinue); } /* Pull the requested columns. */ if( nColumn>0 ){ nResultCol = nColumn; }else{ nResultCol = pEList->nExpr; } if( pDest->iSdst==0 ){ pDest->iSdst = pParse->nMem+1; pDest->nSdst = nResultCol; pParse->nMem += nResultCol; }else{ assert( pDest->nSdst==nResultCol ); } regResult = pDest->iSdst; if( nColumn>0 ){ for(i=0; i<nColumn; i++){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); } }else if( eDest!=SRT_Exists ){ /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. |
︙ | ︙ | |||
93858 93859 93860 93861 93862 93863 93864 | #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { assert( nColumn==1 ); | | | 94051 94052 94053 94054 94055 94056 94057 94058 94059 94060 94061 94062 94063 94064 94065 | #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { assert( nColumn==1 ); p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); if( pOrderBy ){ /* At first glance you would think we could optimize out the ** ORDER BY in this case since the order of entries in the set ** does not matter. But there might be a LIMIT clause, in which ** case the order does matter */ pushOntoSorter(pParse, pOrderBy, p, regResult); }else{ |
︙ | ︙ | |||
93913 93914 93915 93916 93917 93918 93919 | testcase( eDest==SRT_Output ); if( pOrderBy ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); pushOntoSorter(pParse, pOrderBy, p, r1); sqlite3ReleaseTempReg(pParse, r1); }else if( eDest==SRT_Coroutine ){ | | | 94106 94107 94108 94109 94110 94111 94112 94113 94114 94115 94116 94117 94118 94119 94120 | testcase( eDest==SRT_Output ); if( pOrderBy ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); pushOntoSorter(pParse, pOrderBy, p, r1); sqlite3ReleaseTempReg(pParse, r1); }else if( eDest==SRT_Coroutine ){ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); }else{ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); } break; } |
︙ | ︙ | |||
94093 94094 94095 94096 94097 94098 94099 | int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ int addr; int iTab; int pseudoTab = 0; ExprList *pOrderBy = p->pOrderBy; int eDest = pDest->eDest; | | | 94286 94287 94288 94289 94290 94291 94292 94293 94294 94295 94296 94297 94298 94299 94300 | int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ int addr; int iTab; int pseudoTab = 0; ExprList *pOrderBy = p->pOrderBy; int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; iTab = pOrderBy->iECursor; regRow = sqlite3GetTempReg(pParse); if( eDest==SRT_Output || eDest==SRT_Coroutine ){ |
︙ | ︙ | |||
94152 94153 94154 94155 94156 94157 94158 | #endif default: { int i; assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); for(i=0; i<nColumn; i++){ | | | | | | | 94345 94346 94347 94348 94349 94350 94351 94352 94353 94354 94355 94356 94357 94358 94359 94360 94361 94362 94363 94364 94365 94366 94367 94368 94369 | #endif default: { int i; assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); for(i=0; i<nColumn; i++){ assert( regRow!=pDest->iSdst+i ); sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); if( i==0 ){ sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); } } if( eDest==SRT_Output ){ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); }else{ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); } break; } } sqlite3ReleaseTempReg(pParse, regRow); sqlite3ReleaseTempReg(pParse, regRowid); |
︙ | ︙ | |||
94813 94814 94815 94816 94817 94818 94819 | v = sqlite3GetVdbe(pParse); assert( v!=0 ); /* The VDBE already created by calling function */ /* Create the destination temporary table if necessary */ if( dest.eDest==SRT_EphemTab ){ assert( p->pEList ); | | | 95006 95007 95008 95009 95010 95011 95012 95013 95014 95015 95016 95017 95018 95019 95020 | v = sqlite3GetVdbe(pParse); assert( v!=0 ); /* The VDBE already created by calling function */ /* Create the destination temporary table if necessary */ if( dest.eDest==SRT_EphemTab ){ assert( p->pEList ); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); dest.eDest = SRT_Table; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ |
︙ | ︙ | |||
94899 94900 94901 94902 94903 94904 94905 | /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pRightmost!=p ); /* Can only happen for leftward elements ** of a 3-way or more compound */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ assert( p->pOffset==0 ); /* Not allowed on leftward elements */ | | | 95092 95093 95094 95095 95096 95097 95098 95099 95100 95101 95102 95103 95104 95105 95106 | /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pRightmost!=p ); /* Can only happen for leftward elements ** of a 3-way or more compound */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ assert( p->pOffset==0 ); /* Not allowed on leftward elements */ unionTab = dest.iSDParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); |
︙ | ︙ | |||
94956 94957 94958 94959 94960 94961 94962 | p->pOffset = pOffset; p->iLimit = 0; p->iOffset = 0; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ | | | 95149 95150 95151 95152 95153 95154 95155 95156 95157 95158 95159 95160 95161 95162 95163 | p->pOffset = pOffset; p->iLimit = 0; p->iOffset = 0; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); if( dest.eDest!=priorOp ){ int iCont, iBreak, iStart; assert( p->pEList ); if( dest.eDest==SRT_Output ){ Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); |
︙ | ︙ | |||
95020 95021 95022 95023 95024 95025 95026 | assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; pOffset = p->pOffset; p->pOffset = 0; | | | 95213 95214 95215 95216 95217 95218 95219 95220 95221 95222 95223 95224 95225 95226 95227 | assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; pOffset = p->pOffset; p->pOffset = 0; intersectdest.iSDParm = tab2; explainSetInteger(iSub2, pParse->iNextSelectId); rc = sqlite3Select(pParse, p, &intersectdest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; sqlite3ExprDelete(db, p->pLimit); |
︙ | ︙ | |||
95114 95115 95116 95117 95118 95119 95120 | pLoop->addrOpenEphm[i] = -1; } } sqlite3DbFree(db, pKeyInfo); } multi_select_end: | | | | | | 95307 95308 95309 95310 95311 95312 95313 95314 95315 95316 95317 95318 95319 95320 95321 95322 95323 95324 95325 95326 95327 95328 95329 95330 95331 95332 95333 | pLoop->addrOpenEphm[i] = -1; } } sqlite3DbFree(db, pKeyInfo); } multi_select_end: pDest->iSdst = dest.iSdst; pDest->nSdst = dest.nSdst; sqlite3SelectDelete(db, pDelete); return rc; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* ** Code an output subroutine for a coroutine implementation of a ** SELECT statment. ** ** The data to be output is contained in pIn->iSdst. There are ** pIn->nSdst columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. ** ** If regPrev>0 then it is the first register in a vector that ** records the previous output. mem[regPrev] is a flag that is false |
︙ | ︙ | |||
95164 95165 95166 95167 95168 95169 95170 | iContinue = sqlite3VdbeMakeLabel(v); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int j1, j2; j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); | | | | | | | | | | | | | | | | | | | | | | | 95357 95358 95359 95360 95361 95362 95363 95364 95365 95366 95367 95368 95369 95370 95371 95372 95373 95374 95375 95376 95377 95378 95379 95380 95381 95382 95383 95384 95385 95386 95387 95388 95389 95390 95391 95392 95393 95394 95395 95396 95397 95398 95399 95400 95401 95402 95403 95404 95405 95406 95407 95408 95409 95410 95411 95412 95413 95414 95415 95416 95417 95418 95419 95420 95421 95422 95423 95424 95425 95426 95427 95428 95429 95430 95431 95432 95433 95434 95435 95436 95437 95438 95439 95440 95441 95442 95443 95444 95445 95446 95447 95448 95449 95450 95451 95452 95453 95454 95455 95456 95457 95458 95459 95460 95461 95462 95463 95464 95465 95466 | iContinue = sqlite3VdbeMakeLabel(v); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int j1, j2; j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, (char*)pKeyInfo, p4type); sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); sqlite3VdbeJumpHere(v, j1); sqlite3ExprCodeCopy(pParse, pIn->iSdst, regPrev+1, pIn->nSdst); sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); } if( pParse->db->mallocFailed ) return 0; /* Suppress the the first OFFSET entries if there is an OFFSET clause */ codeOffset(v, p, iContinue); switch( pDest->eDest ){ /* Store the result as data using a unique key. */ case SRT_Table: case SRT_EphemTab: { int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); testcase( pDest->eDest==SRT_Table ); testcase( pDest->eDest==SRT_EphemTab ); sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); sqlite3ReleaseTempReg(pParse, r1); break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { int r1; assert( pIn->nSdst==1 ); p->affinity = sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &p->affinity, 1); sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); sqlite3ReleaseTempReg(pParse, r1); break; } #if 0 /* Never occurs on an ORDER BY query */ /* If any row exist in the result set, record that fact and abort. */ case SRT_Exists: { sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); /* The LIMIT clause will terminate the loop for us */ break; } #endif /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. */ case SRT_Mem: { assert( pIn->nSdst==1 ); sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); /* The LIMIT clause will jump out of the loop for us */ break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ /* The results are stored in a sequence of registers ** starting at pDest->iSdst. Then the co-routine yields. */ case SRT_Coroutine: { if( pDest->iSdst==0 ){ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); pDest->nSdst = pIn->nSdst; } sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); break; } /* If none of the above, then the result destination must be ** SRT_Output. This routine is never called with any other ** destination other than the ones handled above or SRT_Output. ** ** For SRT_Output, results are stored in a sequence of registers. ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to ** return the next row of result. */ default: { assert( pDest->eDest==SRT_Output ); sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ |
︙ | ︙ | |||
95678 95679 95680 95681 95682 95683 95684 | sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); | | | 95871 95872 95873 95874 95875 95876 95877 95878 95879 95880 95881 95882 95883 95884 95885 | sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO_HANDOFF); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); /* Release temporary registers */ if( regPrev ){ sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); |
︙ | ︙ | |||
96924 96925 96926 96927 96928 96929 96930 | ** pDest->eDest Result ** ------------ ------------------------------------------- ** SRT_Output Generate a row of output (using the OP_ResultRow ** opcode) for each row in the result set. ** ** SRT_Mem Only valid if the result is a single column. ** Store the first column of the first result row | | | | | > | | | | | | 97117 97118 97119 97120 97121 97122 97123 97124 97125 97126 97127 97128 97129 97130 97131 97132 97133 97134 97135 97136 97137 97138 97139 97140 97141 97142 97143 97144 97145 97146 97147 97148 97149 97150 97151 97152 97153 97154 97155 97156 97157 97158 | ** pDest->eDest Result ** ------------ ------------------------------------------- ** SRT_Output Generate a row of output (using the OP_ResultRow ** opcode) for each row in the result set. ** ** SRT_Mem Only valid if the result is a single column. ** Store the first column of the first result row ** in register pDest->iSDParm then abandon the rest ** of the query. This destination implies "LIMIT 1". ** ** SRT_Set The result must be a single column. Store each ** row of result as the key in table pDest->iSDParm. ** Apply the affinity pDest->affSdst before storing ** results. Used to implement "IN (SELECT ...)". ** ** SRT_Union Store results as a key in a temporary table ** identified by pDest->iSDParm. ** ** SRT_Except Remove results from the temporary table pDest->iSDParm. ** ** SRT_Table Store results in temporary table pDest->iSDParm. ** This is like SRT_EphemTab except that the table ** is assumed to already be open. ** ** SRT_EphemTab Create an temporary table pDest->iSDParm and store ** the result there. The cursor is left open after ** returning. This is like SRT_Table except that ** this destination uses OP_OpenEphemeral to create ** the table first. ** ** SRT_Coroutine Generate a co-routine that returns a new row of ** results each time it is invoked. The entry point ** of the co-routine is stored in register pDest->iSDParm. ** ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result ** set is not empty. ** ** SRT_Discard Throw the results away. This is used by SELECT ** statements within triggers whose only purpose is ** the side-effects of functions. ** ** This routine returns the number of errors. If any errors are |
︙ | ︙ | |||
97194 97195 97196 97197 97198 97199 97200 | }else{ addrSortIndex = -1; } /* If the output is destined for a temporary table, open that table. */ if( pDest->eDest==SRT_EphemTab ){ | | | 97388 97389 97390 97391 97392 97393 97394 97395 97396 97397 97398 97399 97400 97401 97402 | }else{ addrSortIndex = -1; } /* If the output is destined for a temporary table, open that table. */ if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(v); p->nSelectRow = (double)LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.h.
︙ | ︙ | |||
105 106 107 108 109 110 111 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.14" #define SQLITE_VERSION_NUMBER 3007014 | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.14" #define SQLITE_VERSION_NUMBER 3007014 #define SQLITE_SOURCE_ID "2012-08-17 11:47:32 61b1ae121782525b37882a559d0fbb7c85237fd5" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
4153 4154 4155 4156 4157 4158 4159 | ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. ** ^The sqlite3_result_error_code() function changes the error code ** returned by SQLite as a result of an error in a function. ^By default, ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** | | | | | | 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 | ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. ** ^The sqlite3_result_error_code() function changes the error code ** returned by SQLite as a result of an error in a function. ^By default, ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** ** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an ** error indicating that a string or BLOB is too long to represent. ** ** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an ** error indicating that a memory allocation failed. ** ** ^The sqlite3_result_int() interface sets the return value ** of the application-defined function to be the 32-bit signed integer ** value given in the 2nd argument. ** ^The sqlite3_result_int64() interface sets the return value ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. |
︙ | ︙ |