System.Data.SQLite

Login
This project makes use of Eagle, provided by Mistachkin Systems.
Eagle: Secure Software Automation

Artifact 009ff991552199692b585803a54a097065e562e4:


###############################################################################
#
# common.eagle --
#
# Written by Joe Mistachkin.
# Released to the public domain, use at your own risk!
#
###############################################################################

#
# NOTE: Use our own namespace here because even though we do not directly
#       support namespaces ourselves, we do not want to pollute the global
#       namespace if this script actually ends up being evaluated in Tcl.
#
namespace eval ::Eagle {
  if {[isEagle]} then {
    ###########################################################################
    ############################ BEGIN Eagle ONLY #############################
    ###########################################################################

    proc getBuildYear {} {
      #
      # NOTE: See if the "year" setting has been overridden by the user (e.g.
      #       on the command line).  This helps control exactly which set of
      #       binaries we are testing, those produced using the Visual Studio
      #       2005, 2008, 2010, or 2012 build systems.  To override this value
      #       via the command line, enter a command similar to one of the
      #       following (all on one line):
      #
      #       EagleShell.exe -preInitialize "set test_year 2005"
      #         -file .\path\to\all.eagle
      #
      #       EagleShell.exe -preInitialize "set test_year 2008"
      #         -file .\path\to\all.eagle
      #
      #       EagleShell.exe -preInitialize "set test_year 2010"
      #         -file .\path\to\all.eagle
      #
      #       EagleShell.exe -preInitialize "set test_year 2012"
      #         -file .\path\to\all.eagle
      #
      #       EagleShell.exe -preInitialize "unset -nocomplain test_year"
      #         -file .\path\to\all.eagle
      #
      if {[info exists ::test_year] && [string length $::test_year] > 0} then {
        #
        # NOTE: Use the specified test year.  If this variable is not set, the
        #       default value will be based on whether or not Eagle has been
        #       compiled against the CLR v2.0 or CLR v4.0.
        #
        return $::test_year
      } else {
        #
        # NOTE: If Eagle has been compiled against the CLR v4.0, use "2010" by
        #       default (we could use "2012" in that case as well) as the test
        #       year; otherwise, use "2008" by default (we could use "2005" in
        #       that case as well).  If another major [incompatible] version of
        #       the CLR is released, this check will have to be changed.  The
        #       default test year to use for a particular CLR version may be
        #       overridden by setting the global variable "test_year_clr_v$X",
        #       where "$X" may [currently] be either "2" or "4".
        #
        if {[haveConstraint imageRuntime40]} then {
          if {[info exists ::test_year_clr_v4] && \
              [string length $::test_year_clr_v4] > 0} then {
            #
            # NOTE: Use the specified test year for the CLR v4.0.
            #
            return $::test_year_clr_v4
          } else {
            #
            # NOTE: Use the default test year for the CLR v4.0.
            #
            return 2010; # TODO: Good "fallback" default?
          }
        } else {
          if {[info exists ::test_year_clr_v2] && \
              [string length $::test_year_clr_v2] > 0} then {
            #
            # NOTE: Use the specified test year for the CLR v2.0.
            #
            return $::test_year_clr_v2
          } else {
            #
            # NOTE: Use the default test year for the CLR v2.0.
            #
            return 2008; # TODO: Good "fallback" default?
          }
        }
      }
    }

    proc getBuildConfiguration {} {
      #
      # NOTE: See if the "configuration" setting has been overridden by the user
      #       (e.g. on the command line).  This helps control exactly which set
      #       of binaries we are testing (i.e. those built in the "Debug" or
      #       "Release" build configurations).  To override this value via the
      #       command line, enter a command similar to one of the following (all
      #       on one line):
      #
      #       EagleShell.exe -preInitialize "set test_configuration Debug"
      #         -file .\path\to\all.eagle
      #
      #       EagleShell.exe -preInitialize "set test_configuration Release"
      #         -file .\path\to\all.eagle
      #
      #       EagleShell.exe -file .\path\to\all.eagle -preTest
      #         "unset -nocomplain test_configuration"
      #
      if {[info exists ::test_configuration] && \
          [string length $::test_configuration] > 0} then {
        #
        # NOTE: Use the specified test configuration.  The default value used
        #       for this variable is "Release", as set by the test suite itself.
        #
        return $::test_configuration
      } else {
        #
        # NOTE: Normally, we will never hit this case because the value of the
        #       test configuration variable is always set by the test suite
        #       itself; however, it can be overridden using the unset command
        #       from the -preTest option to the test suite.
        #
        return $::eagle_platform(configuration)
      }
    }

    proc getBuildDirectory {} {
      #
      # NOTE: See if the "native" runtime option has been set.  If so, use the
      #       directory for the mixed-mode assembly (a.k.a. the native interop
      #       assembly).  To enable this option via the command line, enter a
      #       command similar to one of the following (all on one line):
      #
      #       EagleShell.exe -initialize -runtimeOption native
      #         -file .\path\to\all.eagle
      #
      #       To enable this option via the command line prior to the "beta 16"
      #       release of Eagle, the following command must be used instead
      #       (also all on one line):
      #
      #       EagleShell.exe -initialize -postInitialize
      #         "object invoke Interpreter.GetActive AddRuntimeOption native"
      #         -file .\path\to\all.eagle
      #
      if {[info exists ::build_directory] && \
          [string length $::build_directory] > 0} then {
        #
        # NOTE: The location of the build directory has been overridden;
        #       therefore, use it verbatim.
        #
        return $::build_directory
      } else {
        #
        # NOTE: Figure out the build base directory.  This will be the directory
        #       that contains the actual build output directory (e.g. "bin").
        #
        if {[info exists ::build_base_directory] && \
            [string length $::build_base_directory] > 0} then {
          #
          # NOTE: The location of the build base directory has been overridden;
          #       therefore, use it verbatim.
          #
          set path $::build_base_directory
        } elseif {[info exists ::common_directory] && \
            [string length $::common_directory] > 0} then {
          #
          # NOTE: Next, fallback to the parent directory of the one containing
          #       this file (i.e. "common.eagle"), if available.
          #
          set path [file dirname $::common_directory]
        } else {
          #
          # NOTE: Finally, fallback to the parent directory of the EagleTest
          #       path.  The EagleTest package guarantees that this variable
          #       will be set to the directory containing the first file to
          #       execute the [runTestPrologue] script library procedure.
          #
          set path [file dirname $::path]
        }

        #
        # NOTE: If the "native" runtime option is set, the mixed-mode assembly
        #       is being tested.  In that case, the path to the build directory
        #       will contain the platform name and all the binaries under test
        #       should be present in that directory.  If the "native" runtime
        #       option is not set, the build directory will be considered to be
        #       "platform-neutral", with the notable exception of any native
        #       assembly (e.g. "SQLite.Interop.dll") copied there during the
        #       build process itself.  If the build process somehow does not
        #       copy the native assembly for this platform, most of the tests
        #       in the suite will simply be skipped.  Generally speaking, there
        #       are two ways to build the binaries when preparing to run the
        #       test suite:
        #
        #       1. Build the separate managed and native assemblies using some
        #          commands similar to:
        #
        #          build.bat ${Configuration}ManagedOnly ${Platform}
        #          build.bat ${Configuration}NativeOnly ${Platform}
        #
        #          Where ${Configuration} is either "Debug" or "Release" and
        #          ${Platform} is either "Win32" or "x64".
        #
        #       2. Build the mixed-mode assembly using a command similar to:
        #
        #          build.bat ${Configuration} ${Platform}
        #
        #          Where ${Configuration} is either "Debug" or "Release" and
        #          ${Platform} is either "Win32" or "x64".  If this command is
        #          used, various tests that require supplementary managed
        #          assemblies (e.g. LINQ) may be skipped unless those binaries
        #          are subsequently copied into the correct directory (i.e. by
        #          "test_all.bat").
        #
        #       Note that all of the build commands above will default to using
        #       the latest version of MSBuild available and the "test_year" may
        #       need to be adjusted accordingly to actually run the test suite.
        #       Refer to the comments in [getBuildYear] for more information on
        #       how to set this variable.
        #
        if {[hasRuntimeOption native]} then {
          return [file join $path bin [getBuildYear] [machineToPlatform \
              $::tcl_platform(machine)] [getBuildConfiguration]]
        } else {
          return [file join $path bin [getBuildYear] [getBuildConfiguration] \
              bin]
        }
      }
    }

    proc getBuildFileName { fileName } {
      #
      # NOTE: Returns the specified file name as if it were located in the
      #       build directory, discarding any directory information present
      #       in the file name as provided by our caller.
      #
      return [file nativename \
          [file join [getBuildDirectory] [file tail $fileName]]]
    }

    proc getBinaryDirectory {} {
      #
      # NOTE: This procedure returns the directory where the test application
      #       itself (i.e. the Eagle shell) is located.  This will be used as
      #       the destination for the copied System.Data.SQLite native and
      #       managed assemblies (i.e. because this is one of the few places
      #       where the CLR will actually find and load them properly).
      #
      if {[info exists ::binary_directory] && \
          [string length $::binary_directory] > 0} then {
        #
        # NOTE: The location of the binary directory has been overridden;
        #       therefore, use it verbatim.
        #
        return $::binary_directory
      } else {
        return [info binary]
      }
    }

    proc getBinaryFileName { fileName } {
      #
      # NOTE: Returns the specified file name as if it were located in the
      #       binary directory, discarding any directory information present
      #       in the file name as provided by our caller.
      #
      return [file nativename \
          [file join [getBinaryDirectory] [file tail $fileName]]]
    }

    proc getCoreBinaryFileName { {standard false} } {
      #
      # NOTE: Returns the full path for the file containing the core SQLite
      #       library code for this platform.
      #
      if {[hasRuntimeOption native]} then {
        #
        # NOTE: Return the mixed-mode assembly file name.
        #
        return [file nativename \
            [file join [getBinaryDirectory] System.Data.SQLite.dll]]
      } elseif {$standard} then {
        #
        # NOTE: Return the native-only standard SQLite library file name.
        #
        return [file nativename \
            [file join [getBinaryDirectory] sqlite3.dll]]
      } else {
        #
        # NOTE: Return the native-only interop assembly file name.
        #
        return [file nativename \
            [file join [getBinaryDirectory] SQLite.Interop.dll]]
      }
    }

    proc getDatabaseDirectory {} {
      #
      # NOTE: This procedure returns the directory where the test databases
      #       should be located.  By default, this just uses the temporary
      #       directory configured for this system.
      #
      if {[info exists ::database_directory] && \
          [string length $::database_directory] > 0} then {
        #
        # NOTE: The location of the database directory has been overridden;
        #       therefore, use it.
        #
        return [file normalize $::database_directory]
      } else {
        return [getTemporaryPath]
      }
    }

    proc getTemporaryDirectory {} {
      #
      # NOTE: This procedure returns the directory where the temporary files
      #       should be located.  By default, this just uses the temporary
      #       directory configured for this system.
      #
      if {[info exists ::temporary_directory] && \
          [string length $::temporary_directory] > 0} then {
        #
        # NOTE: The location of the temporary directory has been overridden;
        #       therefore, use it.
        #
        return [file normalize $::temporary_directory]
      } else {
        return [getTemporaryPath]
      }
    }

    proc getTestOverridesPreamble { {extraVarNames ""} } {
      set varNames [list]

      #
      # NOTE: If available, start with the master list of test override
      #       variables.
      #
      if {[info exists ::test_overrides] && \
          [llength $::test_overrides] > 0} then {
        eval lappend varNames $::test_overrides
      }

      #
      # NOTE: If requested by our caller, add any additional variable
      #       names to copy now.
      #
      if {[llength $extraVarNames] > 0} then {
        eval lappend varNames $extraVarNames
      }

      #
      # NOTE: Build the script fragment to be returned by processing each
      #       variable name and adding the nececessary script fragments for
      #       each one.
      #
      set result ""

      foreach varName $varNames {
        #
        # NOTE: Build the qualified global variable name.
        #
        set fullVarName [appendArgs :: $varName]

        #
        # NOTE: Does the variable exist in this interpreter context?
        #
        if {[info exists $fullVarName]} then {
          #
          # NOTE: Append a script fragment to the result that will correctly
          #       copy any contained value to another interpreter context.
          #
          append result \n "set " $fullVarName " \{" [set $fullVarName] \}
        }
      }

      #
      # NOTE: If the result contains one or more script fragments, append a
      #       newline.
      #
      if {[string length $result] > 0} then {
        append result \n
      }

      return $result
    }

    proc getAppDomainPreamble { {prefix ""} {suffix ""} } {
      #
      # NOTE: This procedure returns a test setup script fragment suitable for
      #       evaluation by an interpreter created in an isolated application
      #       domain.  The script fragment being returned will be surrounded by
      #       the prefix and suffix "script fragments" specified by our caller,
      #       if any.  The entire script being returned will be substituted via
      #       [subst], in the context of our caller, before being returned.
      #       This step is necessary so that some limited context information,
      #       primarily related to the testing directories, can be transferred
      #       to the interpreter in the isolated application domain, making it
      #       able to successfully run tests that require one or more of the
      #       files in one of the testing directories.  Callers should keep in
      #       mind that the test script fragment being returned cannot rely on
      #       any script library procedures that are not provided by the Eagle
      #       library package (i.e. "init.eagle"), including those provided by
      #       the Eagle test package, unless the file containing them is loaded
      #       manually via some other mechanism (e.g. by including appropriate
      #       [package require] or [source] commands in the prefix or suffix
      #       script fragments).  Also, all variable references and all nested
      #       commands (i.e. those in square brackets) contained in the final
      #       script fragment will end up being evaluated in the context of the
      #       calling interpreter and not the target interpreter created in the
      #       isolated application domain unless the dollar signs and/or square
      #       brackets are specially quoted with backslashes.
      #
      return [uplevel 1 [list subst [appendArgs $prefix {
        if {[hasRuntimeOption native]} then {
          object invoke Interpreter.GetActive AddRuntimeOption native
        }
      } [getTestOverridesPreamble [list path test_channel]] $suffix]]]
    }

    proc tryCopyBuildFile { fileName } {
      #
      # NOTE: If we cannot copy the assembly then it is probably already loaded.
      #
      set sourceFileName [getBuildFileName $fileName]

      if {![file exists $sourceFileName]} then {
        tputs $::test_channel [appendArgs \
            "---- skipped copying build file \"" $sourceFileName \
            "\", it does not exist\n"]

        return
      }

      set targetFileName [getBinaryFileName $fileName]

      if {[catch {
              file copy -force $sourceFileName $targetFileName}] == 0} then {
        tputs $::test_channel [appendArgs \
            "---- copied build file from \"" $sourceFileName "\" to \"" \
            $targetFileName \"\n]
      } else {
        tputs $::test_channel [appendArgs \
            "---- failed to copy build file from \"" $sourceFileName \
            "\" to \"" $targetFileName \"\n]
      }
    }

    proc tryDeleteBinaryFile { fileName } {
      set fileName [getBinaryFileName $fileName]

      if {![file exists $fileName]} then {
        tputs $::test_channel [appendArgs \
            "---- skipped deleting binary file \"" $fileName \
            "\", it does not exist\n"]

        return
      }

      if {[catch {file delete $fileName}] == 0} then {
        tputs $::test_channel [appendArgs \
            "---- deleted binary file \"" $fileName \"\n]
      } else {
        tputs $::test_channel [appendArgs \
            "---- failed to delete binary file \"" $fileName \"\n]
      }
    }

    proc tryCopyAssembly { fileName {pdb true} } {
      tryCopyBuildFile $fileName

      if {$pdb} then {
        tryCopyBuildFile [appendArgs [file rootname $fileName] .pdb]
      }
    }

    proc tryDeleteAssembly { fileName {pdb true} } {
      tryDeleteBinaryFile $fileName

      if {$pdb} then {
        tryDeleteBinaryFile [appendArgs [file rootname $fileName] .pdb]
      }
    }

    proc tryLoadAssembly { fileName } {
      set fileName [getBinaryFileName $fileName]

      if {[catch {set assembly \
              [object load -loadtype File -alias $fileName]}] == 0} then {
        #
        # NOTE: Now, add the necessary test constraint.
        #
        addConstraint [file rootname [file tail $fileName]]

        #
        # NOTE: Grab the image runtime version from the assembly because
        #       several tests rely on it having a certain value.
        #
        addConstraint [appendArgs [file tail $fileName] _ \
            [$assembly ImageRuntimeVersion]]

        #
        # NOTE: Return the full path of the loaded file.
        #
        return $fileName
      }

      return ""
    }

    proc checkForSQLite { channel } {
      tputs $channel "---- checking for core SQLite library... "

      if {[catch {
              object invoke -flags +NonPublic System.Data.SQLite.SQLite3 \
              SQLiteVersion} version] == 0} then {
        #
        # NOTE: Attempt to query the Fossil source identifier for the SQLite
        #       core library.
        #
        if {[catch {
                object invoke -flags +NonPublic System.Data.SQLite.SQLite3 \
                SQLiteSourceId} sourceId]} then {
          #
          # NOTE: We failed to query the Fossil source identifier.
          #
          set sourceId unknown
        }

        #
        # NOTE: Yes, the SQLite core library appears to be available.
        #
        addConstraint SQLite

        tputs $channel [appendArgs "yes (" $version " " $sourceId ")\n"]
      } else {
        tputs $channel no\n
      }
    }

    proc checkForSQLiteDefineConstant { channel name } {
      tputs $channel [appendArgs \
          "---- checking for System.Data.SQLite define constant \"" $name \
          "\"... "]

      if {[catch {
              object invoke -flags +NonPublic System.Data.SQLite.SQLite3 \
              DefineConstants} defineConstants] == 0} then {
        if {[lsearch -exact -nocase $defineConstants $name] != -1} then {
          #
          # NOTE: Yes, this define constant was enabled when the managed
          #       assembly was compiled.
          #
          addConstraint [appendArgs defineConstant.System.Data.SQLite. $name]

          tputs $channel yes\n
        } else {
          tputs $channel no\n
        }
      } else {
        tputs $channel error\n
      }
    }

    proc getDateTimeFormat {} {
      #
      # NOTE: This procedure simply returns the "default" DateTime format used
      #       by the test suite.
      #
      if {[info exists ::datetime_format] && \
          [string length $::datetime_format] > 0} then {
        #
        # NOTE: Return the manually overridden value for the DateTime format.
        #
        return $::datetime_format
      } else {
        #
        # NOTE: Return an ISO8601 DateTime format compatible with SQLite,
        #       System.Data.SQLite, and suitable for round-tripping with the
        #       DateTime class of the framework.  If this value is changed,
        #       various tests may fail.
        #
        return "yyyy-MM-dd HH:mm:ss.FFFFFFFK"
      }
    }

    proc enumerableToList { enumerable } {
      set result [list]

      if {[string length $enumerable] == 0 || $enumerable eq "null"} then {
        return $result
      }

      object foreach -alias item $enumerable {
        if {[string length $item] > 0} then {
          lappend result [$item ToString]
        }
      }

      return $result
    }

    proc catchAndReturn { script {stackTrace false} {strict true} } {
      #
      # NOTE: Evaluate the script provided by our caller in their context,
      #       capturing both the result and the return code.
      #
      set code [catch {uplevel 1 $script} result]

      #
      # NOTE: Did the script provided by our caller NOT raise an error?
      #
      if {$strict && $code == 0 || !$strict && $code != 1} then {
        #
        # NOTE: Success.  Return a list with the return code and the result.
        #
        return [list $code $result]
      } elseif {$stackTrace} then {
        #
        # NOTE: Failure.  Our caller wants a full stack trace (if applicable),
        #       return a list with the return code and the result verbatim.
        #
        return [list $code $result]
      } else {
        #
        # NOTE: Failure.  Our caller does not want a full stack trace (if
        #       applicable), return a list with the return code, the error
        #       code for the interpreter, and the error message up to the
        #       point where the stack trace should start.
        #
        set index [string first "   at " $result]; # HACK: Reliable?

        return [list $code $::errorCode [expr {$index != -1 ? \
            [string trim [string range $result 0 $index]] : $result}]]
      }
    }

    proc compileCSharpWith {
            text memory symbols strict resultsVarName errorsVarName fileNames
            args } {
      #
      # NOTE: Since we are going to use this method name a lot, assign it to a
      #       variable first.
      #
      set add ReferencedAssemblies.Add

      #
      # NOTE: Create the base command to evaluate and add the property settings
      #       that are almost always needed by our unit tests (i.e. the System
      #       and System.Data assembly references).
      #
      set command [list compileCSharp $text $memory $symbols $strict results \
          errors $add System.dll $add System.Data.dll $add System.Xml.dll]

      #
      # NOTE: Add all the provided file names as assembly references.
      #
      foreach fileName $fileNames {
        lappend command $add [getBinaryFileName $fileName]
      }

      #
      # NOTE: Add the extra arguments, if any, to the command to evaluate.
      #
      eval lappend command $args

      #
      # NOTE: Alias the compiler local results and errors variables to the
      #       variable names provided by our caller.
      #
      upvar 1 $resultsVarName results
      upvar 1 $errorsVarName errors

      #
      # NOTE: Evaluate the constructed [compileCSharp] command and return the
      #       result.
      #
      eval $command
    }

    proc isMemoryDb { fileName } {
      #
      # NOTE: Is the specified database file name really an in-memory database?
      #
      return [expr {$fileName eq ":memory:" || \
          [string range $fileName 0 12] eq "file::memory:"}]
    }

    proc executeSql { sql {execute none} {fileName ""} } {
      if {[string length $fileName] == 0} then {set fileName :memory:}
      setupDb $fileName "" "" "" "" "" false false false false memDb

      try {
        return [sql execute -execute $execute $memDb $sql]
      } finally {
        cleanupDb $fileName memDb false false
      }
    }

    proc setupDb {
            fileName {mode ""} {dateTimeFormat ""} {dateTimeKind ""} {flags ""}
            {extra ""} {qualify true} {delete true} {uri false}
            {temporary true} {varName db} } {
      #
      # NOTE: First, see if our caller has requested an in-memory database.
      #
      set isMemory [isMemoryDb $fileName]

      #
      # NOTE: For now, all test databases used by the test suite are placed into
      #       the temporary directory.  Each database used by a test should be
      #       cleaned up by that test using the "cleanupDb" procedure, below.
      #
      if {!$isMemory && $qualify} then {
        set fileName [file join [getDatabaseDirectory] [file tail $fileName]]
      }

      #
      # NOTE: By default, delete any pre-existing database with the same file
      #       name if it currently exists.
      #
      if {!$isMemory && $delete && [file exists $fileName]} then {
        #
        # NOTE: Attempt to delete any pre-existing database with the same file
        #       name.
        #
        if {[catch {file delete $fileName} error]} then {
          #
          # NOTE: We somehow failed to delete the file, report why.
          #
          tputs $::test_channel [appendArgs \
              "==== WARNING: failed to delete database file \"" $fileName \
              "\" during setup, error: " \n\t $error \n]
        }
      }

      #
      # NOTE: Refer to the specified variable (e.g. "db") in the context of our
      #       caller.  The handle to the opened database will be stored there.
      #
      upvar 1 $varName db

      #
      # NOTE: Start building the connection string.  The only required portion
      #       of the connection string is the data source, which contains the
      #       database file name itself.  If our caller wants to use a URI as
      #       the data source, use the FullUri connection string property to
      #       prevent the data source string from being mangled.
      #
      if {$uri} then {
        set connection {FullUri=${fileName}}
      } else {
        set connection {Data Source=${fileName}}
      }

      #
      # NOTE: Since this procedure has no special knowledge of what the default
      #       setting is for the ToFullPath connection string propery, always
      #       add the value we know about to the connection string.
      #
      append connection {;ToFullPath=${qualify}}

      #
      # NOTE: If our caller specified a journal mode, add the necessary portion
      #       of the connection string now.
      #
      if {[string length $mode] > 0} then {
        append connection {;Journal Mode=${mode}}
      }

      #
      # NOTE: If our caller specified a DateTime format, add the necessary
      #       portion of the connection string now.
      #
      if {[string length $dateTimeFormat] > 0} then {
        append connection {;DateTimeFormat=${dateTimeFormat}}
      }

      #
      # NOTE: If our caller specified a DateTimeKind, add the necessary portion
      #       of the connection string now.
      #
      if {[string length $dateTimeKind] > 0} then {
        append connection {;DateTimeKind=${dateTimeKind}}
      }

      #
      # NOTE: If there are any global (per test run) connection flags currently
      #       set, use them now (i.e. by combining them with the ones for this
      #       connection).
      #
      if {[info exists ::connection_flags] && \
          [string length $::connection_flags] > 0} then {
        #
        # NOTE: Show (and log) that we detected some global connection flags.
        #
        tputs $::test_channel [appendArgs \
            "---- global connection flags detected: " $::connection_flags \n]

        #
        # NOTE: Combine and/or replace the connection flags and then show the
        #       new value.
        #
        set flags [combineFlags $flags $::connection_flags]

        tputs $::test_channel [appendArgs \
            "---- combined connection flags are: " $flags \n]
      }

      #
      # NOTE: If our caller specified a SQLiteConnectionFlags, add the necessary
      #       portion of the connection string now.
      #
      if {[string length $flags] > 0} then {
        append connection {;Flags=${flags}}
      }

      #
      # NOTE: If our caller specified an extra payload to the connection string,
      #       append it now.
      #
      if {[string length $extra] > 0} then {
        append connection \; $extra
      }

      #
      # NOTE: Open the database connection now, placing the opaque handle value
      #       into the variable specified by our caller.
      #
      set db [sql open -type SQLite [subst $connection]]

      #
      # NOTE: Configure the temporary directory for the newly opened database
      #       connection now unless our caller forbids it.
      #
      if {$temporary && ![info exists ::no(setTemporaryDirectory)]} then {
        sql execute $db [appendArgs \
            "PRAGMA temp_store_directory = \"" [getTemporaryDirectory] \"\;]
      }

      #
      # NOTE: Always return the connection handle upon success.
      #
      return $db
    }

    proc getDbConnection { {varName db} } {
      #
      # NOTE: Refer to the specified variable (e.g. "db") in the context of our
      #       caller.  The handle to the database previously opened by [setupDb]
      #       should be stored there.
      #
      upvar 1 $varName db

      #
      # NOTE: This returns the ADO.NET IDbConnection object instance for the
      #       specified databse handle.  Since getting this object relies upon
      #       Eagle internals, great care should be taken to avoid disposing of
      #       this object or otherwise putting it into an invalid state.
      #
      if {[info exists db]} then {
        if {[catch {
                object invoke -flags +NonPublic -objectflags +NoDispose \
                -alias Interpreter.GetActive.connections Item $db} \
                result] == 0} then {
          #
          # NOTE: Success, return the opaque object handle.
          #
          return $result
        } else {
          #
          # NOTE: Failure, report why.
          #
          tputs $::test_channel [appendArgs \
              "==== WARNING: failed to get connection handle for database \"" \
              $db "\", error: " \n\t $result \n]
        }
      }
    }

    proc freeDbConnection { {varName connection} } {
      #
      # NOTE: Refer to the specified variable (e.g. "connection") in the context
      #       of our caller.  The opaque object handle for an ADO.NET connection
      #       previously returned by [getDbConnection] should be stored there.
      #
      upvar 1 $varName connection

      #
      # NOTE: Attempt to remove the opaque object handle from the interpreter
      #       now.  This [object dispose] call will not actually dispose of the
      #       underlying object because the +NoDispose flag was set on it during
      #       creation of the opaque object handle.
      #
      if {[info exists connection] && \
          [catch {object dispose $connection} error]} then {
        #
        # NOTE: We somehow failed to remove the handle, report why.
        #
        tputs $::test_channel [appendArgs \
            "==== WARNING: failed to remove connection handle \"" $connection \
            "\", error: " \n\t $error \n]
      }
    }

    proc cleanupDb { fileName {varName db} {collect true} {qualify true}
                     {delete true} } {
      #
      # NOTE: Attempt to force all pending "garbage" objects to be collected,
      #       including SQLite statements and backup objects; this should allow
      #       the underlying database file to be deleted.
      #
      if {$collect} then {
        collectGarbage $::test_channel
      }

      #
      # NOTE: Refer to the specified variable (e.g. "db") in the context of our
      #       caller.  The handle to the database previously opened by [setupDb]
      #       should be stored there.
      #
      upvar 1 $varName db

      #
      # NOTE: Close the connection to the database now.  This should allow us to
      #       delete the underlying database file.
      #
      if {[info exists db] && [catch {sql close $db} error]} then {
        #
        # NOTE: We somehow failed to close the database, report why.
        #
        tputs $::test_channel [appendArgs \
            "==== WARNING: failed to close database \"" $db "\", error: " \
            \n\t $error \n]
      }

      #
      # NOTE: First, see if our caller has requested an in-memory database.
      #
      set isMemory [isMemoryDb $fileName]

      #
      # NOTE: Build the full path to the database file name.  For now, all test
      #       database files are stored in the temporary directory.
      #
      if {!$isMemory && $qualify} then {
        set fileName [file join [getDatabaseDirectory] [file tail $fileName]]
      }

      #
      # NOTE: Check if the file still exists.
      #
      if {!$isMemory && $delete && [file exists $fileName]} then {
        #
        # NOTE: Skip deleting database files if somebody sets the global
        #       variable to prevent it.
        #
        if {![info exists ::no(cleanupDbFile)]} then {
          #
          # NOTE: Attempt to delete the test database file now.
          #
          if {[set code [catch {file delete $fileName} error]]} then {
            #
            # NOTE: We somehow failed to delete the file, report why.
            #
            tputs $::test_channel [appendArgs \
                "==== WARNING: failed to delete database file \"" $fileName \
                "\" during cleanup, error: " \n\t $error \n]
          }
        } else {
          #
          # NOTE: Show that we skipped deleting the file.
          #
          set code 0

          tputs $::test_channel [appendArgs \
              "==== WARNING: skipped deleting database file \"" $fileName \
              "\" during cleanup\n"]
        }
      } else {
        #
        # NOTE: The file does not exist, success!
        #
        set code 0
      }

      return $code
    }

    proc cleanupFile { fileName {collect true} {force false} } {
      #
      # NOTE: Attempt to force all pending "garbage" objects to be collected,
      #       including SQLite statements and backup objects; this should allow
      #       the underlying database file to be deleted.
      #
      if {$collect} then {
        collectGarbage $::test_channel
      }

      #
      # NOTE: Check if the file still exists.
      #
      if {[file exists $fileName]} then {
        #
        # NOTE: Skip deleting test files if somebody sets the global variable
        #       to prevent it.
        #
        if {$force || ![info exists ::no(cleanupFile)]} then {
          #
          # NOTE: Attempt to delete the test file now.
          #
          if {[set code [catch {file delete $fileName} error]]} then {
            #
            # NOTE: We somehow failed to delete the file, report why.
            #
            tputs $::test_channel [appendArgs \
                "==== WARNING: failed to delete test file \"" $fileName \
                "\" during cleanup, error: " \n\t $error \n]
          }
        } else {
          #
          # NOTE: Show that we skipped deleting the file.
          #
          set code 0

          tputs $::test_channel [appendArgs \
              "==== WARNING: skipped deleting test file \"" $fileName \
              "\" during cleanup\n"]
        }
      } else {
        #
        # NOTE: The file does not exist, success!
        #
        set code 0
      }

      return $code
    }

    proc collectGarbage { channel } {
      #
      # NOTE: Attempt to force a full garbage collection now.  Report any
      #       error that is encountered if we fail.
      #
      if {[catch {object invoke GC GetTotalMemory true} error]} then {
        tputs $channel [appendArgs \
            "==== WARNING: failed full garbage collection, error: " \
            \n\t $error \n]
      }
    }

    proc shutdownSQLite { channel {force false} {quiet false} } {
      #
      # NOTE: Make sure that SQLite core library is completely shutdown.  This
      #       is used by tests that change configuration options and/or those
      #       that need to make sure logging is initialized (i.e. just in case
      #       the SQLite core library was initialized in the process prior to
      #       the SQLiteLog class being able to setup its logging callback).
      #
      if {$force || [haveConstraint SQLite]} then {
        if {[catch {object invoke -flags +NonPublic \
              System.Data.SQLite.UnsafeNativeMethods \
              sqlite3_shutdown} result] == 0} then {
          if {!$quiet} then {
            tputs $channel [appendArgs \
                "---- call sqlite3_shutdown()... ok: " $result \n]
          }
        } else {
          if {!$quiet} then {
            tputs $channel [appendArgs \
                "---- call sqlite3_shutdown()... error: " \n\t $result \n]
          }
        }
      }
    }

    proc reportSQLiteResources { channel {quiet false} {collect true} } {
      #
      # NOTE: Skip all output if we are running in "quiet" mode.
      #
      if {!$quiet} then {
        tputs $channel "---- current memory in use by SQLite... "
      }

      if {[catch {object invoke -flags +NonPublic \
              System.Data.SQLite.UnsafeNativeMethods \
              sqlite3_memory_used} memory] == 0} then {
        if {!$quiet} then {
          tputs $channel [appendArgs $memory " bytes\n"]
        }
      } else {
        #
        # NOTE: Maybe the SQLite core library is unavailable?
        #
        set memory unknown

        if {!$quiet} then {
          tputs $channel [appendArgs $memory \n]
        }
      }

      set result $memory; # NOTE: Return memory in-use to our caller.

      if {!$quiet} then {
        tputs $channel "---- maximum memory in use by SQLite... "
      }

      if {[catch {object invoke -flags +NonPublic \
              System.Data.SQLite.UnsafeNativeMethods \
              sqlite3_memory_highwater 0} memory] == 0} then {
        if {!$quiet} then {
          tputs $channel [appendArgs $memory " bytes\n"]
        }
      } else {
        #
        # NOTE: Maybe the SQLite core library is unavailable?
        #
        set memory unknown

        if {!$quiet} then {
          tputs $channel [appendArgs $memory \n]
        }
      }

      if {$collect} then {
        collectGarbage $channel
      }

      if {!$quiet} then {
        tputs $channel "---- current memory in use by the CLR... "
      }

      if {[catch {object invoke GC GetTotalMemory false} memory] == 0} then {
        if {[string is integer -strict $memory]} then {
          if {!$quiet} then {
            tputs $channel [appendArgs $memory " bytes\n"]
          }
        } else {
          set memory invalid

          if {!$quiet} then {
            tputs $channel [appendArgs $memory \n]
          }
        }
      } else {
        set memory unknown

        if {!$quiet} then {
          tputs $channel [appendArgs $memory \n]
        }
      }

      return $result
    }

    proc checkForSQLiteDirectories { channel {reset false} } {
      #
      # NOTE: Check if the sqlite3_win32_set_directory function is available.
      #
      tputs $channel \
          "---- checking for function sqlite3_win32_set_directory... "

      #
      # NOTE: This call to the sqlite3_win32_set_directory function uses the
      #       invalid value 0 for the first argument.  This code is designed
      #       to check if calling the function will raise an exception (i.e.
      #       the actual result of the function does not matter as long as no
      #       directory is changed).
      #
      if {[catch {
              object invoke -flags +NonPublic \
              System.Data.SQLite.UnsafeNativeMethods \
              sqlite3_win32_set_directory 0 null}] == 0} then {
        #
        # NOTE: Calling the sqlite3_win32_set_directory function does not
        #       cause an exception; therefore, it must be available (i.e.
        #       even though it should return a failure return code in this
        #       case).
        #
        addConstraint sqlite3_win32_set_directory

        tputs $channel yes\n

        #
        # NOTE: Does our caller want to reset the directories?
        #
        if {$reset} then {
          #
          # NOTE: Now make sure the database and temporary directories are
          #       reset their default values, which should be null for both.
          #       Since the sqlite3_win32_set_directory function is available,
          #       use it.
          #
          for {set index 1} {$index < 3} {incr index} {
            if {[catch {
                    object invoke -flags +NonPublic \
                    System.Data.SQLite.UnsafeNativeMethods \
                    sqlite3_win32_set_directory $index null} \
                    result] == 0} then {
              tputs $channel [appendArgs \
                  "---- call sqlite3_win32_set_directory(" $index \
                  ", null)... ok: " $result \n]
            } else {
              tputs $channel [appendArgs \
                  "---- call sqlite3_win32_set_directory(" $index \
                  ", null)... error: " \n\t $result \n]
            }
          }
        }
      } else {
        tputs $channel no\n

        #
        # NOTE: Does our caller want to reset the directories?
        #
        if {$reset} then {
          #
          # NOTE: Now make sure the database and temporary directories are
          #       reset their default values, which should be null for both.
          #       Since the sqlite3_win32_set_directory function does not
          #       appear to be available, use the associated PRAGMA commands
          #       instead.
          #
          foreach directory [list data_store_directory temp_store_directory] {
            set sql [appendArgs "PRAGMA " $directory " = \"\";"]

            if {[catch {executeSql $sql} result] == 0} then {
              tputs $channel [appendArgs \
                  "---- execute PRAGMA " $directory "... ok: " \
                  $result \n]
            } else {
              tputs $channel [appendArgs \
                  "---- execute PRAGMA " $directory "... error: " \
                  \n\t $result \n]
            }
          }
        }
      }

      #
      # NOTE: Finally, show the current value of the database and temporary
      #       directories.
      #
      foreach directory [list data_store_directory temp_store_directory] {
        tputs $channel [appendArgs "---- checking " $directory "... "]

        set sql [appendArgs "PRAGMA " $directory \;]

        if {[catch {executeSql $sql scalar} result] == 0} then {
          tputs $channel [appendArgs "ok: \"" $result \"\n]
        } else {
          tputs $channel [appendArgs "error: " \n\t $result \n]
        }
      }
    }

    proc runSQLiteTestPrologue {} {
      #
      # NOTE: Skip running our custom prologue if the main one has been skipped.
      #
      if {![info exists ::no(prologue.eagle)]} then {
        #
        # NOTE: Skip all System.Data.SQLite related file handling (deleting,
        #       copying, and loading) if we are so instructed.
        #
        if {![info exists ::no(sqliteFiles)]} then {
          #
          # NOTE: Skip trying to delete any files if we are so instructed.
          #
          if {![info exists ::no(deleteSqliteFiles)]} then {
            tryDeleteAssembly sqlite3.dll
            removeConstraint file_sqlite3.dll

            tryDeleteAssembly SQLite.Interop.dll
            removeConstraint file_SQLite.Interop.dll

            tryDeleteAssembly System.Data.SQLite.dll
            removeConstraint file_System.Data.SQLite.dll

            tryDeleteAssembly System.Data.SQLite.Linq.dll
            removeConstraint file_System.Data.SQLite.Linq.dll
          }

          #
          # NOTE: Skip trying to copy any files if we are so instructed.
          #
          if {![info exists ::no(copySqliteFiles)]} then {
            tryCopyAssembly sqlite3.dll
            tryCopyAssembly SQLite.Interop.dll
            tryCopyAssembly System.Data.SQLite.dll
            tryCopyAssembly System.Data.SQLite.Linq.dll
          }

          #
          # NOTE: Skip trying to load any files if we are so instructed.
          #
          if {![info exists ::no(loadSqliteFiles)]} then {
            tryLoadAssembly System.Data.SQLite.dll
            tryLoadAssembly System.Data.SQLite.Linq.dll
          }
        }

        catch {
          tputs $::test_channel [appendArgs \
              "---- file version of \"sqlite3.dll\"... " \
              [file version [getBinaryFileName sqlite3.dll]] \n]
        }

        catch {
          tputs $::test_channel [appendArgs \
              "---- file version of \"SQLite.Interop.dll\"... " \
              [file version [getBinaryFileName SQLite.Interop.dll]] \n]
        }

        catch {
          tputs $::test_channel [appendArgs \
              "---- file version of \"System.Data.SQLite.dll\"... " \
              [file version [getBinaryFileName System.Data.SQLite.dll]] \n]
        }

        catch {
          tputs $::test_channel [appendArgs \
              "---- file version of \"System.Data.SQLite.Linq.dll\"... " \
              [file version [getBinaryFileName System.Data.SQLite.Linq.dll]] \n]
        }

        set assemblies [object invoke AppDomain.CurrentDomain GetAssemblies]

        object foreach assembly $assemblies {
          if {[string match \{System.Data.SQLite* $assembly]} then {
            tputs $::test_channel [appendArgs \
                "---- found assembly: " $assembly \n]
          }
        }

        catch {
          tputs $::test_channel \
              "---- define constants for \"System.Data.SQLite\"... "

          if {[catch {object invoke -flags +NonPublic \
                  System.Data.SQLite.SQLite3 DefineConstants} \
                  defineConstants] == 0} then {
            tputs $::test_channel [appendArgs [formatList [lsort \
                $defineConstants]] \n]
          } else {
            tputs $::test_channel unknown\n
          }
        }

        #
        # NOTE: Now, we need to know if the SQLite core library is available
        #       (i.e. because the managed-only System.Data.SQLite assembly can
        #       load without it; however, it cannot do anything useful without
        #       it).  If we are using the mixed-mode assembly and we already
        #       found it (above), this should always succeed.
        #
        checkForSQLite $::test_channel

        #
        # NOTE: Check the SQLite database and temporary directories.
        #
        checkForSQLiteDirectories $::test_channel

        #
        # NOTE: Attempt to determine if the custom extension functions were
        #       compiled into the SQLite interop assembly.
        #
        checkForSQLiteDefineConstant $::test_channel \
            CHECK_STATE

        checkForSQLiteDefineConstant $::test_channel \
            USE_INTEROP_DLL

        checkForSQLiteDefineConstant $::test_channel \
            INTEROP_EXTENSION_FUNCTIONS

        checkForSQLiteDefineConstant $::test_channel \
            INTEROP_TEST_EXTENSION

        checkForSQLiteDefineConstant $::test_channel \
            SQLITE_STANDARD

        #
        # NOTE: Check the current build year.  Basically, this indicates
        #       which version of MSBuild and/or Visual Studio was used to
        #       compile the assembly binaries under test.
        #
        tputs $::test_channel \
            "---- checking for System.Data.SQLite build year... "

        set year [getBuildYear]
        addConstraint [appendArgs buildYear $year]
        tputs $::test_channel [appendArgs \" $year \"\n]

        #
        # NOTE: Check the current build configuration.  This should normally
        #       be either "Debug" or "Release".
        #
        tputs $::test_channel \
            "---- checking for System.Data.SQLite build configuration... "

        set configuration [getBuildConfiguration]
        addConstraint [appendArgs buildConfiguration $configuration]
        tputs $::test_channel [appendArgs \" $configuration \"\n]

        #
        # NOTE: Check for the native runtime option, which would mean we are
        #       using the mixed-mode assembly.
        #
        checkForRuntimeOption $::test_channel native

        #
        # NOTE: Report the resource usage prior to running any tests.
        #
        reportSQLiteResources $::test_channel

        #
        # NOTE: Show the active test constraints.
        #
        tputs $::test_channel [appendArgs "---- constraints: " \
            [formatList [lsort [getConstraints]]] \n]

        #
        # NOTE: Show when our tests actually began (now).
        #
        tputs $::test_channel [appendArgs \
            "---- System.Data.SQLite tests began at " \
            [clock format [clock seconds]] \n]
      }
    }

    proc runSQLiteTestEpilogue {} {
      #
      # NOTE: Skip running our custom epilogue if the main one has been skipped.
      #
      if {![info exists ::no(epilogue.eagle)]} then {
        #
        # NOTE: Show when our tests actually ended (now).
        #
        tputs $::test_channel [appendArgs \
            "---- System.Data.SQLite tests ended at " \
            [clock format [clock seconds]] \n]

        #
        # NOTE: Also report the resource usage after running the tests.
        #
        reportSQLiteResources $::test_channel
      }
    }

    ###########################################################################
    ############################# END Eagle ONLY ##############################
    ###########################################################################
  }

  #
  # NOTE: Save the name of the directory containing this file.
  #
  if {![info exists ::common_directory]} then {
    set ::common_directory [file dirname [info script]]
  }

  #
  # NOTE: Provide the System.Data.SQLite test package to the interpreter.
  #
  package provide System.Data.SQLite.Test 1.0
}