1
2
3
4
5
6
7
8
9
10
|
1
2
3
4
5
6
7
8
9
10
|
-
+
|
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.8.3.1. By combining all the individual C code files into this
** version 3.8.4. By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit. This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately. Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite. To use SQLite in other
|
︙ | | |
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
#ifndef SQLITE_API
# define SQLITE_API
#endif
/************** Begin file sqliteInt.h ***************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it. If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
** system #includes. Hence, this block of code must be the very first
** code in all source files.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: Red Hat 7.2) but you want your code to work
** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
**
** The previous paragraph was written in 2005. (This paragraph is written
** on 2008-11-28.) These days, all Linux kernels support large files, so
** you should probably leave LFS enabled. But some embedded platforms might
** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
**
** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** For MinGW, check to see if we can include the header file containing its
** version information, among other things. Normally, this internal MinGW
** header file would [only] be included automatically by other MinGW header
** files; however, the contained version information is now required by this
** header file to work around binary compatibility issues (see below) and
** this is the only known way to reliably obtain it. This entire #if block
** would be completely unnecessary if there was any other way of detecting
** MinGW via their preprocessor (e.g. if they customized their GCC to define
** some MinGW-specific macros). When compiling for MinGW, either the
** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
** defined; otherwise, detection of conditions specific to MinGW will be
** disabled.
*/
#if defined(_HAVE_MINGW_H)
# include "mingw.h"
#elif defined(_HAVE__MINGW_H)
# include "_mingw.h"
#endif
/*
** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
** define is required to maintain binary compatibility with the MSVC runtime
** library in use (e.g. for Windows XP).
*/
#if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
defined(_WIN32) && !defined(_WIN64) && \
defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
defined(__MSVCRT__)
# define _USE_32BIT_TIME_T
#endif
/* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear
** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for
** MinGW.
*/
/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
/************** Begin file sqlite3.h *****************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
|
︙ | | |
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
-
-
-
+
+
+
|
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION "3.8.3.1"
#define SQLITE_VERSION_NUMBER 3008003
#define SQLITE_SOURCE_ID "2014-02-11 14:52:19 ea3317a4803d71d88183b29f1d3086f46d68a00e"
#define SQLITE_VERSION "3.8.4"
#define SQLITE_VERSION_NUMBER 3008004
#define SQLITE_SOURCE_ID "2014-03-06 00:30:27 29b0a4f158785449b6f3da6fcceeb63442c9711c"
/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
|
︙ | | |
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
|
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
|
+
-
+
|
#define SQLITE_TESTCTRL_RESERVE 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
#define SQLITE_TESTCTRL_ISKEYWORD 16
#define SQLITE_TESTCTRL_SCRATCHMALLOC 17
#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18
#define SQLITE_TESTCTRL_EXPLAIN_STMT 19
#define SQLITE_TESTCTRL_NEVER_CORRUPT 20
#define SQLITE_TESTCTRL_VDBE_COVERAGE 21
#define SQLITE_TESTCTRL_LAST 20
#define SQLITE_TESTCTRL_LAST 21
/*
** CAPI3REF: SQLite Runtime Status
**
** ^This interface is used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks. ^The first argument is an integer code for
|
︙ | | |
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
|
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
|
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
} /* end of the 'extern "C"' block */
#endif
#endif /* ifndef _SQLITE3RTREE_H_ */
/************** End of sqlite3.h *********************************************/
/************** Begin file sqliteInt.h ***************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it. If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
** system #includes. Hence, this block of code must be the very first
** code in all source files.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: Red Hat 7.2) but you want your code to work
** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
**
** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#ifdef _HAVE_SQLITE_CONFIG_H
#include "config.h"
|
︙ | | |
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
|
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
|
-
-
|
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt);
SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt);
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64);
SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*);
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
|
︙ | | |
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
|
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
|
-
+
+
+
+
|
SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */
int (*xAdvance)(BtCursor *, int *);
} p4;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
char *zComment; /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
int cnt; /* Number of times this instruction was executed */
u32 cnt; /* Number of times this instruction was executed */
u64 cycles; /* Total time spent executing this instruction */
#endif
#ifdef SQLITE_VDBE_COVERAGE
int iSrcLine; /* Source-code line that generated this opcode */
#endif
};
typedef struct VdbeOp VdbeOp;
/*
** A sub-routine used to implement a trigger program.
*/
|
︙ | | |
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
|
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
|
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
-
+
-
-
-
+
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
+
+
+
+
-
-
-
-
-
+
+
+
+
+
-
-
-
-
+
+
+
+
-
-
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
+
|
#define OP_Vacuum 13
#define OP_VFilter 14 /* synopsis: iPlan=r[P3] zPlan='P4' */
#define OP_VUpdate 15 /* synopsis: data=r[P3@P2] */
#define OP_Goto 16
#define OP_Gosub 17
#define OP_Return 18
#define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */
#define OP_InitCoroutine 20
#define OP_EndCoroutine 21
#define OP_Yield 20
#define OP_HaltIfNull 21 /* synopsis: if r[P3] null then halt */
#define OP_Halt 22
#define OP_Integer 23 /* synopsis: r[P2]=P1 */
#define OP_Int64 24 /* synopsis: r[P2]=P4 */
#define OP_String 25 /* synopsis: r[P2]='P4' (len=P1) */
#define OP_Null 26 /* synopsis: r[P2..P3]=NULL */
#define OP_Blob 27 /* synopsis: r[P2]=P4 (len=P1) */
#define OP_Variable 28 /* synopsis: r[P2]=parameter(P1,P4) */
#define OP_Move 29 /* synopsis: r[P2@P3]=r[P1@P3] */
#define OP_Copy 30 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */
#define OP_SCopy 31 /* synopsis: r[P2]=r[P1] */
#define OP_ResultRow 32 /* synopsis: output=r[P1@P2] */
#define OP_CollSeq 33
#define OP_AddImm 34 /* synopsis: r[P1]=r[P1]+P2 */
#define OP_MustBeInt 35
#define OP_RealAffinity 36
#define OP_Permutation 37
#define OP_Compare 38
#define OP_Jump 39
#define OP_Once 40
#define OP_If 41
#define OP_IfNot 42
#define OP_Column 43 /* synopsis: r[P3]=PX */
#define OP_Affinity 44 /* synopsis: affinity(r[P1@P2]) */
#define OP_MakeRecord 45 /* synopsis: r[P3]=mkrec(r[P1@P2]) */
#define OP_Count 46 /* synopsis: r[P2]=count() */
#define OP_ReadCookie 47
#define OP_SetCookie 48
#define OP_Yield 22
#define OP_HaltIfNull 23 /* synopsis: if r[P3]=null halt */
#define OP_Halt 24
#define OP_Integer 25 /* synopsis: r[P2]=P1 */
#define OP_Int64 26 /* synopsis: r[P2]=P4 */
#define OP_String 27 /* synopsis: r[P2]='P4' (len=P1) */
#define OP_Null 28 /* synopsis: r[P2..P3]=NULL */
#define OP_SoftNull 29 /* synopsis: r[P1]=NULL */
#define OP_Blob 30 /* synopsis: r[P2]=P4 (len=P1) */
#define OP_Variable 31 /* synopsis: r[P2]=parameter(P1,P4) */
#define OP_Move 32 /* synopsis: r[P2@P3]=r[P1@P3] */
#define OP_Copy 33 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */
#define OP_SCopy 34 /* synopsis: r[P2]=r[P1] */
#define OP_ResultRow 35 /* synopsis: output=r[P1@P2] */
#define OP_CollSeq 36
#define OP_AddImm 37 /* synopsis: r[P1]=r[P1]+P2 */
#define OP_MustBeInt 38
#define OP_RealAffinity 39
#define OP_Permutation 40
#define OP_Compare 41
#define OP_Jump 42
#define OP_Once 43
#define OP_If 44
#define OP_IfNot 45
#define OP_Column 46 /* synopsis: r[P3]=PX */
#define OP_Affinity 47 /* synopsis: affinity(r[P1@P2]) */
#define OP_MakeRecord 48 /* synopsis: r[P3]=mkrec(r[P1@P2]) */
#define OP_Count 49 /* synopsis: r[P2]=count() */
#define OP_ReadCookie 50
#define OP_SetCookie 51
#define OP_VerifyCookie 49
#define OP_OpenRead 50 /* synopsis: root=P2 iDb=P3 */
#define OP_OpenWrite 51 /* synopsis: root=P2 iDb=P3 */
#define OP_OpenAutoindex 52 /* synopsis: nColumn=P2 */
#define OP_OpenEphemeral 53 /* synopsis: nColumn=P2 */
#define OP_SorterOpen 54
#define OP_OpenPseudo 55 /* synopsis: content in r[P2@P3] */
#define OP_Close 56
#define OP_SeekLt 57 /* synopsis: key=r[P3@P4] */
#define OP_SeekLe 58 /* synopsis: key=r[P3@P4] */
#define OP_SeekGe 59 /* synopsis: key=r[P3@P4] */
#define OP_SeekGt 60 /* synopsis: key=r[P3@P4] */
#define OP_Seek 61 /* synopsis: intkey=r[P2] */
#define OP_NoConflict 62 /* synopsis: key=r[P3@P4] */
#define OP_NotFound 63 /* synopsis: key=r[P3@P4] */
#define OP_Found 64 /* synopsis: key=r[P3@P4] */
#define OP_NotExists 65 /* synopsis: intkey=r[P3] */
#define OP_Sequence 66 /* synopsis: r[P2]=rowid */
#define OP_NewRowid 67 /* synopsis: r[P2]=rowid */
#define OP_Insert 68 /* synopsis: intkey=r[P3] data=r[P2] */
#define OP_OpenRead 52 /* synopsis: root=P2 iDb=P3 */
#define OP_OpenWrite 53 /* synopsis: root=P2 iDb=P3 */
#define OP_OpenAutoindex 54 /* synopsis: nColumn=P2 */
#define OP_OpenEphemeral 55 /* synopsis: nColumn=P2 */
#define OP_SorterOpen 56
#define OP_OpenPseudo 57 /* synopsis: P3 columns in r[P2] */
#define OP_Close 58
#define OP_SeekLT 59
#define OP_SeekLE 60
#define OP_SeekGE 61
#define OP_SeekGT 62
#define OP_Seek 63 /* synopsis: intkey=r[P2] */
#define OP_NoConflict 64 /* synopsis: key=r[P3@P4] */
#define OP_NotFound 65 /* synopsis: key=r[P3@P4] */
#define OP_Found 66 /* synopsis: key=r[P3@P4] */
#define OP_NotExists 67 /* synopsis: intkey=r[P3] */
#define OP_Sequence 68 /* synopsis: r[P2]=rowid */
#define OP_NewRowid 69 /* synopsis: r[P2]=rowid */
#define OP_Insert 70 /* synopsis: intkey=r[P3] data=r[P2] */
#define OP_InsertInt 69 /* synopsis: intkey=P3 data=r[P2] */
#define OP_Delete 70
#define OP_Or 71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And 72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
#define OP_InsertInt 73 /* synopsis: intkey=P3 data=r[P2] */
#define OP_Delete 74
#define OP_ResetCount 73
#define OP_ResetCount 75
#define OP_SorterCompare 74 /* synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 */
#define OP_SorterData 75 /* synopsis: r[P2]=data */
#define OP_IsNull 76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull 77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne 78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */
#define OP_Eq 79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */
#define OP_Gt 80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */
#define OP_Le 81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */
#define OP_Lt 82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */
#define OP_Ge 83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */
#define OP_RowKey 84 /* synopsis: r[P2]=key */
#define OP_SorterCompare 84 /* synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 */
#define OP_BitAnd 85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr 86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft 87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight 88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add 89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract 90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply 91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide 92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder 93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat 94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_RowData 95 /* synopsis: r[P2]=data */
#define OP_SorterData 95 /* synopsis: r[P2]=data */
#define OP_BitNot 96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_String8 97 /* same as TK_STRING, synopsis: r[P2]='P4' */
#define OP_RowKey 98 /* synopsis: r[P2]=key */
#define OP_RowData 99 /* synopsis: r[P2]=data */
#define OP_Rowid 98 /* synopsis: r[P2]=rowid */
#define OP_NullRow 99
#define OP_Last 100
#define OP_SorterSort 101
#define OP_Sort 102
#define OP_Rewind 103
#define OP_SorterInsert 104
#define OP_IdxInsert 105 /* synopsis: key=r[P2] */
#define OP_IdxDelete 106 /* synopsis: key=r[P2@P3] */
#define OP_IdxRowid 107 /* synopsis: r[P2]=rowid */
#define OP_IdxLT 108 /* synopsis: key=r[P3@P4] */
#define OP_IdxGE 109 /* synopsis: key=r[P3@P4] */
#define OP_Destroy 110
#define OP_Clear 111
#define OP_CreateIndex 112 /* synopsis: r[P2]=root iDb=P1 */
#define OP_CreateTable 113 /* synopsis: r[P2]=root iDb=P1 */
#define OP_ParseSchema 114
#define OP_LoadAnalysis 115
#define OP_DropTable 116
#define OP_DropIndex 117
#define OP_DropTrigger 118
#define OP_IntegrityCk 119
#define OP_RowSetAdd 120 /* synopsis: rowset(P1)=r[P2] */
#define OP_RowSetRead 121 /* synopsis: r[P3]=rowset(P1) */
#define OP_RowSetTest 122 /* synopsis: if r[P3] in rowset(P1) goto P2 */
#define OP_Program 123
#define OP_Param 124
#define OP_FkCounter 125 /* synopsis: fkctr[P1]+=P2 */
#define OP_FkIfZero 126 /* synopsis: if fkctr[P1]==0 goto P2 */
#define OP_MemMax 127 /* synopsis: r[P1]=max(r[P1],r[P2]) */
#define OP_IfPos 128 /* synopsis: if r[P1]>0 goto P2 */
#define OP_Rowid 100 /* synopsis: r[P2]=rowid */
#define OP_NullRow 101
#define OP_Last 102
#define OP_SorterSort 103
#define OP_Sort 104
#define OP_Rewind 105
#define OP_SorterInsert 106
#define OP_IdxInsert 107 /* synopsis: key=r[P2] */
#define OP_IdxDelete 108 /* synopsis: key=r[P2@P3] */
#define OP_IdxRowid 109 /* synopsis: r[P2]=rowid */
#define OP_IdxLE 110 /* synopsis: key=r[P3@P4] */
#define OP_IdxGT 111 /* synopsis: key=r[P3@P4] */
#define OP_IdxLT 112 /* synopsis: key=r[P3@P4] */
#define OP_IdxGE 113 /* synopsis: key=r[P3@P4] */
#define OP_Destroy 114
#define OP_Clear 115
#define OP_CreateIndex 116 /* synopsis: r[P2]=root iDb=P1 */
#define OP_CreateTable 117 /* synopsis: r[P2]=root iDb=P1 */
#define OP_ParseSchema 118
#define OP_LoadAnalysis 119
#define OP_DropTable 120
#define OP_DropIndex 121
#define OP_DropTrigger 122
#define OP_IntegrityCk 123
#define OP_RowSetAdd 124 /* synopsis: rowset(P1)=r[P2] */
#define OP_RowSetRead 125 /* synopsis: r[P3]=rowset(P1) */
#define OP_RowSetTest 126 /* synopsis: if r[P3] in rowset(P1) goto P2 */
#define OP_Program 127
#define OP_Param 128
#define OP_FkCounter 129 /* synopsis: fkctr[P1]+=P2 */
#define OP_FkIfZero 130 /* synopsis: if fkctr[P1]==0 goto P2 */
#define OP_MemMax 131 /* synopsis: r[P1]=max(r[P1],r[P2]) */
#define OP_IfPos 132 /* synopsis: if r[P1]>0 goto P2 */
#define OP_IfNeg 129 /* synopsis: if r[P1]<0 goto P2 */
#define OP_IfZero 130 /* synopsis: r[P1]+=P3, if r[P1]==0 goto P2 */
#define OP_AggFinal 131 /* synopsis: accum=r[P1] N=P2 */
#define OP_IncrVacuum 132
#define OP_Real 133 /* same as TK_FLOAT, synopsis: r[P2]=P4 */
#define OP_IfNeg 134 /* synopsis: if r[P1]<0 goto P2 */
#define OP_IfZero 135 /* synopsis: r[P1]+=P3, if r[P1]==0 goto P2 */
#define OP_AggFinal 136 /* synopsis: accum=r[P1] N=P2 */
#define OP_IncrVacuum 137
#define OP_Expire 134
#define OP_TableLock 135 /* synopsis: iDb=P1 root=P2 write=P3 */
#define OP_VBegin 136
#define OP_VCreate 137
#define OP_VDestroy 138
#define OP_Expire 138
#define OP_TableLock 139 /* synopsis: iDb=P1 root=P2 write=P3 */
#define OP_VBegin 140
#define OP_VCreate 141
#define OP_VDestroy 142
#define OP_VOpen 139
#define OP_VColumn 140 /* synopsis: r[P3]=vcolumn(P2) */
#define OP_VNext 141
#define OP_VRename 142
#define OP_ToText 143 /* same as TK_TO_TEXT */
#define OP_ToBlob 144 /* same as TK_TO_BLOB */
#define OP_ToNumeric 145 /* same as TK_TO_NUMERIC */
#define OP_ToInt 146 /* same as TK_TO_INT */
#define OP_ToReal 147 /* same as TK_TO_REAL */
#define OP_VOpen 148
#define OP_VColumn 149 /* synopsis: r[P3]=vcolumn(P2) */
#define OP_VNext 150
#define OP_VRename 151
#define OP_Pagecount 148
#define OP_MaxPgcnt 149
#define OP_Trace 150
#define OP_Noop 151
#define OP_Explain 152
#define OP_Pagecount 152
#define OP_MaxPgcnt 153
#define OP_Init 154 /* synopsis: Start at P2 */
#define OP_Noop 155
#define OP_Explain 156
/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
#define OPFLG_OUT2 0x0020 /* out2: P2 is an output */
#define OPFLG_OUT3 0x0040 /* out3: P3 is an output */
#define OPFLG_INITIALIZER {\
/* 0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,\
/* 8 */ 0x01, 0x01, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,\
/* 16 */ 0x01, 0x01, 0x04, 0x24, 0x04, 0x10, 0x00, 0x02,\
/* 24 */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x20,\
/* 32 */ 0x00, 0x00, 0x04, 0x05, 0x04, 0x00, 0x00, 0x01,\
/* 40 */ 0x01, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02, 0x02,\
/* 48 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 56 */ 0x00, 0x11, 0x11, 0x11, 0x11, 0x08, 0x11, 0x11,\
/* 64 */ 0x11, 0x11, 0x02, 0x02, 0x00, 0x00, 0x00, 0x4c,\
/* 16 */ 0x01, 0x01, 0x04, 0x24, 0x01, 0x04, 0x05, 0x10,\
/* 24 */ 0x00, 0x02, 0x02, 0x02, 0x02, 0x00, 0x02, 0x02,\
/* 32 */ 0x00, 0x00, 0x20, 0x00, 0x00, 0x04, 0x05, 0x04,\
/* 40 */ 0x00, 0x00, 0x01, 0x01, 0x05, 0x05, 0x00, 0x00,\
/* 48 */ 0x00, 0x02, 0x02, 0x10, 0x00, 0x00, 0x00, 0x00,\
/* 56 */ 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x08,\
/* 64 */ 0x11, 0x11, 0x11, 0x11, 0x02, 0x02, 0x00, 0x4c,\
/* 72 */ 0x4c, 0x00, 0x00, 0x00, 0x05, 0x05, 0x15, 0x15,\
/* 80 */ 0x15, 0x15, 0x15, 0x15, 0x00, 0x4c, 0x4c, 0x4c,\
/* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x00,\
/* 96 */ 0x24, 0x02, 0x02, 0x00, 0x01, 0x01, 0x01, 0x01,\
/* 104 */ 0x08, 0x08, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00,\
/* 112 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 120 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01, 0x08,\
/* 128 */ 0x05, 0x05, 0x05, 0x00, 0x01, 0x02, 0x00, 0x00,\
/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x04,\
/* 144 */ 0x04, 0x04, 0x04, 0x04, 0x02, 0x02, 0x00, 0x00,\
/* 152 */ 0x00,}
/* 96 */ 0x24, 0x02, 0x00, 0x00, 0x02, 0x00, 0x01, 0x01,\
/* 104 */ 0x01, 0x01, 0x08, 0x08, 0x00, 0x02, 0x01, 0x01,\
/* 112 */ 0x01, 0x01, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00,\
/* 120 */ 0x00, 0x00, 0x00, 0x00, 0x0c, 0x45, 0x15, 0x01,\
/* 128 */ 0x02, 0x00, 0x01, 0x08, 0x05, 0x02, 0x05, 0x05,\
/* 136 */ 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,\
/* 144 */ 0x04, 0x04, 0x04, 0x04, 0x00, 0x00, 0x01, 0x00,\
/* 152 */ 0x02, 0x02, 0x01, 0x00, 0x00,}
/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/
/*
** Prototypes for the VDBE interface. See comments on the implementation
** for a description of what each of these routines does.
*/
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*);
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr);
|
︙ | | |
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
|
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
|
-
+
+
+
+
|
SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif
SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,const UnpackedRecord*,int);
SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);
typedef int (*RecordCompare)(int,const void*,const UnpackedRecord*,int);
SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);
#ifndef SQLITE_OMIT_TRIGGER
SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif
/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
** each VDBE opcode.
|
︙ | | |
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
|
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
# endif
#else
# define VdbeComment(X)
# define VdbeNoopComment(X)
# define VdbeModuleComment(X)
#endif
/*
** The VdbeCoverage macros are used to set a coverage testing point
** for VDBE branch instructions. The coverage testing points are line
** numbers in the sqlite3.c source file. VDBE branch coverage testing
** only works with an amalagmation build. That's ok since a VDBE branch
** coverage build designed for testing the test suite only. No application
** should ever ship with VDBE branch coverage measuring turned on.
**
** VdbeCoverage(v) // Mark the previously coded instruction
** // as a branch
**
** VdbeCoverageIf(v, conditional) // Mark previous if conditional true
**
** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken
**
** VdbeCoverageNeverTaken(v) // Previous branch is never taken
**
** Every VDBE branch operation must be tagged with one of the macros above.
** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and
** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch()
** routine in vdbe.c, alerting the developer to the missed tag.
*/
#ifdef SQLITE_VDBE_COVERAGE
SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe*,int);
# define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__)
# define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__)
# define VdbeCoverageAlwaysTaken(v) sqlite3VdbeSetLineNumber(v,2);
# define VdbeCoverageNeverTaken(v) sqlite3VdbeSetLineNumber(v,1);
#else
# define VdbeCoverage(v)
# define VdbeCoverageIf(v,x)
# define VdbeCoverageAlwaysTaken(v)
# define VdbeCoverageNeverTaken(v)
#endif
#endif
/************** End of vdbe.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include pager.h in the middle of sqliteInt.h *****************/
/************** Begin file pager.h *******************************************/
/*
|
︙ | | |
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
|
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
|
-
+
-
|
#define OptimizationEnabled(db, mask) 1
#endif
/*
** Return true if it OK to factor constant expressions into the initialization
** code. The argument is a Parse object for the code generator.
*/
#define ConstFactorOk(P) \
#define ConstFactorOk(P) ((P)->okConstFactor)
((P)->cookieGoto>0 && OptimizationEnabled((P)->db,SQLITE_FactorOutConst))
/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
|
︙ | | |
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
|
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
|
+
+
+
+
+
+
|
** affinity value.
*/
#define SQLITE_AFF_MASK 0x67
/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL. It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/
#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ 0x80 /* NULL=NULL */
#define SQLITE_NOTNULL 0x88 /* Assert that operands are never NULL */
/*
** An object of this type is created for each virtual table present in
** the database schema.
**
** If the database schema is shared, then there is one instance of this
** structure for each database connection (sqlite3*) that uses the shared
|
︙ | | |
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
|
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
|
+
+
+
-
+
+
+
-
-
-
-
-
|
** Records are used to store the content of a table row and to store
** the key of an index. A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
** OP_Column opcode.
**
** This structure holds a record that has already been disassembled
** into its constituent fields.
**
** The r1 and r2 member variables are only used by the optimized comparison
** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
*/
struct UnpackedRecord {
KeyInfo *pKeyInfo; /* Collation and sort-order information */
u16 nField; /* Number of entries in apMem[] */
u8 flags; /* Boolean settings. UNPACKED_... below */
i8 default_rc; /* Comparison result if keys are equal */
Mem *aMem; /* Values */
int r1; /* Value to return if (lhs > rhs) */
int r2; /* Value to return if (rhs < lhs) */
};
/*
** Allowed values of UnpackedRecord.flags
*/
#define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */
#define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */
/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure. For example, suppose
|
︙ | | |
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
|
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
|
-
-
+
+
+
|
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
**
** In the colUsed field, the high-order bit (bit 63) is set if the table
** contains more than 63 columns and the 64-th or later column is used.
*/
struct SrcList {
u8 nSrc; /* Number of tables or subqueries in the FROM clause */
u8 nAlloc; /* Number of entries allocated in a[] below */
int nSrc; /* Number of tables or subqueries in the FROM clause */
u32 nAlloc; /* Number of entries allocated in a[] below */
struct SrcList_item {
Schema *pSchema; /* Schema to which this item is fixed */
char *zDatabase; /* Name of database holding this table */
char *zName; /* Name of the table */
char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
Table *pTab; /* An SQL table corresponding to zName */
Select *pSelect; /* A SELECT statement used in place of a table name */
int addrFillSub; /* Address of subroutine to manifest a subquery */
int regReturn; /* Register holding return address of addrFillSub */
int regResult; /* Registers holding results of a co-routine */
u8 jointype; /* Type of join between this able and the previous */
unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */
unsigned isCorrelated :1; /* True if sub-query is correlated */
unsigned viaCoroutine :1; /* Implemented as a co-routine */
unsigned isRecursive :1; /* True for recursive reference in WITH */
#ifndef SQLITE_OMIT_EXPLAIN
u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */
|
︙ | | |
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
|
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
|
-
-
+
+
|
SrcList *pSrc; /* The FROM clause */
Expr *pWhere; /* The WHERE clause */
ExprList *pGroupBy; /* The GROUP BY clause */
Expr *pHaving; /* The HAVING clause */
ExprList *pOrderBy; /* The ORDER BY clause */
Select *pPrior; /* Prior select in a compound select statement */
Select *pNext; /* Next select to the left in a compound */
Select *pRightmost; /* Right-most select in a compound select statement */
Expr *pLimit; /* LIMIT expression. NULL means not used. */
Expr *pOffset; /* OFFSET expression. NULL means not used. */
With *pWith; /* WITH clause attached to this select. Or NULL. */
};
/*
** Allowed values for Select.selFlags. The "SF" prefix stands for
** "Select Flag".
*/
#define SF_Distinct 0x0001 /* Output should be DISTINCT */
#define SF_Resolved 0x0002 /* Identifiers have been resolved */
#define SF_Aggregate 0x0004 /* Contains aggregate functions */
#define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */
#define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */
#define SF_UseSorter 0x0040 /* Sort using a sorter */
#define SF_Values 0x0080 /* Synthesized from VALUES clause */
#define SF_Materialize 0x0100 /* Force materialization of views */
#define SF_Materialize 0x0100 /* NOT USED */
#define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */
#define SF_Compound 0x1000 /* Part of a compound query */
/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros. The "SRT" prefix means "SELECT Result
** Type".
**
|
︙ | | |
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
|
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
|
-
+
-
-
+
+
-
+
+
-
-
+
-
-
+
+
+
+
+
+
|
char *zErrMsg; /* An error message */
Vdbe *pVdbe; /* An engine for executing database bytecode */
int rc; /* Return code from execution */
u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
u8 checkSchema; /* Causes schema cookie check after an error */
u8 nested; /* Number of nested calls to the parser/code generator */
u8 nTempReg; /* Number of temporary registers in aTempReg[] */
u8 nTempInUse; /* Number of aTempReg[] currently checked out */
u8 nColCache; /* Number of entries in aColCache[] */
u8 iColCache; /* Next entry in aColCache[] to replace */
u8 isMultiWrite; /* True if statement may modify/insert multiple rows */
u8 mayAbort; /* True if statement may throw an ABORT exception */
u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */
u8 okConstFactor; /* OK to factor out constants */
int aTempReg[8]; /* Holding area for temporary registers */
int nRangeReg; /* Size of the temporary register block */
int iRangeReg; /* First register in temporary register block */
int nErr; /* Number of errors seen */
int nTab; /* Number of previously allocated VDBE cursors */
int nMem; /* Number of memory cells used so far */
int nSet; /* Number of sets used so far */
int nOnce; /* Number of OP_Once instructions so far */
int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */
int nLabel; /* Number of labels used */
int *aLabel; /* Space to hold the labels */
int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */
int ckBase; /* Base register of data during check constraints */
int iPartIdxTab; /* Table corresponding to a partial index */
int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
int iCacheCnt; /* Counter used to generate aColCache[].lru values */
int nLabel; /* Number of labels used */
int *aLabel; /* Space to hold the labels */
struct yColCache {
int iTable; /* Table cursor number */
int iColumn; /* Table column number */
i16 iColumn; /* Table column number */
u8 tempReg; /* iReg is a temp register that needs to be freed */
int iLevel; /* Nesting level */
int iReg; /* Reg with value of this column. 0 means none. */
int lru; /* Least recently used entry has the smallest value */
} aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
ExprList *pConstExpr;/* Constant expressions */
Token constraintName;/* Name of the constraint currently being parsed */
yDbMask writeMask; /* Start a write transaction on these databases */
yDbMask cookieMask; /* Bitmask of schema verified databases */
int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
int regRowid; /* Register holding rowid of CREATE TABLE entry */
int regRoot; /* Register holding root page number for new objects */
int nMaxArg; /* Max args passed to user function by sub-program */
Token constraintName;/* Name of the constraint currently being parsed */
#ifndef SQLITE_OMIT_SHARED_CACHE
int nTableLock; /* Number of locks in aTableLock */
TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
/* Information used while coding trigger programs. */
Parse *pToplevel; /* Parse structure for main program (or NULL) */
Table *pTriggerTab; /* Table triggers are being coded for */
int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */
int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */
u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */
u32 oldmask; /* Mask of old.* columns referenced */
u32 newmask; /* Mask of new.* columns referenced */
u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
u8 disableTriggers; /* True to disable triggers */
/************************************************************************
/* Above is constant between recursions. Below is reset before and after
** each recursion */
** Above is constant between recursions. Below is reset before and after
** each recursion. The boundary between these two regions is determined
** using offsetof(Parse,nVar) so the nVar field must be the first field
** in the recursive region.
************************************************************************/
int nVar; /* Number of '?' variables seen in the SQL so far */
int nzVar; /* Number of available slots in azVar[] */
u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */
u8 bFreeWith; /* True if pWith should be freed with parser */
u8 explain; /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
int nVtabLock; /* Number of virtual tables to lock */
#endif
int nAlias; /* Number of aliased result set columns */
int nHeight; /* Expression tree height of current sub-select */
|
︙ | | |
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
|
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
|
-
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
Token sArg; /* Complete text of a module argument */
Table **apVtabLock; /* Pointer to virtual tables needing locking */
#endif
Table *pZombieTab; /* List of Table objects to delete after code gen */
TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
With *pWith; /* Current WITH clause, or NULL */
u8 bFreeWith; /* True if pWith should be freed with parser */
};
/*
** Return true if currently inside an sqlite3_declare_vtab() call.
*/
#ifdef SQLITE_OMIT_VIRTUALTABLE
#define IN_DECLARE_VTAB 0
|
︙ | | |
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
|
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
|
+
+
+
+
+
+
+
|
void (*xLog)(void*,int,const char*); /* Function for logging */
void *pLogArg; /* First argument to xLog() */
int bLocaltimeFault; /* True to fail localtime() calls */
#ifdef SQLITE_ENABLE_SQLLOG
void(*xSqllog)(void*,sqlite3*,const char*, int);
void *pSqllogArg;
#endif
#ifdef SQLITE_VDBE_COVERAGE
/* The following callback (if not NULL) is invoked on every VDBE branch
** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
*/
void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */
void *pVdbeBranchArg; /* 1st argument */
#endif
};
/*
** This macro is used inside of assert() statements to indicate that
** the assert is only valid on a well-formed database. Instead of:
**
** assert( X );
|
︙ | | |
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
|
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
|
-
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse);
SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse);
#else
# define sqlite3AutoincrementBegin(X)
# define sqlite3AutoincrementEnd(X)
#endif
SQLITE_PRIVATE int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*);
SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
|
︙ | | |
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
|
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
|
-
+
+
-
+
|
SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int);
SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
#define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */
#define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */
SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
|
︙ | | |
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
|
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
|
-
|
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
u8,u8,int,int*);
|
︙ | | |
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
|
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
|
-
+
|
(u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
sqlite3PutVarint32((A),(B)))
#define getVarint sqlite3GetVarint
#define putVarint sqlite3PutVarint
SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int);
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8);
SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
SQLITE_PRIVATE u8 sqlite3HexToInt(int h);
|
︙ | | |
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
|
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
|
+
+
+
|
"OMIT_CHECK",
#endif
#ifdef SQLITE_OMIT_COMPLETE
"OMIT_COMPLETE",
#endif
#ifdef SQLITE_OMIT_COMPOUND_SELECT
"OMIT_COMPOUND_SELECT",
#endif
#ifdef SQLITE_OMIT_CTE
"OMIT_CTE",
#endif
#ifdef SQLITE_OMIT_DATETIME_FUNCS
"OMIT_DATETIME_FUNCS",
#endif
#ifdef SQLITE_OMIT_DECLTYPE
"OMIT_DECLTYPE",
#endif
|
︙ | | |
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
|
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
|
-
|
i8 iDb; /* Index of cursor database in db->aDb[] (or -1) */
u8 nullRow; /* True if pointing to a row with no data */
u8 rowidIsValid; /* True if lastRowid is valid */
u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
Bool isTable:1; /* True if a table requiring integer keys */
Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */
Bool multiPseudo:1; /* Multi-register pseudo-cursor */
sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
i64 seqCount; /* Sequence counter */
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
i64 lastRowid; /* Rowid being deleted by OP_Delete */
VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */
/* Cached information about the header for the data record that the
|
︙ | | |
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
|
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
|
-
|
int nZero; /* Used when bit MEM_Zero is set in flags */
FuncDef *pDef; /* Used only when flags==MEM_Agg */
RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
VdbeFrame *pFrame; /* Used when flags==MEM_Frame */
} u;
int n; /* Number of characters in string value, excluding '\0' */
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
#ifdef SQLITE_DEBUG
Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */
void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */
#endif
void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
|
︙ | | |
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
|
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
|
+
-
+
-
+
-
+
|
** flags may coexist with the MEM_Str flag.
*/
#define MEM_Null 0x0001 /* Value is NULL */
#define MEM_Str 0x0002 /* Value is a string */
#define MEM_Int 0x0004 /* Value is an integer */
#define MEM_Real 0x0008 /* Value is a real number */
#define MEM_Blob 0x0010 /* Value is a BLOB */
#define MEM_AffMask 0x001f /* Mask of affinity bits */
#define MEM_RowSet 0x0020 /* Value is a RowSet object */
#define MEM_Frame 0x0040 /* Value is a VdbeFrame object */
#define MEM_Invalid 0x0080 /* Value is undefined */
#define MEM_Undefined 0x0080 /* Value is undefined */
#define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */
#define MEM_TypeMask 0x01ff /* Mask of type bits */
/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z. The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/
#define MEM_Term 0x0200 /* String rep is nul terminated */
#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
#define MEM_Dyn 0x0400 /* Need to call Mem.xDel() on Mem.z */
#define MEM_Static 0x0800 /* Mem.z points to a static string */
#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
#ifdef SQLITE_OMIT_INCRBLOB
#undef MEM_Zero
#define MEM_Zero 0x0000
#endif
/*
** Clear any existing type flags from a Mem and replace them with f
*/
#define MemSetTypeFlag(p, f) \
((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
/*
** Return true if a memory cell is not marked as invalid. This macro
** is for use inside assert() statements only.
*/
#ifdef SQLITE_DEBUG
#define memIsValid(M) ((M)->flags & MEM_Invalid)==0
#define memIsValid(M) ((M)->flags & MEM_Undefined)==0
#endif
/*
** Each auxilliary data pointer stored by a user defined function
** implementation calling sqlite3_set_auxdata() is stored in an instance
** of this structure. All such structures associated with a single VM
** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
|
︙ | | |
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
|
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
|
-
+
|
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,const UnpackedRecord*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
|
︙ | | |
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
|
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
|
-
-
-
+
+
+
+
-
+
|
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
#define VdbeMemRelease(X) \
if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \
sqlite3VdbeMemReleaseExternal(X);
#define VdbeMemDynamic(X) \
(((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
#define VdbeMemRelease(X) \
if( VdbeMemDynamic(X) ) sqlite3VdbeMemReleaseExternal(X);
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem);
SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p);
SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)
# define sqlite3VdbeLeave(X)
#endif
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*);
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
#else
# define sqlite3VdbeCheckFk(p,i) 0
#endif
|
︙ | | |
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
|
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
|
+
+
+
+
+
+
|
mem5.nAlloc++;
mem5.totalAlloc += iFullSz;
mem5.totalExcess += iFullSz - nByte;
mem5.currentCount++;
mem5.currentOut += iFullSz;
if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
#ifdef SQLITE_DEBUG
/* Make sure the allocated memory does not assume that it is set to zero
** or retains a value from a previous allocation */
memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
#endif
/* Return a pointer to the allocated memory. */
return (void*)&mem5.zPool[i*mem5.szAtom];
}
/*
** Free an outstanding memory allocation.
|
︙ | | |
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
|
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
|
+
+
+
+
+
+
+
|
iBlock = iBuddy;
}else{
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
mem5.aCtrl[iBuddy] = 0;
}
size *= 2;
}
#ifdef SQLITE_DEBUG
/* Overwrite freed memory with the 0x55 bit pattern to verify that it is
** not used after being freed */
memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
#endif
memsys5Link(iBlock, iLogsize);
}
/*
** Allocate nBytes of memory.
*/
static void *memsys5Malloc(int nBytes){
|
︙ | | |
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
|
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
|
-
+
|
}
*z = 0;
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
sqlite3VdbeMemRelease(pMem);
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
pMem->enc = desiredEnc;
pMem->flags |= (MEM_Term|MEM_Dyn);
pMem->flags |= (MEM_Term);
pMem->z = (char*)zOut;
pMem->zMalloc = pMem->z;
translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
{
char zBuf[100];
|
︙ | | |
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
|
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
|
-
|
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
if( db->mallocFailed ){
sqlite3VdbeMemRelease(&m);
m.z = 0;
}
assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
assert( m.z || db->mallocFailed );
return m.z;
}
/*
** zIn is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
|
︙ | | |
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
|
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
|
-
-
+
|
i64 iA = *pA;
testcase( iA==0 ); testcase( iA==1 );
testcase( iB==-1 ); testcase( iB==0 );
if( iB>=0 ){
testcase( iA>0 && LARGEST_INT64 - iA == iB );
testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
*pA += iB;
}else{
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
*pA += iB;
}
*pA += iB;
return 0;
}
SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){
testcase( iB==SMALLEST_INT64+1 );
if( iB==SMALLEST_INT64 ){
testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
if( (*pA)>=0 ) return 1;
|
︙ | | |
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
|
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
|
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
|
i64 iA = *pA;
i64 iA1, iA0, iB1, iB0, r;
iA1 = iA/TWOPOWER32;
iA0 = iA % TWOPOWER32;
iB1 = iB/TWOPOWER32;
iB0 = iB % TWOPOWER32;
if( iA1*iB1 != 0 ) return 1;
assert( iA1*iB0==0 || iA0*iB1==0 );
r = iA1*iB0 + iA0*iB1;
if( iA1==0 ){
if( iB1==0 ){
*pA *= iB;
return 0;
}
r = iA0*iB1;
}else if( iB1==0 ){
r = iA1*iB0;
}else{
/* If both iA1 and iB1 are non-zero, overflow will result */
return 1;
}
testcase( r==(-TWOPOWER31)-1 );
testcase( r==(-TWOPOWER31) );
testcase( r==TWOPOWER31 );
testcase( r==TWOPOWER31-1 );
if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
r *= TWOPOWER32;
if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
|
︙ | | |
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
|
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
|
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
-
+
-
-
-
+
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
+
+
+
+
-
-
-
-
-
+
+
+
+
+
-
-
-
-
+
+
+
+
-
-
-
-
-
+
+
+
+
+
|
/* 13 */ "Vacuum" OpHelp(""),
/* 14 */ "VFilter" OpHelp("iPlan=r[P3] zPlan='P4'"),
/* 15 */ "VUpdate" OpHelp("data=r[P3@P2]"),
/* 16 */ "Goto" OpHelp(""),
/* 17 */ "Gosub" OpHelp(""),
/* 18 */ "Return" OpHelp(""),
/* 19 */ "Not" OpHelp("r[P2]= !r[P1]"),
/* 20 */ "InitCoroutine" OpHelp(""),
/* 21 */ "EndCoroutine" OpHelp(""),
/* 20 */ "Yield" OpHelp(""),
/* 21 */ "HaltIfNull" OpHelp("if r[P3] null then halt"),
/* 22 */ "Halt" OpHelp(""),
/* 23 */ "Integer" OpHelp("r[P2]=P1"),
/* 24 */ "Int64" OpHelp("r[P2]=P4"),
/* 25 */ "String" OpHelp("r[P2]='P4' (len=P1)"),
/* 26 */ "Null" OpHelp("r[P2..P3]=NULL"),
/* 27 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"),
/* 28 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"),
/* 29 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"),
/* 30 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
/* 31 */ "SCopy" OpHelp("r[P2]=r[P1]"),
/* 32 */ "ResultRow" OpHelp("output=r[P1@P2]"),
/* 33 */ "CollSeq" OpHelp(""),
/* 34 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"),
/* 35 */ "MustBeInt" OpHelp(""),
/* 36 */ "RealAffinity" OpHelp(""),
/* 37 */ "Permutation" OpHelp(""),
/* 38 */ "Compare" OpHelp(""),
/* 39 */ "Jump" OpHelp(""),
/* 40 */ "Once" OpHelp(""),
/* 41 */ "If" OpHelp(""),
/* 42 */ "IfNot" OpHelp(""),
/* 43 */ "Column" OpHelp("r[P3]=PX"),
/* 44 */ "Affinity" OpHelp("affinity(r[P1@P2])"),
/* 45 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"),
/* 46 */ "Count" OpHelp("r[P2]=count()"),
/* 47 */ "ReadCookie" OpHelp(""),
/* 48 */ "SetCookie" OpHelp(""),
/* 22 */ "Yield" OpHelp(""),
/* 23 */ "HaltIfNull" OpHelp("if r[P3]=null halt"),
/* 24 */ "Halt" OpHelp(""),
/* 25 */ "Integer" OpHelp("r[P2]=P1"),
/* 26 */ "Int64" OpHelp("r[P2]=P4"),
/* 27 */ "String" OpHelp("r[P2]='P4' (len=P1)"),
/* 28 */ "Null" OpHelp("r[P2..P3]=NULL"),
/* 29 */ "SoftNull" OpHelp("r[P1]=NULL"),
/* 30 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"),
/* 31 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"),
/* 32 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"),
/* 33 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
/* 34 */ "SCopy" OpHelp("r[P2]=r[P1]"),
/* 35 */ "ResultRow" OpHelp("output=r[P1@P2]"),
/* 36 */ "CollSeq" OpHelp(""),
/* 37 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"),
/* 38 */ "MustBeInt" OpHelp(""),
/* 39 */ "RealAffinity" OpHelp(""),
/* 40 */ "Permutation" OpHelp(""),
/* 41 */ "Compare" OpHelp(""),
/* 42 */ "Jump" OpHelp(""),
/* 43 */ "Once" OpHelp(""),
/* 44 */ "If" OpHelp(""),
/* 45 */ "IfNot" OpHelp(""),
/* 46 */ "Column" OpHelp("r[P3]=PX"),
/* 47 */ "Affinity" OpHelp("affinity(r[P1@P2])"),
/* 48 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"),
/* 49 */ "Count" OpHelp("r[P2]=count()"),
/* 50 */ "ReadCookie" OpHelp(""),
/* 51 */ "SetCookie" OpHelp(""),
/* 49 */ "VerifyCookie" OpHelp(""),
/* 50 */ "OpenRead" OpHelp("root=P2 iDb=P3"),
/* 51 */ "OpenWrite" OpHelp("root=P2 iDb=P3"),
/* 52 */ "OpenAutoindex" OpHelp("nColumn=P2"),
/* 53 */ "OpenEphemeral" OpHelp("nColumn=P2"),
/* 54 */ "SorterOpen" OpHelp(""),
/* 55 */ "OpenPseudo" OpHelp("content in r[P2@P3]"),
/* 56 */ "Close" OpHelp(""),
/* 57 */ "SeekLt" OpHelp("key=r[P3@P4]"),
/* 58 */ "SeekLe" OpHelp("key=r[P3@P4]"),
/* 59 */ "SeekGe" OpHelp("key=r[P3@P4]"),
/* 60 */ "SeekGt" OpHelp("key=r[P3@P4]"),
/* 61 */ "Seek" OpHelp("intkey=r[P2]"),
/* 62 */ "NoConflict" OpHelp("key=r[P3@P4]"),
/* 63 */ "NotFound" OpHelp("key=r[P3@P4]"),
/* 64 */ "Found" OpHelp("key=r[P3@P4]"),
/* 65 */ "NotExists" OpHelp("intkey=r[P3]"),
/* 66 */ "Sequence" OpHelp("r[P2]=rowid"),
/* 67 */ "NewRowid" OpHelp("r[P2]=rowid"),
/* 68 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"),
/* 52 */ "OpenRead" OpHelp("root=P2 iDb=P3"),
/* 53 */ "OpenWrite" OpHelp("root=P2 iDb=P3"),
/* 54 */ "OpenAutoindex" OpHelp("nColumn=P2"),
/* 55 */ "OpenEphemeral" OpHelp("nColumn=P2"),
/* 56 */ "SorterOpen" OpHelp(""),
/* 57 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"),
/* 58 */ "Close" OpHelp(""),
/* 59 */ "SeekLT" OpHelp(""),
/* 60 */ "SeekLE" OpHelp(""),
/* 61 */ "SeekGE" OpHelp(""),
/* 62 */ "SeekGT" OpHelp(""),
/* 63 */ "Seek" OpHelp("intkey=r[P2]"),
/* 64 */ "NoConflict" OpHelp("key=r[P3@P4]"),
/* 65 */ "NotFound" OpHelp("key=r[P3@P4]"),
/* 66 */ "Found" OpHelp("key=r[P3@P4]"),
/* 67 */ "NotExists" OpHelp("intkey=r[P3]"),
/* 68 */ "Sequence" OpHelp("r[P2]=rowid"),
/* 69 */ "NewRowid" OpHelp("r[P2]=rowid"),
/* 70 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"),
/* 69 */ "InsertInt" OpHelp("intkey=P3 data=r[P2]"),
/* 70 */ "Delete" OpHelp(""),
/* 71 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"),
/* 72 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"),
/* 73 */ "InsertInt" OpHelp("intkey=P3 data=r[P2]"),
/* 74 */ "Delete" OpHelp(""),
/* 73 */ "ResetCount" OpHelp(""),
/* 75 */ "ResetCount" OpHelp(""),
/* 74 */ "SorterCompare" OpHelp("if key(P1)!=rtrim(r[P3],P4) goto P2"),
/* 75 */ "SorterData" OpHelp("r[P2]=data"),
/* 76 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"),
/* 77 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"),
/* 78 */ "Ne" OpHelp("if r[P1]!=r[P3] goto P2"),
/* 79 */ "Eq" OpHelp("if r[P1]==r[P3] goto P2"),
/* 80 */ "Gt" OpHelp("if r[P1]>r[P3] goto P2"),
/* 81 */ "Le" OpHelp("if r[P1]<=r[P3] goto P2"),
/* 82 */ "Lt" OpHelp("if r[P1]<r[P3] goto P2"),
/* 83 */ "Ge" OpHelp("if r[P1]>=r[P3] goto P2"),
/* 84 */ "RowKey" OpHelp("r[P2]=key"),
/* 84 */ "SorterCompare" OpHelp("if key(P1)!=rtrim(r[P3],P4) goto P2"),
/* 85 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"),
/* 86 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"),
/* 87 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<<r[P1]"),
/* 88 */ "ShiftRight" OpHelp("r[P3]=r[P2]>>r[P1]"),
/* 89 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"),
/* 90 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"),
/* 91 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"),
/* 92 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"),
/* 93 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"),
/* 94 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"),
/* 95 */ "RowData" OpHelp("r[P2]=data"),
/* 95 */ "SorterData" OpHelp("r[P2]=data"),
/* 96 */ "BitNot" OpHelp("r[P1]= ~r[P1]"),
/* 97 */ "String8" OpHelp("r[P2]='P4'"),
/* 98 */ "RowKey" OpHelp("r[P2]=key"),
/* 99 */ "RowData" OpHelp("r[P2]=data"),
/* 98 */ "Rowid" OpHelp("r[P2]=rowid"),
/* 99 */ "NullRow" OpHelp(""),
/* 100 */ "Last" OpHelp(""),
/* 101 */ "SorterSort" OpHelp(""),
/* 102 */ "Sort" OpHelp(""),
/* 103 */ "Rewind" OpHelp(""),
/* 104 */ "SorterInsert" OpHelp(""),
/* 105 */ "IdxInsert" OpHelp("key=r[P2]"),
/* 106 */ "IdxDelete" OpHelp("key=r[P2@P3]"),
/* 107 */ "IdxRowid" OpHelp("r[P2]=rowid"),
/* 108 */ "IdxLT" OpHelp("key=r[P3@P4]"),
/* 109 */ "IdxGE" OpHelp("key=r[P3@P4]"),
/* 110 */ "Destroy" OpHelp(""),
/* 111 */ "Clear" OpHelp(""),
/* 112 */ "CreateIndex" OpHelp("r[P2]=root iDb=P1"),
/* 113 */ "CreateTable" OpHelp("r[P2]=root iDb=P1"),
/* 114 */ "ParseSchema" OpHelp(""),
/* 115 */ "LoadAnalysis" OpHelp(""),
/* 116 */ "DropTable" OpHelp(""),
/* 117 */ "DropIndex" OpHelp(""),
/* 118 */ "DropTrigger" OpHelp(""),
/* 119 */ "IntegrityCk" OpHelp(""),
/* 120 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"),
/* 121 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"),
/* 122 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"),
/* 123 */ "Program" OpHelp(""),
/* 124 */ "Param" OpHelp(""),
/* 125 */ "FkCounter" OpHelp("fkctr[P1]+=P2"),
/* 126 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"),
/* 127 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"),
/* 128 */ "IfPos" OpHelp("if r[P1]>0 goto P2"),
/* 100 */ "Rowid" OpHelp("r[P2]=rowid"),
/* 101 */ "NullRow" OpHelp(""),
/* 102 */ "Last" OpHelp(""),
/* 103 */ "SorterSort" OpHelp(""),
/* 104 */ "Sort" OpHelp(""),
/* 105 */ "Rewind" OpHelp(""),
/* 106 */ "SorterInsert" OpHelp(""),
/* 107 */ "IdxInsert" OpHelp("key=r[P2]"),
/* 108 */ "IdxDelete" OpHelp("key=r[P2@P3]"),
/* 109 */ "IdxRowid" OpHelp("r[P2]=rowid"),
/* 110 */ "IdxLE" OpHelp("key=r[P3@P4]"),
/* 111 */ "IdxGT" OpHelp("key=r[P3@P4]"),
/* 112 */ "IdxLT" OpHelp("key=r[P3@P4]"),
/* 113 */ "IdxGE" OpHelp("key=r[P3@P4]"),
/* 114 */ "Destroy" OpHelp(""),
/* 115 */ "Clear" OpHelp(""),
/* 116 */ "CreateIndex" OpHelp("r[P2]=root iDb=P1"),
/* 117 */ "CreateTable" OpHelp("r[P2]=root iDb=P1"),
/* 118 */ "ParseSchema" OpHelp(""),
/* 119 */ "LoadAnalysis" OpHelp(""),
/* 120 */ "DropTable" OpHelp(""),
/* 121 */ "DropIndex" OpHelp(""),
/* 122 */ "DropTrigger" OpHelp(""),
/* 123 */ "IntegrityCk" OpHelp(""),
/* 124 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"),
/* 125 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"),
/* 126 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"),
/* 127 */ "Program" OpHelp(""),
/* 128 */ "Param" OpHelp(""),
/* 129 */ "FkCounter" OpHelp("fkctr[P1]+=P2"),
/* 130 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"),
/* 131 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"),
/* 132 */ "IfPos" OpHelp("if r[P1]>0 goto P2"),
/* 129 */ "IfNeg" OpHelp("if r[P1]<0 goto P2"),
/* 130 */ "IfZero" OpHelp("r[P1]+=P3, if r[P1]==0 goto P2"),
/* 131 */ "AggFinal" OpHelp("accum=r[P1] N=P2"),
/* 132 */ "IncrVacuum" OpHelp(""),
/* 133 */ "Real" OpHelp("r[P2]=P4"),
/* 134 */ "IfNeg" OpHelp("if r[P1]<0 goto P2"),
/* 135 */ "IfZero" OpHelp("r[P1]+=P3, if r[P1]==0 goto P2"),
/* 136 */ "AggFinal" OpHelp("accum=r[P1] N=P2"),
/* 137 */ "IncrVacuum" OpHelp(""),
/* 134 */ "Expire" OpHelp(""),
/* 135 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"),
/* 136 */ "VBegin" OpHelp(""),
/* 137 */ "VCreate" OpHelp(""),
/* 138 */ "VDestroy" OpHelp(""),
/* 138 */ "Expire" OpHelp(""),
/* 139 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"),
/* 140 */ "VBegin" OpHelp(""),
/* 141 */ "VCreate" OpHelp(""),
/* 142 */ "VDestroy" OpHelp(""),
/* 139 */ "VOpen" OpHelp(""),
/* 140 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"),
/* 141 */ "VNext" OpHelp(""),
/* 142 */ "VRename" OpHelp(""),
/* 143 */ "ToText" OpHelp(""),
/* 144 */ "ToBlob" OpHelp(""),
/* 145 */ "ToNumeric" OpHelp(""),
/* 146 */ "ToInt" OpHelp(""),
/* 147 */ "ToReal" OpHelp(""),
/* 148 */ "VOpen" OpHelp(""),
/* 149 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"),
/* 150 */ "VNext" OpHelp(""),
/* 151 */ "VRename" OpHelp(""),
/* 148 */ "Pagecount" OpHelp(""),
/* 149 */ "MaxPgcnt" OpHelp(""),
/* 150 */ "Trace" OpHelp(""),
/* 151 */ "Noop" OpHelp(""),
/* 152 */ "Explain" OpHelp(""),
/* 152 */ "Pagecount" OpHelp(""),
/* 153 */ "MaxPgcnt" OpHelp(""),
/* 154 */ "Init" OpHelp("Start at P2"),
/* 155 */ "Noop" OpHelp(""),
/* 156 */ "Explain" OpHelp(""),
};
return azName[i];
}
#endif
/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/
|
︙ | | |
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
|
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
# if defined(__RTP__) || defined(_WRS_KERNEL)
# define OS_VXWORKS 1
# else
# define OS_VXWORKS 0
# endif
#endif
/*
** These #defines should enable >2GB file support on Posix if the
** underlying operating system supports it. If the OS lacks
** large file support, these should be no-ops.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: RedHat 7.2) but you want your code to work
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
**
** The previous paragraph was written in 2005. (This paragraph is written
** on 2008-11-28.) These days, all Linux kernels support large files, so
** you should probably leave LFS enabled. But some embedded platforms might
** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** standard include files.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
|
︙ | | |
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
|
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
|
-
+
|
/*
** Windows will only let you create file view mappings
** on allocation size granularity boundaries.
** During sqlite3_os_init() we do a GetSystemInfo()
** to get the granularity size.
*/
SYSTEM_INFO winSysInfo;
static SYSTEM_INFO winSysInfo;
#ifndef SQLITE_OMIT_WAL
/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the winLockInfo objects used by
** this file, all of which may be shared by multiple threads.
|
︙ | | |
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
|
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
|
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
|
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
HANDLE h;
#if defined(__CYGWIN__)
int nFull = pVfs->mxPathname+1;
char *zFull = sqlite3MallocZero( nFull );
void *zConverted = 0;
if( zFull==0 ){
OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
return 0;
}
if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){
sqlite3_free(zFull);
OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
return 0;
}
zConverted = winConvertFromUtf8Filename(zFull);
sqlite3_free(zFull);
#else
void *zConverted = winConvertFromUtf8Filename(zFilename);
UNUSED_PARAMETER(pVfs);
#endif
if( zConverted==0 ){
OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
return 0;
}
if( osIsNT() ){
#if SQLITE_OS_WINRT
h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
#else
h = osLoadLibraryW((LPCWSTR)zConverted);
#endif
}
#ifdef SQLITE_WIN32_HAS_ANSI
else{
h = osLoadLibraryA((char*)zConverted);
}
#endif
OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h));
sqlite3_free(zConverted);
return (void*)h;
}
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
UNUSED_PARAMETER(pVfs);
winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut);
}
static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
FARPROC proc;
UNUSED_PARAMETER(pVfs);
proc = osGetProcAddressA((HANDLE)pH, zSym);
OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n",
(void*)pH, zSym, (void*)proc));
return (void(*)(void))osGetProcAddressA((HANDLE)pH, zSym);
return (void(*)(void))proc;
}
static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
UNUSED_PARAMETER(pVfs);
osFreeLibrary((HANDLE)pHandle);
OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle));
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
#define winDlOpen 0
#define winDlError 0
#define winDlSym 0
#define winDlClose 0
#endif
|
︙ | | |
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
|
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
|
-
+
+
|
struct PCache {
PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
PgHdr *pSynced; /* Last synced page in dirty page list */
int nRef; /* Number of referenced pages */
int szCache; /* Configured cache size */
int szPage; /* Size of every page in this cache */
int szExtra; /* Size of extra space for each page */
int bPurgeable; /* True if pages are on backing store */
u8 bPurgeable; /* True if pages are on backing store */
u8 eCreate; /* eCreate value for for xFetch() */
int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
void *pStress; /* Argument to xStress */
sqlite3_pcache *pCache; /* Pluggable cache module */
PgHdr *pPage1; /* Reference to page 1 */
};
/*
|
︙ | | |
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
|
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
|
+
+
+
+
+
+
+
|
p->pDirtyTail = pPage->pDirtyPrev;
}
if( pPage->pDirtyPrev ){
pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
}else{
assert( pPage==p->pDirty );
p->pDirty = pPage->pDirtyNext;
if( p->pDirty==0 && p->bPurgeable ){
assert( p->eCreate==1 );
p->eCreate = 2;
}
}
pPage->pDirtyNext = 0;
pPage->pDirtyPrev = 0;
expensive_assert( pcacheCheckSynced(p) );
}
/*
** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
** pPage).
*/
static void pcacheAddToDirtyList(PgHdr *pPage){
PCache *p = pPage->pCache;
assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
pPage->pDirtyNext = p->pDirty;
if( pPage->pDirtyNext ){
assert( pPage->pDirtyNext->pDirtyPrev==0 );
pPage->pDirtyNext->pDirtyPrev = pPage;
}else if( p->bPurgeable ){
assert( p->eCreate==2 );
p->eCreate = 1;
}
p->pDirty = pPage;
if( !p->pDirtyTail ){
p->pDirtyTail = pPage;
}
if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
p->pSynced = pPage;
|
︙ | | |
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
|
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
|
+
|
void *pStress, /* Argument to xStress */
PCache *p /* Preallocated space for the PCache */
){
memset(p, 0, sizeof(PCache));
p->szPage = szPage;
p->szExtra = szExtra;
p->bPurgeable = bPurgeable;
p->eCreate = 2;
p->xStress = xStress;
p->pStress = pStress;
p->szCache = 100;
}
/*
** Change the page size for PCache object. The caller must ensure that there
|
︙ | | |
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
|
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
|
-
+
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
-
-
|
*/
SQLITE_PRIVATE int sqlite3PcacheFetch(
PCache *pCache, /* Obtain the page from this cache */
Pgno pgno, /* Page number to obtain */
int createFlag, /* If true, create page if it does not exist already */
PgHdr **ppPage /* Write the page here */
){
sqlite3_pcache_page *pPage = 0;
sqlite3_pcache_page *pPage;
PgHdr *pPgHdr = 0;
int eCreate;
assert( pCache!=0 );
assert( createFlag==1 || createFlag==0 );
assert( pgno>0 );
/* If the pluggable cache (sqlite3_pcache*) has not been allocated,
** allocate it now.
*/
if( !pCache->pCache && createFlag ){
if( !pCache->pCache ){
sqlite3_pcache *p;
if( !createFlag ){
*ppPage = 0;
return SQLITE_OK;
}
p = sqlite3GlobalConfig.pcache2.xCreate(
pCache->szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable
);
if( !p ){
return SQLITE_NOMEM;
}
sqlite3GlobalConfig.pcache2.xCachesize(p, numberOfCachePages(pCache));
pCache->pCache = p;
}
/* eCreate defines what to do if the page does not exist.
** 0 Do not allocate a new page. (createFlag==0)
** 1 Allocate a new page if doing so is inexpensive.
** (createFlag==1 AND bPurgeable AND pDirty)
** 2 Allocate a new page even it doing so is difficult.
** (createFlag==1 AND !(bPurgeable AND pDirty)
*/
eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty));
if( pCache->pCache ){
pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
eCreate = createFlag==0 ? 0 : pCache->eCreate;
assert( (createFlag*(1+(!pCache->bPurgeable||!pCache->pDirty)))==eCreate );
pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
}
if( !pPage && eCreate==1 ){
PgHdr *pPg;
/* Find a dirty page to write-out and recycle. First try to find a
** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
** cleared), but if that is not possible settle for any other
** unreferenced dirty page.
|
︙ | | |
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
|
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
|
-
+
|
}
if( rc!=SQLITE_OK ){
walIndexClose(pRet, 0);
sqlite3OsClose(pRet->pWalFd);
sqlite3_free(pRet);
}else{
int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
pRet->padToSectorBoundary = 0;
}
*ppWal = pRet;
WALTRACE(("WAL%d: opened\n", pRet));
}
|
︙ | | |
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
|
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
|
-
+
|
int iFirstAmt = (int)(p->iSyncPoint - iOffset);
rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
if( rc ) return rc;
iOffset += iFirstAmt;
iAmt -= iFirstAmt;
pContent = (void*)(iFirstAmt + (char*)pContent);
assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
rc = sqlite3OsSync(p->pFd, p->syncFlags);
rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
if( iAmt==0 || rc ) return rc;
}
rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
return rc;
}
/*
|
︙ | | |
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
|
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
|
-
|
BtShared *pBt; /* The BtShared this cursor points to */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
#ifndef SQLITE_OMIT_INCRBLOB
Pgno *aOverflow; /* Cache of overflow page locations */
#endif
Pgno pgnoRoot; /* The root page of this tree */
sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */
CellInfo info; /* A parse of the cell we are pointing at */
i64 nKey; /* Size of pKey, or last integer key */
void *pKey; /* Saved key that was cursor's last known position */
int skipNext; /* Prev() is noop if negative. Next() is noop if positive */
u8 wrFlag; /* True if writable */
u8 atLast; /* Cursor pointing to the last entry */
u8 validNKey; /* True if info.nKey is valid */
|
︙ | | |
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
|
52352
52353
52354
52355
52356
52357
52358
52359
52360
52361
52362
52363
52364
52365
52366
52367
52368
52369
52370
52371
|
-
+
-
|
assert( sqlite3PagerGetData(pPage->pDbPage) == data );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( sqlite3_mutex_held(pBt->mutex) );
if( pBt->btsFlags & BTS_SECURE_DELETE ){
memset(&data[hdr], 0, pBt->usableSize - hdr);
}
data[hdr] = (char)flags;
first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
memset(&data[hdr+1], 0, 4);
data[hdr+7] = 0;
put2byte(&data[hdr+5], pBt->usableSize);
pPage->nFree = (u16)(pBt->usableSize - first);
decodeFlags(pPage, flags);
pPage->hdrOffset = hdr;
pPage->cellOffset = first;
pPage->aDataEnd = &data[pBt->usableSize];
pPage->aCellIdx = &data[first];
pPage->nOverflow = 0;
assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
pPage->maskPage = (u16)(pBt->pageSize - 1);
pPage->nCell = 0;
|
︙ | | |
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
|
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
|
-
|
pCur->wrFlag = (u8)wrFlag;
pCur->pNext = pBt->pCursor;
if( pCur->pNext ){
pCur->pNext->pPrev = pCur;
}
pBt->pCursor = pCur;
pCur->eState = CURSOR_INVALID;
pCur->cachedRowid = 0;
return SQLITE_OK;
}
SQLITE_PRIVATE int sqlite3BtreeCursor(
Btree *p, /* The btree */
int iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
|
︙ | | |
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
|
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
** do not need to be zeroed and they are large, so we can save a lot
** of run-time by skipping the initialization of those elements.
*/
SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){
memset(p, 0, offsetof(BtCursor, iPage));
}
/*
** Set the cached rowid value of every cursor in the same database file
** as pCur and having the same root page number as pCur. The value is
** set to iRowid.
**
** Only positive rowid values are considered valid for this cache.
** The cache is initialized to zero, indicating an invalid cache.
** A btree will work fine with zero or negative rowids. We just cannot
** cache zero or negative rowids, which means tables that use zero or
** negative rowids might run a little slower. But in practice, zero
** or negative rowids are very uncommon so this should not be a problem.
*/
SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
BtCursor *p;
for(p=pCur->pBt->pCursor; p; p=p->pNext){
if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
}
assert( pCur->cachedRowid==iRowid );
}
/*
** Return the cached rowid for the given cursor. A negative or zero
** return value indicates that the rowid cache is invalid and should be
** ignored. If the rowid cache has never before been set, then a
** zero is returned.
*/
SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
return pCur->cachedRowid;
}
/*
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
Btree *pBtree = pCur->pBtree;
if( pBtree ){
|
︙ | | |
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
|
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
|
+
+
+
+
+
+
+
+
+
+
+
|
BtCursor *pCur, /* The cursor to be moved */
UnpackedRecord *pIdxKey, /* Unpacked index key */
i64 intKey, /* The table key */
int biasRight, /* If true, bias the search to the high end */
int *pRes /* Write search results here */
){
int rc;
RecordCompare xRecordCompare;
assert( cursorHoldsMutex(pCur) );
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
assert( pRes );
assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
/* If the cursor is already positioned at the point we are trying
** to move to, then just return without doing any work */
if( pCur->eState==CURSOR_VALID && pCur->validNKey
&& pCur->apPage[0]->intKey
){
if( pCur->info.nKey==intKey ){
*pRes = 0;
return SQLITE_OK;
}
if( pCur->atLast && pCur->info.nKey<intKey ){
*pRes = -1;
return SQLITE_OK;
}
}
if( pIdxKey ){
xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
assert( pIdxKey->default_rc==1
|| pIdxKey->default_rc==0
|| pIdxKey->default_rc==-1
);
}else{
xRecordCompare = 0; /* Not actually used. Avoids a compiler warning. */
}
rc = moveToRoot(pCur);
if( rc ){
return rc;
}
assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
|
︙ | | |
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
|
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
|
-
+
|
assert( pPage->nCell>0 );
assert( pPage->intKey==(pIdxKey==0) );
lwr = 0;
upr = pPage->nCell-1;
assert( biasRight==0 || biasRight==1 );
idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
pCur->aiIdx[pCur->iPage] = (u16)idx;
if( pPage->intKey ){
if( xRecordCompare==0 ){
for(;;){
i64 nCellKey;
pCell = findCell(pPage, idx) + pPage->childPtrSize;
if( pPage->hasData ){
while( 0x80 <= *(pCell++) ){
if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
}
|
︙ | | |
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
|
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
|
-
+
-
+
-
+
|
*/
nCell = pCell[0];
if( nCell<=pPage->max1bytePayload ){
/* This branch runs if the record-size field of the cell is a
** single byte varint and the record fits entirely on the main
** b-tree page. */
testcase( pCell+nCell+1==pPage->aDataEnd );
c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
}else if( !(pCell[1] & 0x80)
&& (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
){
/* The record-size field is a 2 byte varint and the record
** fits entirely on the main b-tree page. */
testcase( pCell+nCell+2==pPage->aDataEnd );
c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
}else{
/* The record flows over onto one or more overflow pages. In
** this case the whole cell needs to be parsed, a buffer allocated
** and accessPayload() used to retrieve the record into the
** buffer before VdbeRecordCompare() can be called. */
void *pCellKey;
u8 * const pCellBody = pCell - pPage->childPtrSize;
btreeParseCellPtr(pPage, pCellBody, &pCur->info);
nCell = (int)pCur->info.nKey;
pCellKey = sqlite3Malloc( nCell );
if( pCellKey==0 ){
rc = SQLITE_NOMEM;
goto moveto_finish;
}
pCur->aiIdx[pCur->iPage] = (u16)idx;
rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
if( rc ){
sqlite3_free(pCellKey);
goto moveto_finish;
}
c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
sqlite3_free(pCellKey);
}
if( c<0 ){
lwr = idx+1;
}else if( c>0 ){
upr = idx-1;
}else{
|
︙ | | |
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
|
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
|
+
+
+
+
+
+
+
+
+
+
|
}
/*
** Advance the cursor to the next entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
**
** The calling function will set *pRes to 0 or 1. The initial *pRes value
** will be 1 if the cursor being stepped corresponds to an SQL index and
** if this routine could have been skipped if that SQL index had been
** a unique index. Otherwise the caller will have set *pRes to zero.
** Zero is the common case. The btree implementation is free to use the
** initial *pRes value as a hint to improve performance, but the current
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
int rc;
int idx;
MemPage *pPage;
assert( cursorHoldsMutex(pCur) );
assert( pRes!=0 );
assert( *pRes==0 || *pRes==1 );
assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
if( pCur->eState!=CURSOR_VALID ){
rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
*pRes = 0;
return rc;
}
|
︙ | | |
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
|
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
|
+
+
+
+
+
+
+
+
+
+
|
/*
** Step the cursor to the back to the previous entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
**
** The calling function will set *pRes to 0 or 1. The initial *pRes value
** will be 1 if the cursor being stepped corresponds to an SQL index and
** if this routine could have been skipped if that SQL index had been
** a unique index. Otherwise the caller will have set *pRes to zero.
** Zero is the common case. The btree implementation is free to use the
** initial *pRes value as a hint to improve performance, but the current
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
int rc;
MemPage *pPage;
assert( cursorHoldsMutex(pCur) );
assert( pRes!=0 );
assert( *pRes==0 || *pRes==1 );
assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
pCur->atLast = 0;
if( pCur->eState!=CURSOR_VALID ){
if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
rc = btreeRestoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
*pRes = 0;
|
︙ | | |
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
|
57775
57776
57777
57778
57779
57780
57781
57782
57783
57784
57785
57786
57787
57788
57789
57790
57791
57792
57793
57794
57795
57796
57797
57798
57799
|
+
-
-
+
+
-
-
+
+
+
+
+
+
+
|
** that the cursor is already where it needs to be and returns without
** doing any work. To avoid thwarting these optimizations, it is important
** not to clear the cursor here.
*/
rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
if( rc ) return rc;
if( pCur->pKeyInfo==0 ){
/* If this is an insert into a table b-tree, invalidate any incrblob
** cursors open on the row being replaced (assuming this is a replace
/* If this is an insert into a table b-tree, invalidate any incrblob
** cursors open on the row being replaced */
** operation - if it is not, the following is a no-op). */
if( pCur->pKeyInfo==0 ){
invalidateIncrblobCursors(p, nKey, 0);
/* If the cursor is currently on the last row and we are appending a
** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
** call */
if( pCur->validNKey && nKey>0 && pCur->info.nKey==nKey-1 ){
loc = -1;
}
}
if( !loc ){
rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
if( rc ) return rc;
}
assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
|
︙ | | |
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
|
57855
57856
57857
57858
57859
57860
57861
57862
57863
57864
57865
57866
57867
57868
57869
57870
|
-
+
|
** is advantageous to leave the cursor pointing to the last entry in
** the b-tree if possible. If the cursor is left pointing to the last
** entry in the table, and the next row inserted has an integer key
** larger than the largest existing key, it is possible to insert the
** row without seeking the cursor. This can be a big performance boost.
*/
pCur->info.nSize = 0;
pCur->validNKey = 0;
if( rc==SQLITE_OK && pPage->nOverflow ){
pCur->validNKey = 0;
rc = balance(pCur);
/* Must make sure nOverflow is reset to zero even if the balance()
** fails. Internal data structure corruption will result otherwise.
** Also, set the cursor state to invalid. This stops saveCursorPosition()
** from trying to save the current position of the cursor. */
pCur->apPage[pCur->iPage]->nOverflow = 0;
|
︙ | | |
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774
57775
57776
57777
57778
57779
|
57911
57912
57913
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
|
-
+
|
** the cursor to the largest entry in the tree that is smaller than
** the entry being deleted. This cell will replace the cell being deleted
** from the internal node. The 'previous' entry is used for this instead
** of the 'next' entry, as the previous entry is always a part of the
** sub-tree headed by the child page of the cell being deleted. This makes
** balancing the tree following the delete operation easier. */
if( !pPage->leaf ){
int notUsed;
int notUsed = 0;
rc = sqlite3BtreePrevious(pCur, ¬Used);
if( rc ) return rc;
}
/* Save the positions of any other cursors open on this table before
** making any modifications. Make the page containing the entry to be
** deleted writable. Then free any overflow pages associated with the
|
︙ | | |
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
59929
59930
59931
|
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
60101
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure. A "Mem"
** stores a single value in the VDBE. Mem is an opaque structure visible
** only within the VDBE. Interface routines refer to a Mem using the
** name sqlite_value
*/
#ifdef SQLITE_DEBUG
/*
** Check invariants on a Mem object.
**
** This routine is intended for use inside of assert() statements, like
** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){
/* The MEM_Dyn bit is set if and only if Mem.xDel is a non-NULL destructor
** function for Mem.z
*/
assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 );
/* If p holds a string or blob, the Mem.z must point to exactly
** one of the following:
**
** (1) Memory in Mem.zMalloc and managed by the Mem object
** (2) Memory to be freed using Mem.xDel
** (3) An ephermal string or blob
** (4) A static string or blob
*/
if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){
assert(
((p->z==p->zMalloc)? 1 : 0) +
((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
);
}
return 1;
}
#endif
/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
|
︙ | | |
59968
59969
59970
59971
59972
59973
59974
59975
59976
59977
59978
59979
59980
59981
59982
59983
59984
59985
59986
59987
59988
59989
59990
59991
59992
59993
59994
59995
59996
59997
59998
59999
60000
60001
60002
60003
60004
60005
60006
60007
60008
60009
60010
60011
60012
60013
60014
60015
60016
60017
60018
60019
60020
|
60150
60151
60152
60153
60154
60155
60156
60157
60158
60159
60160
60161
60162
60163
60164
60165
60166
60167
60168
60169
60170
60171
60172
60173
60174
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
|
-
+
-
-
-
-
-
-
+
+
-
-
+
+
-
+
|
**
** If the bPreserve argument is true, then copy of the content of
** pMem->z into the new allocation. pMem must be either a string or
** blob if bPreserve is true. If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
assert( 1 >=
assert( sqlite3VdbeCheckMemInvariants(pMem) );
((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
(((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
((pMem->flags&MEM_Ephem) ? 1 : 0) +
((pMem->flags&MEM_Static) ? 1 : 0)
);
assert( (pMem->flags&MEM_RowSet)==0 );
/* If the bPreserve flag is set to true, then the memory cell must already
** contain a valid string or blob value. */
assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
testcase( bPreserve && pMem->z==0 );
if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
if( n<32 ) n = 32;
if( bPreserve && pMem->z==pMem->zMalloc ){
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
bPreserve = 0;
}else{
sqlite3DbFree(pMem->db, pMem->zMalloc);
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
}
if( pMem->zMalloc==0 ){
sqlite3VdbeMemRelease(pMem);
VdbeMemRelease(pMem);
pMem->z = 0;
pMem->flags = MEM_Null;
return SQLITE_NOMEM;
}
}
if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
memcpy(pMem->zMalloc, pMem->z, pMem->n);
}
if( (pMem->flags&MEM_Dyn)!=0 && pMem->xDel ){
assert( pMem->xDel!=SQLITE_DYNAMIC );
if( (pMem->flags&MEM_Dyn)!=0 ){
assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
pMem->xDel((void *)(pMem->z));
}
pMem->z = pMem->zMalloc;
pMem->flags &= ~(MEM_Ephem|MEM_Static);
pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
pMem->xDel = 0;
return SQLITE_OK;
}
/*
** Make the given Mem object MEM_Dyn. In other words, make it so
** that any TEXT or BLOB content is stored in memory obtained from
|
︙ | | |
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
60199
60200
60201
60202
60203
60204
60205
60206
|
60353
60354
60355
60356
60357
60358
60359
60360
60361
60362
60363
60364
60365
60366
60367
60368
60369
60370
60371
60372
60373
60374
60375
60376
60377
60378
60379
60380
60381
60382
60383
60384
60385
|
-
+
-
+
-
+
+
|
*/
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
if( p->flags&MEM_Agg ){
sqlite3VdbeMemFinalize(p, p->u.pDef);
assert( (p->flags & MEM_Agg)==0 );
sqlite3VdbeMemRelease(p);
}else if( p->flags&MEM_Dyn && p->xDel ){
}else if( p->flags&MEM_Dyn ){
assert( (p->flags&MEM_RowSet)==0 );
assert( p->xDel!=SQLITE_DYNAMIC );
assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
p->xDel((void *)p->z);
p->xDel = 0;
}else if( p->flags&MEM_RowSet ){
sqlite3RowSetClear(p->u.pRowSet);
}else if( p->flags&MEM_Frame ){
sqlite3VdbeMemSetNull(p);
}
}
/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
** (Mem.flags==MEM_Str).
*/
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
assert( sqlite3VdbeCheckMemInvariants(p) );
VdbeMemRelease(p);
if( p->zMalloc ){
sqlite3DbFree(p->db, p->zMalloc);
p->zMalloc = 0;
}
p->z = 0;
assert( p->xDel==0 ); /* Zeroed by VdbeMemRelease() above */
|
︙ | | |
60381
60382
60383
60384
60385
60386
60387
60388
60389
60390
60391
60392
60393
60394
60395
60396
60397
60398
60399
60400
60401
60402
60403
60404
60405
60406
60407
60408
|
60560
60561
60562
60563
60564
60565
60566
60567
60568
60569
60570
60571
60572
60573
60574
60575
60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
|
-
-
|
pFrame->pParent = pFrame->v->pDelFrame;
pFrame->v->pDelFrame = pFrame;
}
if( pMem->flags & MEM_RowSet ){
sqlite3RowSetClear(pMem->u.pRowSet);
}
MemSetTypeFlag(pMem, MEM_Null);
pMem->type = SQLITE_NULL;
}
SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){
sqlite3VdbeMemSetNull((Mem*)p);
}
/*
** Delete any previous value and set the value to be a BLOB of length
** n containing all zeros.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
sqlite3VdbeMemRelease(pMem);
pMem->flags = MEM_Blob|MEM_Zero;
pMem->type = SQLITE_BLOB;
pMem->n = 0;
if( n<0 ) n = 0;
pMem->u.nZero = n;
pMem->enc = SQLITE_UTF8;
#ifdef SQLITE_OMIT_INCRBLOB
sqlite3VdbeMemGrow(pMem, n, 0);
|
︙ | | |
60417
60418
60419
60420
60421
60422
60423
60424
60425
60426
60427
60428
60429
60430
60431
60432
60433
60434
60435
60436
60437
60438
60439
60440
60441
60442
60443
60444
60445
60446
|
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
60604
60605
60606
60607
60608
60609
60610
60611
60612
60613
60614
60615
60616
60617
60618
60619
60620
60621
|
-
-
|
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
sqlite3VdbeMemRelease(pMem);
pMem->u.i = val;
pMem->flags = MEM_Int;
pMem->type = SQLITE_INTEGER;
}
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
if( sqlite3IsNaN(val) ){
sqlite3VdbeMemSetNull(pMem);
}else{
sqlite3VdbeMemRelease(pMem);
pMem->r = val;
pMem->flags = MEM_Real;
pMem->type = SQLITE_FLOAT;
}
}
#endif
/*
** Delete any previous value and set the value of pMem to be an
** empty boolean index.
|
︙ | | |
60488
60489
60490
60491
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
|
60663
60664
60665
60666
60667
60668
60669
60670
60671
60672
60673
60674
60675
60676
60677
|
-
+
|
** copies are not misused.
*/
SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
int i;
Mem *pX;
for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
if( pX->pScopyFrom==pMem ){
pX->flags |= MEM_Invalid;
pX->flags |= MEM_Undefined;
pX->pScopyFrom = 0;
}
}
pMem->pScopyFrom = 0;
}
#endif /* SQLITE_DEBUG */
|
︙ | | |
60530
60531
60532
60533
60534
60535
60536
60537
60538
60539
60540
60541
60542
60543
|
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
|
+
|
SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
int rc = SQLITE_OK;
assert( (pFrom->flags & MEM_RowSet)==0 );
VdbeMemRelease(pTo);
memcpy(pTo, pFrom, MEMCELLSIZE);
pTo->flags &= ~MEM_Dyn;
pTo->xDel = 0;
if( pTo->flags&(MEM_Str|MEM_Blob) ){
if( 0==(pFrom->flags&MEM_Static) ){
pTo->flags |= MEM_Ephem;
rc = sqlite3VdbeMemMakeWriteable(pTo);
}
}
|
︙ | | |
60640
60641
60642
60643
60644
60645
60646
60647
60648
60649
60650
60651
60652
60653
60654
60655
60656
60657
60658
60659
60660
60661
60662
60663
60664
60665
60666
60667
60668
60669
60670
60671
60672
60673
60674
60675
60676
60677
60678
60679
60680
60681
60682
60683
60684
60685
60686
60687
60688
60689
60690
60691
60692
60693
60694
60695
60696
60697
60698
60699
60700
60701
60702
60703
60704
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
60720
60721
60722
60723
60724
60725
60726
60727
60728
60729
60730
60731
60732
60733
60734
60735
60736
60737
60738
60739
60740
60741
60742
60743
60744
60745
60746
60747
60748
60749
60750
60751
60752
60753
60754
60755
60756
60757
60758
60759
60760
60761
60762
60763
60764
60765
60766
60767
60768
60769
60770
60771
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
|
60816
60817
60818
60819
60820
60821
60822
60823
60824
60825
60826
60827
60828
60829
60830
60831
60832
60833
60834
60835
60836
60837
60838
60839
60840
60841
60842
60843
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
pMem->xDel = xDel;
flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
}
pMem->n = nByte;
pMem->flags = flags;
pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
#ifndef SQLITE_OMIT_UTF16
if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
return SQLITE_NOMEM;
}
#endif
if( nByte>iLimit ){
return SQLITE_TOOBIG;
}
return SQLITE_OK;
}
/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
int rc;
int f1, f2;
int combined_flags;
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1|f2;
assert( (combined_flags & MEM_RowSet)==0 );
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
*/
if( combined_flags&MEM_Null ){
return (f2&MEM_Null) - (f1&MEM_Null);
}
/* If one value is a number and the other is not, the number is less.
** If both are numbers, compare as reals if one is a real, or as integers
** if both values are integers.
*/
if( combined_flags&(MEM_Int|MEM_Real) ){
double r1, r2;
if( (f1 & f2 & MEM_Int)!=0 ){
if( pMem1->u.i < pMem2->u.i ) return -1;
if( pMem1->u.i > pMem2->u.i ) return 1;
return 0;
}
if( (f1&MEM_Real)!=0 ){
r1 = pMem1->r;
}else if( (f1&MEM_Int)!=0 ){
r1 = (double)pMem1->u.i;
}else{
return 1;
}
if( (f2&MEM_Real)!=0 ){
r2 = pMem2->r;
}else if( (f2&MEM_Int)!=0 ){
r2 = (double)pMem2->u.i;
}else{
return -1;
}
if( r1<r2 ) return -1;
if( r1>r2 ) return 1;
return 0;
}
/* If one value is a string and the other is a blob, the string is less.
** If both are strings, compare using the collating functions.
*/
if( combined_flags&MEM_Str ){
if( (f1 & MEM_Str)==0 ){
return 1;
}
if( (f2 & MEM_Str)==0 ){
return -1;
}
assert( pMem1->enc==pMem2->enc );
assert( pMem1->enc==SQLITE_UTF8 ||
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
/* The collation sequence must be defined at this point, even if
** the user deletes the collation sequence after the vdbe program is
** compiled (this was not always the case).
*/
assert( !pColl || pColl->xCmp );
if( pColl ){
if( pMem1->enc==pColl->enc ){
/* The strings are already in the correct encoding. Call the
** comparison function directly */
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
}else{
const void *v1, *v2;
int n1, n2;
Mem c1;
Mem c2;
memset(&c1, 0, sizeof(c1));
memset(&c2, 0, sizeof(c2));
sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
n1 = v1==0 ? 0 : c1.n;
v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
n2 = v2==0 ? 0 : c2.n;
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
sqlite3VdbeMemRelease(&c1);
sqlite3VdbeMemRelease(&c2);
return rc;
}
}
/* If a NULL pointer was passed as the collate function, fall through
** to the blob case and use memcmp(). */
}
/* Both values must be blobs. Compare using memcmp(). */
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
if( rc==0 ){
rc = pMem1->n - pMem2->n;
}
return rc;
}
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to. offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data. The result is written
** into the pMem element.
**
|
︙ | | |
60808
60809
60810
60811
60812
60813
60814
60815
60816
60817
60818
60819
60820
60821
60822
60823
60824
60825
60826
60827
60828
60829
60830
60831
60832
60833
60834
60835
60836
60837
|
60870
60871
60872
60873
60874
60875
60876
60877
60878
60879
60880
60881
60882
60883
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
60896
60897
60898
60899
|
+
-
-
-
+
-
-
+
+
-
+
+
+
-
|
}
assert( zData!=0 );
if( offset+amt<=available ){
sqlite3VdbeMemRelease(pMem);
pMem->z = &zData[offset];
pMem->flags = MEM_Blob|MEM_Ephem;
pMem->n = (int)amt;
}else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
pMem->enc = 0;
pMem->type = SQLITE_BLOB;
if( key ){
rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
}else{
rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
}
if( rc==SQLITE_OK ){
pMem->z[amt] = 0;
pMem->z[amt+1] = 0;
pMem->z[amt] = 0;
pMem->z[amt+1] = 0;
if( rc!=SQLITE_OK ){
pMem->flags = MEM_Blob|MEM_Term;
pMem->n = (int)amt;
}else{
sqlite3VdbeMemRelease(pMem);
}
}
pMem->n = (int)amt;
return rc;
}
/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite3_value_text(),
** except the data returned is in the encoding specified by the second
|
︙ | | |
60881
60882
60883
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
|
60943
60944
60945
60946
60947
60948
60949
60950
60951
60952
60953
60954
60955
60956
|
-
|
/*
** Create a new sqlite3_value object.
*/
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
if( p ){
p->flags = MEM_Null;
p->type = SQLITE_NULL;
p->db = db;
}
return p;
}
/*
** Context object passed by sqlite3Stat4ProbeSetValue() through to
|
︙ | | |
60927
60928
60929
60930
60931
60932
60933
60934
60935
60936
60937
60938
60939
60940
60941
60942
60943
60944
60945
|
60988
60989
60990
60991
60992
60993
60994
60995
60996
60997
60998
60999
61000
61001
61002
61003
61004
|
-
-
|
nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
if( pRec ){
pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
if( pRec->pKeyInfo ){
assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
assert( pRec->pKeyInfo->enc==ENC(db) );
pRec->flags = UNPACKED_PREFIX_MATCH;
pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
for(i=0; i<nCol; i++){
pRec->aMem[i].flags = MEM_Null;
pRec->aMem[i].type = SQLITE_NULL;
pRec->aMem[i].db = db;
}
}else{
sqlite3DbFree(db, pRec);
pRec = 0;
}
}
|
︙ | | |
61004
61005
61006
61007
61008
61009
61010
61011
61012
61013
61014
61015
61016
61017
61018
61019
61020
61021
61022
61023
61024
61025
61026
61027
61028
61029
61030
61031
61032
61033
61034
61035
61036
61037
61038
|
61063
61064
61065
61066
61067
61068
61069
61070
61071
61072
61073
61074
61075
61076
61077
61078
61079
61080
61081
61082
61083
61084
61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
61096
|
-
-
+
-
+
|
if( pVal==0 ) goto no_mem;
if( ExprHasProperty(pExpr, EP_IntValue) ){
sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
}else{
zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
if( zVal==0 ) goto no_mem;
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
}
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
}else{
sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
}
if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
if( enc!=SQLITE_UTF8 ){
rc = sqlite3VdbeChangeEncoding(pVal, enc);
}
}else if( op==TK_UMINUS ) {
/* This branch happens for multiple negative signs. Ex: -(-5) */
if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
&& pVal!=0
){
sqlite3VdbeMemNumerify(pVal);
if( pVal->u.i==SMALLEST_INT64 ){
pVal->flags &= MEM_Int;
pVal->flags &= ~MEM_Int;
pVal->flags |= MEM_Real;
pVal->r = (double)LARGEST_INT64;
pVal->r = (double)SMALLEST_INT64;
}else{
pVal->u.i = -pVal->u.i;
}
pVal->r = -pVal->r;
sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}else if( op==TK_NULL ){
|
︙ | | |
61050
61051
61052
61053
61054
61055
61056
61057
61058
61059
61060
61061
61062
61063
61064
61065
61066
|
61108
61109
61110
61111
61112
61113
61114
61115
61116
61117
61118
61119
61120
61121
|
-
-
-
|
nVal = sqlite3Strlen30(zVal)-1;
assert( zVal[nVal]=='\'' );
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
0, SQLITE_DYNAMIC);
}
#endif
if( pVal ){
sqlite3VdbeMemStoreType(pVal);
}
*ppVal = pVal;
return rc;
no_mem:
db->mallocFailed = 1;
sqlite3DbFree(db, zVal);
assert( *ppVal==0 );
|
︙ | | |
61216
61217
61218
61219
61220
61221
61222
61223
61224
61225
61226
61227
61228
61229
61230
|
61271
61272
61273
61274
61275
61276
61277
61278
61279
61280
61281
61282
61283
61284
|
-
|
pVal = valueNew(db, &alloc);
if( pVal ){
rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
if( rc==SQLITE_OK ){
sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
}
pVal->db = pParse->db;
sqlite3VdbeMemStoreType((Mem*)pVal);
}
}
}else{
rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, &alloc);
}
*pbOk = (pVal!=0);
|
︙ | | |
61461
61462
61463
61464
61465
61466
61467
61468
61469
61470
61471
61472
61473
61474
|
61515
61516
61517
61518
61519
61520
61521
61522
61523
61524
61525
61526
61527
61528
61529
61530
61531
|
+
+
+
|
sqlite3VdbePrintOp(0, i, &p->aOp[i]);
test_addop_breakpoint();
}
#endif
#ifdef VDBE_PROFILE
pOp->cycles = 0;
pOp->cnt = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOp->iSrcLine = 0;
#endif
return i;
}
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
}
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
|
︙ | | |
61823
61824
61825
61826
61827
61828
61829
61830
61831
61832
61833
61834
61835
61836
61837
|
61880
61881
61882
61883
61884
61885
61886
61887
61888
61889
61890
61891
61892
61893
61894
|
-
+
|
return aOp;
}
/*
** Add a whole list of operations to the operation stack. Return the
** address of the first operation added.
*/
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
int addr;
assert( p->magic==VDBE_MAGIC_INIT );
if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p) ){
return 0;
}
addr = p->nOp;
if( ALWAYS(nOp>0) ){
|
︙ | | |
61850
61851
61852
61853
61854
61855
61856
61857
61858
61859
61860
61861
61862
61863
|
61907
61908
61909
61910
61911
61912
61913
61914
61915
61916
61917
61918
61919
61920
61921
61922
61923
61924
61925
|
+
+
+
+
+
|
}
pOut->p3 = pIn->p3;
pOut->p4type = P4_NOTUSED;
pOut->p4.p = 0;
pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
pOut->zComment = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOut->iSrcLine = iLineno+i;
#else
(void)iLineno;
#endif
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
}
#endif
}
|
︙ | | |
62139
62140
62141
62142
62143
62144
62145
62146
62147
62148
62149
62150
62151
62152
62153
62154
62155
62156
62157
62158
62159
62160
62161
62162
62163
62164
62165
62166
62167
62168
62169
62170
62171
62172
62173
62174
62175
62176
62177
62178
62179
62180
62181
62182
|
62201
62202
62203
62204
62205
62206
62207
62208
62209
62210
62211
62212
62213
62214
62215
62216
62217
62218
62219
62220
62221
62222
62223
62224
62225
62226
62227
62228
62229
62230
62231
62232
62233
62234
62235
62236
62237
62238
62239
62240
62241
62242
|
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
|
va_start(ap, zFormat);
vdbeVComment(p, zFormat, ap);
va_end(ap);
}
}
#endif /* NDEBUG */
#ifdef SQLITE_VDBE_COVERAGE
/*
** Set the value if the iSrcLine field for the previously coded instruction.
*/
SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
}
#endif /* SQLITE_VDBE_COVERAGE */
/*
** Return the opcode for a given address. If the address is -1, then
** return the most recently inserted opcode.
**
** If a memory allocation error has occurred prior to the calling of this
** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
** is readable but not writable, though it is cast to a writable value.
** The return of a dummy opcode allows the call to continue functioning
** after a OOM fault without having to check to see if the return from
** this routine is a valid pointer. But because the dummy.opcode is 0,
** dummy will never be written to. This is verified by code inspection and
** by running with Valgrind.
**
** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
** a new VDBE is created. So we are free to set addr to p->nOp-1 without
** having to double-check to make sure that the result is non-negative. But
** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
** check the value of p->nOp-1 before continuing.
*/
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
/* C89 specifies that the constant "dummy" will be initialized to all
** zeros, which is correct. MSVC generates a warning, nevertheless. */
static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
assert( p->magic==VDBE_MAGIC_INIT );
if( addr<0 ){
#ifdef SQLITE_OMIT_TRACE
if( p->nOp==0 ) return (VdbeOp*)&dummy;
#endif
addr = p->nOp - 1;
}
assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
if( p->db->mallocFailed ){
return (VdbeOp*)&dummy;
}else{
return &p->aOp[addr];
|
︙ | | |
62473
62474
62475
62476
62477
62478
62479
62480
62481
62482
62483
62484
62485
62486
62487
|
62533
62534
62535
62536
62537
62538
62539
62540
62541
62542
62543
62544
62545
62546
62547
|
-
+
|
char zCom[100];
static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
if( pOut==0 ) pOut = stdout;
zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
displayComment(pOp, zP4, zCom, sizeof(zCom));
#else
zCom[0] = 0
zCom[0] = 0;
#endif
/* NB: The sqlite3OpcodeName() function is implemented by code created
** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
** information from the vdbe.c source text */
fprintf(pOut, zFormat1, pc,
sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
zCom
|
︙ | | |
62502
62503
62504
62505
62506
62507
62508
62509
62510
62511
62512
62513
62514
62515
62516
62517
62518
62519
62520
62521
62522
62523
62524
62525
62526
62527
62528
62529
62530
62531
62532
62533
62534
62535
62536
|
62562
62563
62564
62565
62566
62567
62568
62569
62570
62571
62572
62573
62574
62575
62576
62577
62578
62579
62580
62581
62582
62583
62584
62585
62586
62587
62588
62589
62590
62591
62592
62593
62594
62595
62596
62597
|
+
-
+
|
for(pEnd=&p[N]; p<pEnd; p++){
sqlite3DbFree(db, p->zMalloc);
}
return;
}
for(pEnd=&p[N]; p<pEnd; p++){
assert( (&p[1])==pEnd || p[0].db==p[1].db );
assert( sqlite3VdbeCheckMemInvariants(p) );
/* This block is really an inlined version of sqlite3VdbeMemRelease()
** that takes advantage of the fact that the memory cell value is
** being set to NULL after releasing any dynamic resources.
**
** The justification for duplicating code is that according to
** callgrind, this causes a certain test case to hit the CPU 4.7
** percent less (x86 linux, gcc version 4.1.2, -O6) than if
** sqlite3MemRelease() were called from here. With -O2, this jumps
** to 6.6 percent. The test case is inserting 1000 rows into a table
** with no indexes using a single prepared INSERT statement, bind()
** and reset(). Inserts are grouped into a transaction.
*/
if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
sqlite3VdbeMemRelease(p);
}else if( p->zMalloc ){
sqlite3DbFree(db, p->zMalloc);
p->zMalloc = 0;
}
p->flags = MEM_Invalid;
p->flags = MEM_Undefined;
}
db->mallocFailed = malloc_failed;
}
}
/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
|
︙ | | |
62644
62645
62646
62647
62648
62649
62650
62651
62652
62653
62654
62655
62656
62657
62658
62659
62660
62661
62662
62663
62664
62665
62666
|
62705
62706
62707
62708
62709
62710
62711
62712
62713
62714
62715
62716
62717
62718
62719
62720
62721
62722
62723
62724
62725
|
-
-
|
for(j=0; i>=apSub[j]->nOp; j++){
i -= apSub[j]->nOp;
}
pOp = &apSub[j]->aOp[i];
}
if( p->explain==1 ){
pMem->flags = MEM_Int;
pMem->type = SQLITE_INTEGER;
pMem->u.i = i; /* Program counter */
pMem++;
pMem->flags = MEM_Static|MEM_Str|MEM_Term;
pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
assert( pMem->z!=0 );
pMem->n = sqlite3Strlen30(pMem->z);
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
pMem++;
/* When an OP_Program opcode is encounter (the only opcode that has
** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
** kept in p->aMem[9].z to hold the new program - assuming this subprogram
** has not already been seen.
|
︙ | | |
62678
62679
62680
62681
62682
62683
62684
62685
62686
62687
62688
62689
62690
62691
62692
62693
62694
62695
62696
62697
62698
62699
62700
62701
62702
62703
62704
62705
62706
62707
62708
62709
62710
62711
62712
62713
62714
62715
62716
62717
62718
62719
62720
62721
62722
62723
62724
62725
62726
62727
62728
62729
62730
62731
62732
62733
62734
62735
62736
62737
62738
62739
62740
62741
62742
62743
62744
|
62737
62738
62739
62740
62741
62742
62743
62744
62745
62746
62747
62748
62749
62750
62751
62752
62753
62754
62755
62756
62757
62758
62759
62760
62761
62762
62763
62764
62765
62766
62767
62768
62769
62770
62771
62772
62773
62774
62775
62776
62777
62778
62779
62780
62781
62782
62783
62784
62785
62786
62787
62788
62789
62790
62791
62792
62793
62794
62795
62796
|
-
-
-
-
+
-
-
+
-
-
+
-
-
|
pSub->n = nSub*sizeof(SubProgram*);
}
}
}
pMem->flags = MEM_Int;
pMem->u.i = pOp->p1; /* P1 */
pMem->type = SQLITE_INTEGER;
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p2; /* P2 */
pMem->type = SQLITE_INTEGER;
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p3; /* P3 */
pMem->type = SQLITE_INTEGER;
pMem++;
if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
assert( p->db->mallocFailed );
return SQLITE_ERROR;
}
pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
pMem->flags = MEM_Str|MEM_Term;
zP4 = displayP4(pOp, pMem->z, 32);
if( zP4!=pMem->z ){
sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
}else{
assert( pMem->z!=0 );
pMem->n = sqlite3Strlen30(pMem->z);
pMem->enc = SQLITE_UTF8;
}
pMem->type = SQLITE_TEXT;
pMem++;
if( p->explain==1 ){
if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
assert( p->db->mallocFailed );
return SQLITE_ERROR;
}
pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
pMem->flags = MEM_Str|MEM_Term;
pMem->n = 2;
sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
pMem++;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
if( sqlite3VdbeMemGrow(pMem, 500, 0) ){
assert( p->db->mallocFailed );
return SQLITE_ERROR;
}
pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
pMem->flags = MEM_Str|MEM_Term;
pMem->n = displayComment(pOp, zP4, pMem->z, 500);
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
#else
pMem->flags = MEM_Null; /* Comment */
pMem->type = SQLITE_NULL;
#endif
}
p->nResColumn = 8 - 4*(p->explain-1);
p->pResultSet = &p->aMem[1];
p->rc = SQLITE_OK;
rc = SQLITE_ROW;
|
︙ | | |
62753
62754
62755
62756
62757
62758
62759
62760
62761
62762
62763
62764
62765
62766
62767
62768
62769
62770
62771
62772
62773
62774
62775
62776
62777
62778
62779
62780
62781
62782
62783
62784
62785
62786
|
62805
62806
62807
62808
62809
62810
62811
62812
62813
62814
62815
62816
62817
62818
62819
62820
62821
62822
62823
62824
62825
62826
62827
62828
62829
62830
62831
62832
62833
62834
62835
62836
62837
62838
|
-
+
-
+
|
*/
SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
const char *z = 0;
if( p->zSql ){
z = p->zSql;
}else if( p->nOp>=1 ){
const VdbeOp *pOp = &p->aOp[0];
if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
z = pOp->p4.z;
while( sqlite3Isspace(*z) ) z++;
}
}
if( z ) printf("SQL: [%s]\n", z);
}
#endif
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
if( sqlite3IoTrace==0 ) return;
if( nOp<1 ) return;
pOp = &p->aOp[0];
if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
int i, j;
char z[1000];
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
for(i=0; sqlite3Isspace(z[i]); i++){}
for(j=0; z[i]; i++){
if( sqlite3Isspace(z[i]) ){
if( z[i-1]!=' ' ){
|
︙ | | |
62990
62991
62992
62993
62994
62995
62996
62997
62998
62999
63000
63001
63002
63003
63004
|
63042
63043
63044
63045
63046
63047
63048
63049
63050
63051
63052
63053
63054
63055
63056
|
-
+
|
memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
}
if( p->aMem ){
p->aMem--; /* aMem[] goes from 1..nMem */
p->nMem = nMem; /* not from 0..nMem-1 */
for(n=1; n<=nMem; n++){
p->aMem[n].flags = MEM_Invalid;
p->aMem[n].flags = MEM_Undefined;
p->aMem[n].db = db;
}
}
p->explain = pParse->explain;
sqlite3VdbeRewind(p);
}
|
︙ | | |
63102
63103
63104
63105
63106
63107
63108
63109
63110
63111
63112
63113
63114
63115
63116
|
63154
63155
63156
63157
63158
63159
63160
63161
63162
63163
63164
63165
63166
63167
63168
|
-
+
|
#ifdef SQLITE_DEBUG
/* Execute assert() statements to ensure that the Vdbe.apCsr[] and
** Vdbe.aMem[] arrays have already been cleaned up. */
int i;
if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
if( p->aMem ){
for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
}
#endif
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
p->pResultSet = 0;
}
|
︙ | | |
63851
63852
63853
63854
63855
63856
63857
63858
63859
63860
63861
63862
63863
63864
63865
63866
63867
63868
63869
63870
|
63903
63904
63905
63906
63907
63908
63909
63910
63911
63912
63913
63914
63915
63916
63917
63918
63919
63920
63921
63922
63923
63924
63925
63926
63927
63928
63929
63930
63931
63932
63933
63934
|
+
+
+
+
+
+
+
+
+
+
+
-
+
+
|
if( out ){
int i;
fprintf(out, "---- ");
for(i=0; i<p->nOp; i++){
fprintf(out, "%02x", p->aOp[i].opcode);
}
fprintf(out, "\n");
if( p->zSql ){
char c, pc = 0;
fprintf(out, "-- ");
for(i=0; (c = p->zSql[i])!=0; i++){
if( pc=='\n' ) fprintf(out, "-- ");
putc(c, out);
pc = c;
}
if( pc!='\n' ) fprintf(out, "\n");
}
for(i=0; i<p->nOp; i++){
char zHdr[100];
fprintf(out, "%6d %10lld %8lld ",
sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
p->aOp[i].cnt,
p->aOp[i].cycles,
p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
);
fprintf(out, "%s", zHdr);
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
}
fclose(out);
}
}
#endif
p->iCurrentTime = 0;
|
︙ | | |
64211
64212
64213
64214
64215
64216
64217
64218
64219
64220
64221
64222
64223
64224
64225
64226
64227
64228
64229
64230
64231
64232
64233
64234
64235
64236
64237
64238
64239
64240
64241
64242
64243
64244
64245
64246
64247
64248
64249
64250
64251
64252
64253
64254
64255
64256
64257
64258
64259
64260
64261
64262
64263
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
64275
64276
64277
64278
64279
64280
64281
64282
64283
64284
64285
64286
64287
64288
64289
64290
|
64275
64276
64277
64278
64279
64280
64281
64282
64283
64284
64285
64286
64287
64288
64289
64290
64291
64292
64293
64294
64295
64296
64297
64298
64299
64300
64301
64302
64303
64304
64305
64306
64307
64308
64309
64310
64311
64312
64313
64314
64315
64316
64317
64318
64319
64320
64321
64322
64323
64324
64325
64326
64327
64328
64329
64330
64331
64332
64333
64334
64335
64336
64337
64338
64339
64340
64341
64342
64343
64344
64345
64346
64347
64348
64349
64350
64351
64352
64353
64354
64355
64356
|
+
+
+
+
+
+
+
+
-
-
+
-
-
+
-
-
+
-
+
-
-
-
-
+
-
-
+
+
|
return len;
}
/* NULL or constants 0 or 1 */
return 0;
}
/* Input "x" is a sequence of unsigned characters that represent a
** big-endian integer. Return the equivalent native integer
*/
#define ONE_BYTE_INT(x) ((i8)(x)[0])
#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem. Return the number of bytes read.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
u64 x;
u32 y;
int i;
switch( serial_type ){
case 10: /* Reserved for future use */
case 11: /* Reserved for future use */
case 0: { /* NULL */
pMem->flags = MEM_Null;
break;
}
case 1: { /* 1-byte signed integer */
pMem->u.i = (signed char)buf[0];
pMem->u.i = ONE_BYTE_INT(buf);
pMem->flags = MEM_Int;
return 1;
}
case 2: { /* 2-byte signed integer */
i = 256*(signed char)buf[0] | buf[1];
pMem->u.i = (i64)i;
pMem->u.i = TWO_BYTE_INT(buf);
pMem->flags = MEM_Int;
return 2;
}
case 3: { /* 3-byte signed integer */
i = 65536*(signed char)buf[0] | (buf[1]<<8) | buf[2];
pMem->u.i = (i64)i;
pMem->u.i = THREE_BYTE_INT(buf);
pMem->flags = MEM_Int;
return 3;
}
case 4: { /* 4-byte signed integer */
y = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
y = FOUR_BYTE_UINT(buf);
pMem->u.i = (i64)*(int*)&y;
pMem->flags = MEM_Int;
return 4;
}
case 5: { /* 6-byte signed integer */
x = 256*(signed char)buf[0] + buf[1];
y = ((unsigned)buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
x = (x<<32) | y;
pMem->u.i = *(i64*)&x;
pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
pMem->flags = MEM_Int;
return 6;
}
case 6: /* 8-byte signed integer */
case 7: { /* IEEE floating point */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
** defined that 64-bit floating point values really are mixed
** endian.
*/
static const u64 t1 = ((u64)0x3ff00000)<<32;
static const double r1 = 1.0;
u64 t2 = t1;
swapMixedEndianFloat(t2);
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
x = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
y = ((unsigned)buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
x = FOUR_BYTE_UINT(buf);
y = FOUR_BYTE_UINT(buf+4);
x = (x<<32) | y;
if( serial_type==6 ){
pMem->u.i = *(i64*)&x;
pMem->flags = MEM_Int;
}else{
assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
swapMixedEndianFloat(x);
|
︙ | | |
64372
64373
64374
64375
64376
64377
64378
64379
64380
64381
64382
64383
64384
64385
64386
64387
64388
64389
64390
64391
64392
64393
64394
64395
64396
64397
64398
64399
64400
64401
64402
64403
64404
64405
64406
64407
64408
64409
64410
64411
64412
64413
64414
64415
64416
64417
64418
64419
64420
64421
64422
64423
64424
64425
64426
|
64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449
64450
64451
64452
64453
64454
64455
64456
64457
64458
64459
64460
64461
64462
64463
64464
64465
64466
64467
64468
64469
64470
64471
64472
64473
64474
64475
64476
64477
64478
64479
64480
64481
64482
64483
64484
|
-
+
+
-
+
-
-
-
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
-
-
+
-
+
|
const unsigned char *aKey = (const unsigned char *)pKey;
int d;
u32 idx; /* Offset in aKey[] to read from */
u16 u; /* Unsigned loop counter */
u32 szHdr;
Mem *pMem = p->aMem;
p->flags = 0;
p->default_rc = 0;
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
idx = getVarint32(aKey, szHdr);
d = szHdr;
u = 0;
while( idx<szHdr && u<p->nField && d<=nKey ){
u32 serial_type;
idx += getVarint32(&aKey[idx], serial_type);
pMem->enc = pKeyInfo->enc;
pMem->db = pKeyInfo->db;
/* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
pMem->zMalloc = 0;
d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
pMem++;
u++;
}
assert( u<=pKeyInfo->nField + 1 );
p->nField = u;
}
#if SQLITE_DEBUG
/*
** This function compares the two table rows or index records
** This function compares two index or table record keys in the same way
** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
** or positive integer if key1 is less than, equal to or
** greater than key2. The {nKey1, pKey1} key must be a blob
** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
** this function deserializes and compares values using the
** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
** in assert() statements to ensure that the optimized code in
** sqlite3VdbeRecordCompare() returns results with these two primitives.
**
** Key1 and Key2 do not have to contain the same number of fields.
** The key with fewer fields is usually compares less than the
** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
** and the common prefixes are equal, then key1 is less than key2.
** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
** equal, then the keys are considered to be equal and
** the parts beyond the common prefix are ignored.
*/
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
static int vdbeRecordCompareDebug(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
const UnpackedRecord *pPKey2 /* Right key */
){
u32 d1; /* Offset into aKey[] of next data element */
u32 idx1; /* Offset into aKey[] of next header element */
u32 szHdr1; /* Number of bytes in header */
int i = 0;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
︙ | | |
64486
64487
64488
64489
64490
64491
64492
64493
64494
64495
64496
64497
64498
64499
64500
64501
64502
64503
64504
64505
64506
64507
64508
64509
64510
64511
64512
64513
64514
64515
64516
64517
|
64544
64545
64546
64547
64548
64549
64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64572
64573
64574
64575
64576
64577
64578
64579
64580
64581
64582
64583
64584
64585
64586
64587
64588
64589
64590
64591
64592
64593
64594
64595
64596
64597
64598
64599
64600
64601
64602
64603
64604
64605
64606
64607
64608
64609
64610
64611
64612
64613
64614
64615
64616
64617
64618
64619
64620
64621
64622
64623
64624
64625
64626
64627
64628
64629
64630
64631
64632
64633
64634
64635
64636
64637
64638
64639
64640
64641
64642
64643
64644
64645
64646
64647
64648
64649
64650
64651
64652
64653
64654
64655
64656
64657
64658
64659
64660
64661
64662
64663
64664
64665
64666
64667
64668
64669
64670
64671
64672
64673
64674
64675
64676
64677
64678
64679
64680
64681
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
64697
64698
64699
64700
64701
64702
64703
64704
64705
64706
64707
64708
64709
64710
64711
64712
64713
64714
64715
64716
64717
64718
64719
64720
64721
64722
64723
64724
64725
64726
64727
64728
64729
64730
64731
64732
64733
64734
64735
64736
64737
64738
64739
64740
64741
64742
64743
64744
64745
64746
64747
64748
64749
64750
64751
64752
64753
64754
64755
64756
64757
64758
64759
64760
64761
64762
64763
64764
64765
64766
64767
64768
64769
64770
64771
64772
64773
64774
64775
64776
64777
64778
64779
64780
64781
64782
64783
64784
64785
64786
64787
64788
64789
64790
64791
64792
64793
64794
64795
64796
64797
64798
64799
64800
64801
64802
64803
64804
64805
64806
64807
64808
64809
64810
64811
64812
64813
64814
64815
64816
64817
64818
64819
64820
64821
64822
64823
64824
64825
64826
64827
64828
64829
64830
64831
64832
64833
64834
64835
64836
64837
64838
64839
64840
64841
64842
64843
64844
64845
64846
64847
64848
64849
64850
64851
64852
64853
64854
64855
64856
64857
64858
64859
64860
64861
64862
64863
64864
64865
64866
64867
64868
64869
64870
64871
64872
64873
64874
64875
64876
64877
64878
64879
64880
64881
64882
64883
64884
64885
64886
64887
64888
64889
64890
64891
64892
64893
64894
64895
64896
64897
64898
64899
64900
64901
64902
64903
64904
64905
64906
64907
64908
64909
64910
64911
64912
64913
64914
64915
64916
64917
64918
64919
64920
64921
64922
64923
64924
64925
64926
64927
64928
64929
64930
64931
64932
64933
64934
64935
64936
64937
64938
64939
64940
64941
64942
64943
64944
64945
64946
64947
64948
64949
64950
64951
64952
64953
64954
64955
64956
64957
64958
64959
64960
64961
64962
64963
64964
64965
64966
64967
64968
64969
64970
64971
64972
64973
64974
64975
64976
64977
64978
64979
64980
64981
64982
64983
64984
64985
64986
64987
64988
64989
64990
64991
64992
64993
64994
64995
64996
64997
64998
64999
65000
65001
65002
65003
65004
65005
65006
65007
65008
65009
65010
65011
65012
65013
65014
65015
65016
65017
65018
65019
65020
65021
65022
65023
65024
65025
65026
65027
65028
65029
65030
65031
65032
65033
65034
65035
65036
65037
65038
65039
65040
65041
65042
65043
65044
65045
65046
65047
65048
65049
65050
65051
65052
65053
65054
65055
65056
65057
65058
65059
65060
65061
65062
65063
65064
65065
65066
65067
65068
65069
65070
65071
65072
65073
65074
65075
65076
65077
65078
65079
65080
65081
65082
65083
65084
65085
65086
65087
65088
65089
65090
65091
65092
65093
65094
65095
65096
65097
65098
65099
65100
65101
65102
65103
65104
65105
65106
|
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
/* No memory allocation is ever used on mem1. Prove this using
** the following assert(). If the assert() fails, it indicates a
** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
*/
assert( mem1.zMalloc==0 );
/* rc==0 here means that one of the keys ran out of fields and
** all the fields up to that point were equal. If the UNPACKED_INCRKEY
** flag is set, then break the tie by treating key2 as larger.
** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
** are considered to be equal. Otherwise, the longer key is the
** larger. As it happens, the pPKey2 will always be the longer
** if there is a difference.
** all the fields up to that point were equal. Return the the default_rc
** value. */
return pPKey2->default_rc;
}
#endif
/*
** Both *pMem1 and *pMem2 contain string values. Compare the two values
** using the collation sequence pColl. As usual, return a negative , zero
** or positive value if *pMem1 is less than, equal to or greater than
** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
*/
static int vdbeCompareMemString(
const Mem *pMem1,
const Mem *pMem2,
const CollSeq *pColl
){
if( pMem1->enc==pColl->enc ){
/* The strings are already in the correct encoding. Call the
** comparison function directly */
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
}else{
int rc;
const void *v1, *v2;
int n1, n2;
Mem c1;
Mem c2;
memset(&c1, 0, sizeof(c1));
memset(&c2, 0, sizeof(c2));
sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
n1 = v1==0 ? 0 : c1.n;
v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
n2 = v2==0 ? 0 : c2.n;
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
sqlite3VdbeMemRelease(&c1);
sqlite3VdbeMemRelease(&c2);
return rc;
}
}
/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
int rc;
int f1, f2;
int combined_flags;
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1|f2;
assert( (combined_flags & MEM_RowSet)==0 );
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
*/
if( combined_flags&MEM_Null ){
return (f2&MEM_Null) - (f1&MEM_Null);
}
/* If one value is a number and the other is not, the number is less.
** If both are numbers, compare as reals if one is a real, or as integers
** if both values are integers.
*/
if( combined_flags&(MEM_Int|MEM_Real) ){
double r1, r2;
if( (f1 & f2 & MEM_Int)!=0 ){
if( pMem1->u.i < pMem2->u.i ) return -1;
if( pMem1->u.i > pMem2->u.i ) return 1;
return 0;
}
if( (f1&MEM_Real)!=0 ){
r1 = pMem1->r;
}else if( (f1&MEM_Int)!=0 ){
r1 = (double)pMem1->u.i;
}else{
return 1;
}
if( (f2&MEM_Real)!=0 ){
r2 = pMem2->r;
}else if( (f2&MEM_Int)!=0 ){
r2 = (double)pMem2->u.i;
}else{
return -1;
}
if( r1<r2 ) return -1;
if( r1>r2 ) return 1;
return 0;
}
/* If one value is a string and the other is a blob, the string is less.
** If both are strings, compare using the collating functions.
*/
if( combined_flags&MEM_Str ){
if( (f1 & MEM_Str)==0 ){
return 1;
}
if( (f2 & MEM_Str)==0 ){
return -1;
}
assert( pMem1->enc==pMem2->enc );
assert( pMem1->enc==SQLITE_UTF8 ||
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
/* The collation sequence must be defined at this point, even if
** the user deletes the collation sequence after the vdbe program is
** compiled (this was not always the case).
*/
assert( !pColl || pColl->xCmp );
if( pColl ){
return vdbeCompareMemString(pMem1, pMem2, pColl);
}
/* If a NULL pointer was passed as the collate function, fall through
** to the blob case and use memcmp(). */
}
/* Both values must be blobs. Compare using memcmp(). */
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
if( rc==0 ){
rc = pMem1->n - pMem2->n;
}
return rc;
}
/*
** The first argument passed to this function is a serial-type that
** corresponds to an integer - all values between 1 and 9 inclusive
** except 7. The second points to a buffer containing an integer value
** serialized according to serial_type. This function deserializes
** and returns the value.
*/
static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
u32 y;
assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
switch( serial_type ){
case 0:
case 1:
return ONE_BYTE_INT(aKey);
case 2:
return TWO_BYTE_INT(aKey);
case 3:
return THREE_BYTE_INT(aKey);
case 4: {
y = FOUR_BYTE_UINT(aKey);
return (i64)*(int*)&y;
}
case 5: {
return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
}
case 6: {
u64 x = FOUR_BYTE_UINT(aKey);
x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
return (i64)*(i64*)&x;
}
}
assert( rc==0 );
if( pPKey2->flags & UNPACKED_INCRKEY ){
rc = -1;
}else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
/* Leave rc==0 */
}else if( idx1<szHdr1 ){
rc = 1;
}
return rc;
}
return (serial_type - 8);
}
/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
** or positive integer if key1 is less than, equal to or
** greater than key2. The {nKey1, pKey1} key must be a blob
** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all
** fields that appear in both keys are equal, then pPKey2->default_rc is
** returned.
*/
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
int nKey1, const void *pKey1, /* Left key */
const UnpackedRecord *pPKey2, /* Right key */
int bSkip /* If true, skip the first field */
){
u32 d1; /* Offset into aKey[] of next data element */
int i; /* Index of next field to compare */
u32 szHdr1; /* Size of record header in bytes */
u32 idx1; /* Offset of first type in header */
int rc = 0; /* Return value */
Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
Mem mem1;
/* If bSkip is true, then the caller has already determined that the first
** two elements in the keys are equal. Fix the various stack variables so
** that this routine begins comparing at the second field. */
if( bSkip ){
u32 s1;
idx1 = 1 + getVarint32(&aKey1[1], s1);
szHdr1 = aKey1[0];
d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
i = 1;
pRhs++;
}else{
idx1 = getVarint32(aKey1, szHdr1);
d1 = szHdr1;
i = 0;
}
VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
|| CORRUPT_DB );
assert( pPKey2->pKeyInfo->aSortOrder!=0 );
assert( pPKey2->pKeyInfo->nField>0 );
assert( idx1<=szHdr1 || CORRUPT_DB );
do{
u32 serial_type;
/* RHS is an integer */
if( pRhs->flags & MEM_Int ){
serial_type = aKey1[idx1];
if( serial_type>=12 ){
rc = +1;
}else if( serial_type==0 ){
rc = -1;
}else if( serial_type==7 ){
double rhs = (double)pRhs->u.i;
sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
if( mem1.r<rhs ){
rc = -1;
}else if( mem1.r>rhs ){
rc = +1;
}
}else{
i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
i64 rhs = pRhs->u.i;
if( lhs<rhs ){
rc = -1;
}else if( lhs>rhs ){
rc = +1;
}
}
}
/* RHS is real */
else if( pRhs->flags & MEM_Real ){
serial_type = aKey1[idx1];
if( serial_type>=12 ){
rc = +1;
}else if( serial_type==0 ){
rc = -1;
}else{
double rhs = pRhs->r;
double lhs;
sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
if( serial_type==7 ){
lhs = mem1.r;
}else{
lhs = (double)mem1.u.i;
}
if( lhs<rhs ){
rc = -1;
}else if( lhs>rhs ){
rc = +1;
}
}
}
/* RHS is a string */
else if( pRhs->flags & MEM_Str ){
getVarint32(&aKey1[idx1], serial_type);
if( serial_type<12 ){
rc = -1;
}else if( !(serial_type & 0x01) ){
rc = +1;
}else{
mem1.n = (serial_type - 12) / 2;
if( (d1+mem1.n) > (unsigned)nKey1 ){
rc = 1; /* Corruption */
}else if( pKeyInfo->aColl[i] ){
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
mem1.flags = MEM_Str;
mem1.z = (char*)&aKey1[d1];
rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]);
}else{
int nCmp = MIN(mem1.n, pRhs->n);
rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
if( rc==0 ) rc = mem1.n - pRhs->n;
}
}
}
/* RHS is a blob */
else if( pRhs->flags & MEM_Blob ){
getVarint32(&aKey1[idx1], serial_type);
if( serial_type<12 || (serial_type & 0x01) ){
rc = -1;
}else{
int nStr = (serial_type - 12) / 2;
if( (d1+nStr) > (unsigned)nKey1 ){
rc = 1; /* Corruption */
}else{
int nCmp = MIN(nStr, pRhs->n);
rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
if( rc==0 ) rc = nStr - pRhs->n;
}
}
}
/* RHS is null */
else{
serial_type = aKey1[idx1];
rc = (serial_type!=0);
}
if( rc!=0 ){
if( pKeyInfo->aSortOrder[i] ){
rc = -rc;
}
assert( CORRUPT_DB
|| (rc<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
|| (rc>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
|| pKeyInfo->db->mallocFailed
);
assert( mem1.zMalloc==0 ); /* See comment below */
return rc;
}
i++;
pRhs++;
d1 += sqlite3VdbeSerialTypeLen(serial_type);
idx1 += sqlite3VarintLen(serial_type);
}while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
/* No memory allocation is ever used on mem1. Prove this using
** the following assert(). If the assert() fails, it indicates a
** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
assert( mem1.zMalloc==0 );
/* rc==0 here means that one or both of the keys ran out of fields and
** all the fields up to that point were equal. Return the the default_rc
** value. */
assert( CORRUPT_DB
|| pPKey2->default_rc==vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)
);
return pPKey2->default_rc;
}
/*
** This function is an optimized version of sqlite3VdbeRecordCompare()
** that (a) the first field of pPKey2 is an integer, and (b) the
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
*/
static int vdbeRecordCompareInt(
int nKey1, const void *pKey1, /* Left key */
const UnpackedRecord *pPKey2, /* Right key */
int bSkip /* Ignored */
){
const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
int serial_type = ((const u8*)pKey1)[1];
int res;
u32 y;
u64 x;
i64 v = pPKey2->aMem[0].u.i;
i64 lhs;
UNUSED_PARAMETER(bSkip);
assert( bSkip==0 );
switch( serial_type ){
case 1: { /* 1-byte signed integer */
lhs = ONE_BYTE_INT(aKey);
break;
}
case 2: { /* 2-byte signed integer */
lhs = TWO_BYTE_INT(aKey);
break;
}
case 3: { /* 3-byte signed integer */
lhs = THREE_BYTE_INT(aKey);
break;
}
case 4: { /* 4-byte signed integer */
y = FOUR_BYTE_UINT(aKey);
lhs = (i64)*(int*)&y;
break;
}
case 5: { /* 6-byte signed integer */
lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
break;
}
case 6: { /* 8-byte signed integer */
x = FOUR_BYTE_UINT(aKey);
x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
lhs = *(i64*)&x;
break;
}
case 8:
lhs = 0;
break;
case 9:
lhs = 1;
break;
/* This case could be removed without changing the results of running
** this code. Including it causes gcc to generate a faster switch
** statement (since the range of switch targets now starts at zero and
** is contiguous) but does not cause any duplicate code to be generated
** (as gcc is clever enough to combine the two like cases). Other
** compilers might be similar. */
case 0: case 7:
return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
default:
return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
}
if( v>lhs ){
res = pPKey2->r1;
}else if( v<lhs ){
res = pPKey2->r2;
}else if( pPKey2->nField>1 ){
/* The first fields of the two keys are equal. Compare the trailing
** fields. */
res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
}else{
/* The first fields of the two keys are equal and there are no trailing
** fields. Return pPKey2->default_rc in this case. */
res = pPKey2->default_rc;
}
assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0)
|| (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
|| (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
|| CORRUPT_DB
);
return res;
}
/*
** This function is an optimized version of sqlite3VdbeRecordCompare()
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
int nKey1, const void *pKey1, /* Left key */
const UnpackedRecord *pPKey2, /* Right key */
int bSkip
){
const u8 *aKey1 = (const u8*)pKey1;
int serial_type;
int res;
UNUSED_PARAMETER(bSkip);
assert( bSkip==0 );
getVarint32(&aKey1[1], serial_type);
if( serial_type<12 ){
res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
}else if( !(serial_type & 0x01) ){
res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
}else{
int nCmp;
int nStr;
int szHdr = aKey1[0];
nStr = (serial_type-12) / 2;
if( (szHdr + nStr) > nKey1 ) return 0; /* Corruption */
nCmp = MIN( pPKey2->aMem[0].n, nStr );
res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
if( res==0 ){
res = nStr - pPKey2->aMem[0].n;
if( res==0 ){
if( pPKey2->nField>1 ){
res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
}else{
res = pPKey2->default_rc;
}
}else if( res>0 ){
res = pPKey2->r2;
}else{
res = pPKey2->r1;
}
}else if( res>0 ){
res = pPKey2->r2;
}else{
res = pPKey2->r1;
}
}
assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0)
|| (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
|| (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
|| CORRUPT_DB
);
return res;
}
/*
** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
** suitable for comparing serialized records to the unpacked record passed
** as the only argument.
*/
SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
/* varintRecordCompareInt() and varintRecordCompareString() both assume
** that the size-of-header varint that occurs at the start of each record
** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
** also assumes that it is safe to overread a buffer by at least the
** maximum possible legal header size plus 8 bytes. Because there is
** guaranteed to be at least 74 (but not 136) bytes of padding following each
** buffer passed to varintRecordCompareInt() this makes it convenient to
** limit the size of the header to 64 bytes in cases where the first field
** is an integer.
**
** The easiest way to enforce this limit is to consider only records with
** 13 fields or less. If the first field is an integer, the maximum legal
** header size is (12*5 + 1 + 1) bytes. */
if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
int flags = p->aMem[0].flags;
if( p->pKeyInfo->aSortOrder[0] ){
p->r1 = 1;
p->r2 = -1;
}else{
p->r1 = -1;
p->r2 = 1;
}
if( (flags & MEM_Int) ){
return vdbeRecordCompareInt;
}
if( (flags & (MEM_Int|MEM_Real|MEM_Null|MEM_Blob))==0
&& p->pKeyInfo->aColl[0]==0
){
return vdbeRecordCompareString;
}
}
return sqlite3VdbeRecordCompare;
}
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
**
** pCur might be pointing to text obtained from a corrupt database file.
|
︙ | | |
64594
64595
64596
64597
64598
64599
64600
64601
64602
64603
64604
64605
64606
64607
64608
64609
64610
64611
64612
64613
64614
64615
64616
64617
64618
64619
64620
64621
64622
64623
64624
64625
64626
64627
64628
64629
64630
64631
64632
|
65183
65184
65185
65186
65187
65188
65189
65190
65191
65192
65193
65194
65195
65196
65197
65198
65199
65200
65201
65202
65203
65204
65205
65206
65207
65208
65209
65210
65211
65212
65213
65214
65215
65216
65217
65218
65219
65220
|
-
-
-
+
+
+
-
+
-
-
+
|
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
** is ignored as well. Hence, this routine only compares the prefixes
** of the keys prior to the final rowid, not the entire key.
*/
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
VdbeCursor *pC, /* The cursor to compare against */
UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
int *res /* Write the comparison result here */
VdbeCursor *pC, /* The cursor to compare against */
const UnpackedRecord *pUnpacked, /* Unpacked version of key */
int *res /* Write the comparison result here */
){
i64 nCellKey = 0;
int rc;
BtCursor *pCur = pC->pCursor;
Mem m;
assert( sqlite3BtreeCursorIsValid(pCur) );
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
/* nCellKey will always be between 0 and 0xffffffff because of the say
/* nCellKey will always be between 0 and 0xffffffff because of the way
** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
if( nCellKey<=0 || nCellKey>0x7fffffff ){
*res = 0;
return SQLITE_CORRUPT_BKPT;
}
memset(&m, 0, sizeof(m));
rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
if( rc ){
return rc;
}
assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
*res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
*res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0);
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
|
︙ | | |
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
|
65270
65271
65272
65273
65274
65275
65276
65277
65278
65279
65280
65281
65282
65283
|
-
|
if( v ){
Mem *pMem = &v->aVar[iVar-1];
if( 0==(pMem->flags & MEM_Null) ){
sqlite3_value *pRet = sqlite3ValueNew(v->db);
if( pRet ){
sqlite3VdbeMemCopy((Mem *)pRet, pMem);
sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
sqlite3VdbeMemStoreType((Mem *)pRet);
}
return pRet;
}
}
return 0;
}
|
︙ | | |
64856
64857
64858
64859
64860
64861
64862
64863
64864
64865
64866
64867
64868
64869
64870
|
65443
65444
65445
65446
65447
65448
65449
65450
65451
65452
65453
65454
65455
65456
|
-
|
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
Mem *p = (Mem*)pVal;
if( p->flags & (MEM_Blob|MEM_Str) ){
sqlite3VdbeMemExpandBlob(p);
p->flags &= ~MEM_Str;
p->flags |= MEM_Blob;
return p->n ? p->z : 0;
}else{
return sqlite3_value_text(pVal);
}
}
SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
|
︙ | | |
64893
64894
64895
64896
64897
64898
64899
64900
64901
64902
64903
64904
64905
64906
64907
|
65479
65480
65481
65482
65483
65484
65485
65486
65487
65488
65489
65490
65491
65492
65493
65494
65495
65496
65497
65498
65499
65500
65501
65502
65503
65504
65505
65506
65507
65508
65509
65510
65511
65512
65513
65514
65515
65516
65517
65518
65519
65520
65521
65522
65523
65524
65525
65526
65527
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
|
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
static const u8 aType[] = {
SQLITE_BLOB, /* 0x00 */
SQLITE_NULL, /* 0x01 */
SQLITE_TEXT, /* 0x02 */
SQLITE_NULL, /* 0x03 */
SQLITE_INTEGER, /* 0x04 */
SQLITE_NULL, /* 0x05 */
SQLITE_INTEGER, /* 0x06 */
SQLITE_NULL, /* 0x07 */
SQLITE_FLOAT, /* 0x08 */
SQLITE_NULL, /* 0x09 */
SQLITE_FLOAT, /* 0x0a */
SQLITE_NULL, /* 0x0b */
SQLITE_INTEGER, /* 0x0c */
SQLITE_NULL, /* 0x0d */
SQLITE_INTEGER, /* 0x0e */
SQLITE_NULL, /* 0x0f */
SQLITE_BLOB, /* 0x10 */
SQLITE_NULL, /* 0x11 */
SQLITE_TEXT, /* 0x12 */
SQLITE_NULL, /* 0x13 */
SQLITE_INTEGER, /* 0x14 */
SQLITE_NULL, /* 0x15 */
SQLITE_INTEGER, /* 0x16 */
SQLITE_NULL, /* 0x17 */
SQLITE_FLOAT, /* 0x18 */
SQLITE_NULL, /* 0x19 */
SQLITE_FLOAT, /* 0x1a */
SQLITE_NULL, /* 0x1b */
SQLITE_INTEGER, /* 0x1c */
SQLITE_NULL, /* 0x1d */
SQLITE_INTEGER, /* 0x1e */
SQLITE_NULL, /* 0x1f */
};
return pVal->type;
return aType[pVal->flags&MEM_AffMask];
}
/**************************** sqlite3_result_ *******************************
** The following routines are used by user-defined functions to specify
** the function result.
**
** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
|
︙ | | |
65414
65415
65416
65417
65418
65419
65420
65421
65422
65423
65424
65425
65426
65427
65428
65429
65430
65431
65432
65433
65434
65435
65436
65437
65438
65439
65440
65441
65442
65443
65444
65445
65446
65447
65448
65449
65450
65451
65452
65453
65454
65455
65456
65457
65458
65459
65460
65461
65462
65463
65464
65465
65466
65467
65468
65469
|
66034
66035
66036
66037
66038
66039
66040
66041
66042
66043
66044
66045
66046
66047
66048
66049
66050
66051
66052
66053
66054
66055
66056
66057
66058
66059
66060
66061
66062
66063
66064
66065
66066
66067
66068
66069
66070
66071
66072
66073
66074
66075
66076
66077
66078
66079
66080
66081
66082
66083
66084
66085
66086
66087
66088
66089
66090
66091
66092
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
|
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
Vdbe *pVm = (Vdbe *)pStmt;
if( pVm==0 || pVm->pResultSet==0 ) return 0;
return pVm->nResColumn;
}
/*
** Return a pointer to static memory containing an SQL NULL value.
*/
static const Mem *columnNullValue(void){
/* Even though the Mem structure contains an element
** of type i64, on certain architectures (x86) with certain compiler
** switches (-Os), gcc may align this Mem object on a 4-byte boundary
** instead of an 8-byte one. This all works fine, except that when
** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
** that a Mem structure is located on an 8-byte boundary. To prevent
** these assert()s from failing, when building with SQLITE_DEBUG defined
** using gcc, we force nullMem to be 8-byte aligned using the magical
** __attribute__((aligned(8))) macro. */
static const Mem nullMem
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
__attribute__((aligned(8)))
#endif
= {0, "", (double)0, {0}, 0, MEM_Null, 0,
#ifdef SQLITE_DEBUG
0, 0, /* pScopyFrom, pFiller */
#endif
0, 0 };
return &nullMem;
}
/*
** Check to see if column iCol of the given statement is valid. If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value
** of NULL.
*/
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
Vdbe *pVm;
Mem *pOut;
pVm = (Vdbe *)pStmt;
if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
sqlite3_mutex_enter(pVm->db->mutex);
pOut = &pVm->pResultSet[i];
}else{
/* If the value passed as the second argument is out of range, return
** a pointer to the following static Mem object which contains the
** value SQL NULL. Even though the Mem structure contains an element
** of type i64, on certain architectures (x86) with certain compiler
** switches (-Os), gcc may align this Mem object on a 4-byte boundary
** instead of an 8-byte one. This all works fine, except that when
** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
** that a Mem structure is located on an 8-byte boundary. To prevent
** these assert()s from failing, when building with SQLITE_DEBUG defined
** using gcc, we force nullMem to be 8-byte aligned using the magical
** __attribute__((aligned(8))) macro. */
static const Mem nullMem
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
__attribute__((aligned(8)))
#endif
= {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0,
#ifdef SQLITE_DEBUG
0, 0, /* pScopyFrom, pFiller */
#endif
0, 0 };
if( pVm && ALWAYS(pVm->db) ){
sqlite3_mutex_enter(pVm->db->mutex);
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
}
pOut = (Mem*)&nullMem;
pOut = (Mem*)columnNullValue();
}
return pOut;
}
/*
** This function is called after invoking an sqlite3_value_XXX function on a
** column value (i.e. a value returned by evaluating an SQL expression in the
|
︙ | | |
65852
65853
65854
65855
65856
65857
65858
65859
65860
65861
65862
65863
65864
65865
65866
|
66475
66476
66477
66478
66479
66480
66481
66482
66483
66484
66485
66486
66487
66488
66489
|
-
+
|
void (*xDel)(void*)
){
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
int rc;
switch( pValue->type ){
switch( sqlite3_value_type((sqlite3_value*)pValue) ){
case SQLITE_INTEGER: {
rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
break;
}
case SQLITE_FLOAT: {
rc = sqlite3_bind_double(pStmt, i, pValue->r);
break;
|
︙ | | |
66353
66354
66355
66356
66357
66358
66359
66360
66361
66362
66363
66364
66365
66366
66367
66368
66369
66370
66371
66372
66373
66374
66375
66376
66377
66378
66379
66380
66381
66382
66383
66384
66385
66386
66387
66388
66389
66390
66391
66392
66393
66394
66395
66396
66397
66398
66399
66400
66401
66402
66403
66404
66405
|
66976
66977
66978
66979
66980
66981
66982
66983
66984
66985
66986
66987
66988
66989
66990
66991
66992
66993
66994
66995
66996
66997
66998
66999
67000
67001
67002
67003
67004
67005
67006
67007
|
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
|
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements execution method of the
** The code in this file implements the function that runs the
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
** handles housekeeping details such as creating and deleting
** VDBE instances. This file is solely interested in executing
** the VDBE program.
**
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement. VDBE programs are
** bytecode of a prepared statement.
** similar in form to assembly language. The program consists of
** a linear sequence of operations. Each operation has an opcode
** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
** is a null-terminated string. Operand P5 is an unsigned character.
** Few opcodes use all 5 operands.
**
** Computation results are stored on a set of registers numbered beginning
** with 1 and going up to Vdbe.nMem. Each register can store
** either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value. An implicit conversion from one
** type to the other occurs as necessary.
**
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
*/
/*
** Invoke this macro on memory cells just prior to changing the
** value of the cell. This macro verifies that shallow copies are
** not misused.
** not misused. A shallow copy of a string or blob just copies a
** pointer to the string or blob, not the content. If the original
** is changed while the copy is still in use, the string or blob might
** be changed out from under the copy. This macro verifies that nothing
** like that every happens.
*/
#ifdef SQLITE_DEBUG
# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
#else
# define memAboutToChange(P,M)
#endif
|
︙ | | |
66450
66451
66452
66453
66454
66455
66456
66457
66458
66459
66460
66461
66462
66463
66464
66465
66466
66467
66468
66469
66470
66471
66472
66473
66474
66475
66476
66477
66478
66479
66480
66481
66482
66483
66484
66485
66486
66487
66488
66489
66490
66491
66492
66493
66494
66495
66496
66497
66498
66499
66500
66501
66502
66503
66504
66505
66506
66507
66508
66509
66510
66511
66512
66513
66514
66515
66516
66517
66518
66519
66520
66521
66522
66523
66524
66525
66526
66527
66528
66529
66530
66531
66532
|
67052
67053
67054
67055
67056
67057
67058
67059
67060
67061
67062
67063
67064
67065
67066
67067
67068
67069
67070
67071
67072
67073
67074
67075
67076
67077
67078
67079
67080
67081
67082
67083
67084
67085
67086
67087
67088
67089
67090
67091
67092
67093
67094
67095
67096
67097
67098
67099
67100
67101
67102
67103
67104
67105
67106
67107
67108
67109
67110
67111
67112
67113
67114
67115
67116
67117
67118
67119
67120
67121
67122
67123
67124
67125
67126
67127
67128
67129
67130
67131
67132
67133
67134
67135
67136
67137
67138
|
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
sqlite3_max_blobsize = p->n;
}
}
#endif
/*
** The next global variable is incremented each type the OP_Found opcode
** The next global variable is incremented each time the OP_Found opcode
** is executed. This is used to test whether or not the foreign key
** operation implemented using OP_FkIsZero is working. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_found_count = 0;
#endif
/*
** Test a register to see if it exceeds the current maximum blob size.
** If it does, record the new maximum blob size.
*/
#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
#else
# define UPDATE_MAX_BLOBSIZE(P)
#endif
/*
** Invoke the VDBE coverage callback, if that callback is defined. This
** feature is used for test suite validation only and does not appear an
** production builds.
**
** M is an integer, 2 or 3, that indices how many different ways the
** branch can go. It is usually 2. "I" is the direction the branch
** goes. 0 means falls through. 1 means branch is taken. 2 means the
** second alternative branch is taken.
*/
#if !defined(SQLITE_VDBE_COVERAGE)
# define VdbeBranchTaken(I,M)
#else
# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
M = iSrcLine;
/* Assert the truth of VdbeCoverageAlwaysTaken() and
** VdbeCoverageNeverTaken() */
assert( (M & I)==I );
}else{
if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
iSrcLine,I,M);
}
}
#endif
/*
** Convert the given register into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
{ goto no_mem; }
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the register
** does not control the string, it might be deleted without the register
** knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the register itself controls. In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 \
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
# define isSorter(x) ((x)->pSorter!=0)
#define isSorter(x) ((x)->pSorter!=0)
/*
** Argument pMem points at a register that will be passed to a
** user-defined function or returned to the user as the result of a query.
** This routine sets the pMem->type variable used by the sqlite3_value_*()
** routines.
*/
SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem){
int flags = pMem->flags;
if( flags & MEM_Null ){
pMem->type = SQLITE_NULL;
}
else if( flags & MEM_Int ){
pMem->type = SQLITE_INTEGER;
}
else if( flags & MEM_Real ){
pMem->type = SQLITE_FLOAT;
}
else if( flags & MEM_Str ){
pMem->type = SQLITE_TEXT;
}else{
pMem->type = SQLITE_BLOB;
}
}
/*
** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
Vdbe *p, /* The virtual machine */
|
︙ | | |
66648
66649
66650
66651
66652
66653
66654
66655
66656
66657
66658
66659
66660
66661
66662
66663
66664
66665
66666
66667
|
67254
67255
67256
67257
67258
67259
67260
67261
67262
67263
67264
67265
67266
67267
67268
67269
67270
67271
67272
67273
67274
|
+
+
-
+
-
-
+
-
+
|
/*
** Try to convert the type of a function argument or a result column
** into a numeric representation. Use either INTEGER or REAL whichever
** is appropriate. But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
*/
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
int eType = sqlite3_value_type(pVal);
if( eType==SQLITE_TEXT ){
Mem *pMem = (Mem*)pVal;
Mem *pMem = (Mem*)pVal;
if( pMem->type==SQLITE_TEXT ){
applyNumericAffinity(pMem);
sqlite3VdbeMemStoreType(pMem);
eType = sqlite3_value_type(pVal);
}
return pMem->type;
return eType;
}
/*
** Exported version of applyAffinity(). This one works on sqlite3_value*,
** not the internal Mem* type.
*/
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
|
︙ | | |
66756
66757
66758
66759
66760
66761
66762
66763
66764
66765
66766
66767
66768
66769
66770
|
67363
67364
67365
67366
67367
67368
67369
67370
67371
67372
67373
67374
67375
67376
67377
|
-
+
|
#endif
#ifdef SQLITE_DEBUG
/*
** Print the value of a register for tracing purposes:
*/
static void memTracePrint(Mem *p){
if( p->flags & MEM_Invalid ){
if( p->flags & MEM_Undefined ){
printf(" undefined");
}else if( p->flags & MEM_Null ){
printf(" NULL");
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
printf(" si:%lld", p->u.i);
}else if( p->flags & MEM_Int ){
printf(" i:%lld", p->u.i);
|
︙ | | |
66888
66889
66890
66891
66892
66893
66894
66895
66896
66897
66898
66899
66900
66901
66902
66903
66904
66905
66906
66907
66908
66909
66910
66911
66912
66913
66914
66915
|
67495
67496
67497
67498
67499
67500
67501
67502
67503
67504
67505
67506
67507
67508
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
#endif /* !defined(_HWTIME_H_) */
/************** End of hwtime.h **********************************************/
/************** Continuing where we left off in vdbe.c ***********************/
#endif
/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite3_interrupt() routine has been called. If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop. This test used to be on every single instruction,
** but that meant we more testing than we needed. By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
#ifndef NDEBUG
/*
** This function is only called from within an assert() expression. It
** checks that the sqlite3.nTransaction variable is correctly set to
** the number of non-transaction savepoints currently in the
** linked list starting at sqlite3.pSavepoint.
|
︙ | | |
66925
66926
66927
66928
66929
66930
66931
66932
66933
66934
66935
66936
66937
66938
66939
66940
66941
66942
66943
66944
66945
66946
66947
66948
66949
66950
66951
66952
66953
66954
66955
66956
66957
66958
66959
66960
66961
66962
66963
66964
66965
66966
66967
|
67518
67519
67520
67521
67522
67523
67524
67525
67526
67527
67528
67529
67530
67531
67532
67533
|
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
|
assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
return 1;
}
#endif
/*
** Execute as much of a VDBE program as we can then return.
** Execute as much of a VDBE program as we can.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
**
** Whenever a row or result data is available, this routine will either
** invoke the result callback (if there is one) or return with
** SQLITE_ROW.
**
** If an attempt is made to open a locked database, then this routine
** will either invoke the busy callback (if there is one) or it will
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
** This is the core of sqlite3_step().
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
** immediately. There will be no error message but the p->rc field is
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
**
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
** routine to return SQLITE_ERROR.
**
** Other fatal errors return SQLITE_ERROR.
**
** After this routine has finished, sqlite3VdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
SQLITE_PRIVATE int sqlite3VdbeExec(
Vdbe *p /* The VDBE */
){
int pc=0; /* The program counter */
Op *aOp = p->aOp; /* Copy of p->aOp */
Op *pOp; /* Current operation */
|
︙ | | |
66979
66980
66981
66982
66983
66984
66985
66986
66987
66988
66989
66990
66991
66992
66993
66994
66995
66996
66997
66998
66999
67000
67001
67002
67003
67004
67005
67006
67007
67008
67009
67010
67011
|
67545
67546
67547
67548
67549
67550
67551
67552
67553
67554
67555
67556
67557
67558
67559
67560
67561
67562
67563
67564
67565
67566
67567
67568
67569
67570
67571
67572
67573
67574
67575
67576
|
-
-
+
|
Mem *pIn2 = 0; /* 2nd input operand */
Mem *pIn3 = 0; /* 3rd input operand */
Mem *pOut = 0; /* Output operand */
int *aPermute = 0; /* Permutation of columns for OP_Compare */
i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
#ifdef VDBE_PROFILE
u64 start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
/*** INSERT STACK UNION HERE ***/
assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
sqlite3VdbeEnter(p);
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
goto no_mem;
}
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
assert( p->bIsReader || p->readOnly!=0 );
p->rc = SQLITE_OK;
p->iCurrentTime = 0;
assert( p->explain==0 );
p->pResultSet = 0;
db->busyHandler.nBusy = 0;
CHECK_FOR_INTERRUPT;
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( db->xProgress ){
assert( 0 < db->nProgressOps );
nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
if( nProgressLimit==0 ){
nProgressLimit = db->nProgressOps;
|
︙ | | |
67041
67042
67043
67044
67045
67046
67047
67048
67049
67050
67051
67052
67053
67054
67055
|
67606
67607
67608
67609
67610
67611
67612
67613
67614
67615
67616
67617
67618
67619
|
-
|
}
sqlite3EndBenignMalloc();
#endif
for(pc=p->pc; rc==SQLITE_OK; pc++){
assert( pc>=0 && pc<p->nOp );
if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
origPc = pc;
start = sqlite3Hwtime();
#endif
nVmStep++;
pOp = &aOp[pc];
/* Only allow tracing if SQLITE_DEBUG is defined.
*/
|
︙ | | |
67089
67090
67091
67092
67093
67094
67095
67096
67097
67098
67099
67100
67101
67102
67103
67104
67105
67106
67107
67108
67109
67110
67111
67112
67113
67114
|
67653
67654
67655
67656
67657
67658
67659
67660
67661
67662
67663
67664
67665
67666
67667
67668
67669
67670
67671
67672
67673
67674
67675
67676
67677
67678
67679
67680
67681
|
+
+
+
|
/* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
if( (pOp->opflags & OPFLG_IN1)!=0 ){
assert( pOp->p1>0 );
assert( pOp->p1<=(p->nMem-p->nCursor) );
assert( memIsValid(&aMem[pOp->p1]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
}
if( (pOp->opflags & OPFLG_IN2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem-p->nCursor) );
assert( memIsValid(&aMem[pOp->p2]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
}
if( (pOp->opflags & OPFLG_IN3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=(p->nMem-p->nCursor) );
assert( memIsValid(&aMem[pOp->p3]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
}
if( (pOp->opflags & OPFLG_OUT2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem-p->nCursor) );
memAboutToChange(p, &aMem[pOp->p2]);
}
|
︙ | | |
67173
67174
67175
67176
67177
67178
67179
67180
67181
67182
67183
67184
67185
67186
67187
|
67740
67741
67742
67743
67744
67745
67746
67747
67748
67749
67750
67751
67752
67753
67754
|
-
+
|
**
** This code uses unstructured "goto" statements and does not look clean.
** But that is not due to sloppy coding habits. The code is written this
** way for performance, to avoid having to run the interrupt and progress
** checks on every opcode. This helps sqlite3_step() to run about 1.5%
** faster according to "valgrind --tool=cachegrind" */
check_for_interrupt:
CHECK_FOR_INTERRUPT;
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqlite3VdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
|
︙ | | |
67202
67203
67204
67205
67206
67207
67208
67209
67210
67211
67212
67213
67214
67215
67216
67217
67218
67219
67220
67221
67222
67223
67224
67225
67226
67227
67228
67229
67230
67231
67232
67233
67234
67235
67236
67237
67238
67239
67240
67241
67242
67243
67244
67245
67246
67247
67248
67249
67250
67251
67252
67253
|
67769
67770
67771
67772
67773
67774
67775
67776
67777
67778
67779
67780
67781
67782
67783
67784
67785
67786
67787
67788
67789
67790
67791
67792
67793
67794
67795
67796
67797
67798
67799
67800
67801
67802
67803
67804
67805
67806
67807
67808
67809
67810
67811
67812
67813
67814
67815
67816
67817
67818
67819
67820
67821
67822
67823
67824
67825
67826
67827
67828
67829
67830
67831
67832
67833
67834
67835
67836
67837
67838
67839
67840
67841
67842
67843
67844
67845
67846
67847
67848
67849
67850
67851
67852
67853
67854
67855
67856
67857
67858
67859
67860
67861
67862
67863
67864
67865
67866
|
-
+
-
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
-
+
-
+
-
+
|
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: { /* jump */
assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Dyn)==0 );
assert( VdbeMemDynamic(pIn1)==0 );
memAboutToChange(p, pIn1);
pIn1->flags = MEM_Int;
pIn1->u.i = pc;
REGISTER_TRACE(pOp->p1, pIn1);
pc = pOp->p2 - 1;
break;
}
/* Opcode: Return P1 * * * *
**
** Jump to the next instruction after the address in register P1.
** Jump to the next instruction after the address in register P1. After
** the jump, register P1 becomes undefined.
*/
case OP_Return: { /* in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags & MEM_Int );
assert( pIn1->flags==MEM_Int );
pc = (int)pIn1->u.i;
pIn1->flags = MEM_Undefined;
break;
}
/* Opcode: InitCoroutine P1 P2 P3 * *
**
** Set up register P1 so that it will OP_Yield to the co-routine
** located at address P3.
**
** If P2!=0 then the co-routine implementation immediately follows
** this opcode. So jump over the co-routine implementation to
** address P2.
*/
case OP_InitCoroutine: { /* jump */
assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
assert( pOp->p2>=0 && pOp->p2<p->nOp );
assert( pOp->p3>=0 && pOp->p3<p->nOp );
pOut = &aMem[pOp->p1];
assert( !VdbeMemDynamic(pOut) );
pOut->u.i = pOp->p3 - 1;
pOut->flags = MEM_Int;
if( pOp->p2 ) pc = pOp->p2 - 1;
break;
}
/* Opcode: EndCoroutine P1 * * * *
**
** The instruction at the address in register P1 is an OP_Yield.
** Jump to the P2 parameter of that OP_Yield.
** After the jump, register P1 becomes undefined.
*/
case OP_EndCoroutine: { /* in1 */
VdbeOp *pCaller;
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags==MEM_Int );
assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
pCaller = &aOp[pIn1->u.i];
assert( pCaller->opcode==OP_Yield );
assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
pc = pCaller->p2 - 1;
pIn1->flags = MEM_Undefined;
break;
}
/* Opcode: Yield P1 * * * *
/* Opcode: Yield P1 P2 * * *
**
** Swap the program counter with the value in register P1.
**
** If the co-routine ends with OP_Yield or OP_Return then continue
** to the next instruction. But if the co-routine ends with
** OP_EndCoroutine, jump immediately to P2.
*/
case OP_Yield: { /* in1 */
case OP_Yield: { /* in1, jump */
int pcDest;
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Dyn)==0 );
assert( VdbeMemDynamic(pIn1)==0 );
pIn1->flags = MEM_Int;
pcDest = (int)pIn1->u.i;
pIn1->u.i = pc;
REGISTER_TRACE(pOp->p1, pIn1);
pc = pcDest;
break;
}
/* Opcode: HaltIfNull P1 P2 P3 P4 P5
** Synopsis: if r[P3] null then halt
** Synopsis: if r[P3]=null halt
**
** Check the value in register P3. If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: { /* in3 */
|
︙ | | |
67387
67388
67389
67390
67391
67392
67393
67394
67395
67396
67397
67398
67399
67400
67401
67402
67403
67404
67405
67406
67407
67408
67409
67410
67411
67412
67413
67414
67415
67416
67417
|
68000
68001
68002
68003
68004
68005
68006
68007
68008
68009
68010
68011
68012
68013
68014
68015
68016
68017
68018
68019
68020
68021
68022
68023
68024
68025
68026
68027
68028
68029
68030
68031
|
-
+
+
+
-
+
-
|
}
#endif
/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into an OP_String before it is executed for the first time.
** into an OP_String before it is executed for the first time. During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: { /* same as TK_STRING, out2-prerelease */
assert( pOp->p4.z!=0 );
pOp->opcode = OP_String;
pOp->p1 = sqlite3Strlen30(pOp->p4.z);
#ifndef SQLITE_OMIT_UTF16
if( encoding!=SQLITE_UTF8 ){
rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
if( rc==SQLITE_TOOBIG ) goto too_big;
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
assert( pOut->zMalloc==pOut->z );
assert( pOut->flags & MEM_Dyn );
assert( VdbeMemDynamic(pOut)==0 );
pOut->zMalloc = 0;
pOut->flags |= MEM_Static;
pOut->flags &= ~MEM_Dyn;
if( pOp->p4type==P4_DYNAMIC ){
sqlite3DbFree(db, pOp->p4.z);
}
pOp->p4type = P4_DYNAMIC;
pOp->p4.z = pOut->z;
pOp->p1 = pOut->n;
}
|
︙ | | |
67461
67462
67463
67464
67465
67466
67467
67468
67469
67470
67471
67472
67473
67474
67475
67476
67477
67478
67479
67480
67481
67482
67483
67484
67485
67486
67487
67488
67489
67490
67491
67492
67493
67494
67495
|
68075
68076
68077
68078
68079
68080
68081
68082
68083
68084
68085
68086
68087
68088
68089
68090
68091
68092
68093
68094
68095
68096
68097
68098
68099
68100
68101
68102
68103
68104
68105
68106
68107
68108
68109
68110
68111
68112
68113
68114
68115
68116
68117
68118
68119
68120
68121
68122
68123
|
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
+
-
+
|
VdbeMemRelease(pOut);
pOut->flags = nullFlag;
cnt--;
}
break;
}
/* Opcode: SoftNull P1 * * * *
** Synopsis: r[P1]=NULL
**
** Set register P1 to have the value NULL as seen by the OP_MakeRecord
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
pOut = &aMem[pOp->p1];
pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
break;
/* Opcode: Blob P1 P2 * P4
}
/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long. Store this
** blob in register P2.
*/
case OP_Blob: { /* out2-prerelease */
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Variable P1 P2 * P4 *
** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4 and P3==1.
** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: { /* out2-prerelease */
Mem *pVar; /* Value being transferred */
assert( pOp->p1>0 && pOp->p1<=p->nVar );
assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
|
︙ | | |
67525
67526
67527
67528
67529
67530
67531
67532
67533
67534
67535
67536
67537
67538
67539
67540
67541
67542
67543
67544
67545
67546
|
68153
68154
68155
68156
68157
68158
68159
68160
68161
68162
68163
68164
68165
68166
68167
68168
68169
68170
68171
68172
68173
68174
68175
68176
|
+
-
-
+
+
+
|
pIn1 = &aMem[p1];
pOut = &aMem[p2];
do{
assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
assert( memIsValid(pIn1) );
memAboutToChange(p, pOut);
VdbeMemRelease(pOut);
zMalloc = pOut->zMalloc;
pOut->zMalloc = 0;
sqlite3VdbeMemMove(pOut, pIn1);
memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
pOut->pScopyFrom += p1 - pOp->p2;
}
#endif
pIn1->flags = MEM_Undefined;
pIn1->xDel = 0;
pIn1->zMalloc = zMalloc;
REGISTER_TRACE(p2++, pOut);
pIn1++;
pOut++;
}while( n-- );
break;
}
|
︙ | | |
67600
67601
67602
67603
67604
67605
67606
67607
67608
67609
67610
67611
67612
67613
67614
67615
|
68230
68231
68232
68233
68234
68235
68236
68237
68238
68239
68240
68241
68242
68243
68244
68245
|
-
-
+
+
|
/* Opcode: ResultRow P1 P2 * * *
** Synopsis: output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
** row.
** structure to provide access to the r(P1)..r(P1+P2-1) values as
** the result row.
*/
case OP_ResultRow: {
Mem *pMem;
int i;
assert( p->nResColumn==pOp->p2 );
assert( pOp->p1>0 );
assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
|
︙ | | |
67666
67667
67668
67669
67670
67671
67672
67673
67674
67675
67676
67677
67678
67679
67680
|
68296
68297
68298
68299
68300
68301
68302
68303
68304
68305
68306
68307
68308
68309
|
-
|
pMem = p->pResultSet = &aMem[pOp->p1];
for(i=0; i<pOp->p2; i++){
assert( memIsValid(&pMem[i]) );
Deephemeralize(&pMem[i]);
assert( (pMem[i].flags & MEM_Ephem)==0
|| (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
sqlite3VdbeMemNulTerminate(&pMem[i]);
sqlite3VdbeMemStoreType(&pMem[i]);
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
}
if( db->mallocFailed ) goto no_mem;
/* Return SQLITE_ROW
*/
p->pc = pc + 1;
|
︙ | | |
67709
67710
67711
67712
67713
67714
67715
67716
67717
67718
67719
67720
67721
67722
67723
67724
67725
67726
|
68338
68339
68340
68341
68342
68343
68344
68345
68346
68347
68348
68349
68350
68351
68352
68353
68354
68355
|
-
+
|
if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
Stringify(pIn1, encoding);
Stringify(pIn2, encoding);
nByte = pIn1->n + pIn2->n;
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
MemSetTypeFlag(pOut, MEM_Str);
if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
goto no_mem;
}
MemSetTypeFlag(pOut, MEM_Str);
if( pOut!=pIn2 ){
memcpy(pOut->z, pIn2->z, pIn2->n);
}
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
pOut->z[nByte]=0;
pOut->z[nByte+1] = 0;
pOut->flags |= MEM_Term;
|
︙ | | |
67912
67913
67914
67915
67916
67917
67918
67919
67920
67921
67922
67923
67924
67925
67926
|
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
68552
68553
68554
|
-
|
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
pArg = &aMem[pOp->p2];
for(i=0; i<n; i++, pArg++){
assert( memIsValid(pArg) );
apVal[i] = pArg;
Deephemeralize(pArg);
sqlite3VdbeMemStoreType(pArg);
REGISTER_TRACE(pOp->p2+i, pArg);
}
assert( pOp->p4type==P4_FUNCDEF );
ctx.pFunc = pOp->p4.pFunc;
ctx.iOp = pc;
ctx.pVdbe = p;
|
︙ | | |
68091
68092
68093
68094
68095
68096
68097
68098
68099
68100
68101
68102
68103
68104
|
68719
68720
68721
68722
68723
68724
68725
68726
68727
68728
68729
68730
68731
68732
68733
|
+
|
** without data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
*/
case OP_MustBeInt: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
if( (pIn1->flags & MEM_Int)==0 ){
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
if( (pIn1->flags & MEM_Int)==0 ){
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
pc = pOp->p2 - 1;
break;
|
︙ | | |
68129
68130
68131
68132
68133
68134
68135
68136
68137
68138
68139
68140
68141
68142
68143
|
68758
68759
68760
68761
68762
68763
68764
68765
68766
68767
68768
68769
68770
68771
68772
|
-
+
|
#endif
#ifndef SQLITE_OMIT_CAST
/* Opcode: ToText P1 * * * *
**
** Force the value in register P1 to be text.
** If the value is numeric, convert it to a string using the
** equivalent of printf(). Blob values are unchanged and
** equivalent of sprintf(). Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_ToText: { /* same as TK_TO_TEXT, in1 */
pIn1 = &aMem[pOp->p1];
memAboutToChange(p, pIn1);
|
︙ | | |
68331
68332
68333
68334
68335
68336
68337
68338
68339
68340
68341
68342
68343
68344
68345
68346
68347
68348
68349
68350
68351
68352
68353
68354
68355
68356
68357
68358
68359
68360
68361
68362
68363
|
68960
68961
68962
68963
68964
68965
68966
68967
68968
68969
68970
68971
68972
68973
68974
68975
68976
68977
68978
68979
68980
68981
68982
68983
68984
68985
68986
68987
68988
68989
68990
68991
68992
68993
68994
68995
68996
|
+
-
+
-
-
+
+
+
+
+
|
if( pOp->p5 & SQLITE_NULLEQ ){
/* If SQLITE_NULLEQ is set (which will only happen if the operator is
** OP_Eq or OP_Ne) then take the jump or not depending on whether
** or not both operands are null.
*/
assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
assert( (flags1 & MEM_Cleared)==0 );
assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
if( (flags1&MEM_Null)!=0
&& (flags3&MEM_Null)!=0
&& (flags3&MEM_Cleared)==0
){
res = 0; /* Results are equal */
}else{
res = 1; /* Results are not equal */
}
}else{
/* SQLITE_NULLEQ is clear and at least one operand is NULL,
** then the result is always NULL.
** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
*/
if( pOp->p5 & SQLITE_JUMPIFNULL ){
if( pOp->p5 & SQLITE_STOREP2 ){
pc = pOp->p2-1;
}else if( pOp->p5 & SQLITE_STOREP2 ){
pOut = &aMem[pOp->p2];
MemSetTypeFlag(pOut, MEM_Null);
REGISTER_TRACE(pOp->p2, pOut);
}else{
VdbeBranchTaken(2,3);
if( pOp->p5 & SQLITE_JUMPIFNULL ){
pc = pOp->p2-1;
}
}
break;
}
}else{
/* Neither operand is NULL. Do a comparison. */
affinity = pOp->p5 & SQLITE_AFF_MASK;
if( affinity ){
|
︙ | | |
68382
68383
68384
68385
68386
68387
68388
68389
68390
68391
68392
68393
68394
68395
68396
68397
68398
68399
|
69015
69016
69017
69018
69019
69020
69021
69022
69023
69024
69025
69026
69027
69028
69029
69030
69031
69032
69033
69034
|
+
+
-
-
-
-
+
+
+
+
|
if( pOp->p5 & SQLITE_STOREP2 ){
pOut = &aMem[pOp->p2];
memAboutToChange(p, pOut);
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = res;
REGISTER_TRACE(pOp->p2, pOut);
}else{
VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
}else if( res ){
pc = pOp->p2-1;
}
if( res ){
pc = pOp->p2-1;
}
}
/* Undo any changes made by applyAffinity() to the input registers. */
pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
break;
}
/* Opcode: Permutation * * * P4 *
|
︙ | | |
68482
68483
68484
68485
68486
68487
68488
68489
68490
68491
68492
68493
68494
68495
68496
68497
68498
68499
68500
|
69117
69118
69119
69120
69121
69122
69123
69124
69125
69126
69127
69128
69129
69130
69131
69132
69133
69134
69135
|
-
+
-
+
-
+
|
**
** Jump to the instruction at address P1, P2, or P3 depending on whether
** in the most recent OP_Compare instruction the P1 vector was less than
** equal to, or greater than the P2 vector, respectively.
*/
case OP_Jump: { /* jump */
if( iCompare<0 ){
pc = pOp->p1 - 1;
pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
}else if( iCompare==0 ){
pc = pOp->p2 - 1;
pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
}else{
pc = pOp->p3 - 1;
pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
}
break;
}
/* Opcode: And P1 P2 P3 * *
** Synopsis: r[P3]=(r[P1] && r[P2])
**
|
︙ | | |
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597
68598
68599
68600
68601
|
69219
69220
69221
69222
69223
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233
69234
69235
69236
69237
69238
69239
|
-
+
+
+
+
|
}
break;
}
/* Opcode: Once P1 P2 * * *
**
** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
** set the flag and fall through to the next instruction.
** set the flag and fall through to the next instruction. In other words,
** this opcode causes all following up codes up through P2 (but not including
** P2) to run just once and skipped on subsequent times through the loop.
*/
case OP_Once: { /* jump */
assert( pOp->p1<p->nOnceFlag );
VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
if( p->aOnceFlag[pOp->p1] ){
pc = pOp->p2-1;
}else{
p->aOnceFlag[pOp->p1] = 1;
}
break;
}
|
︙ | | |
68622
68623
68624
68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643
68644
68645
68646
68647
68648
68649
68650
68651
68652
68653
68654
68655
68656
68657
68658
68659
68660
68661
|
69260
69261
69262
69263
69264
69265
69266
69267
69268
69269
69270
69271
69272
69273
69274
69275
69276
69277
69278
69279
69280
69281
69282
69283
69284
69285
69286
69287
69288
69289
69290
69291
69292
69293
69294
69295
69296
69297
69298
69299
69300
69301
69302
|
+
+
+
|
#ifdef SQLITE_OMIT_FLOATING_POINT
c = sqlite3VdbeIntValue(pIn1)!=0;
#else
c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
if( pOp->opcode==OP_IfNot ) c = !c;
}
VdbeBranchTaken(c!=0, 2);
if( c ){
pc = pOp->p2-1;
}
break;
}
/* Opcode: IsNull P1 P2 * * *
** Synopsis: if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
if( (pIn1->flags & MEM_Null)!=0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: NotNull P1 P2 * * *
** Synopsis: if r[P1]!=NULL goto P2
**
** Jump to P2 if the value in register P1 is not NULL.
*/
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
if( (pIn1->flags & MEM_Null)==0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Column P1 P2 P3 P4 P5
|
︙ | | |
68724
68725
68726
68727
68728
68729
68730
68731
68732
68733
68734
68735
68736
68737
68738
68739
68740
68741
68742
|
69365
69366
69367
69368
69369
69370
69371
69372
69373
69374
69375
69376
69377
69378
|
-
-
-
-
-
|
rc = sqlite3VdbeCursorMoveto(pC);
if( rc ) goto abort_due_to_error;
if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){
if( pC->nullRow ){
if( pCrsr==0 ){
assert( pC->pseudoTableReg>0 );
pReg = &aMem[pC->pseudoTableReg];
if( pC->multiPseudo ){
sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
Deephemeralize(pDest);
goto op_column_out;
}
assert( pReg->flags & MEM_Blob );
assert( memIsValid(pReg) );
pC->payloadSize = pC->szRow = avail = pReg->n;
pC->aRow = (u8*)pReg->z;
}else{
MemSetTypeFlag(pDest, MEM_Null);
goto op_column_out;
|
︙ | | |
68879
68880
68881
68882
68883
68884
68885
68886
68887
68888
68889
68890
68891
68892
|
69515
69516
69517
69518
69519
69520
69521
69522
69523
69524
69525
69526
69527
69528
69529
|
+
|
/* Extract the content for the p2+1-th column. Control can only
** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
** all valid.
*/
assert( p2<pC->nHdrParsed );
assert( rc==SQLITE_OK );
assert( sqlite3VdbeCheckMemInvariants(pDest) );
if( pC->szRow>=aOffset[p2+1] ){
/* This is the common case where the desired content fits on the original
** page - where the content is not on an overflow page */
VdbeMemRelease(pDest);
sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
}else{
/* This branch happens only when content is on overflow pages */
|
︙ | | |
68916
68917
68918
68919
68920
68921
68922
68923
68924
68925
68926
68927
68928
68929
68930
68931
|
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
69565
69566
69567
69568
|
-
-
+
+
|
sqlite3VdbeSerialGet(zData, t, pDest);
/* If we dynamically allocated space to hold the data (in the
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
** dynamically allocated space over to the pDest structure.
** This prevents a memory copy. */
if( sMem.zMalloc ){
assert( sMem.z==sMem.zMalloc );
assert( !(pDest->flags & MEM_Dyn) );
assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
assert( VdbeMemDynamic(pDest)==0 );
assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z );
pDest->flags &= ~(MEM_Ephem|MEM_Static);
pDest->flags |= MEM_Term;
pDest->z = sMem.z;
pDest->zMalloc = sMem.zMalloc;
}
}
pDest->enc = encoding;
|
︙ | | |
68954
68955
68956
68957
68958
68959
68960
68961
68962
68963
68964
68965
68966
68967
68968
|
69591
69592
69593
69594
69595
69596
69597
69598
69599
69600
69601
69602
69603
69604
|
-
|
zAffinity = pOp->p4.z;
assert( zAffinity!=0 );
assert( zAffinity[pOp->p2]==0 );
pIn1 = &aMem[pOp->p1];
while( (cAff = *(zAffinity++))!=0 ){
assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
assert( memIsValid(pIn1) );
ExpandBlob(pIn1);
applyAffinity(pIn1, cAff, encoding);
pIn1++;
}
break;
}
/* Opcode: MakeRecord P1 P2 P3 P4 *
|
︙ | | |
69032
69033
69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045
69046
69047
|
69668
69669
69670
69671
69672
69673
69674
69675
69676
69677
69678
69679
69680
69681
69682
69683
69684
|
-
-
+
+
+
|
/* Apply the requested affinity to all inputs
*/
assert( pData0<=pLast );
if( zAffinity ){
pRec = pData0;
do{
applyAffinity(pRec, *(zAffinity++), encoding);
}while( (++pRec)<=pLast );
applyAffinity(pRec++, *(zAffinity++), encoding);
assert( zAffinity[0]==0 || pRec<=pLast );
}while( zAffinity[0] );
}
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
pRec = pLast;
do{
|
︙ | | |
69100
69101
69102
69103
69104
69105
69106
69107
69108
69109
69110
69111
69112
69113
69114
|
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
|
-
+
|
j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
}while( (++pRec)<=pLast );
assert( i==nHdr );
assert( j==nByte );
assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pOut->n = (int)nByte;
pOut->flags = MEM_Blob | MEM_Dyn;
pOut->flags = MEM_Blob;
pOut->xDel = 0;
if( nZero ){
pOut->u.nZero = nZero;
pOut->flags |= MEM_Zero;
}
pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
REGISTER_TRACE(pOp->p3, pOut);
|
︙ | | |
69377
69378
69379
69380
69381
69382
69383
69384
69385
69386
69387
69388
69389
69390
69391
69392
69393
69394
69395
69396
69397
69398
69399
69400
69401
69402
69403
69404
69405
69406
69407
69408
69409
69410
69411
69412
69413
69414
69415
69416
69417
69418
69419
69420
69421
69422
69423
|
70014
70015
70016
70017
70018
70019
70020
70021
70022
70023
70024
70025
70026
70027
70028
70029
70030
70031
70032
70033
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
70049
70050
70051
70052
70053
70054
70055
70056
70057
70058
70059
70060
70061
70062
70063
70064
70065
|
-
+
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
-
+
+
+
+
+
+
+
|
"cannot commit - no transaction is active"));
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: Transaction P1 P2 * * *
/* Opcode: Transaction P1 P2 P3 P4 P5
**
** Begin a transaction. The transaction ends when a Commit or Rollback
** opcode is encountered. Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
** Begin a transaction on database P1 if a transaction is not already
** active.
** If P2 is non-zero, then a write-transaction is started, or if a
** read-transaction is already active, it is upgraded to a write-transaction.
** If P2 is zero, then a read-transaction is started.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables. Indices of 2 or more are used for
** attached databases.
**
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
** obtained on the database file when a write-transaction is started. No
** other process can start another write transaction while this transaction is
** underway. Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database. If P2 is greater than or equal to 2 then an EXCLUSIVE lock is
** also obtained on the file.
**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the changes made by this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
** If P5!=0 then this opcode also checks the schema cookie against P3
** and the schema generation counter against P4.
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema. If the schema
** If P2 is zero, then a read-lock is obtained on the database file.
** cookie in P3 differs from the schema cookie in the database header or
** if the schema generation counter in P4 differs from the current
** generation counter, then an SQLITE_SCHEMA error is raised and execution
** halts. The sqlite3_step() wrapper function might then reprepare the
** statement and rerun it from the beginning.
*/
case OP_Transaction: {
Btree *pBt;
int iMeta;
int iGen;
assert( p->bIsReader );
assert( p->readOnly==0 || pOp->p2==0 );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
rc = SQLITE_READONLY;
|
︙ | | |
69453
69454
69455
69456
69457
69458
69459
69460
69461
69462
69463
69464
69465
69466
|
70095
70096
70097
70098
70099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
/* Store the current value of the database handles deferred constraint
** counter. If the statement transaction needs to be rolled back,
** the value of this counter needs to be restored too. */
p->nStmtDefCons = db->nDeferredCons;
p->nStmtDefImmCons = db->nDeferredImmCons;
}
/* Gather the schema version number for checking */
sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
iGen = db->aDb[pOp->p1].pSchema->iGeneration;
}else{
iGen = iMeta = 0;
}
assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
/* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
** If virtual-tables are in use, this is not just an optimization.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
** discard the database schema, as the user code implementing the
** v-table would have to be ready for the sqlite3_vtab structure itself
** to be invalidated whenever sqlite3_step() is called from within
** a v-table method.
*/
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
sqlite3ResetOneSchema(db, pOp->p1);
}
p->expired = 1;
rc = SQLITE_SCHEMA;
}
break;
}
/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
|
︙ | | |
69524
69525
69526
69527
69528
69529
69530
69531
69532
69533
69534
69535
69536
69537
69538
69539
69540
69541
69542
69543
69544
69545
69546
69547
69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
69565
69566
69567
69568
69569
69570
69571
69572
69573
69574
69575
69576
69577
69578
69579
69580
69581
69582
69583
69584
69585
69586
69587
69588
69589
69590
69591
69592
69593
69594
69595
69596
69597
|
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
}
if( pOp->p1==1 ){
/* Invalidate all prepared statements whenever the TEMP database
** schema is changed. Ticket #1644 */
sqlite3ExpirePreparedStatements(db);
p->expired = 0;
}
break;
}
/* Opcode: VerifyCookie P1 P2 P3 * *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2 and that the
** generation counter on the local schema parse equals P3.
**
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
int iMeta;
int iGen;
Btree *pBt;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
assert( p->bIsReader );
pBt = db->aDb[pOp->p1].pBt;
if( pBt ){
sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
iGen = db->aDb[pOp->p1].pSchema->iGeneration;
}else{
iGen = iMeta = 0;
}
if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
/* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
** If virtual-tables are in use, this is not just an optimization.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
** discard the database schema, as the user code implementing the
** v-table would have to be ready for the sqlite3_vtab structure itself
** to be invalidated whenever sqlite3_step() is called from within
** a v-table method.
*/
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
sqlite3ResetOneSchema(db, pOp->p1);
}
p->expired = 1;
rc = SQLITE_SCHEMA;
}
break;
}
/* Opcode: OpenRead P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read-only cursor for the database table whose root page is
|
︙ | | |
69800
69801
69802
69803
69804
69805
69806
69807
69808
69809
69810
69811
69812
69813
69814
69815
69816
69817
69818
69819
69820
69821
69822
69823
69824
69825
69826
69827
69828
69829
69830
69831
69832
69833
69834
69835
69836
69837
69838
69839
69840
69841
69842
69843
69844
69845
69846
69847
69848
69849
69850
69851
69852
69853
69854
69855
69856
69857
69858
69859
69860
69861
|
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
|
-
+
-
-
+
+
-
-
-
+
+
+
-
-
+
|
pCx->isTable = 1;
}
}
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
break;
}
/* Opcode: SorterOpen P1 * * P4 *
/* Opcode: SorterOpen P1 P2 * P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_SorterOpen: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
if( pCx==0 ) goto no_mem;
pCx->pKeyInfo = pOp->p4.pKeyInfo;
assert( pCx->pKeyInfo->db==db );
assert( pCx->pKeyInfo->enc==ENC(db) );
rc = sqlite3VdbeSorterInit(db, pCx);
break;
}
/* Opcode: OpenPseudo P1 P2 P3 * P5
** Synopsis: content in r[P2@P3]
/* Opcode: OpenPseudo P1 P2 P3 * *
** Synopsis: P3 columns in r[P2]
**
** Open a new cursor that points to a fake table that contains a single
** row of data. The content of that one row in the content of memory
** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
** MEM_Blob content contained in register P2. When P5==1, then the
** row of data. The content of that one row is the content of memory
** register P2. In other words, cursor P1 becomes an alias for the
** MEM_Blob content contained in register P2.
** row is represented by P3 consecutive registers beginning with P2.
**
** A pseudo-table created by this opcode is used to hold a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode. The OP_Column opcode
** is the only cursor opcode that works with a pseudo-table.
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p3>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->pseudoTableReg = pOp->p2;
pCx->isTable = 1;
pCx->multiPseudo = pOp->p5;
assert( pOp->p5==0 );
break;
}
/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
|
︙ | | |
69919
69920
69921
69922
69923
69924
69925
69926
69927
69928
69929
69930
69931
69932
69933
69934
69935
69936
69937
69938
69939
69940
69941
69942
69943
69944
69945
69946
69947
69948
69949
69950
69951
69952
69953
69954
69955
69956
69957
69958
69959
69960
69961
69962
69963
69964
69965
69966
69967
69968
69969
69970
69971
69972
69973
69974
69975
69976
69977
69978
69979
69980
69981
69982
69983
69984
69985
69986
69987
69988
69989
69990
69991
69992
69993
69994
69995
69996
69997
69998
69999
70000
70001
70002
70003
70004
70005
70006
70007
70008
70009
70010
70011
70012
70013
70014
70015
70016
70017
70018
70019
70020
70021
70022
70023
70024
70025
70026
70027
70028
70029
70030
70031
70032
70033
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
70049
70050
70051
70052
70053
70054
70055
70056
70057
70058
70059
70060
70061
70062
70063
|
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
|
-
-
-
-
+
+
+
+
-
-
-
+
+
+
-
+
-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+
-
-
+
+
-
+
-
-
-
-
-
+
+
+
+
+
-
-
+
+
+
-
-
+
+
+
+
|
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than or equal to the key value. If there are no records
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt: /* jump, in3 */
case OP_SeekLe: /* jump, in3 */
case OP_SeekGe: /* jump, in3 */
case OP_SeekGt: { /* jump, in3 */
case OP_SeekLT: /* jump, in3 */
case OP_SeekLE: /* jump, in3 */
case OP_SeekGE: /* jump, in3 */
case OP_SeekGT: { /* jump, in3 */
int res;
int oc;
VdbeCursor *pC;
UnpackedRecord r;
int nField;
i64 iKey; /* The rowid we are to seek to */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p2!=0 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->pseudoTableReg==0 );
assert( OP_SeekLe == OP_SeekLt+1 );
assert( OP_SeekGe == OP_SeekLt+2 );
assert( OP_SeekGt == OP_SeekLt+3 );
assert( OP_SeekLE == OP_SeekLT+1 );
assert( OP_SeekGE == OP_SeekLT+2 );
assert( OP_SeekGT == OP_SeekLT+3 );
assert( pC->isOrdered );
assert( pC->pCursor!=0 );
oc = pOp->opcode;
pC->nullRow = 0;
if( pC->isTable ){
/* The input value in P3 might be of any type: integer, real, string,
** blob, or NULL. But it needs to be an integer before we can do
** the seek, so covert it. */
pIn3 = &aMem[pOp->p3];
applyNumericAffinity(pIn3);
iKey = sqlite3VdbeIntValue(pIn3);
pC->rowidIsValid = 0;
/* If the P3 value could not be converted into an integer without
** loss of information, then special processing is required... */
if( (pIn3->flags & MEM_Int)==0 ){
if( (pIn3->flags & MEM_Real)==0 ){
/* If the P3 value cannot be converted into any kind of a number,
** then the seek is not possible, so jump to P2 */
pc = pOp->p2 - 1;
pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
break;
}
/* If the approximation iKey is larger than the actual real search
** term, substitute >= for > and < for <=. e.g. if the search term
** is 4.9 and the integer approximation 5:
**
** (x > 4.9) -> (x >= 5)
** (x <= 4.9) -> (x < 5)
*/
if( pIn3->r<(double)iKey ){
assert( OP_SeekGe==(OP_SeekGt-1) );
assert( OP_SeekLt==(OP_SeekLe-1) );
assert( (OP_SeekLe & 0x0001)==(OP_SeekGt & 0x0001) );
if( (oc & 0x0001)==(OP_SeekGt & 0x0001) ) oc--;
assert( OP_SeekGE==(OP_SeekGT-1) );
assert( OP_SeekLT==(OP_SeekLE-1) );
assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
}
/* If the approximation iKey is smaller than the actual real search
** term, substitute <= for < and > for >=. */
else if( pIn3->r>(double)iKey ){
assert( OP_SeekLe==(OP_SeekLt+1) );
assert( OP_SeekGt==(OP_SeekGe+1) );
assert( (OP_SeekLt & 0x0001)==(OP_SeekGe & 0x0001) );
if( (oc & 0x0001)==(OP_SeekLt & 0x0001) ) oc++;
assert( OP_SeekLE==(OP_SeekLT+1) );
assert( OP_SeekGT==(OP_SeekGE+1) );
assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
}
}
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( res==0 ){
pC->rowidIsValid = 1;
pC->lastRowid = iKey;
}
}else{
nField = pOp->p4.i;
assert( pOp->p4type==P4_INT32 );
assert( nField>0 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)nField;
/* The next line of code computes as follows, only faster:
** if( oc==OP_SeekGt || oc==OP_SeekLe ){
** r.flags = UNPACKED_INCRKEY;
** if( oc==OP_SeekGT || oc==OP_SeekLE ){
** r.default_rc = -1;
** }else{
** r.flags = 0;
** r.default_rc = +1;
** }
*/
r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
assert( oc!=OP_SeekGe || r.flags==0 );
assert( oc!=OP_SeekLt || r.flags==0 );
r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
assert( oc!=OP_SeekGT || r.default_rc==-1 );
assert( oc!=OP_SeekLE || r.default_rc==-1 );
assert( oc!=OP_SeekGE || r.default_rc==+1 );
assert( oc!=OP_SeekLT || r.default_rc==+1 );
r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
ExpandBlob(r.aMem);
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
pC->rowidIsValid = 0;
}
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
if( res<0 || (res==0 && oc==OP_SeekGt) ){
if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
if( res<0 || (res==0 && oc==OP_SeekGT) ){
res = 0;
rc = sqlite3BtreeNext(pC->pCursor, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
pC->rowidIsValid = 0;
}else{
res = 0;
}
}else{
assert( oc==OP_SeekLt || oc==OP_SeekLe );
if( res>0 || (res==0 && oc==OP_SeekLt) ){
assert( oc==OP_SeekLT || oc==OP_SeekLE );
if( res>0 || (res==0 && oc==OP_SeekLT) ){
res = 0;
rc = sqlite3BtreePrevious(pC->pCursor, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
pC->rowidIsValid = 0;
}else{
/* res might be negative because the table is empty. Check to
** see if this is the case.
*/
res = sqlite3BtreeEof(pC->pCursor);
}
}
assert( pOp->p2>0 );
VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Seek P1 P2 * * *
|
︙ | | |
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
|
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
|
-
-
-
-
-
-
+
+
+
+
+
-
-
-
+
-
+
-
+
+
+
|
assert( pC->pCursor!=0 );
assert( pC->isTable==0 );
pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
if( pOp->p4.i>0 ){
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p4.i;
r.aMem = pIn3;
#ifdef SQLITE_DEBUG
{
int i;
for(i=0; i<r.nField; i++){
assert( memIsValid(&r.aMem[i]) );
if( i ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
for(ii=0; ii<r.nField; ii++){
assert( memIsValid(&r.aMem[ii]) );
ExpandBlob(&r.aMem[ii]);
#ifdef SQLITE_DEBUG
if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
}
}
#endif
r.flags = UNPACKED_PREFIX_MATCH;
}
pIdxKey = &r;
}else{
pIdxKey = sqlite3VdbeAllocUnpackedRecord(
pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
);
if( pIdxKey==0 ) goto no_mem;
assert( pIn3->flags & MEM_Blob );
assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
}
pIdxKey->default_rc = 0;
if( pOp->opcode==OP_NoConflict ){
/* For the OP_NoConflict opcode, take the jump if any of the
** input fields are NULL, since any key with a NULL will not
** conflict */
for(ii=0; ii<r.nField; ii++){
if( r.aMem[ii].flags & MEM_Null ){
pc = pOp->p2 - 1;
pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
break;
}
}
}
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
if( pOp->p4.i==0 ){
sqlite3DbFree(db, pFree);
}
if( rc!=SQLITE_OK ){
break;
}
pC->seekResult = res;
alreadyExists = (res==0);
pC->nullRow = 1-alreadyExists;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if( pOp->opcode==OP_Found ){
VdbeBranchTaken(alreadyExists!=0,2);
if( alreadyExists ) pc = pOp->p2 - 1;
}else{
VdbeBranchTaken(alreadyExists==0,2);
if( !alreadyExists ) pc = pOp->p2 - 1;
}
break;
}
/* Opcode: NotExists P1 P2 P3 * *
** Synopsis: intkey=r[P3]
|
︙ | | |
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
|
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
|
+
|
iKey = pIn3->u.i;
rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
pC->lastRowid = pIn3->u.i;
pC->rowidIsValid = res==0 ?1:0;
pC->nullRow = 0;
pC->cacheStatus = CACHE_STALE;
pC->deferredMoveto = 0;
VdbeBranchTaken(res!=0,2);
if( res!=0 ){
pc = pOp->p2 - 1;
assert( pC->rowidIsValid==0 );
}
pC->seekResult = res;
break;
}
|
︙ | | |
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
|
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
|
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
** to provide the constant while making all compilers happy.
*/
# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif
if( !pC->useRandomRowid ){
v = sqlite3BtreeGetCachedRowid(pC->pCursor);
if( v==0 ){
rc = sqlite3BtreeLast(pC->pCursor, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( res ){
v = 1; /* IMP: R-61914-48074 */
}else{
assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
rc = sqlite3BtreeKeySize(pC->pCursor, &v);
assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
if( v>=MAX_ROWID ){
pC->useRandomRowid = 1;
}else{
v++; /* IMP: R-29538-34987 */
}
}
}
rc = sqlite3BtreeLast(pC->pCursor, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( res ){
v = 1; /* IMP: R-61914-48074 */
}else{
assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
rc = sqlite3BtreeKeySize(pC->pCursor, &v);
assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
if( v>=MAX_ROWID ){
pC->useRandomRowid = 1;
}else{
v++; /* IMP: R-29538-34987 */
}
}
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
if( pOp->p3 ){
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3>0 );
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=pFrame->nMem );
pMem = &pFrame->aMem[pOp->p3];
}else{
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=(p->nMem-p->nCursor) );
pMem = &aMem[pOp->p3];
memAboutToChange(p, pMem);
}
assert( memIsValid(pMem) );
if( pOp->p3 ){
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3>0 );
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=pFrame->nMem );
pMem = &pFrame->aMem[pOp->p3];
}else{
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=(p->nMem-p->nCursor) );
pMem = &aMem[pOp->p3];
memAboutToChange(p, pMem);
}
assert( memIsValid(pMem) );
REGISTER_TRACE(pOp->p3, pMem);
sqlite3VdbeMemIntegerify(pMem);
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
rc = SQLITE_FULL; /* IMP: R-12275-61338 */
goto abort_due_to_error;
}
if( v<pMem->u.i+1 ){
v = pMem->u.i + 1;
}
pMem->u.i = v;
}
REGISTER_TRACE(pOp->p3, pMem);
sqlite3VdbeMemIntegerify(pMem);
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
rc = SQLITE_FULL; /* IMP: R-12275-61338 */
goto abort_due_to_error;
}
if( v<pMem->u.i+1 ){
v = pMem->u.i + 1;
}
pMem->u.i = v;
}
#endif
sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
}
if( pC->useRandomRowid ){
/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
** largest possible integer (9223372036854775807) then the database
** engine starts picking positive candidate ROWIDs at random until
** it finds one that is not previously used. */
assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
** an AUTOINCREMENT table. */
|
︙ | | |
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
|
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
|
-
|
}
seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
if( pData->flags & MEM_Zero ){
nZero = pData->u.nZero;
}else{
nZero = 0;
}
sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
pData->z, pData->n, nZero,
(pOp->p5 & OPFLAG_APPEND)!=0, seekResult
);
pC->rowidIsValid = 0;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
|
︙ | | |
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
|
71183
71184
71185
71186
71187
71188
71189
71190
71191
71192
71193
71194
71195
71196
|
-
|
** below is always a no-op and cannot fail. We will run it anyhow, though,
** to guard against future changes to the code generator.
**/
assert( pC->deferredMoveto==0 );
rc = sqlite3VdbeCursorMoveto(pC);
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
rc = sqlite3BtreeDelete(pC->pCursor);
pC->cacheStatus = CACHE_STALE;
/* Invoke the update-hook if required. */
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
db->aDb[pC->iDb].zName, pOp->p4.z, iKey);
|
︙ | | |
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
|
71234
71235
71236
71237
71238
71239
71240
71241
71242
71243
71244
71245
71246
71247
71248
|
+
|
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
assert( pOp->p4type==P4_INT32 );
pIn3 = &aMem[pOp->p3];
nIgnore = pOp->p4.i;
rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res);
VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2-1;
}
break;
};
/* Opcode: SorterData P1 P2 * * *
|
︙ | | |
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
|
71272
71273
71274
71275
71276
71277
71278
71279
71280
71281
71282
71283
71284
71285
71286
|
-
+
|
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * *
** Synopsis: r[P2]=key
**
** Write into register P2 the complete row key for cursor P1.
** There is no interpretation of the data.
** The key is copied onto the P3 register exactly as
** The key is copied onto the P2 register exactly as
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
|
︙ | | |
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
|
71434
71435
71436
71437
71438
71439
71440
71441
71442
71443
71444
71445
71446
71447
71448
71449
71450
|
-
-
+
+
+
|
res = 0;
assert( pCrsr!=0 );
rc = sqlite3BtreeLast(pCrsr, &res);
pC->nullRow = (u8)res;
pC->deferredMoveto = 0;
pC->rowidIsValid = 0;
pC->cacheStatus = CACHE_STALE;
if( pOp->p2>0 && res ){
pc = pOp->p2 - 1;
if( pOp->p2>0 ){
VdbeBranchTaken(res!=0,2);
if( res ) pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Sort P1 P2 * * *
**
|
︙ | | |
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
|
71493
71494
71495
71496
71497
71498
71499
71500
71501
71502
71503
71504
71505
71506
71507
71508
71509
71510
71511
71512
71513
71514
71515
71516
71517
71518
71519
71520
71521
71522
71523
71524
71525
71526
71527
71528
71529
71530
71531
71532
71533
71534
71535
71536
71537
71538
71539
71540
71541
71542
71543
71544
71545
71546
71547
71548
71549
71550
71551
71552
71553
71554
71555
71556
71557
71558
71559
71560
71561
71562
71563
|
+
-
+
+
+
+
+
+
-
+
-
+
+
+
+
+
+
-
+
|
rc = sqlite3BtreeFirst(pCrsr, &res);
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
pC->rowidIsValid = 0;
}
pC->nullRow = (u8)res;
assert( pOp->p2>0 && pOp->p2<p->nOp );
VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Next P1 P2 * * P5
/* Opcode: Next P1 P2 P3 P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
** been opened prior to this opcode or the program will segfault.
**
** The P3 value is a hint to the btree implementation. If P3==1, that
** means P1 is an SQL index and that this instruction could have been
** omitted if that index had been unique. P3 is usually 0. P3 is
** always either 0 or 1.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreeNext().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev, NextIfOpen
*/
/* Opcode: NextIfOpen P1 P2 * * P5
/* Opcode: NextIfOpen P1 P2 P3 P4 P5
**
** This opcode works just like OP_Next except that if cursor P1 is not
** open it behaves a no-op.
*/
/* Opcode: Prev P1 P2 * * P5
/* Opcode: Prev P1 P2 P3 P4 P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
** not open then the behavior is undefined.
**
** The P3 value is a hint to the btree implementation. If P3==1, that
** means P1 is an SQL index and that this instruction could have been
** omitted if that index had been unique. P3 is usually 0. P3 is
** always either 0 or 1.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
/* Opcode: PrevIfOpen P1 P2 * * P5
/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
**
** This opcode works just like OP_Prev except that if cursor P1 is not
** open it behaves a no-op.
*/
case OP_SorterNext: { /* jump */
VdbeCursor *pC;
int res;
|
︙ | | |
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
|
71571
71572
71573
71574
71575
71576
71577
71578
71579
71580
71581
71582
71583
71584
71585
71586
71587
71588
71589
71590
71591
71592
71593
71594
71595
71596
71597
71598
|
+
+
+
+
|
if( p->apCsr[pOp->p1]==0 ) break;
/* Fall through */
case OP_Prev: /* jump */
case OP_Next: /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p5<ArraySize(p->aCounter) );
pC = p->apCsr[pOp->p1];
res = pOp->p3;
assert( pC!=0 );
assert( pC->deferredMoveto==0 );
assert( pC->pCursor );
assert( res==0 || (res==1 && pC->isTable==0) );
testcase( res==1 );
assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
rc = pOp->p4.xAdvance(pC->pCursor, &res);
next_tail:
pC->cacheStatus = CACHE_STALE;
VdbeBranchTaken(res==0,2);
if( res==0 ){
pC->nullRow = 0;
pc = pOp->p2 - 1;
p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
|
︙ | | |
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
|
71608
71609
71610
71611
71612
71613
71614
71615
71616
71617
71618
71619
71620
71621
71622
71623
71624
71625
71626
71627
71628
71629
|
+
+
+
+
+
+
+
+
|
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
** into the index P1. Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
** then the change counter is unchanged.
**
** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
** just done a seek to the spot where the new entry is to be inserted.
** This flag avoids doing an extra seek.
**
** This instruction only works for indices. The equivalent instruction
** for tables is OP_Insert.
*/
case OP_SorterInsert: /* in2 */
case OP_IdxInsert: { /* in2 */
VdbeCursor *pC;
|
︙ | | |
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
71057
71058
71059
71060
|
71677
71678
71679
71680
71681
71682
71683
71684
71685
71686
71687
71688
71689
71690
71691
|
-
+
|
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
pCrsr = pC->pCursor;
assert( pCrsr!=0 );
assert( pOp->p5==0 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p3;
r.flags = UNPACKED_PREFIX_MATCH;
r.default_rc = 0;
r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
if( rc==SQLITE_OK && res==0 ){
rc = sqlite3BtreeDelete(pCrsr);
|
︙ | | |
71100
71101
71102
71103
71104
71105
71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
71142
71143
71144
71145
71146
71147
71148
71149
71150
71151
71152
71153
71154
71155
71156
71157
71158
71159
71160
71161
71162
71163
71164
71165
71166
71167
71168
71169
71170
|
71731
71732
71733
71734
71735
71736
71737
71738
71739
71740
71741
71742
71743
71744
71745
71746
71747
71748
71749
71750
71751
71752
71753
71754
71755
71756
71757
71758
71759
71760
71761
71762
71763
71764
71765
71766
71767
71768
71769
71770
71771
71772
71773
71774
71775
71776
71777
71778
71779
71780
71781
71782
71783
71784
71785
71786
71787
71788
71789
71790
71791
71792
71793
71794
71795
71796
71797
71798
71799
71800
71801
71802
71803
71804
71805
71806
71807
71808
71809
71810
71811
71812
71813
71814
71815
71816
71817
71818
71819
71820
71821
71822
71823
71824
|
-
-
+
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
+
-
-
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
+
+
-
+
-
-
+
+
+
+
-
+
+
+
-
+
-
+
+
|
break;
}
/* Opcode: IdxGE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
** key that omits the PRIMARY KEY. Compare this key value against the index
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
** fields at the end.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxGT P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY. Compare this key value against the index
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
** fields at the end.
**
** If P5 is non-zero then the key value is increased by an epsilon
** If the P1 index entry is greater than the key value
** prior to the comparison. This make the opcode work like IdxGT except
** that if the key from register P3 is a prefix of the key in the cursor,
** the result is false whereas it would be true with IdxGT.
** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
** ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
** ROWID on the P1 index.
**
** If P5 is non-zero then the key value is increased by an epsilon prior
** to the comparison. This makes the opcode work like IdxLE.
** If the P1 index entry is less than or equal to the key value then jump
** to P2. Otherwise fall through to the next instruction.
*/
case OP_IdxLE: /* jump */
case OP_IdxGT: /* jump */
case OP_IdxLT: /* jump */
case OP_IdxGE: { /* jump */
case OP_IdxGE: { /* jump */
VdbeCursor *pC;
int res;
UnpackedRecord r;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isOrdered );
assert( pC->pCursor!=0);
assert( pC->deferredMoveto==0 );
assert( pOp->p5==0 || pOp->p5==1 );
assert( pOp->p4type==P4_INT32 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p4.i;
if( pOp->p5 ){
r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
if( pOp->opcode<OP_IdxLT ){
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
r.default_rc = -1;
}else{
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
r.flags = UNPACKED_PREFIX_MATCH;
r.default_rc = 0;
}
r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
res = 0; /* Not needed. Only used to silence a warning. */
rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
if( (pOp->opcode&1)==(OP_IdxLT&1) ){
if( pOp->opcode==OP_IdxLT ){
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
res = -res;
}else{
assert( pOp->opcode==OP_IdxGE );
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
res++;
}
VdbeBranchTaken(res>0,2);
if( res>0 ){
pc = pOp->p2 - 1 ;
}
break;
}
/* Opcode: Destroy P1 P2 P3 * *
|
︙ | | |
71249
71250
71251
71252
71253
71254
71255
71256
71257
71258
71259
71260
71261
71262
71263
|
71903
71904
71905
71906
71907
71908
71909
71910
71911
71912
71913
71914
71915
71916
|
-
|
** See also: Destroy
*/
case OP_Clear: {
int nChange;
nChange = 0;
assert( p->readOnly==0 );
assert( pOp->p1!=1 );
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
rc = sqlite3BtreeClearTable(
db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
);
if( pOp->p3 ){
p->nChange += nChange;
if( pOp->p3>0 ){
|
︙ | | |
71518
71519
71520
71521
71522
71523
71524
71525
71526
71527
71528
71529
71530
71531
71532
71533
71534
|
72171
72172
72173
72174
72175
72176
72177
72178
72179
72180
72181
72182
72183
72184
72185
72186
72187
72188
72189
|
+
+
|
pIn1 = &aMem[pOp->p1];
if( (pIn1->flags & MEM_RowSet)==0
|| sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
){
/* The boolean index is empty */
sqlite3VdbeMemSetNull(pIn1);
pc = pOp->p2 - 1;
VdbeBranchTaken(1,2);
}else{
/* A value was pulled from the index */
sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
VdbeBranchTaken(0,2);
}
goto check_for_interrupt;
}
/* Opcode: RowSetTest P1 P2 P3 P4
** Synopsis: if r[P3] in rowset(P1) goto P2
**
|
︙ | | |
71572
71573
71574
71575
71576
71577
71578
71579
71580
71581
71582
71583
71584
71585
71586
71587
71588
71589
71590
71591
71592
71593
71594
71595
71596
71597
71598
71599
71600
71601
71602
71603
71604
71605
71606
71607
71608
71609
71610
71611
|
72227
72228
72229
72230
72231
72232
72233
72234
72235
72236
72237
72238
72239
72240
72241
72242
72243
72244
72245
72246
72247
72248
72249
72250
72251
72252
72253
72254
72255
72256
72257
72258
72259
72260
72261
72262
72263
72264
72265
72266
72267
72268
72269
|
+
-
+
+
+
|
assert( pOp->p4type==P4_INT32 );
assert( iSet==-1 || iSet>=0 );
if( iSet ){
exists = sqlite3RowSetTest(pIn1->u.pRowSet,
(u8)(iSet>=0 ? iSet & 0xf : 0xff),
pIn3->u.i);
VdbeBranchTaken(exists!=0,2);
if( exists ){
pc = pOp->p2 - 1;
break;
}
}
if( iSet>=0 ){
sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
}
break;
}
#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: Program P1 P2 P3 P4 *
/* Opcode: Program P1 P2 P3 P4 P5
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
**
** P1 contains the address of the memory cell that contains the first memory
** cell in an array of values used as arguments to the sub-program. P2
** contains the address to jump to if the sub-program throws an IGNORE
** exception using the RAISE() function. Register P3 contains the address
** of a memory cell in this (the parent) VM that is used to allocate the
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
**
** If P5 is non-zero, then recursive program invocation is enabled.
*/
case OP_Program: { /* jump */
int nMem; /* Number of memory registers for sub-program */
int nByte; /* Bytes of runtime space required for sub-program */
Mem *pRt; /* Register to allocate runtime space */
Mem *pMem; /* Used to iterate through memory cells */
Mem *pEnd; /* Last memory cell in new array */
|
︙ | | |
71675
71676
71677
71678
71679
71680
71681
71682
71683
71684
71685
71686
71687
71688
71689
|
72333
72334
72335
72336
72337
72338
72339
72340
72341
72342
72343
72344
72345
72346
72347
|
-
+
|
pFrame->nOp = p->nOp;
pFrame->token = pProgram->token;
pFrame->aOnceFlag = p->aOnceFlag;
pFrame->nOnceFlag = p->nOnceFlag;
pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
pMem->flags = MEM_Invalid;
pMem->flags = MEM_Undefined;
pMem->db = db;
}
}else{
pFrame = pRt->u.pFrame;
assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
assert( pProgram->nCsr==pFrame->nChildCsr );
assert( pc==pFrame->pc );
|
︙ | | |
71762
71763
71764
71765
71766
71767
71768
71769
71770
71771
71772
71773
71774
71775
71776
71777
|
72420
72421
72422
72423
72424
72425
72426
72427
72428
72429
72430
72431
72432
72433
72434
72435
72436
72437
|
+
+
|
** If P1 is non-zero, then the jump is taken if the database constraint-counter
** is zero (the one that counts deferred constraint violations). If P1 is
** zero, the jump is taken if the statement constraint-counter is zero
** (immediate foreign key constraint violations).
*/
case OP_FkIfZero: { /* jump */
if( pOp->p1 ){
VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
}else{
VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
}
break;
}
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
︙ | | |
71812
71813
71814
71815
71816
71817
71818
71819
71820
71821
71822
71823
71824
71825
71826
71827
71828
71829
71830
71831
71832
71833
71834
71835
71836
71837
71838
71839
71840
71841
71842
71843
71844
71845
71846
71847
71848
71849
71850
71851
71852
71853
71854
71855
71856
71857
71858
71859
71860
71861
|
72472
72473
72474
72475
72476
72477
72478
72479
72480
72481
72482
72483
72484
72485
72486
72487
72488
72489
72490
72491
72492
72493
72494
72495
72496
72497
72498
72499
72500
72501
72502
72503
72504
72505
72506
72507
72508
72509
72510
72511
72512
72513
72514
72515
72516
72517
72518
72519
72520
72521
72522
72523
72524
|
+
+
+
|
**
** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfPos: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
VdbeBranchTaken( pIn1->u.i>0, 2);
if( pIn1->u.i>0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: IfNeg P1 P2 * * *
** Synopsis: if r[P1]<0 goto P2
**
** If the value of register P1 is less than zero, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfNeg: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
VdbeBranchTaken(pIn1->u.i<0, 2);
if( pIn1->u.i<0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: IfZero P1 P2 P3 * *
** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
**
** The register P1 must contain an integer. Add literal P3 to the
** value in register P1. If the result is exactly 0, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfZero: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
pIn1->u.i += pOp->p3;
VdbeBranchTaken(pIn1->u.i==0, 2);
if( pIn1->u.i==0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: AggStep * P2 P3 P4 P5
|
︙ | | |
71882
71883
71884
71885
71886
71887
71888
71889
71890
71891
71892
71893
71894
71895
71896
|
72545
72546
72547
72548
72549
72550
72551
72552
72553
72554
72555
72556
72557
72558
|
-
|
pRec = &aMem[pOp->p2];
apVal = p->apArg;
assert( apVal || n==0 );
for(i=0; i<n; i++, pRec++){
assert( memIsValid(pRec) );
apVal[i] = pRec;
memAboutToChange(p, pRec);
sqlite3VdbeMemStoreType(pRec);
}
ctx.pFunc = pOp->p4.pFunc;
assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
ctx.pMem = pMem = &aMem[pOp->p3];
pMem->n++;
ctx.s.flags = MEM_Null;
ctx.s.z = 0;
|
︙ | | |
71985
71986
71987
71988
71989
71990
71991
71992
71993
71994
71995
71996
71997
71998
71999
|
72647
72648
72649
72650
72651
72652
72653
72654
72655
72656
72657
72658
72659
72660
72661
|
-
+
|
sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
}
break;
};
#endif
#ifndef SQLITE_OMIT_PRAGMA
/* Opcode: JournalMode P1 P2 P3 * P5
/* Opcode: JournalMode P1 P2 P3 * *
**
** Change the journal mode of database P1 to P3. P3 must be one of the
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
|
︙ | | |
72119
72120
72121
72122
72123
72124
72125
72126
72127
72128
72129
72130
72131
72132
|
72781
72782
72783
72784
72785
72786
72787
72788
72789
72790
72791
72792
72793
72794
72795
|
+
|
Btree *pBt;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
rc = sqlite3BtreeIncrVacuum(pBt);
VdbeBranchTaken(rc==SQLITE_DONE,2);
if( rc==SQLITE_DONE ){
pc = pOp->p2 - 1;
rc = SQLITE_OK;
}
break;
}
#endif
|
︙ | | |
72315
72316
72317
72318
72319
72320
72321
72322
72323
72324
72325
72326
72327
72328
72329
72330
72331
72332
72333
72334
72335
72336
72337
72338
72339
|
72978
72979
72980
72981
72982
72983
72984
72985
72986
72987
72988
72989
72990
72991
72992
72993
72994
72995
72996
72997
72998
72999
73000
73001
|
-
-
+
|
/* Invoke the xFilter method */
{
res = 0;
apArg = p->apArg;
for(i = 0; i<nArg; i++){
apArg[i] = &pArgc[i+1];
sqlite3VdbeMemStoreType(apArg[i]);
}
p->inVtabMethod = 1;
rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
p->inVtabMethod = 0;
sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK ){
res = pModule->xEof(pVtabCursor);
}
VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2 - 1;
}
}
pCur->nullRow = 0;
break;
|
︙ | | |
72430
72431
72432
72433
72434
72435
72436
72437
72438
72439
72440
72441
72442
72443
72444
|
73092
73093
73094
73095
73096
73097
73098
73099
73100
73101
73102
73103
73104
73105
73106
|
-
+
|
p->inVtabMethod = 1;
rc = pModule->xNext(pCur->pVtabCursor);
p->inVtabMethod = 0;
sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK ){
res = pModule->xEof(pCur->pVtabCursor);
}
VdbeBranchTaken(!res,2);
if( !res ){
/* If there is data, jump to P2 */
pc = pOp->p2 - 1;
}
goto check_for_interrupt;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
︙ | | |
72471
72472
72473
72474
72475
72476
72477
72478
72479
72480
72481
72482
72483
72484
72485
|
73133
73134
73135
73136
73137
73138
73139
73140
73141
73142
73143
73144
73145
73146
73147
|
-
+
|
p->expired = 0;
}
break;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 *
/* Opcode: VUpdate P1 P2 P3 P4 P5
** Synopsis: data=r[P3@P2]
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate
** invocation. The value in register (P3+P2-1) corresponds to the
** p2th element of the argv array passed to xUpdate.
|
︙ | | |
72494
72495
72496
72497
72498
72499
72500
72501
72502
72503
72504
72505
72506
72507
|
73156
73157
73158
73159
73160
73161
73162
73163
73164
73165
73166
73167
73168
73169
73170
73171
73172
|
+
+
+
|
**
** If P2==1 then no insert is performed. argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
**
** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
** apply in the case of a constraint failure on an insert or update.
*/
case OP_VUpdate: {
sqlite3_vtab *pVtab;
sqlite3_module *pModule;
int nArg;
int i;
sqlite_int64 rowid;
|
︙ | | |
72519
72520
72521
72522
72523
72524
72525
72526
72527
72528
72529
72530
72531
72532
72533
|
73184
73185
73186
73187
73188
73189
73190
73191
73192
73193
73194
73195
73196
73197
|
-
|
if( ALWAYS(pModule->xUpdate) ){
u8 vtabOnConflict = db->vtabOnConflict;
apArg = p->apArg;
pX = &aMem[pOp->p3];
for(i=0; i<nArg; i++){
assert( memIsValid(pX) );
memAboutToChange(p, pX);
sqlite3VdbeMemStoreType(pX);
apArg[i] = pX;
pX++;
}
db->vtabOnConflict = pOp->p5;
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
db->vtabOnConflict = vtabOnConflict;
sqlite3VtabImportErrmsg(p, pVtab);
|
︙ | | |
72582
72583
72584
72585
72586
72587
72588
72589
72590
72591
72592
72593
72594
72595
72596
72597
72598
72599
72600
72601
72602
72603
72604
72605
|
73246
73247
73248
73249
73250
73251
73252
73253
73254
73255
73256
73257
73258
73259
73260
73261
73262
73263
73264
73265
73266
73267
73268
73269
73270
73271
73272
73273
73274
73275
73276
73277
73278
73279
|
-
-
+
+
+
+
+
+
+
+
-
+
+
+
+
+
|
}
pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
break;
}
#endif
#ifndef SQLITE_OMIT_TRACE
/* Opcode: Trace * * * P4 *
/* Opcode: Init * P2 * P4 *
** Synopsis: Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().
**
** If P2 is not zero, jump to instruction P2.
*/
case OP_Trace: {
case OP_Init: { /* jump */
char *zTrace;
char *z;
if( pOp->p2 ){
pc = pOp->p2 - 1;
}
#ifndef SQLITE_OMIT_TRACE
if( db->xTrace
&& !p->doingRerun
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
){
z = sqlite3VdbeExpandSql(p, zTrace);
db->xTrace(db->pTraceArg, z);
sqlite3DbFree(db, z);
|
︙ | | |
72617
72618
72619
72620
72621
72622
72623
72624
72625
72626
72627
72628
72629
72630
72631
72632
72633
|
73291
73292
73293
73294
73295
73296
73297
73298
73299
73300
73301
73302
73303
73304
73305
73306
73307
|
+
-
|
#ifdef SQLITE_DEBUG
if( (db->flags & SQLITE_SqlTrace)!=0
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
){
sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
}
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
break;
}
#endif
/* Opcode: Noop * * * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
*/
|
︙ | | |
72651
72652
72653
72654
72655
72656
72657
72658
72659
72660
72661
72662
72663
72664
72665
72666
72667
72668
|
73325
73326
73327
73328
73329
73330
73331
73332
73333
73334
73335
73336
73337
73338
|
-
-
-
-
|
}
#ifdef VDBE_PROFILE
{
u64 elapsed = sqlite3Hwtime() - start;
pOp->cycles += elapsed;
pOp->cnt++;
#if 0
fprintf(stdout, "%10llu ", elapsed);
sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
#endif
}
#endif
/* The following code adds nothing to the actual functionality
** of the program. It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
︙ | | |
72880
72881
72882
72883
72884
72885
72886
72887
72888
72889
72890
72891
72892
72893
72894
72895
72896
72897
72898
72899
72900
72901
72902
72903
72904
72905
72906
72907
72908
72909
|
73550
73551
73552
73553
73554
73555
73556
73557
73558
73559
73560
73561
73562
73563
73564
73565
73566
73567
73568
73569
73570
73571
73572
73573
73574
73575
73576
73577
|
+
-
+
-
-
+
-
-
-
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
|
** uses it to implement the blob_read(), blob_write() and
** blob_bytes() functions.
**
** The sqlite3_blob_close() function finalizes the vdbe program,
** which closes the b-tree cursor and (possibly) commits the
** transaction.
*/
static const int iLn = __LINE__+4;
static const VdbeOpList openBlob[] = {
{OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
/* {OP_Transaction, 0, 0, 0}, // 0: Inserted separately */
{OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
{OP_TableLock, 0, 0, 0}, /* 2: Acquire a read or write lock */
{OP_TableLock, 0, 0, 0}, /* 1: Acquire a read or write lock */
/* One of the following two instructions is replaced by an OP_Noop. */
{OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
{OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */
{OP_OpenRead, 0, 0, 0}, /* 2: Open cursor 0 for reading */
{OP_OpenWrite, 0, 0, 0}, /* 3: Open cursor 0 for read/write */
{OP_Variable, 1, 1, 1}, /* 5: Push the rowid to the stack */
{OP_NotExists, 0, 10, 1}, /* 6: Seek the cursor */
{OP_Column, 0, 0, 1}, /* 7 */
{OP_ResultRow, 1, 0, 0}, /* 8 */
{OP_Goto, 0, 5, 0}, /* 9 */
{OP_Close, 0, 0, 0}, /* 10 */
{OP_Halt, 0, 0, 0}, /* 11 */
{OP_Variable, 1, 1, 1}, /* 4: Push the rowid to the stack */
{OP_NotExists, 0, 10, 1}, /* 5: Seek the cursor */
{OP_Column, 0, 0, 1}, /* 6 */
{OP_ResultRow, 1, 0, 0}, /* 7 */
{OP_Goto, 0, 4, 0}, /* 8 */
{OP_Close, 0, 0, 0}, /* 9 */
{OP_Halt, 0, 0, 0}, /* 10 */
};
int rc = SQLITE_OK;
char *zErr = 0;
Table *pTab;
Parse *pParse = 0;
Incrblob *pBlob = 0;
|
︙ | | |
73008
73009
73010
73011
73012
73013
73014
73015
73016
73017
73018
73019
73020
73021
73022
73023
73024
73025
73026
73027
73028
73029
73030
73031
73032
73033
73034
73035
73036
73037
73038
73039
73040
73041
73042
73043
73044
73045
73046
73047
73048
73049
73050
73051
73052
73053
73054
73055
73056
73057
73058
73059
73060
73061
|
73676
73677
73678
73679
73680
73681
73682
73683
73684
73685
73686
73687
73688
73689
73690
73691
73692
73693
73694
73695
73696
73697
73698
73699
73700
73701
73702
73703
73704
73705
73706
73707
73708
73709
73710
73711
73712
73713
73714
73715
73716
73717
73718
73719
73720
73721
73722
73723
73724
|
-
-
-
+
-
-
-
+
-
-
-
+
+
+
-
-
+
-
-
-
-
+
+
+
+
-
-
-
+
+
+
-
-
+
+
|
pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(pParse);
assert( pBlob->pStmt || db->mallocFailed );
if( pBlob->pStmt ){
Vdbe *v = (Vdbe *)pBlob->pStmt;
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
/* Configure the OP_Transaction */
sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags,
sqlite3VdbeChangeP1(v, 0, iDb);
sqlite3VdbeChangeP2(v, 0, flags);
pTab->pSchema->schema_cookie,
/* Configure the OP_VerifyCookie */
sqlite3VdbeChangeP1(v, 1, iDb);
sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
pTab->pSchema->iGeneration);
sqlite3VdbeChangeP5(v, 1);
sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);
sqlite3VdbeChangeP3(v, 1, pTab->pSchema->iGeneration);
/* Make sure a mutex is held on the table to be accessed */
sqlite3VdbeUsesBtree(v, iDb);
/* Configure the OP_TableLock instruction */
#ifdef SQLITE_OMIT_SHARED_CACHE
sqlite3VdbeChangeToNoop(v, 2);
sqlite3VdbeChangeToNoop(v, 1);
#else
sqlite3VdbeChangeP1(v, 2, iDb);
sqlite3VdbeChangeP2(v, 2, pTab->tnum);
sqlite3VdbeChangeP3(v, 2, flags);
sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT);
sqlite3VdbeChangeP1(v, 1, iDb);
sqlite3VdbeChangeP2(v, 1, pTab->tnum);
sqlite3VdbeChangeP3(v, 1, flags);
sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT);
#endif
/* Remove either the OP_OpenWrite or OpenRead. Set the P2
** parameter of the other to pTab->tnum. */
sqlite3VdbeChangeToNoop(v, 4 - flags);
sqlite3VdbeChangeP2(v, 3 + flags, pTab->tnum);
sqlite3VdbeChangeP3(v, 3 + flags, iDb);
sqlite3VdbeChangeToNoop(v, 3 - flags);
sqlite3VdbeChangeP2(v, 2 + flags, pTab->tnum);
sqlite3VdbeChangeP3(v, 2 + flags, iDb);
/* Configure the number of columns. Configure the cursor to
** think that the table has one more column than it really
** does. An OP_Column to retrieve this imaginary column will
** always return an SQL NULL. This is useful because it means
** we can invoke OP_Column to fill in the vdbe cursors type
** and offset cache without causing any IO.
*/
sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
sqlite3VdbeChangeP2(v, 7, pTab->nCol);
sqlite3VdbeChangeP4(v, 2+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
sqlite3VdbeChangeP2(v, 6, pTab->nCol);
if( !db->mallocFailed ){
pParse->nVar = 1;
pParse->nMem = 1;
pParse->nTab = 1;
sqlite3VdbeMakeReady(v, pParse);
}
}
|
︙ | | |
73632
73633
73634
73635
73636
73637
73638
73639
73640
73641
73642
73643
73644
73645
73646
73647
73648
73649
|
74295
74296
74297
74298
74299
74300
74301
74302
74303
74304
74305
74306
74307
74308
74309
74310
74311
74312
|
-
+
-
+
|
assert( r2->nField>0 );
for(i=0; i<r2->nField; i++){
if( r2->aMem[i].flags & MEM_Null ){
*pRes = -1;
return;
}
}
r2->flags |= UNPACKED_PREFIX_MATCH;
assert( r2->default_rc==0 );
}
*pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
*pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0);
}
/*
** This function is called to compare two iterator keys when merging
** multiple b-tree segments. Parameter iOut is the index of the aTree[]
** value to recalculate.
*/
|
︙ | | |
75272
75273
75274
75275
75276
75277
75278
75279
75280
75281
75282
75283
75284
75285
|
75935
75936
75937
75938
75939
75940
75941
75942
75943
75944
75945
75946
75947
75948
75949
75950
|
+
+
|
assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
pExpr->iTable = 1;
pTab = pParse->pTriggerTab;
}else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
pExpr->iTable = 0;
pTab = pParse->pTriggerTab;
}else{
pTab = 0;
}
if( pTab ){
int iCol;
pSchema = pTab->pSchema;
cntTab++;
for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
|
︙ | | |
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330
|
75980
75981
75982
75983
75984
75985
75986
75987
75988
75989
75990
75991
75992
75993
75994
75995
|
-
-
+
+
|
}
}
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
/*
** Perhaps the name is a reference to the ROWID
*/
assert( pTab!=0 || cntTab==0 );
if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) && HasRowid(pTab) ){
if( cnt==0 && cntTab==1 && pMatch && sqlite3IsRowid(zCol)
&& HasRowid(pMatch->pTab) ){
cnt = 1;
pExpr->iColumn = -1; /* IMP: R-44911-55124 */
pExpr->affinity = SQLITE_AFF_INTEGER;
}
/*
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
︙ | | |
77447
77448
77449
77450
77451
77452
77453
77454
77455
77456
77457
77458
77459
77460
77461
|
78112
78113
78114
78115
78116
78117
78118
78119
78120
78121
78122
78123
78124
78125
|
-
|
if( pPrior ) pPrior->pNext = pNew;
pNew->pNext = 0;
pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
pNew->iLimit = 0;
pNew->iOffset = 0;
pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
pNew->pRightmost = 0;
pNew->addrOpenEphm[0] = -1;
pNew->addrOpenEphm[1] = -1;
pNew->addrOpenEphm[2] = -1;
pNew->nSelectRow = p->nSelectRow;
pNew->pWith = withDup(db, p->pWith);
return pNew;
}
|
︙ | | |
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
77780
77781
77782
77783
77784
77785
77786
77787
77788
|
78421
78422
78423
78424
78425
78426
78427
78428
78429
78430
78431
78432
78433
78434
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
case TK_BLOB:
return 0;
default:
return 1;
}
}
/*
** Generate an OP_IsNull instruction that tests register iReg and jumps
** to location iDest if the value in iReg is NULL. The value in iReg
** was computed by pExpr. If we can look at pExpr at compile-time and
** determine that it can never generate a NULL, then the OP_IsNull operation
** can be omitted.
*/
SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(
Vdbe *v, /* The VDBE under construction */
const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
int iReg, /* Test the value in this register for NULL */
int iDest /* Jump here if the value is null */
){
if( sqlite3ExprCanBeNull(pExpr) ){
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
}
}
/*
** Return TRUE if the given expression is a constant which would be
** unchanged by OP_Affinity with the affinity given in the second
** argument.
**
** This routine is used to determine if the OP_Affinity operation
** can be omitted. When in doubt return FALSE. A false negative
|
︙ | | |
77971
77972
77973
77974
77975
77976
77977
77978
77979
77980
77981
77982
77983
77984
77985
77986
77987
77988
77989
77990
77991
77992
77993
77994
77995
77996
77997
77998
|
78617
78618
78619
78620
78621
78622
78623
78624
78625
78626
78627
78628
78629
78630
78631
78632
78633
78634
78635
78636
78637
78638
78639
78640
78641
78642
78643
|
-
+
-
-
-
+
+
|
assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
pTab = p->pSrc->a[0].pTab;
pExpr = p->pEList->a[0].pExpr;
iCol = (i16)pExpr->iColumn;
/* Code an OP_VerifyCookie and OP_TableLock for <table>. */
/* Code an OP_Transaction and OP_TableLock for <table>. */
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sqlite3CodeVerifySchema(pParse, iDb);
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
/* This function is only called from two places. In both cases the vdbe
** has already been allocated. So assume sqlite3GetVdbe() is always
** successful here.
*/
assert(v);
if( iCol<0 ){
int iAddr;
iAddr = sqlite3CodeOnce(pParse);
int iAddr = sqlite3CodeOnce(pParse);
VdbeCoverage(v);
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
eType = IN_INDEX_ROWID;
sqlite3VdbeJumpHere(v, iAddr);
}else{
Index *pIdx; /* Iterator variable */
|
︙ | | |
78009
78010
78011
78012
78013
78014
78015
78016
78017
78018
78019
78020
78021
78022
78023
78024
78025
78026
78027
78028
78029
78030
78031
78032
78033
78034
|
78654
78655
78656
78657
78658
78659
78660
78661
78662
78663
78664
78665
78666
78667
78668
78669
78670
78671
78672
78673
78674
78675
78676
78677
78678
78679
|
-
+
-
+
|
int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
if( (pIdx->aiColumn[0]==iCol)
&& sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
&& (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None))
){
int iAddr = sqlite3CodeOnce(pParse);
int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
VdbeComment((v, "%s", pIdx->zName));
assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
sqlite3VdbeJumpHere(v, iAddr);
if( prNotFound && !pTab->aCol[iCol].notNull ){
*prNotFound = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
}
sqlite3VdbeJumpHere(v, iAddr);
}
}
}
}
if( eType==0 ){
/* Could not found an existing table or index to use as the RHS b-tree.
|
︙ | | |
78109
78110
78111
78112
78113
78114
78115
78116
78117
78118
78119
78120
78121
78122
78123
|
78754
78755
78756
78757
78758
78759
78760
78761
78762
78763
78764
78765
78766
78767
78768
|
-
+
|
** * The right-hand side is an expression list containing variables
** * We are inside a trigger
**
** If all of the above are false, then we can run this code just once
** save the results, and reuse the same result on subsequent invocations.
*/
if( !ExprHasProperty(pExpr, EP_VarSelect) ){
testAddr = sqlite3CodeOnce(pParse);
testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
}
#ifndef SQLITE_OMIT_EXPLAIN
if( pParse->explain==2 ){
char *zMsg = sqlite3MPrintf(
pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
|
︙ | | |
78150
78151
78152
78153
78154
78155
78156
78157
78158
78159
78160
78161
78162
78163
78164
|
78795
78796
78797
78798
78799
78800
78801
78802
78803
78804
78805
78806
78807
78808
|
-
|
** SELECT... statement are columns, then numeric affinity is used
** if either column has NUMERIC or INTEGER affinity. If neither
** 'x' nor the SELECT... statement are columns, then numeric affinity
** is used.
*/
pExpr->iTable = pParse->nTab++;
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
/* Case 1: expr IN (SELECT ...)
**
** Generate code to write the results of the select into the temporary
** table allocated and opened above.
|
︙ | | |
78226
78227
78228
78229
78230
78231
78232
78233
78234
78235
78236
78237
78238
78239
|
78870
78871
78872
78873
78874
78875
78876
78877
78878
78879
78880
78881
78882
78883
78884
|
+
|
if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
}else{
r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
if( isRowid ){
sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
}else{
sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
sqlite3ExprCacheAffinityChange(pParse, r3, 1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
}
}
|
︙ | | |
78349
78350
78351
78352
78353
78354
78355
78356
78357
78358
78359
78360
78361
78362
78363
78364
78365
78366
78367
78368
78369
78370
78371
78372
78373
78374
78375
78376
78377
78378
78379
78380
78381
78382
78383
78384
78385
78386
78387
78388
78389
78390
78391
78392
78393
78394
78395
78396
78397
78398
78399
78400
78401
78402
78403
78404
78405
78406
78407
78408
78409
78410
78411
78412
78413
78414
78415
78416
78417
78418
78419
78420
78421
78422
78423
78424
78425
78426
78427
|
78994
78995
78996
78997
78998
78999
79000
79001
79002
79003
79004
79005
79006
79007
79008
79009
79010
79011
79012
79013
79014
79015
79016
79017
79018
79019
79020
79021
79022
79023
79024
79025
79026
79027
79028
79029
79030
79031
79032
79033
79034
79035
79036
79037
79038
79039
79040
79041
79042
79043
79044
79045
79046
79047
79048
79049
79050
79051
79052
79053
79054
79055
79056
79057
79058
79059
79060
79061
79062
79063
79064
79065
79066
79067
79068
79069
79070
79071
79072
|
-
+
-
+
+
-
+
+
-
+
-
+
+
-
-
-
+
+
+
+
+
-
-
+
-
-
-
-
-
-
+
+
|
/* If the LHS is NULL, then the result is either false or NULL depending
** on whether the RHS is empty or not, respectively.
*/
if( destIfNull==destIfFalse ){
/* Shortcut for the common case where the false and NULL outcomes are
** the same. */
sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
}else{
int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
sqlite3VdbeJumpHere(v, addr1);
}
if( eType==IN_INDEX_ROWID ){
/* In this case, the RHS is the ROWID of table b-tree
*/
sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
VdbeCoverage(v);
}else{
/* In this case, the RHS is an index b-tree.
*/
sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
/* If the set membership test fails, then the result of the
** "x IN (...)" expression must be either 0 or NULL. If the set
** contains no NULL values, then the result is 0. If the set
** contains one or more NULL values, then the result of the
** expression is also NULL.
*/
if( rRhsHasNull==0 || destIfFalse==destIfNull ){
/* This branch runs if it is known at compile time that the RHS
** cannot contain NULL values. This happens as the result
** of a "NOT NULL" constraint in the database schema.
**
** Also run this branch if NULL is equivalent to FALSE
** for this particular IN operator.
*/
sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
VdbeCoverage(v);
}else{
/* In this branch, the RHS of the IN might contain a NULL and
** the presence of a NULL on the RHS makes a difference in the
** outcome.
*/
int j1, j2, j3;
int j1, j2;
/* First check to see if the LHS is contained in the RHS. If so,
** then the presence of NULLs in the RHS does not matter, so jump
** over all of the code that follows.
*/
j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
VdbeCoverage(v);
/* Here we begin generating code that runs if the LHS is not
** contained within the RHS. Generate additional code that
** tests the RHS for NULLs. If the RHS contains a NULL then
** jump to destIfNull. If there are no NULLs in the RHS then
** jump to destIfFalse.
*/
j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v);
j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull);
sqlite3VdbeJumpHere(v, j3);
sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
sqlite3VdbeJumpHere(v, j2);
/* Jump to the appropriate target depending on whether or not
** the RHS contains a NULL
*/
sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull);
sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
/* The OP_Found at the top of this branch jumps here when true,
** causing the overall IN expression evaluation to fall through.
*/
sqlite3VdbeJumpHere(v, j1);
}
}
|
︙ | | |
78934
78935
78936
78937
78938
78939
78940
78941
78942
78943
78944
78945
78946
78947
78948
78949
78950
78951
78952
78953
78954
78955
78956
78957
78958
78959
78960
78961
78962
78963
78964
78965
78966
78967
78968
78969
78970
78971
78972
78973
78974
78975
78976
78977
78978
78979
78980
78981
78982
78983
78984
78985
78986
78987
78988
78989
78990
78991
78992
78993
78994
78995
78996
78997
78998
78999
79000
79001
79002
79003
79004
79005
79006
79007
79008
79009
79010
79011
79012
79013
79014
|
79579
79580
79581
79582
79583
79584
79585
79586
79587
79588
79589
79590
79591
79592
79593
79594
79595
79596
79597
79598
79599
79600
79601
79602
79603
79604
79605
79606
79607
79608
79609
79610
79611
79612
79613
79614
79615
79616
79617
79618
79619
79620
79621
79622
79623
79624
79625
79626
79627
79628
79629
79630
79631
79632
79633
79634
79635
79636
79637
79638
79639
79640
79641
79642
79643
79644
|
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
|
#endif /* SQLITE_OMIT_CAST */
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ: {
assert( TK_LT==OP_Lt );
assert( TK_LE==OP_Le );
assert( TK_GT==OP_Gt );
assert( TK_GE==OP_Ge );
assert( TK_EQ==OP_Eq );
assert( TK_NE==OP_Ne );
testcase( op==TK_LT );
testcase( op==TK_LE );
testcase( op==TK_GT );
testcase( op==TK_GE );
testcase( op==TK_EQ );
testcase( op==TK_NE );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, inReg, SQLITE_STOREP2);
assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
case TK_IS:
case TK_ISNOT: {
testcase( op==TK_IS );
testcase( op==TK_ISNOT );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
op = (op==TK_IS) ? TK_EQ : TK_NE;
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
VdbeCoverageIf(v, op==TK_EQ);
VdbeCoverageIf(v, op==TK_NE);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
case TK_AND:
case TK_OR:
case TK_PLUS:
case TK_STAR:
case TK_MINUS:
case TK_REM:
case TK_BITAND:
case TK_BITOR:
case TK_SLASH:
case TK_LSHIFT:
case TK_RSHIFT:
case TK_CONCAT: {
assert( TK_AND==OP_And );
assert( TK_OR==OP_Or );
assert( TK_PLUS==OP_Add );
assert( TK_MINUS==OP_Subtract );
assert( TK_REM==OP_Remainder );
assert( TK_BITAND==OP_BitAnd );
assert( TK_BITOR==OP_BitOr );
assert( TK_SLASH==OP_Divide );
assert( TK_LSHIFT==OP_ShiftLeft );
assert( TK_RSHIFT==OP_ShiftRight );
assert( TK_CONCAT==OP_Concat );
assert( TK_AND==OP_And ); testcase( op==TK_AND );
assert( TK_OR==OP_Or ); testcase( op==TK_OR );
assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
testcase( op==TK_AND );
testcase( op==TK_OR );
testcase( op==TK_PLUS );
testcase( op==TK_MINUS );
testcase( op==TK_REM );
testcase( op==TK_BITAND );
testcase( op==TK_BITOR );
testcase( op==TK_SLASH );
testcase( op==TK_LSHIFT );
testcase( op==TK_RSHIFT );
testcase( op==TK_CONCAT );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
sqlite3VdbeAddOp3(v, op, r2, r1, target);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
|
︙ | | |
79032
79033
79034
79035
79036
79037
79038
79039
79040
79041
79042
79043
79044
79045
79046
79047
79048
79049
79050
79051
79052
79053
79054
79055
79056
79057
79058
79059
79060
79061
79062
79063
79064
79065
79066
|
79662
79663
79664
79665
79666
79667
79668
79669
79670
79671
79672
79673
79674
79675
79676
79677
79678
79679
79680
79681
79682
79683
79684
79685
79686
79687
79688
79689
79690
79691
79692
79693
79694
|
-
-
+
+
-
-
-
-
+
+
-
-
+
+
|
testcase( regFree2==0 );
}
inReg = target;
break;
}
case TK_BITNOT:
case TK_NOT: {
assert( TK_BITNOT==OP_BitNot );
assert( TK_NOT==OP_Not );
assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
testcase( op==TK_BITNOT );
testcase( op==TK_NOT );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
testcase( regFree1==0 );
inReg = target;
sqlite3VdbeAddOp2(v, op, r1, inReg);
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
int addr;
assert( TK_ISNULL==OP_IsNull );
assert( TK_NOTNULL==OP_NotNull );
assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
testcase( op==TK_ISNULL );
testcase( op==TK_NOTNULL );
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
testcase( regFree1==0 );
addr = sqlite3VdbeAddOp1(v, op, r1);
VdbeCoverageIf(v, op==TK_ISNULL);
VdbeCoverageIf(v, op==TK_NOTNULL);
sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
sqlite3VdbeJumpHere(v, addr);
break;
}
case TK_AGG_FUNCTION: {
AggInfo *pInfo = pExpr->pAggInfo;
if( pInfo==0 ){
|
︙ | | |
79104
79105
79106
79107
79108
79109
79110
79111
79112
79113
79114
79115
79116
79117
|
79732
79733
79734
79735
79736
79737
79738
79739
79740
79741
79742
79743
79744
79745
79746
|
+
|
*/
if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
int endCoalesce = sqlite3VdbeMakeLabel(v);
assert( nFarg>=2 );
sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
for(i=1; i<nFarg; i++){
sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
VdbeCoverage(v);
sqlite3ExprCacheRemove(pParse, target, 1);
sqlite3ExprCachePush(pParse);
sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
sqlite3ExprCachePop(pParse, 1);
}
sqlite3VdbeResolveLabel(v, endCoalesce);
break;
|
︙ | | |
79241
79242
79243
79244
79245
79246
79247
79248
79249
79250
79251
79252
79253
79254
79255
79256
79257
79258
79259
79260
79261
|
79870
79871
79872
79873
79874
79875
79876
79877
79878
79879
79880
79881
79882
79883
79884
79885
79886
79887
79888
79889
79890
79891
|
-
+
+
|
r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
testcase( regFree1==0 );
testcase( regFree2==0 );
r3 = sqlite3GetTempReg(pParse);
r4 = sqlite3GetTempReg(pParse);
codeCompare(pParse, pLeft, pRight, OP_Ge,
r1, r2, r3, SQLITE_STOREP2);
r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
pLItem++;
pRight = pLItem->pExpr;
sqlite3ReleaseTempReg(pParse, regFree2);
r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
testcase( regFree2==0 );
codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
sqlite3ReleaseTempReg(pParse, r3);
sqlite3ReleaseTempReg(pParse, r4);
break;
}
case TK_COLLATE:
case TK_UPLUS: {
|
︙ | | |
79414
79415
79416
79417
79418
79419
79420
79421
79422
79423
79424
79425
79426
79427
|
80044
80045
80046
80047
80048
80049
80050
80051
80052
80053
80054
80055
80056
80057
80058
|
+
|
if( pExpr->affinity==OE_Abort ){
sqlite3MayAbort(pParse);
}
assert( !ExprHasProperty(pExpr, EP_IntValue) );
if( pExpr->affinity==OE_Ignore ){
sqlite3VdbeAddOp4(
v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
VdbeCoverage(v);
}else{
sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
pExpr->affinity, pExpr->u.zToken, 0, 0);
}
break;
}
|
︙ | | |
79501
79502
79503
79504
79505
79506
79507
79508
79509
79510
79511
79512
79513
79514
79515
79516
79517
79518
79519
79520
79521
79522
79523
79524
79525
79526
79527
79528
79529
79530
79531
79532
79533
79534
79535
79536
79537
79538
79539
79540
79541
79542
79543
79544
79545
79546
79547
79548
79549
79550
79551
79552
79553
79554
79555
79556
79557
79558
79559
79560
79561
|
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
|
-
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
-
+
+
-
-
-
-
-
-
-
-
+
-
-
-
-
+
+
+
+
-
-
|
}
/*
** Generate code that will evaluate expression pExpr and store the
** results in register target. The results are guaranteed to appear
** in register target.
*/
SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
int inReg;
assert( target>0 && target<=pParse->nMem );
if( pExpr && pExpr->op==TK_REGISTER ){
sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
}else{
inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
assert( pParse->pVdbe || pParse->db->mallocFailed );
if( inReg!=target && pParse->pVdbe ){
sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
}
}
}
return target;
/*
** Generate code that will evaluate expression pExpr and store the
** results in register target. The results are guaranteed to appear
** in register target. If the expression is constant, then this routine
** might choose to code the expression at initialization time.
*/
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
}else{
sqlite3ExprCode(pParse, pExpr, target);
}
}
/*
** Generate code that evalutes the given expression and puts the result
** in register target.
**
** Also make a copy of the expression results into another "cache" register
** and modify the expression so that the next time it is evaluated,
** the result is a copy of the cache register.
**
** This routine is used for expressions that are used multiple
** times. They are evaluated once and the results of the expression
** are reused.
*/
SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
Vdbe *v = pParse->pVdbe;
int inReg;
inReg = sqlite3ExprCode(pParse, pExpr, target);
int iMem;
assert( target>0 );
/* The only place, other than this routine, where expressions can be
** converted to TK_REGISTER is internal subexpressions in BETWEEN and
** CASE operators. Neither ever calls this routine. And this routine
** is never called twice on the same expression. Hence it is impossible
** for the input to this routine to already be a register. Nevertheless,
** it seems prudent to keep the ALWAYS() in case the conditions above
** change with future modifications or enhancements. */
if( ALWAYS(pExpr->op!=TK_REGISTER) ){
assert( pExpr->op!=TK_REGISTER );
int iMem;
iMem = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
exprToRegister(pExpr, iMem);
sqlite3ExprCode(pParse, pExpr, target);
iMem = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
exprToRegister(pExpr, iMem);
}
return inReg;
}
#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
/*
** Generate a human-readable explanation of an expression tree.
*/
SQLITE_PRIVATE void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
|
︙ | | |
79982
79983
79984
79985
79986
79987
79988
79989
79990
79991
79992
79993
79994
79995
79996
79997
79998
79999
80000
80001
80002
80003
80004
80005
80006
80007
80008
80009
80010
80011
80012
80013
80014
80015
80016
80017
80018
80019
80020
80021
80022
80023
80024
80025
80026
80027
80028
80029
80030
80031
80032
80033
80034
80035
80036
80037
|
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
|
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
+
+
-
-
+
+
|
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ: {
assert( TK_LT==OP_Lt );
assert( TK_LE==OP_Le );
assert( TK_GT==OP_Gt );
assert( TK_GE==OP_Ge );
assert( TK_EQ==OP_Eq );
assert( TK_NE==OP_Ne );
testcase( op==TK_LT );
testcase( op==TK_LE );
testcase( op==TK_GT );
testcase( op==TK_GE );
testcase( op==TK_EQ );
testcase( op==TK_NE );
testcase( jumpIfNull==0 );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, dest, jumpIfNull);
assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
case TK_IS:
case TK_ISNOT: {
testcase( op==TK_IS );
testcase( op==TK_ISNOT );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
op = (op==TK_IS) ? TK_EQ : TK_NE;
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, dest, SQLITE_NULLEQ);
VdbeCoverageIf(v, op==TK_EQ);
VdbeCoverageIf(v, op==TK_NE);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
assert( TK_ISNULL==OP_IsNull );
assert( TK_NOTNULL==OP_NotNull );
assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
testcase( op==TK_ISNULL );
testcase( op==TK_NOTNULL );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
sqlite3VdbeAddOp2(v, op, r1, dest);
VdbeCoverageIf(v, op==TK_ISNULL);
VdbeCoverageIf(v, op==TK_NOTNULL);
testcase( regFree1==0 );
break;
}
case TK_BETWEEN: {
testcase( jumpIfNull==0 );
exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
break;
|
︙ | | |
80050
80051
80052
80053
80054
80055
80056
80057
80058
80059
80060
80061
80062
80063
|
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
|
+
|
if( exprAlwaysTrue(pExpr) ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
}else if( exprAlwaysFalse(pExpr) ){
/* No-op */
}else{
r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
VdbeCoverage(v);
testcase( regFree1==0 );
testcase( jumpIfNull==0 );
}
break;
}
}
sqlite3ReleaseTempReg(pParse, regFree1);
|
︙ | | |
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
|
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
|
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
+
+
|
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ: {
testcase( op==TK_LT );
testcase( op==TK_LE );
testcase( op==TK_GT );
testcase( op==TK_GE );
testcase( op==TK_EQ );
testcase( op==TK_NE );
testcase( jumpIfNull==0 );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, dest, jumpIfNull);
assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
case TK_IS:
case TK_ISNOT: {
testcase( pExpr->op==TK_IS );
testcase( pExpr->op==TK_ISNOT );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, dest, SQLITE_NULLEQ);
VdbeCoverageIf(v, op==TK_EQ);
VdbeCoverageIf(v, op==TK_NE);
testcase( regFree1==0 );
testcase( regFree2==0 );
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
testcase( op==TK_ISNULL );
testcase( op==TK_NOTNULL );
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
sqlite3VdbeAddOp2(v, op, r1, dest);
testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
testcase( regFree1==0 );
break;
}
case TK_BETWEEN: {
testcase( jumpIfNull==0 );
exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
break;
|
︙ | | |
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
|
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
|
+
|
if( exprAlwaysFalse(pExpr) ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
}else if( exprAlwaysTrue(pExpr) ){
/* no-op */
}else{
r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
VdbeCoverage(v);
testcase( regFree1==0 );
testcase( jumpIfNull==0 );
}
break;
}
}
sqlite3ReleaseTempReg(pParse, regFree1);
|
︙ | | |
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
|
81384
81385
81386
81387
81388
81389
81390
81391
81392
81393
81394
81395
81396
81397
81398
81399
|
-
-
+
+
|
do {
zCsr += len;
len = sqlite3GetToken(zCsr, &token);
} while( token==TK_SPACE );
assert( len>0 );
} while( token!=TK_LP && token!=TK_USING );
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql,
zTableName, tname.z+tname.n);
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql),
zSql, zTableName, tname.z+tname.n);
sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
}
}
/*
** This C function implements an SQL user function that is used by SQL code
** generated by the ALTER TABLE ... RENAME command to modify the definition
|
︙ | | |
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
|
81437
81438
81439
81440
81441
81442
81443
81444
81445
81446
81447
81448
81449
81450
81451
|
-
+
|
}while( token==TK_SPACE );
zParent = sqlite3DbStrNDup(db, (const char *)z, n);
if( zParent==0 ) break;
sqlite3Dequote(zParent);
if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){
char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"",
(zOutput?zOutput:""), z-zInput, zInput, (const char *)zNew
(zOutput?zOutput:""), (int)(z-zInput), zInput, (const char *)zNew
);
sqlite3DbFree(db, zOutput);
zOutput = zOut;
zInput = &z[n];
}
sqlite3DbFree(db, zParent);
}
|
︙ | | |
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
|
81523
81524
81525
81526
81527
81528
81529
81530
81531
81532
81533
81534
81535
81536
81537
81538
|
-
-
+
+
|
dist = 0;
}
} while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
/* Variable tname now contains the token that is the old table-name
** in the CREATE TRIGGER statement.
*/
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql,
zTableName, tname.z+tname.n);
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql),
zSql, zTableName, tname.z+tname.n);
sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
}
}
#endif /* !SQLITE_OMIT_TRIGGER */
/*
** Register built-in functions used to help implement ALTER TABLE
|
︙ | | |
81141
81142
81143
81144
81145
81146
81147
81148
81149
81150
81151
81152
81153
81154
81155
|
81776
81777
81778
81779
81780
81781
81782
81783
81784
81785
81786
81787
81788
81789
81790
|
-
+
|
pVTab = sqlite3GetVTable(db, pTab);
if( pVTab->pVtab->pModule->xRename==0 ){
pVTab = 0;
}
}
#endif
/* Begin a transaction and code the VerifyCookie for database iDb.
/* Begin a transaction for database iDb.
** Then modify the schema cookie (since the ALTER TABLE modifies the
** schema). Open a statement transaction if the table is a virtual
** table.
*/
v = sqlite3GetVdbe(pParse);
if( v==0 ){
goto exit_rename_table;
|
︙ | | |
81277
81278
81279
81280
81281
81282
81283
81284
81285
81286
81287
81288
81289
81290
|
81912
81913
81914
81915
81916
81917
81918
81919
81920
81921
81922
81923
81924
81925
81926
|
+
|
int r1 = sqlite3GetTempReg(pParse);
int r2 = sqlite3GetTempReg(pParse);
int j1;
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
sqlite3VdbeUsesBtree(v, iDb);
sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2);
sqlite3VdbeJumpHere(v, j1);
sqlite3ReleaseTempReg(pParse, r1);
sqlite3ReleaseTempReg(pParse, r2);
}
}
|
︙ | | |
82577
82578
82579
82580
82581
82582
82583
82584
82585
82586
82587
82588
82589
82590
|
83213
83214
83215
83216
83217
83218
83219
83220
83221
83222
83223
83224
83225
83226
83227
|
+
|
** Rewind csr
** if eof(csr) goto end_of_scan;
** regChng = 0
** goto next_push_0;
**
*/
addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto);
/*
** next_row:
** regChng = 0
** if( idx(0) != regPrev(0) ) goto chng_addr_0
|
︙ | | |
82598
82599
82600
82601
82602
82603
82604
82605
82606
82607
82608
82609
82610
82611
|
83235
83236
83237
83238
83239
83240
83241
83242
83243
83244
83245
83246
83247
83248
83249
|
+
|
for(i=0; i<nCol; i++){
char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
aGotoChng[i] =
sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
VdbeCoverage(v);
}
sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);
/*
** chng_addr_0:
** regPrev(0) = idx(0)
|
︙ | | |
82644
82645
82646
82647
82648
82649
82650
82651
82652
82653
82654
82655
82656
82657
82658
|
83282
83283
83284
83285
83286
83287
83288
83289
83290
83291
83292
83293
83294
83295
83296
|
-
+
|
sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
}
#endif
assert( regChng==(regStat4+1) );
sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, 2+IsStat34);
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow);
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
/* Add the entry to the stat1 table. */
callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
︙ | | |
82671
82672
82673
82674
82675
82676
82677
82678
82679
82680
82681
82682
82683
82684
82685
82686
82687
82688
82689
82690
82691
82692
82693
82694
82695
82696
82697
82698
82699
82700
82701
82702
82703
82704
82705
82706
82707
82708
82709
82710
82711
82712
82713
82714
82715
82716
82717
82718
82719
|
83309
83310
83311
83312
83313
83314
83315
83316
83317
83318
83319
83320
83321
83322
83323
83324
83325
83326
83327
83328
83329
83330
83331
83332
83333
83334
83335
83336
83337
83338
83339
83340
83341
83342
83343
83344
83345
83346
83347
83348
83349
83350
83351
83352
83353
83354
83355
83356
83357
83358
83359
|
+
+
-
+
-
+
|
u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
pParse->nMem = MAX(pParse->nMem, regCol+nCol+1);
addrNext = sqlite3VdbeCurrentAddr(v);
callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
VdbeCoverage(v);
callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
callStatGet(v, regStat4, STAT_GET_NLT, regLt);
callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
VdbeCoverage(v);
#ifdef SQLITE_ENABLE_STAT3
sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
pIdx->aiColumn[0], regSample);
#else
for(i=0; i<nCol; i++){
i16 iCol = pIdx->aiColumn[i];
sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample);
#endif
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regTemp, "bbbbbb", 0);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
sqlite3VdbeJumpHere(v, addrIsNull);
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
/* End of analysis */
sqlite3VdbeJumpHere(v, addrRewind);
sqlite3DbFree(db, aGotoChng);
}
/* Create a single sqlite_stat1 entry containing NULL as the index
** name and the row count as the content.
*/
if( pOnlyIdx==0 && needTableCnt ){
VdbeComment((v, "%s", pTab->zName));
sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeJumpHere(v, jZeroRows);
}
|
︙ | | |
84243
84244
84245
84246
84247
84248
84249
84250
84251
84252
84253
84254
84255
84256
84257
84258
84259
84260
84261
84262
84263
84264
84265
84266
84267
84268
84269
84270
84271
84272
84273
84274
84275
84276
84277
84278
84279
84280
84281
84282
84283
84284
84285
84286
84287
84288
84289
84290
84291
84292
84293
84294
84295
84296
84297
84298
84299
84300
84301
|
84883
84884
84885
84886
84887
84888
84889
84890
84891
84892
84893
84894
84895
84896
84897
84898
84899
84900
84901
84902
84903
84904
84905
84906
84907
84908
84909
84910
84911
84912
84913
84914
84915
84916
84917
84918
84919
84920
84921
84922
84923
84924
84925
84926
84927
84928
84929
84930
84931
84932
84933
84934
84935
84936
84937
84938
84939
84940
84941
84942
|
-
+
-
-
+
+
+
-
-
-
-
-
-
+
+
+
+
+
+
-
+
+
-
-
+
-
+
|
/* The cookie mask contains one bit for each database file open.
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
** set for each database that is used. Generate code to start a
** transaction on each used database and to verify the schema cookie
** on each used database.
*/
if( pParse->cookieGoto>0 ){
if( db->mallocFailed==0 && (pParse->cookieMask || pParse->pConstExpr) ){
yDbMask mask;
int iDb, i, addr;
sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
int iDb, i;
assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
sqlite3VdbeJumpHere(v, 0);
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
if( (mask & pParse->cookieMask)==0 ) continue;
sqlite3VdbeUsesBtree(v, iDb);
sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
if( db->init.busy==0 ){
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
sqlite3VdbeAddOp3(v, OP_VerifyCookie,
iDb, pParse->cookieValue[iDb],
db->aDb[iDb].pSchema->iGeneration);
sqlite3VdbeAddOp4Int(v,
OP_Transaction, /* Opcode */
iDb, /* P1 */
(mask & pParse->writeMask)!=0, /* P2 */
pParse->cookieValue[iDb], /* P3 */
db->aDb[iDb].pSchema->iGeneration /* P4 */
}
);
if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
for(i=0; i<pParse->nVtabLock; i++){
char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
}
pParse->nVtabLock = 0;
#endif
/* Once all the cookies have been verified and transactions opened,
** obtain the required table-locks. This is a no-op unless the
** shared-cache feature is enabled.
*/
codeTableLocks(pParse);
/* Initialize any AUTOINCREMENT data structures required.
*/
sqlite3AutoincrementBegin(pParse);
/* Code constant expressions that where factored out of inner loops */
addr = pParse->cookieGoto;
if( pParse->pConstExpr ){
ExprList *pEL = pParse->pConstExpr;
pParse->cookieGoto = 0;
pParse->okConstFactor = 0;
for(i=0; i<pEL->nExpr; i++){
sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
}
}
/* Finally, jump back to the beginning of the executable code. */
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
sqlite3VdbeAddOp2(v, OP_Goto, 0, 1);
}
}
/* Get the VDBE program ready for execution
*/
if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
|
︙ | | |
84310
84311
84312
84313
84314
84315
84316
84317
84318
84319
84320
84321
84322
84323
84324
|
84951
84952
84953
84954
84955
84956
84957
84958
84959
84960
84961
84962
84963
84964
|
-
|
pParse->rc = SQLITE_ERROR;
}
pParse->nTab = 0;
pParse->nMem = 0;
pParse->nSet = 0;
pParse->nVar = 0;
pParse->cookieMask = 0;
pParse->cookieGoto = 0;
}
/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction. When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization
|
︙ | | |
85042
85043
85044
85045
85046
85047
85048
85049
85050
85051
85052
85053
85054
85055
85056
|
85682
85683
85684
85685
85686
85687
85688
85689
85690
85691
85692
85693
85694
85695
85696
|
-
+
|
** set them now.
*/
reg1 = pParse->regRowid = ++pParse->nMem;
reg2 = pParse->regRoot = ++pParse->nMem;
reg3 = ++pParse->nMem;
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
sqlite3VdbeUsesBtree(v, iDb);
j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1 : SQLITE_MAX_FILE_FORMAT;
sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
sqlite3VdbeJumpHere(v, j1);
|
︙ | | |
86769
86770
86771
86772
86773
86774
86775
86776
86777
86778
86779
86780
86781
86782
86783
86784
86785
86786
86787
86788
86789
86790
86791
86792
86793
86794
86795
86796
86797
86798
86799
86800
86801
86802
86803
86804
86805
86806
86807
86808
86809
86810
86811
86812
|
87409
87410
87411
87412
87413
87414
87415
87416
87417
87418
87419
87420
87421
87422
87423
87424
87425
87426
87427
87428
87429
87430
87431
87432
87433
87434
87435
87436
87437
87438
87439
87440
87441
87442
87443
87444
87445
87446
87447
87448
87449
87450
87451
87452
|
-
+
-
+
-
+
-
+
-
+
|
iSorter = pParse->nTab++;
sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)
sqlite3KeyInfoRef(pKey), P4_KEYINFO);
/* Open the table. Loop through all rows of the table, inserting index
** records into the sorter. */
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
regRecord = sqlite3GetTempReg(pParse);
sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
sqlite3VdbeResolveLabel(v, iPartIdxLabel);
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr1);
if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
(char *)pKey, P4_KEYINFO);
sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
assert( pKey!=0 || db->mallocFailed || pParse->nErr );
if( pIndex->onError!=OE_None && pKey!=0 ){
int j2 = sqlite3VdbeCurrentAddr(v) + 3;
sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
addr2 = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
pKey->nField - pIndex->nKeyCol);
pKey->nField - pIndex->nKeyCol); VdbeCoverage(v);
sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
}else{
addr2 = sqlite3VdbeCurrentAddr(v);
}
sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp1(v, OP_Close, iTab);
sqlite3VdbeAddOp1(v, OP_Close, iIdx);
sqlite3VdbeAddOp1(v, OP_Close, iSorter);
}
|
︙ | | |
87567
87568
87569
87570
87571
87572
87573
87574
87575
87576
87577
87578
87579
87580
87581
87582
87583
87584
87585
87586
87587
87588
87589
87590
87591
87592
87593
87594
87595
87596
87597
87598
87599
87600
87601
|
88207
88208
88209
88210
88211
88212
88213
88214
88215
88216
88217
88218
88219
88220
88221
88222
88223
88224
88225
88226
88227
88228
88229
88230
88231
88232
88233
88234
88235
88236
88237
88238
88239
88240
88241
|
-
+
-
+
-
+
|
/* Sanity checking on calling parameters */
assert( iStart>=0 );
assert( nExtra>=1 );
assert( pSrc!=0 );
assert( iStart<=pSrc->nSrc );
/* Allocate additional space if needed */
if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
SrcList *pNew;
int nAlloc = pSrc->nSrc+nExtra;
int nGot;
pNew = sqlite3DbRealloc(db, pSrc,
sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
if( pNew==0 ){
assert( db->mallocFailed );
return pSrc;
}
pSrc = pNew;
nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
pSrc->nAlloc = (u8)nGot;
pSrc->nAlloc = nGot;
}
/* Move existing slots that come after the newly inserted slots
** out of the way */
for(i=pSrc->nSrc-1; i>=iStart; i--){
pSrc->a[i+nExtra] = pSrc->a[i];
}
pSrc->nSrc += (i8)nExtra;
pSrc->nSrc += nExtra;
/* Zero the newly allocated slots */
memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
for(i=iStart; i<iStart+nExtra; i++){
pSrc->a[i].iCursor = -1;
}
|
︙ | | |
87919
87920
87921
87922
87923
87924
87925
87926
87927
87928
87929
87930
87931
87932
87933
87934
87935
87936
87937
87938
87939
87940
87941
87942
87943
87944
87945
87946
87947
87948
87949
87950
87951
87952
87953
87954
87955
87956
87957
87958
87959
87960
87961
87962
87963
87964
87965
87966
87967
87968
87969
87970
87971
87972
87973
87974
87975
87976
87977
87978
87979
87980
87981
87982
87983
87984
87985
|
88559
88560
88561
88562
88563
88564
88565
88566
88567
88568
88569
88570
88571
88572
88573
88574
88575
88576
88577
88578
88579
88580
88581
88582
88583
88584
88585
88586
88587
88588
88589
88590
88591
88592
|
-
-
+
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
|
return 1;
}
}
return 0;
}
/*
** Generate VDBE code that will verify the schema cookie and start
** a read-transaction for all named database files.
** Record the fact that the schema cookie will need to be verified
** for database iDb. The code to actually verify the schema cookie
**
** It is important that all schema cookies be verified and all
** read transactions be started before anything else happens in
** the VDBE program. But this routine can be called after much other
** code has been generated. So here is what we do:
**
** The first time this routine is called, we code an OP_Goto that
** will jump to a subroutine at the end of the program. Then we
** will occur at the end of the top-level VDBE and will be generated
** record every database that needs its schema verified in the
** pParse->cookieMask field. Later, after all other code has been
** generated, the subroutine that does the cookie verifications and
** starts the transactions will be coded and the OP_Goto P2 value
** will be made to point to that subroutine. The generation of the
** cookie verification subroutine code happens in sqlite3FinishCoding().
** later, by sqlite3FinishCoding().
**
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
** schema on any databases. This can be used to position the OP_Goto
** early in the code, before we know if any database tables will be used.
*/
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
Parse *pToplevel = sqlite3ParseToplevel(pParse);
#ifndef SQLITE_OMIT_TRIGGER
if( pToplevel!=pParse ){
/* This branch is taken if a trigger is currently being coded. In this
** case, set cookieGoto to a non-zero value to show that this function
** has been called. This is used by the sqlite3ExprCodeConstants()
** function. */
pParse->cookieGoto = -1;
}
#endif
if( pToplevel->cookieGoto==0 ){
Vdbe *v = sqlite3GetVdbe(pToplevel);
if( v==0 ) return; /* This only happens if there was a prior error */
pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
}
if( iDb>=0 ){
sqlite3 *db = pToplevel->db;
yDbMask mask;
sqlite3 *db = pToplevel->db;
yDbMask mask;
assert( iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
assert( iDb<SQLITE_MAX_ATTACHED+2 );
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
mask = ((yDbMask)1)<<iDb;
if( (pToplevel->cookieMask & mask)==0 ){
pToplevel->cookieMask |= mask;
pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
if( !OMIT_TEMPDB && iDb==1 ){
sqlite3OpenTempDatabase(pToplevel);
assert( iDb>=0 && iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
assert( iDb<SQLITE_MAX_ATTACHED+2 );
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
mask = ((yDbMask)1)<<iDb;
if( (pToplevel->cookieMask & mask)==0 ){
pToplevel->cookieMask |= mask;
pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
if( !OMIT_TEMPDB && iDb==1 ){
sqlite3OpenTempDatabase(pToplevel);
}
}
}
}
/*
** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
** attached database. Otherwise, invoke it for the database named zDb only.
|
︙ | | |
88942
88943
88944
88945
88946
88947
88948
88949
88950
88951
88952
88953
88954
88955
88956
88957
88958
88959
88960
88961
88962
88963
88964
88965
88966
88967
88968
88969
88970
|
89549
89550
89551
89552
89553
89554
89555
89556
89557
89558
89559
89560
89561
89562
89563
89564
89565
89566
89567
89568
89569
89570
89571
89572
|
-
-
-
-
-
|
int iCur /* Cursor number for ephemerial table */
){
SelectDest dest;
Select *pSel;
SrcList *pFrom;
sqlite3 *db = pParse->db;
int iDb = sqlite3SchemaToIndex(db, pView->pSchema);
pWhere = sqlite3ExprDup(db, pWhere, 0);
pFrom = sqlite3SrcListAppend(db, 0, 0, 0);
if( pFrom ){
assert( pFrom->nSrc==1 );
pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
assert( pFrom->a[0].pOn==0 );
assert( pFrom->a[0].pUsing==0 );
}
pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
if( pSel ) pSel->selFlags |= SF_Materialize;
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
sqlite3Select(pParse, pSel, &dest);
sqlite3SelectDelete(db, pSel);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
|
︙ | | |
89293
89294
89295
89296
89297
89298
89299
89300
89301
89302
89303
89304
89305
89306
89307
|
89895
89896
89897
89898
89899
89900
89901
89902
89903
89904
89905
89906
89907
89908
89909
|
-
+
|
if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */
}else if( pPk ){
/* Construct a composite key for the row to be deleted and remember it */
iKey = ++pParse->nMem;
nKey = 0; /* Zero tells OP_Found to use a composite key */
sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
sqlite3IndexAffinityStr(v, pPk), P4_TRANSIENT);
sqlite3IndexAffinityStr(v, pPk), nPk);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey);
}else{
/* Get the rowid of the row to be deleted and remember it in the RowSet */
nKey = 1; /* OP_Seek always uses a single rowid */
sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
}
|
︙ | | |
89331
89332
89333
89334
89335
89336
89337
89338
89339
89340
89341
89342
89343
89344
89345
89346
89347
89348
89349
89350
89351
|
89933
89934
89935
89936
89937
89938
89939
89940
89941
89942
89943
89944
89945
89946
89947
89948
89949
89950
89951
89952
89953
89954
89955
|
+
-
+
+
|
*/
if( okOnePass ){
/* Just one row. Hence the top-of-loop is a no-op */
assert( nKey==nPk ); /* OP_Found will use an unpacked key */
if( aToOpen[iDataCur-iTabCur] ){
assert( pPk!=0 );
sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
VdbeCoverage(v);
}
}else if( pPk ){
addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur);
addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey);
assert( nKey==0 ); /* OP_Found will use a composite key */
}else{
addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey);
VdbeCoverage(v);
assert( nKey==1 );
}
/* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pTab) ){
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
|
︙ | | |
89361
89362
89363
89364
89365
89366
89367
89368
89369
89370
89371
89372
89373
89374
89375
|
89965
89966
89967
89968
89969
89970
89971
89972
89973
89974
89975
89976
89977
89978
89979
|
-
+
|
iKey, nKey, count, OE_Default, okOnePass);
}
/* End of the loop over all rowids/primary-keys. */
if( okOnePass ){
sqlite3VdbeResolveLabel(v, addrBypass);
}else if( pPk ){
sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1);
sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addrLoop);
}else{
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrLoop);
sqlite3VdbeJumpHere(v, addrLoop);
}
/* Close the cursors open on the table and its indexes. */
|
︙ | | |
89459
89460
89461
89462
89463
89464
89465
89466
89467
89468
89469
89470
89471
89472
89473
|
90063
90064
90065
90066
90067
90068
90069
90070
90071
90072
90073
90074
90075
90076
90077
90078
90079
90080
90081
|
+
-
+
+
+
+
|
iDataCur, iIdxCur, iPk, (int)nPk));
/* Seek cursor iCur to the row to delete. If this row no longer exists
** (this can happen if a trigger program has already deleted it), do
** not attempt to delete it or fire any DELETE triggers. */
iLabel = sqlite3VdbeMakeLabel(v);
opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
if( !bNoSeek ){
if( !bNoSeek ) sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
VdbeCoverageIf(v, opSeek==OP_NotExists);
VdbeCoverageIf(v, opSeek==OP_NotFound);
}
/* If there are any triggers to fire, allocate a range of registers to
** use for the old.* references in the triggers. */
if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){
u32 mask; /* Mask of OLD.* columns in use */
int iCol; /* Iterator used while populating OLD.* */
int addrStart; /* Start of BEFORE trigger programs */
|
︙ | | |
89501
89502
89503
89504
89505
89506
89507
89508
89509
89510
89511
89512
89513
89514
|
90109
90110
90111
90112
90113
90114
90115
90116
90117
90118
90119
90120
90121
90122
90123
90124
|
+
+
|
/* If any BEFORE triggers were coded, then seek the cursor to the
** row to be deleted again. It may be that the BEFORE triggers moved
** the cursor or of already deleted the row that the cursor was
** pointing to.
*/
if( addrStart<sqlite3VdbeCurrentAddr(v) ){
sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
VdbeCoverageIf(v, opSeek==OP_NotExists);
VdbeCoverageIf(v, opSeek==OP_NotFound);
}
/* Do FK processing. This call checks that any FK constraints that
** refer to this table (i.e. constraints attached to other tables)
** are not violated by deleting this row. */
sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
}
|
︙ | | |
91758
91759
91760
91761
91762
91763
91764
91765
91766
91767
91768
91769
91770
91771
91772
91773
91774
91775
91776
91777
91778
91779
91780
91781
91782
91783
91784
91785
91786
91787
91788
91789
91790
91791
91792
91793
91794
91795
91796
91797
91798
91799
91800
91801
91802
|
92368
92369
92370
92371
92372
92373
92374
92375
92376
92377
92378
92379
92380
92381
92382
92383
92384
92385
92386
92387
92388
92389
92390
92391
92392
92393
92394
92395
92396
92397
92398
92399
92400
92401
92402
92403
92404
92405
92406
92407
92408
92409
92410
92411
92412
92413
92414
92415
|
+
-
+
+
-
+
+
-
+
|
** to check if deleting this row resolves any outstanding violations.
**
** Check if any of the key columns in the child table row are NULL. If
** any are, then the constraint is considered satisfied. No need to
** search for a matching row in the parent table. */
if( nIncr<0 ){
sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
VdbeCoverage(v);
}
for(i=0; i<pFKey->nCol; i++){
int iReg = aiCol[i] + regData + 1;
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
}
if( isIgnore==0 ){
if( pIdx==0 ){
/* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
** column of the parent table (table pTab). */
int iMustBeInt; /* Address of MustBeInt instruction */
int regTemp = sqlite3GetTempReg(pParse);
/* Invoke MustBeInt to coerce the child key value to an integer (i.e.
** apply the affinity of the parent key). If this fails, then there
** is no matching parent key. Before using MustBeInt, make a copy of
** the value. Otherwise, the value inserted into the child key column
** will have INTEGER affinity applied to it, which may not be correct. */
sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
VdbeCoverage(v);
/* If the parent table is the same as the child table, and we are about
** to increment the constraint-counter (i.e. this is an INSERT operation),
** then check if the row being inserted matches itself. If so, do not
** increment the constraint-counter. */
if( pTab==pFKey->pFrom && nIncr==1 ){
sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
}
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
sqlite3VdbeJumpHere(v, iMustBeInt);
sqlite3ReleaseTempReg(pParse, regTemp);
}else{
int nCol = pFKey->nCol;
int regTemp = sqlite3GetTempRange(pParse, nCol);
|
︙ | | |
91824
91825
91826
91827
91828
91829
91830
91831
91832
91833
91834
91835
91836
91837
91838
91839
91840
91841
91842
91843
91844
91845
91846
|
92437
92438
92439
92440
92441
92442
92443
92444
92445
92446
92447
92448
92449
92450
92451
92452
92453
92454
92455
92456
92457
92458
92459
|
-
+
-
-
-
+
+
+
|
int iChild = aiCol[i]+1+regData;
int iParent = pIdx->aiColumn[i]+1+regData;
assert( aiCol[i]!=pTab->iPKey );
if( pIdx->aiColumn[i]==pTab->iPKey ){
/* The parent key is a composite key that includes the IPK column */
iParent = regData;
}
sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
}
sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
sqlite3IndexAffinityStr(v,pIdx), nCol);
sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempRange(pParse, regTemp, nCol);
}
}
if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
|
︙ | | |
91970
91971
91972
91973
91974
91975
91976
91977
91978
91979
91980
91981
91982
91983
|
92583
92584
92585
92586
92587
92588
92589
92590
92591
92592
92593
92594
92595
92596
92597
|
+
|
assert( pIdx==0 || pIdx->pTable==pTab );
assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
assert( pIdx!=0 || pFKey->nCol==1 );
assert( pIdx!=0 || HasRowid(pTab) );
if( nIncr<0 ){
iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
VdbeCoverage(v);
}
/* Create an Expr object representing an SQL expression like:
**
** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
**
** The collation sequence used for the comparison should be that of
|
︙ | | |
92132
92133
92134
92135
92136
92137
92138
92139
92140
92141
92142
92143
92144
92145
92146
92147
92148
92149
92150
92151
92152
92153
92154
92155
92156
92157
92158
92159
92160
92161
92162
92163
|
92746
92747
92748
92749
92750
92751
92752
92753
92754
92755
92756
92757
92758
92759
92760
92761
92762
92763
92764
92765
92766
92767
92768
92769
92770
92771
92772
92773
92774
92775
92776
92777
92778
|
-
+
+
|
** when this statement is run. */
FKey *p;
for(p=pTab->pFKey; p; p=p->pNextFrom){
if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
}
if( !p ) return;
iSkip = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
}
pParse->disableTriggers = 1;
sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
pParse->disableTriggers = 0;
/* If the DELETE has generated immediate foreign key constraint
** violations, halt the VDBE and return an error at this point, before
** any modifications to the schema are made. This is because statement
** transactions are not able to rollback schema changes.
**
** If the SQLITE_DeferFKs flag is set, then this is not required, as
** the statement transaction will not be rolled back even if FK
** constraints are violated.
*/
if( (db->flags & SQLITE_DeferFKs)==0 ){
sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
}
if( iSkip ){
sqlite3VdbeResolveLabel(v, iSkip);
}
|
︙ | | |
92309
92310
92311
92312
92313
92314
92315
92316
92317
92318
92319
92320
92321
92322
92323
|
92924
92925
92926
92927
92928
92929
92930
92931
92932
92933
92934
92935
92936
92937
92938
|
-
+
|
** missing, behave as if it is empty. i.e. decrement the relevant
** FK counter for each row of the current table with non-NULL keys.
*/
Vdbe *v = sqlite3GetVdbe(pParse);
int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
for(i=0; i<pFKey->nCol; i++){
int iReg = pFKey->aCol[i].iFrom + regOld + 1;
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
}
sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
}
continue;
}
assert( pFKey->nCol==1 || (aiFree && pIdx) );
|
︙ | | |
92876
92877
92878
92879
92880
92881
92882
92883
92884
92885
92886
92887
92888
92889
92890
92891
92892
92893
92894
92895
92896
92897
92898
92899
92900
92901
92902
92903
92904
92905
92906
92907
92908
92909
92910
92911
92912
92913
92914
92915
92916
92917
92918
92919
92920
92921
92922
92923
92924
92925
92926
92927
92928
92929
92930
92931
92932
92933
92934
92935
92936
92937
92938
92939
92940
92941
92942
92943
92944
92945
92946
92947
92948
|
93491
93492
93493
93494
93495
93496
93497
93498
93499
93500
93501
93502
93503
93504
93505
93506
93507
93508
93509
93510
93511
93512
93513
93514
93515
93516
93517
93518
93519
93520
93521
93522
93523
93524
93525
93526
93527
93528
93529
93530
93531
93532
93533
93534
93535
93536
93537
93538
93539
93540
93541
93542
93543
93544
93545
93546
93547
93548
93549
93550
93551
93552
93553
93554
93555
93556
93557
93558
93559
93560
93561
93562
93563
93564
93565
93566
93567
93568
|
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
+
+
-
-
-
-
-
-
-
-
+
+
-
-
+
-
-
+
+
-
-
+
+
+
+
+
+
+
+
-
+
-
+
|
pIdx->zColAff[n] = 0;
}
return pIdx->zColAff;
}
/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
** Compute the affinity string for table pTab, if it has not already been
** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities.
**
** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values and
** if iReg>0 then code an OP_Affinity opcode that will set the affinities
** for register iReg and following. Or if affinities exists and iReg==0,
** then just set the P4 operand of the previous opcode (which should be
** an OP_MakeRecord) to the affinity string.
**
** A column affinity string has one character column:
**
** Character Column affinity
** ------------------------------
** 'a' TEXT
** 'b' NONE
** 'c' NUMERIC
** 'd' INTEGER
** 'e' REAL
*/
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
/* The first time a column affinity string for a particular table
SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
int i;
** is required, it is allocated and populated here. It is then
** stored as a member of the Table structure for subsequent use.
**
** The column affinity string will eventually be deleted by
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
*/
if( !pTab->zColAff ){
char *zColAff;
char *zColAff = pTab->zColAff;
if( zColAff==0 ){
int i;
sqlite3 *db = sqlite3VdbeDb(v);
zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
if( !zColAff ){
db->mallocFailed = 1;
return;
}
for(i=0; i<pTab->nCol; i++){
zColAff[i] = pTab->aCol[i].affinity;
}
do{
zColAff[pTab->nCol] = '\0';
zColAff[i--] = 0;
}while( i>=0 && zColAff[i]==SQLITE_AFF_NONE );
pTab->zColAff = zColAff;
}
sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
i = sqlite3Strlen30(zColAff);
if( i ){
if( iReg ){
sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
}else{
sqlite3VdbeChangeP4(v, -1, zColAff, i);
}
}
}
/*
** Return non-zero if the table pTab in database iDb or any of its indices
** have been opened at any point in the VDBE program beginning at location
** iStartAddr throught the end of the program. This is used to see if
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
** run without using temporary table for the results of the SELECT.
*/
static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
static int readsTable(Parse *p, int iDb, Table *pTab){
Vdbe *v = sqlite3GetVdbe(p);
int i;
int iEnd = sqlite3VdbeCurrentAddr(v);
#ifndef SQLITE_OMIT_VIRTUALTABLE
VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
#endif
for(i=iStartAddr; i<iEnd; i++){
for(i=1; i<iEnd; i++){
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
assert( pOp!=0 );
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
Index *pIndex;
int tnum = pOp->p2;
if( tnum==pTab->tnum ){
return 1;
|
︙ | | |
93035
93036
93037
93038
93039
93040
93041
93042
93043
93044
93045
93046
93047
93048
93049
93050
93051
93052
93053
93054
93055
93056
|
93655
93656
93657
93658
93659
93660
93661
93662
93663
93664
93665
93666
93667
93668
93669
93670
93671
93672
93673
93674
93675
93676
|
-
+
-
+
-
+
|
pDb = &db->aDb[p->iDb];
memId = p->regCtr;
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
addr = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
sqlite3VdbeAddOp0(v, OP_Close);
}
}
/*
** Update the maximum rowid for an autoincrement calculation.
|
︙ | | |
93077
93078
93079
93080
93081
93082
93083
93084
93085
93086
93087
93088
93089
93090
93091
93092
93093
93094
93095
93096
93097
93098
93099
93100
93101
93102
93103
93104
93105
93106
93107
93108
93109
93110
93111
93112
93113
93114
93115
93116
93117
93118
93119
93120
93121
93122
93123
93124
93125
93126
93127
93128
93129
93130
93131
93132
93133
93134
93135
93136
93137
93138
93139
93140
93141
93142
93143
93144
93145
93146
93147
93148
93149
93150
93151
93152
93153
93154
93155
93156
93157
93158
93159
93160
93161
93162
93163
93164
93165
93166
93167
93168
93169
93170
93171
93172
93173
93174
93175
93176
93177
93178
93179
93180
93181
93182
93183
93184
93185
93186
93187
93188
93189
93190
93191
93192
93193
93194
93195
93196
93197
93198
93199
93200
93201
93202
93203
93204
93205
93206
93207
93208
93209
93210
93211
93212
93213
93214
93215
|
93697
93698
93699
93700
93701
93702
93703
93704
93705
93706
93707
93708
93709
93710
93711
93712
93713
93714
93715
93716
93717
93718
93719
93720
93721
93722
93723
93724
93725
93726
93727
93728
93729
93730
93731
93732
93733
93734
93735
|
-
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
AutoincInfo *p;
Vdbe *v = pParse->pVdbe;
sqlite3 *db = pParse->db;
assert( v );
for(p = pParse->pAinc; p; p = p->pNext){
Db *pDb = &db->aDb[p->iDb];
int j1, j2, j3, j4, j5;
int j1;
int iRec;
int memId = p->regCtr;
iRec = sqlite3GetTempReg(pParse);
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
sqlite3VdbeJumpHere(v, j2);
sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
j5 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, j4);
sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeJumpHere(v, j5);
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeAddOp0(v, OP_Close);
sqlite3ReleaseTempReg(pParse, iRec);
}
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)
# define autoIncStep(A,B,C)
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/*
** Generate code for a co-routine that will evaluate a subquery one
** row at a time.
**
** The pSelect parameter is the subquery that the co-routine will evaluation.
** Information about the location of co-routine and the registers it will use
** is returned by filling in the pDest object.
**
** Registers are allocated as follows:
**
** pDest->iSDParm The register holding the next entry-point of the
** co-routine. Run the co-routine to its next breakpoint
** by calling "OP_Yield $X" where $X is pDest->iSDParm.
**
** pDest->iSDParm+1 The register holding the "completed" flag for the
** co-routine. This register is 0 if the previous Yield
** generated a new result row, or 1 if the subquery
** has completed. If the Yield is called again
** after this register becomes 1, then the VDBE will
** halt with an SQLITE_INTERNAL error.
**
** pDest->iSdst First result register.
**
** pDest->nSdst Number of result registers.
**
** This routine handles all of the register allocation and fills in the
** pDest structure appropriately.
**
** Here is a schematic of the generated code assuming that X is the
** co-routine entry-point register reg[pDest->iSDParm], that EOF is the
** completed flag reg[pDest->iSDParm+1], and R and S are the range of
** registers that hold the result set, reg[pDest->iSdst] through
** reg[pDest->iSdst+pDest->nSdst-1]:
**
** X <- A
** EOF <- 0
** goto B
** A: setup for the SELECT
** loop rows in the SELECT
** load results into registers R..S
** yield X
** end loop
** cleanup after the SELECT
** EOF <- 1
** yield X
** halt-error
** B:
**
** To use this subroutine, the caller generates code as follows:
**
** [ Co-routine generated by this subroutine, shown above ]
** S: yield X
** if EOF goto E
** if skip this row, goto C
** if terminate loop, goto E
** deal with this row
** C: goto S
** E:
*/
SQLITE_PRIVATE int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){
int regYield; /* Register holding co-routine entry-point */
int regEof; /* Register holding co-routine completion flag */
int addrTop; /* Top of the co-routine */
int j1; /* Jump instruction */
int rc; /* Result code */
Vdbe *v; /* VDBE under construction */
regYield = ++pParse->nMem;
regEof = ++pParse->nMem;
v = sqlite3GetVdbe(pParse);
addrTop = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_Integer, addrTop+2, regYield); /* X <- A */
VdbeComment((v, "Co-routine entry point"));
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
VdbeComment((v, "Co-routine completion flag"));
sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield);
j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
rc = sqlite3Select(pParse, pSelect, pDest);
assert( pParse->nErr==0 || rc );
if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM;
if( rc ) return rc;
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
sqlite3VdbeAddOp1(v, OP_Yield, regYield); /* yield X */
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
VdbeComment((v, "End of coroutine"));
sqlite3VdbeJumpHere(v, j1); /* label B: */
return rc;
}
/* Forward declaration */
static int xferOptimization(
Parse *pParse, /* Parser context */
Table *pDest, /* The table we are inserting into */
Select *pSelect, /* A SELECT statement to use as the data source */
|
︙ | | |
93266
93267
93268
93269
93270
93271
93272
93273
93274
93275
93276
93277
93278
93279
93280
93281
93282
93283
93284
93285
93286
93287
93288
93289
93290
93291
93292
93293
93294
93295
93296
93297
93298
93299
93300
93301
93302
93303
93304
93305
93306
93307
93308
93309
93310
93311
93312
93313
93314
93315
93316
93317
93318
93319
|
93786
93787
93788
93789
93790
93791
93792
93793
93794
93795
93796
93797
93798
93799
93800
93801
93802
93803
93804
93805
93806
93807
93808
93809
93810
93811
93812
93813
93814
93815
93816
93817
93818
93819
93820
93821
93822
93823
93824
93825
93826
93827
93828
93829
93830
93831
|
-
-
-
-
+
-
+
-
-
-
-
+
-
-
+
-
|
** close cursors
** end foreach
**
** The 3rd template is for when the second template does not apply
** and the SELECT clause does not read from <table> at any time.
** The generated code follows this template:
**
** EOF <- 0
** X <- A
** goto B
** A: setup for the SELECT
** loop over the rows in the SELECT
** load values into registers R..R+n
** yield X
** end loop
** cleanup after the SELECT
** EOF <- 1
** yield X
** goto A
** end-coroutine X
** B: open write cursor to <table> and its indices
** C: yield X
** C: yield X, at EOF goto D
** if EOF goto D
** insert the select result into <table> from R..R+n
** goto C
** D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT. In the third form,
** we have to use a intermediate table to store the results of
** the select. The template is like this:
**
** EOF <- 0
** X <- A
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
** load value into register R..R+n
** yield X
** end loop
** cleanup after the SELECT
** EOF <- 1
** yield X
** end co-routine R
** halt-error
** B: open temp table
** L: yield X
** L: yield X, at EOF goto M
** if EOF goto M
** insert row from R..R+n into temp table
** goto L
** M: open write cursor to <table> and its indices
** rewind temp table
** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
** end loop
|
︙ | | |
93335
93336
93337
93338
93339
93340
93341
93342
93343
93344
93345
93346
93347
93348
93349
93350
93351
93352
93353
93354
93355
93356
93357
93358
93359
93360
93361
93362
93363
93364
93365
93366
93367
93368
|
93847
93848
93849
93850
93851
93852
93853
93854
93855
93856
93857
93858
93859
93860
93861
93862
93863
93864
93865
93866
93867
93868
93869
93870
93871
93872
93873
93874
93875
93876
93877
93878
93879
|
-
-
+
-
-
+
+
+
-
|
Index *pIdx; /* For looping over indices of the table */
int nColumn; /* Number of columns in the data */
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
int iDataCur = 0; /* VDBE cursor that is the main data repository */
int iIdxCur = 0; /* First index cursor */
int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
int endOfLoop; /* Label for the end of the insertion loop */
int useTempTable = 0; /* Store SELECT results in intermediate table */
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
int addrInsTop = 0; /* Jump to label "D" */
int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
int addrSelect = 0; /* Address of coroutine that implements the SELECT */
SelectDest dest; /* Destination for SELECT on rhs of INSERT */
int iDb; /* Index of database holding TABLE */
Db *pDb; /* The database containing table being inserted into */
u8 useTempTable = 0; /* Store SELECT results in intermediate table */
int appendFlag = 0; /* True if the insert is likely to be an append */
int withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
u8 appendFlag = 0; /* True if the insert is likely to be an append */
u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
u8 bIdListInOrder = 1; /* True if IDLIST is in table order */
ExprList *pList = 0; /* List of VALUES() to be inserted */
/* Register allocations */
int regFromSelect = 0;/* Base register for data coming from SELECT */
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
int regRowCount = 0; /* Memory cell used for the row counter */
int regIns; /* Block of regs holding rowid+data being inserted */
int regRowid; /* registers holding insert rowid */
int regData; /* register holding first column to insert */
int regEof = 0; /* Register recording end of SELECT data */
int *aRegIdx = 0; /* One register allocated to each index */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to insert into a view */
Trigger *pTrigger; /* List of triggers on pTab, if required */
int tmask; /* Mask of trigger times */
#endif
|
︙ | | |
93456
93457
93458
93459
93460
93461
93462
93463
93464
93465
93466
93467
93468
93469
93470
93471
93472
93473
93474
93475
93476
93477
93478
93479
93480
93481
93482
93483
93484
93485
93486
93487
93488
93489
93490
93491
93492
93493
93494
93495
93496
93497
93498
93499
93500
93501
93502
93503
93504
93505
93506
93507
93508
93509
93510
93511
93512
93513
93514
93515
93516
93517
93518
93519
93520
93521
93522
93523
93524
93525
93526
93527
93528
93529
93530
93531
93532
93533
93534
93535
93536
93537
93538
93539
93540
93541
93542
93543
93544
93545
93546
93547
93548
93549
93550
93551
93552
93553
93554
93555
93556
93557
93558
93559
93560
93561
93562
93563
93564
93565
93566
93567
93568
93569
93570
93571
93572
93573
93574
93575
93576
93577
93578
93579
93580
93581
93582
93583
93584
93585
93586
93587
93588
93589
93590
93591
93592
93593
93594
93595
93596
93597
93598
93599
93600
93601
93602
93603
93604
93605
93606
93607
93608
93609
93610
93611
|
93967
93968
93969
93970
93971
93972
93973
93974
93975
93976
93977
93978
93979
93980
93981
93982
93983
93984
93985
93986
93987
93988
93989
93990
93991
93992
93993
93994
93995
93996
93997
93998
93999
94000
94001
94002
94003
94004
94005
94006
94007
94008
94009
94010
94011
94012
94013
94014
94015
94016
94017
94018
94019
94020
94021
94022
94023
94024
94025
94026
94027
94028
94029
94030
94031
94032
94033
94034
94035
94036
94037
94038
94039
94040
94041
94042
94043
94044
94045
94046
94047
94048
94049
94050
94051
94052
94053
94054
94055
94056
94057
94058
94059
94060
94061
94062
94063
94064
94065
94066
94067
94068
94069
94070
94071
94072
94073
94074
94075
94076
94077
94078
94079
94080
94081
94082
94083
94084
94085
94086
94087
94088
94089
94090
94091
94092
94093
94094
94095
94096
94097
94098
94099
94100
94101
94102
94103
94104
94105
94106
94107
94108
94109
94110
94111
94112
94113
94114
94115
94116
94117
94118
94119
94120
94121
94122
94123
94124
94125
94126
94127
94128
94129
94130
94131
94132
94133
94134
94135
94136
94137
94138
94139
94140
94141
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
-
-
+
-
+
-
-
+
-
-
+
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* If this is an AUTOINCREMENT table, look up the sequence number in the
** sqlite_sequence table and store it in memory cell regAutoinc.
*/
regAutoinc = autoIncBegin(pParse, iDb, pTab);
/* Allocate registers for holding the rowid of the new row,
** the content of the new row, and the assemblied row record.
*/
regRowid = regIns = pParse->nMem+1;
pParse->nMem += pTab->nCol + 1;
if( IsVirtual(pTab) ){
regRowid++;
pParse->nMem++;
}
regData = regRowid+1;
/* If the INSERT statement included an IDLIST term, then make sure
** all elements of the IDLIST really are columns of the table and
** remember the column indices.
**
** If the table has an INTEGER PRIMARY KEY column and that column
** is named in the IDLIST, then record in the ipkColumn variable
** the index into IDLIST of the primary key column. ipkColumn is
** the index of the primary key as it appears in IDLIST, not as
** is appears in the original table. (The index of the INTEGER
** PRIMARY KEY in the original table is pTab->iPKey.)
*/
if( pColumn ){
for(i=0; i<pColumn->nId; i++){
pColumn->a[i].idx = -1;
}
for(i=0; i<pColumn->nId; i++){
for(j=0; j<pTab->nCol; j++){
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
pColumn->a[i].idx = j;
if( i!=j ) bIdListInOrder = 0;
if( j==pTab->iPKey ){
ipkColumn = i; assert( !withoutRowid );
}
break;
}
}
if( j>=pTab->nCol ){
if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
ipkColumn = i;
}else{
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
pTabList, 0, pColumn->a[i].zName);
pParse->checkSchema = 1;
goto insert_cleanup;
}
}
}
}
/* Figure out how many columns of data are supplied. If the data
** is coming from a SELECT statement, then generate a co-routine that
** produces a single row of the SELECT on each invocation. The
** co-routine is the common header to the 3rd and 4th templates.
*/
if( pSelect ){
/* Data is coming from a SELECT. Generate a co-routine to run the SELECT */
int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest);
if( rc ) goto insert_cleanup;
int regYield; /* Register holding co-routine entry-point */
int addrTop; /* Top of the co-routine */
int rc; /* Result code */
regYield = ++pParse->nMem;
addrTop = sqlite3VdbeCurrentAddr(v) + 1;
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
regEof = dest.iSDParm + 1;
dest.iSdst = bIdListInOrder ? regData : 0;
dest.nSdst = pTab->nCol;
rc = sqlite3Select(pParse, pSelect, &dest);
regFromSelect = dest.iSdst;
assert( pParse->nErr==0 || rc );
if( rc || db->mallocFailed ) goto insert_cleanup;
sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
assert( pSelect->pEList );
nColumn = pSelect->pEList->nExpr;
assert( dest.nSdst==nColumn );
/* Set useTempTable to TRUE if the result of the SELECT statement
** should be written into a temporary table (template 4). Set to
** FALSE if each output row of the SELECT can be written directly into
** the destination table (template 3).
**
** A temp table must be used if the table being updated is also one
** of the tables being read by the SELECT statement. Also use a
** temp table in the case of row triggers.
*/
if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
if( pTrigger || readsTable(pParse, iDb, pTab) ){
useTempTable = 1;
}
if( useTempTable ){
/* Invoke the coroutine to extract information from the SELECT
** and add it to a transient table srcTab. The code generated
** here is from the 4th template:
**
** B: open temp table
** L: yield X
** L: yield X, goto M at EOF
** if EOF goto M
** insert row from R..R+n into temp table
** goto L
** M: ...
*/
int regRec; /* Register to hold packed record */
int regTempRowid; /* Register to hold temp table ROWID */
int addrTop; /* Label "L" */
int addrL; /* Label "L" */
int addrIf; /* Address of jump to M */
srcTab = pParse->nTab++;
regRec = sqlite3GetTempReg(pParse);
regTempRowid = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
sqlite3VdbeJumpHere(v, addrIf);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL);
sqlite3VdbeJumpHere(v, addrL);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regTempRowid);
}
}else{
/* This is the case if the data for the INSERT is coming from a VALUES
** clause
*/
NameContext sNC;
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
srcTab = -1;
assert( useTempTable==0 );
nColumn = pList ? pList->nExpr : 0;
for(i=0; i<nColumn; i++){
if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
goto insert_cleanup;
}
}
}
/* If there is no IDLIST term but the table has an integer primary
** key, the set the ipkColumn variable to the integer primary key
** column index in the original table definition.
*/
if( pColumn==0 && nColumn>0 ){
ipkColumn = pTab->iPKey;
}
/* Make sure the number of columns in the source data matches the number
** of columns to be inserted into the table.
*/
if( IsVirtual(pTab) ){
for(i=0; i<pTab->nCol; i++){
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
}
}
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
sqlite3ErrorMsg(pParse,
"table %S has %d columns but %d values were supplied",
pTabList, 0, pTab->nCol-nHidden, nColumn);
goto insert_cleanup;
}
if( pColumn!=0 && nColumn!=pColumn->nId ){
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
goto insert_cleanup;
}
/* If the INSERT statement included an IDLIST term, then make sure
** all elements of the IDLIST really are columns of the table and
** remember the column indices.
**
** If the table has an INTEGER PRIMARY KEY column and that column
** is named in the IDLIST, then record in the ipkColumn variable
** the index into IDLIST of the primary key column. ipkColumn is
** the index of the primary key as it appears in IDLIST, not as
** is appears in the original table. (The index of the INTEGER
** PRIMARY KEY in the original table is pTab->iPKey.)
*/
if( pColumn ){
for(i=0; i<pColumn->nId; i++){
pColumn->a[i].idx = -1;
}
for(i=0; i<pColumn->nId; i++){
for(j=0; j<pTab->nCol; j++){
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
pColumn->a[i].idx = j;
if( j==pTab->iPKey ){
ipkColumn = i; assert( !withoutRowid );
}
break;
}
}
if( j>=pTab->nCol ){
if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
ipkColumn = i;
}else{
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
pTabList, 0, pColumn->a[i].zName);
pParse->checkSchema = 1;
goto insert_cleanup;
}
}
}
}
/* If there is no IDLIST term but the table has an integer primary
** key, the set the ipkColumn variable to the integer primary key
** column index in the original table definition.
*/
if( pColumn==0 && nColumn>0 ){
ipkColumn = pTab->iPKey;
}
/* Initialize the count of rows to be inserted
*/
if( db->flags & SQLITE_CountRows ){
regRowCount = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
|
︙ | | |
93625
93626
93627
93628
93629
93630
93631
93632
93633
93634
93635
93636
93637
93638
93639
93640
93641
93642
93643
93644
93645
93646
93647
93648
93649
93650
93651
93652
93653
93654
93655
93656
93657
93658
93659
93660
93661
93662
93663
93664
93665
93666
93667
93668
93669
93670
|
94155
94156
94157
94158
94159
94160
94161
94162
94163
94164
94165
94166
94167
94168
94169
94170
94171
94172
94173
94174
94175
94176
94177
94178
94179
94180
94181
94182
94183
94184
94185
94186
94187
94188
|
-
+
-
+
-
+
-
-
+
-
-
-
+
-
-
-
-
-
-
-
-
-
|
}
/* This is the top of the main insertion loop */
if( useTempTable ){
/* This block codes the top of loop only. The complete loop is the
** following pseudocode (template 4):
**
** rewind temp table
** rewind temp table, if empty goto D
** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
** end loop
** D: ...
*/
addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
addrCont = sqlite3VdbeCurrentAddr(v);
}else if( pSelect ){
/* This block codes the top of loop only. The complete loop is the
** following pseudocode (template 3):
**
** C: yield X
** C: yield X, at EOF goto D
** if EOF goto D
** insert the select result into <table> from R..R+n
** goto C
** D: ...
*/
addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
}
VdbeCoverage(v);
/* Allocate registers for holding the rowid of the new row,
** the content of the new row, and the assemblied row record.
*/
regRowid = regIns = pParse->nMem+1;
pParse->nMem += pTab->nCol + 1;
if( IsVirtual(pTab) ){
regRowid++;
pParse->nMem++;
}
regData = regRowid+1;
/* Run the BEFORE and INSTEAD OF triggers, if there are any
*/
endOfLoop = sqlite3VdbeMakeLabel(v);
if( tmask & TRIGGER_BEFORE ){
int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
|
︙ | | |
93681
93682
93683
93684
93685
93686
93687
93688
93689
93690
93691
93692
93693
93694
93695
93696
93697
93698
|
94199
94200
94201
94202
94203
94204
94205
94206
94207
94208
94209
94210
94211
94212
94213
94214
94215
94216
|
-
+
-
+
|
assert( !withoutRowid );
if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
}else{
assert( pSelect==0 ); /* Otherwise useTempTable is true */
sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
}
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
}
/* Cannot have triggers on a virtual table. If it were possible,
** this block would have to account for hidden column.
*/
assert( !IsVirtual(pTab) );
|
︙ | | |
93718
93719
93720
93721
93722
93723
93724
93725
93726
93727
93728
93729
93730
93731
93732
93733
|
94236
94237
94238
94239
94240
94241
94242
94243
94244
94245
94246
94247
94248
94249
94250
|
-
-
+
|
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
** do not attempt any conversions before assembling the record.
** If this is a real table, attempt conversions as required by the
** table column affinities.
*/
if( !isView ){
sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
sqlite3TableAffinityStr(v, pTab);
sqlite3TableAffinity(v, pTab, regCols+1);
}
/* Fire BEFORE or INSTEAD OF triggers */
sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
pTab, regCols-pTab->nCol-1, onError, endOfLoop);
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
|
︙ | | |
93741
93742
93743
93744
93745
93746
93747
93748
93749
93750
93751
93752
93753
93754
93755
93756
93757
93758
93759
93760
93761
93762
93763
93764
93765
93766
93767
93768
93769
93770
93771
93772
93773
93774
93775
93776
93777
93778
93779
93780
93781
93782
93783
93784
93785
93786
93787
93788
93789
93790
93791
93792
93793
93794
93795
93796
93797
93798
93799
93800
93801
93802
93803
93804
93805
93806
93807
93808
93809
93810
93811
93812
93813
93814
93815
93816
93817
93818
93819
93820
93821
93822
93823
|
94258
94259
94260
94261
94262
94263
94264
94265
94266
94267
94268
94269
94270
94271
94272
94273
94274
94275
94276
94277
94278
94279
94280
94281
94282
94283
94284
94285
94286
94287
94288
94289
94290
94291
94292
94293
94294
94295
94296
94297
94298
94299
94300
94301
94302
94303
94304
94305
94306
94307
94308
94309
94310
94311
94312
94313
94314
94315
94316
94317
94318
94319
94320
94321
94322
94323
94324
94325
94326
94327
94328
94329
94330
94331
94332
94333
94334
94335
94336
94337
94338
94339
94340
94341
94342
94343
|
-
+
-
+
-
+
-
+
-
-
+
+
+
-
+
+
-
+
+
|
/* The row that the VUpdate opcode will delete: none */
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
}
if( ipkColumn>=0 ){
if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
}else if( pSelect ){
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+ipkColumn, regRowid);
sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
}else{
VdbeOp *pOp;
sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
pOp = sqlite3VdbeGetOp(v, -1);
if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
appendFlag = 1;
pOp->opcode = OP_NewRowid;
pOp->p1 = iDataCur;
pOp->p2 = regRowid;
pOp->p3 = regAutoinc;
}
}
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
** to generate a unique primary key value.
*/
if( !appendFlag ){
int j1;
if( !IsVirtual(pTab) ){
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
sqlite3VdbeJumpHere(v, j1);
}else{
j1 = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
}
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
}
}else if( IsVirtual(pTab) || withoutRowid ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
}else{
sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
appendFlag = 1;
}
autoIncStep(pParse, regAutoinc, regRowid);
/* Compute data for all columns of the new entry, beginning
** with the first column.
*/
nHidden = 0;
for(i=0; i<pTab->nCol; i++){
int iRegStore = regRowid+1+i;
if( i==pTab->iPKey ){
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
** Whenever this column is read, the rowid will be substituted
** in its place. Hence, fill this column with a NULL to avoid
** taking up data space with information that will never be used. */
sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
** taking up data space with information that will never be used.
** As there may be shallow copies of this value, make it a soft-NULL */
sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
continue;
}
if( pColumn==0 ){
if( IsHiddenColumn(&pTab->aCol[i]) ){
assert( IsVirtual(pTab) );
j = -1;
nHidden++;
}else{
j = i - nHidden;
}
}else{
for(j=0; j<pColumn->nId; j++){
if( pColumn->a[j].idx==i ) break;
}
}
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
}else if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
}else if( pSelect ){
if( regFromSelect!=regData ){
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
}
}else{
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
}
}
/* Generate code to check constraints and generate index keys and
** do the insertion.
|
︙ | | |
93855
93856
93857
93858
93859
93860
93861
93862
93863
93864
93865
93866
93867
93868
93869
|
94375
94376
94377
94378
94379
94380
94381
94382
94383
94384
94385
94386
94387
94388
94389
|
-
+
|
}
/* The bottom of the main insertion loop, if the data source
** is a SELECT statement.
*/
sqlite3VdbeResolveLabel(v, endOfLoop);
if( useTempTable ){
sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addrInsTop);
sqlite3VdbeAddOp1(v, OP_Close, srcTab);
}else if( pSelect ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
sqlite3VdbeJumpHere(v, addrInsTop);
}
|
︙ | | |
94022
94023
94024
94025
94026
94027
94028
94029
94030
94031
94032
94033
94034
94035
|
94542
94543
94544
94545
94546
94547
94548
94549
94550
94551
94552
94553
94554
94555
94556
|
+
|
int onError; /* Conflict resolution strategy */
int j1; /* Addresss of jump instruction */
int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
int ipkTop = 0; /* Top of the rowid change constraint check */
int ipkBottom = 0; /* Bottom of the rowid change constraint check */
u8 isUpdate; /* True if this is an UPDATE operation */
u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
int regRowid = -1; /* Register holding ROWID value */
isUpdate = regOldData!=0;
db = pParse->db;
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
︙ | | |
94076
94077
94078
94079
94080
94081
94082
94083
94084
94085
94086
94087
94088
94089
94090
94091
94092
94093
94094
94095
94096
94097
94098
|
94597
94598
94599
94600
94601
94602
94603
94604
94605
94606
94607
94608
94609
94610
94611
94612
94613
94614
94615
94616
94617
94618
94619
94620
94621
|
+
+
-
+
|
case OE_Rollback:
case OE_Fail: {
char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
pTab->aCol[i].zName);
sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
regNewData+1+i, zMsg, P4_DYNAMIC);
sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
VdbeCoverage(v);
break;
}
case OE_Ignore: {
sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
VdbeCoverage(v);
break;
}
default: {
assert( onError==OE_Replace );
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
sqlite3VdbeJumpHere(v, j1);
break;
}
}
}
|
︙ | | |
94136
94137
94138
94139
94140
94141
94142
94143
94144
94145
94146
94147
94148
94149
94150
94151
94152
94153
94154
94155
94156
94157
94158
94159
94160
94161
94162
94163
94164
94165
94166
94167
94168
|
94659
94660
94661
94662
94663
94664
94665
94666
94667
94668
94669
94670
94671
94672
94673
94674
94675
94676
94677
94678
94679
94680
94681
94682
94683
94684
94685
94686
94687
94688
94689
94690
94691
94692
94693
94694
|
+
+
+
|
}
if( isUpdate ){
/* pkChng!=0 does not mean that the rowid has change, only that
** it might have changed. Skip the conflict logic below if the rowid
** is unchanged. */
sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
VdbeCoverage(v);
}
/* If the response to a rowid conflict is REPLACE but the response
** to some other UNIQUE constraint is FAIL or IGNORE, then we need
** to defer the running of the rowid conflict checking until after
** the UNIQUE constraints have run.
*/
if( onError==OE_Replace && overrideError!=OE_Replace ){
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
break;
}
}
}
/* Check to see if the new rowid already exists in the table. Skip
** the following conflict logic if it does not. */
sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
VdbeCoverage(v);
/* Generate code that deals with a rowid collision */
switch( onError ){
default: {
onError = OE_Abort;
/* Fall thru into the next case */
}
|
︙ | | |
94233
94234
94235
94236
94237
94238
94239
94240
94241
94242
94243
94244
94245
94246
|
94759
94760
94761
94762
94763
94764
94765
94766
94767
94768
94769
94770
94771
94772
94773
94774
94775
94776
|
+
+
+
+
|
for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
int regIdx; /* Range of registers hold conent for pIdx */
int regR; /* Range of registers holding conflicting PK */
int iThisCur; /* Cursor for this UNIQUE index */
int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
if( bAffinityDone==0 ){
sqlite3TableAffinity(v, pTab, regNewData+1);
bAffinityDone = 1;
}
iThisCur = iIdxCur+ix;
addrUniqueOk = sqlite3VdbeMakeLabel(v);
/* Skip partial indices for which the WHERE clause is not true */
if( pIdx->pPartIdxWhere ){
sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
pParse->ckBase = regNewData+1;
|
︙ | | |
94263
94264
94265
94266
94267
94268
94269
94270
94271
94272
94273
94274
94275
94276
94277
|
94793
94794
94795
94796
94797
94798
94799
94800
94801
94802
94803
94804
94805
94806
|
-
|
}else{
x = iField + regNewData + 1;
}
sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
VdbeComment((v, "for %s", pIdx->zName));
sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
/* In an UPDATE operation, if this index is the PRIMARY KEY index
** of a WITHOUT ROWID table and there has been no change the
** primary key, then no collision is possible. The collision detection
** logic below can all be skipped. */
|
︙ | | |
94291
94292
94293
94294
94295
94296
94297
94298
94299
94300
94301
94302
94303
94304
94305
94306
94307
94308
94309
94310
94311
94312
94313
94314
94315
|
94820
94821
94822
94823
94824
94825
94826
94827
94828
94829
94830
94831
94832
94833
94834
94835
94836
94837
94838
94839
94840
94841
94842
94843
94844
94845
94846
|
-
+
+
+
|
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
/* Check to see if the new index entry will be unique */
sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
regIdx, pIdx->nKeyCol);
regIdx, pIdx->nKeyCol); VdbeCoverage(v);
/* Generate code to handle collisions */
regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
if( isUpdate || onError==OE_Replace ){
if( HasRowid(pTab) ){
sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
/* Conflict only if the rowid of the existing index entry
** is different from old-rowid */
if( isUpdate ){
sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
VdbeCoverage(v);
}
}else{
int x;
/* Extract the PRIMARY KEY from the end of the index entry and
** store it in registers regR..regR+nPk-1 */
if( pIdx!=pPk ){
for(i=0; i<pPk->nKeyCol; i++){
|
︙ | | |
94337
94338
94339
94340
94341
94342
94343
94344
94345
94346
94347
94348
94349
94350
|
94868
94869
94870
94871
94872
94873
94874
94875
94876
94877
94878
94879
94880
94881
94882
94883
94884
|
+
+
+
|
if( i==(pPk->nKeyCol-1) ){
addrJump = addrUniqueOk;
op = OP_Eq;
}
sqlite3VdbeAddOp4(v, op,
regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
VdbeCoverageIf(v, op==OP_Eq);
VdbeCoverageIf(v, op==OP_Ne);
}
}
}
}
/* Generate code that executes if the new index entry is not unique */
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
︙ | | |
94408
94409
94410
94411
94412
94413
94414
94415
94416
94417
94418
94419
94420
94421
94422
94423
94424
94425
94426
94427
94428
94429
94430
94431
94432
94433
94434
94435
94436
94437
94438
94439
94440
94441
94442
94443
94444
|
94942
94943
94944
94945
94946
94947
94948
94949
94950
94951
94952
94953
94954
94955
94956
94957
94958
94959
94960
94961
94962
94963
94964
94965
94966
94967
94968
94969
94970
94971
94972
94973
94974
94975
94976
94977
94978
94979
94980
94981
|
+
+
+
-
+
|
){
Vdbe *v; /* Prepared statements under construction */
Index *pIdx; /* An index being inserted or updated */
u8 pik_flags; /* flag values passed to the btree insert */
int regData; /* Content registers (after the rowid) */
int regRec; /* Register holding assemblied record for the table */
int i; /* Loop counter */
u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
if( aRegIdx[i]==0 ) continue;
bAffinityDone = 1;
if( pIdx->pPartIdxWhere ){
sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
}
sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
pik_flags = 0;
if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
if( pIdx->autoIndex==2 && !HasRowid(pTab) ){
assert( pParse->nested==0 );
pik_flags |= OPFLAG_NCHANGE;
}
if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags);
}
if( !HasRowid(pTab) ) return;
regData = regNewData + 1;
regRec = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
sqlite3TableAffinityStr(v, pTab);
if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
if( pParse->nested ){
pik_flags = 0;
}else{
pik_flags = OPFLAG_NCHANGE;
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
}
|
︙ | | |
94799
94800
94801
94802
94803
94804
94805
94806
94807
94808
94809
94810
94811
94812
94813
94814
94815
94816
94817
94818
94819
94820
94821
94822
94823
94824
94825
94826
94827
94828
94829
94830
94831
94832
94833
94834
94835
94836
94837
94838
94839
94840
94841
94842
94843
94844
94845
94846
94847
94848
94849
94850
94851
94852
94853
94854
94855
94856
94857
94858
94859
94860
94861
94862
94863
|
95336
95337
95338
95339
95340
95341
95342
95343
95344
95345
95346
95347
95348
95349
95350
95351
95352
95353
95354
95355
95356
95357
95358
95359
95360
95361
95362
95363
95364
95365
95366
95367
95368
95369
95370
95371
95372
95373
95374
95375
95376
95377
95378
95379
95380
95381
95382
95383
95384
95385
95386
95387
95388
95389
95390
95391
95392
95393
95394
95395
95396
95397
95398
95399
95400
95401
|
-
+
-
+
+
-
+
-
+
-
+
-
+
|
** of index entries might need to change.)
**
** (2) The destination has a unique index. (The xfer optimization
** is unable to test uniqueness.)
**
** (3) onError is something other than OE_Abort and OE_Rollback.
*/
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
sqlite3VdbeJumpHere(v, addr1);
}
if( HasRowid(pSrc) ){
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
if( pDest->iPKey>=0 ){
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
VdbeCoverage(v);
sqlite3RowidConstraint(pParse, onError, pDest);
sqlite3VdbeJumpHere(v, addr2);
autoIncStep(pParse, regAutoinc, regRowid);
}else if( pDest->pIndex==0 ){
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
}else{
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
assert( (pDest->tabFlags & TF_Autoincrement)==0 );
}
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
}else{
sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
}
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
}
assert( pSrcIdx );
sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
VdbeComment((v, "%s", pSrcIdx->zName));
sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
VdbeComment((v, "%s", pDestIdx->zName));
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
}
sqlite3VdbeJumpHere(v, emptySrcTest);
if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempReg(pParse, regData);
if( emptyDestTest ){
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
sqlite3VdbeJumpHere(v, emptyDestTest);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
return 0;
|
︙ | | |
97083
97084
97085
97086
97087
97088
97089
97090
97091
97092
97093
97094
97095
97096
97097
97098
97099
97100
97101
97102
97103
97104
97105
97106
97107
97108
97109
97110
97111
97112
97113
97114
|
97621
97622
97623
97624
97625
97626
97627
97628
97629
97630
97631
97632
97633
97634
97635
97636
97637
97638
97639
97640
97641
97642
97643
97644
97645
97646
97647
97648
97649
97650
97651
97652
97653
|
+
-
+
|
** Older versions of SQLite would set the default cache size to a
** negative number to indicate synchronous=OFF. These days, synchronous
** is always on by default regardless of the sign of the default cache
** size. But continue to take the absolute value of the default cache
** size of historical compatibility.
*/
case PragTyp_DEFAULT_CACHE_SIZE: {
static const int iLn = __LINE__+2;
static const VdbeOpList getCacheSize[] = {
{ OP_Transaction, 0, 0, 0}, /* 0 */
{ OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
{ OP_IfPos, 1, 8, 0},
{ OP_Integer, 0, 2, 0},
{ OP_Subtract, 1, 2, 1},
{ OP_IfPos, 1, 8, 0},
{ OP_Integer, 0, 1, 0}, /* 6 */
{ OP_Noop, 0, 0, 0},
{ OP_ResultRow, 1, 1, 0},
};
int addr;
sqlite3VdbeUsesBtree(v, iDb);
if( !zRight ){
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC);
pParse->nMem += 2;
addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize,iLn);
sqlite3VdbeChangeP1(v, addr, iDb);
sqlite3VdbeChangeP1(v, addr+1, iDb);
sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE);
}else{
int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
|
︙ | | |
97345
97346
97347
97348
97349
97350
97351
97352
97353
97354
97355
97356
97357
97358
97359
97360
97361
97362
97363
97364
97365
97366
97367
97368
|
97884
97885
97886
97887
97888
97889
97890
97891
97892
97893
97894
97895
97896
97897
97898
97899
97900
97901
97902
97903
97904
97905
97906
97907
97908
|
+
-
+
|
rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
/* When setting the auto_vacuum mode to either "full" or
** "incremental", write the value of meta[6] in the database
** file. Before writing to meta[6], check that meta[3] indicates
** that this really is an auto-vacuum capable database.
*/
static const int iLn = __LINE__+2;
static const VdbeOpList setMeta6[] = {
{ OP_Transaction, 0, 1, 0}, /* 0 */
{ OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
{ OP_If, 1, 0, 0}, /* 2 */
{ OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
{ OP_Integer, 0, 1, 0}, /* 4 */
{ OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */
};
int iAddr;
iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
sqlite3VdbeChangeP1(v, iAddr, iDb);
sqlite3VdbeChangeP1(v, iAddr+1, iDb);
sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
sqlite3VdbeChangeP1(v, iAddr+5, iDb);
sqlite3VdbeUsesBtree(v, iDb);
}
|
︙ | | |
97380
97381
97382
97383
97384
97385
97386
97387
97388
97389
97390
97391
97392
97393
97394
97395
97396
97397
|
97920
97921
97922
97923
97924
97925
97926
97927
97928
97929
97930
97931
97932
97933
97934
97935
97936
97937
|
-
+
-
+
|
case PragTyp_INCREMENTAL_VACUUM: {
int iLimit, addr;
if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
iLimit = 0x7fffffff;
}
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr);
break;
}
#endif
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
|
︙ | | |
97954
97955
97956
97957
97958
97959
97960
97961
97962
97963
97964
97965
97966
97967
97968
97969
97970
97971
97972
97973
97974
97975
97976
97977
97978
97979
97980
97981
97982
97983
97984
97985
97986
97987
97988
97989
97990
97991
97992
97993
97994
97995
97996
97997
97998
97999
98000
98001
98002
98003
98004
98005
98006
98007
98008
98009
98010
98011
98012
98013
98014
|
98494
98495
98496
98497
98498
98499
98500
98501
98502
98503
98504
98505
98506
98507
98508
98509
98510
98511
98512
98513
98514
98515
98516
98517
98518
98519
98520
98521
98522
98523
98524
98525
98526
98527
98528
98529
98530
98531
98532
98533
98534
98535
98536
98537
98538
98539
98540
98541
98542
98543
98544
98545
98546
98547
98548
98549
98550
98551
98552
98553
98554
|
-
+
-
-
-
+
+
+
-
+
-
+
-
+
-
-
+
+
-
+
|
k = 0;
break;
}
}
assert( pParse->nErr>0 || pFK==0 );
if( pFK ) break;
if( pParse->nTab<i ) pParse->nTab = i;
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0);
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
pParent = sqlite3FindTable(db, pFK->zTo, zDb);
pIdx = 0;
aiCols = 0;
if( pParent ){
x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
assert( x==0 );
}
addrOk = sqlite3VdbeMakeLabel(v);
if( pParent && pIdx==0 ){
int iKey = pFK->aCol[0].iFrom;
assert( iKey>=0 && iKey<pTab->nCol );
if( iKey!=pTab->iPKey ){
sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
sqlite3ColumnDefault(v, pTab, iKey, regRow);
sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk);
sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow,
sqlite3VdbeCurrentAddr(v)+3);
sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow,
sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v);
}else{
sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
}
sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow);
sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk);
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
}else{
for(j=0; j<pFK->nCol; j++){
sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j);
sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk);
sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
}
if( pParent ){
sqlite3VdbeAddOp3(v, OP_MakeRecord, regRow, pFK->nCol, regKey);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
sqlite3VdbeChangeP4(v, -1,
sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
sqlite3IndexAffinityStr(v,pIdx), pFK->nCol);
sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
VdbeCoverage(v);
}
}
sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0,
pFK->zTo, P4_TRANSIENT);
sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3);
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
sqlite3VdbeResolveLabel(v, addrOk);
sqlite3DbFree(db, aiCols);
}
sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1);
sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addrTop);
}
}
break;
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
︙ | | |
98047
98048
98049
98050
98051
98052
98053
98054
98055
98056
98057
98058
98059
98060
|
98587
98588
98589
98590
98591
98592
98593
98594
98595
98596
98597
98598
98599
98600
98601
|
+
|
case PragTyp_INTEGRITY_CHECK: {
int i, j, addr, mxErr;
/* Code that appears at the end of the integrity check. If no error
** messages have been generated, output OK. Otherwise output the
** error message
*/
static const int iLn = __LINE__+2;
static const VdbeOpList endCode[] = {
{ OP_AddImm, 1, 0, 0}, /* 0 */
{ OP_IfNeg, 1, 0, 0}, /* 1 */
{ OP_String8, 0, 3, 0}, /* 2 */
{ OP_ResultRow, 3, 1, 0},
};
|
︙ | | |
98095
98096
98097
98098
98099
98100
98101
98102
98103
98104
98105
98106
98107
98108
|
98636
98637
98638
98639
98640
98641
98642
98643
98644
98645
98646
98647
98648
98649
98650
|
+
|
int cnt = 0;
if( OMIT_TEMPDB && i==1 ) continue;
if( iDb>=0 && i!=iDb ) continue;
sqlite3CodeVerifySchema(pParse, i);
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
/* Do an integrity check of the B-Tree
**
** Begin by filling registers 2, 3, ... with the root pages numbers
** for all tables and indices in the database.
|
︙ | | |
98126
98127
98128
98129
98130
98131
98132
98133
98134
98135
98136
98137
98138
98139
98140
|
98668
98669
98670
98671
98672
98673
98674
98675
98676
98677
98678
98679
98680
98681
98682
|
-
+
|
/* Make sure sufficient number of registers have been allocated */
pParse->nMem = MAX( pParse->nMem, cnt+8 );
/* Do the b-tree integrity checks */
sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
sqlite3VdbeChangeP5(v, (u8)i);
addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
P4_DYNAMIC);
sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
sqlite3VdbeJumpHere(v, addr);
|
︙ | | |
98148
98149
98150
98151
98152
98153
98154
98155
98156
98157
98158
98159
98160
98161
98162
98163
98164
98165
98166
98167
98168
98169
98170
98171
98172
98173
98174
98175
98176
98177
98178
98179
98180
98181
98182
98183
98184
98185
98186
98187
98188
98189
98190
98191
98192
98193
98194
98195
98196
98197
98198
98199
98200
98201
98202
98203
98204
98205
98206
98207
98208
98209
98210
98211
98212
98213
98214
98215
98216
98217
98218
|
98690
98691
98692
98693
98694
98695
98696
98697
98698
98699
98700
98701
98702
98703
98704
98705
98706
98707
98708
98709
98710
98711
98712
98713
98714
98715
98716
98717
98718
98719
98720
98721
98722
98723
98724
98725
98726
98727
98728
98729
98730
98731
98732
98733
98734
98735
98736
98737
98738
98739
98740
98741
98742
98743
98744
98745
98746
98747
98748
98749
98750
98751
98752
98753
98754
98755
98756
98757
98758
98759
98760
98761
98762
|
+
-
+
-
+
-
+
-
+
-
+
-
+
+
-
+
|
int loopTop;
int iDataCur, iIdxCur;
int r1 = -1;
if( pTab->pIndex==0 ) continue;
pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
sqlite3ExprCacheClear(pParse);
sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead,
1, 0, &iDataCur, &iIdxCur);
sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
}
pParse->nMem = MAX(pParse->nMem, 8+j);
sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0);
sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
int jmp2, jmp3, jmp4;
if( pPk==pIdx ) continue;
r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
pPrior, r1);
pPrior = pIdx;
sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */
jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, 0, r1,
pIdx->nColumn);
pIdx->nColumn); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC);
sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, " missing from index ",
P4_STATIC);
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT);
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
sqlite3VdbeAddOp0(v, OP_Halt);
sqlite3VdbeJumpHere(v, jmp4);
sqlite3VdbeJumpHere(v, jmp2);
sqlite3VdbeResolveLabel(v, jmp3);
}
sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop);
sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, loopTop-1);
#ifndef SQLITE_OMIT_BTREECOUNT
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0,
"wrong # of entries in index ", P4_STATIC);
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
if( pPk==pIdx ) continue;
addr = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2);
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3);
sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v);
sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pIdx->zName, P4_TRANSIENT);
sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
}
#endif /* SQLITE_OMIT_BTREECOUNT */
}
}
addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
sqlite3VdbeChangeP2(v, addr, -mxErr);
sqlite3VdbeJumpHere(v, addr+1);
sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
}
break;
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
︙ | | |
98342
98343
98344
98345
98346
98347
98348
98349
98350
98351
98352
98353
98354
98355
98356
98357
98358
98359
98360
98361
98362
98363
98364
98365
98366
98367
98368
|
98886
98887
98888
98889
98890
98891
98892
98893
98894
98895
98896
98897
98898
98899
98900
98901
98902
98903
98904
98905
98906
98907
98908
98909
98910
98911
98912
|
-
+
-
+
|
if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){
/* Write the specified cookie value */
static const VdbeOpList setCookie[] = {
{ OP_Transaction, 0, 1, 0}, /* 0 */
{ OP_Integer, 0, 1, 0}, /* 1 */
{ OP_SetCookie, 0, 0, 1}, /* 2 */
};
int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
sqlite3VdbeChangeP1(v, addr, iDb);
sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight));
sqlite3VdbeChangeP1(v, addr+2, iDb);
sqlite3VdbeChangeP2(v, addr+2, iCookie);
}else{
/* Read the specified cookie value */
static const VdbeOpList readCookie[] = {
{ OP_Transaction, 0, 0, 0}, /* 0 */
{ OP_ReadCookie, 0, 1, 0}, /* 1 */
{ OP_ResultRow, 1, 1, 0}
};
int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie, 0);
sqlite3VdbeChangeP1(v, addr, iDb);
sqlite3VdbeChangeP1(v, addr+1, iDb);
sqlite3VdbeChangeP3(v, addr+1, iCookie);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
}
}
|
︙ | | |
99560
99561
99562
99563
99564
99565
99566
99567
99568
99569
99570
99571
99572
99573
|
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
|
+
+
+
+
+
+
+
+
|
*/
SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
if( p ){
clearSelect(db, p);
sqlite3DbFree(db, p);
}
}
/*
** Return a pointer to the right-most SELECT statement in a compound.
*/
static Select *findRightmost(Select *p){
while( p->pNext ) p = p->pNext;
return p;
}
/*
** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
** type of join. Return an integer constant that expresses that type
** in terms of the following bit values:
**
** JT_INNER
|
︙ | | |
99899
99900
99901
99902
99903
99904
99905
99906
99907
99908
99909
99910
99911
99912
99913
99914
99915
99916
99917
99918
99919
99920
99921
99922
99923
99924
99925
99926
99927
99928
99929
99930
99931
99932
99933
99934
|
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
|
-
+
-
+
|
int addr1, addr2;
int iLimit;
if( pSelect->iOffset ){
iLimit = pSelect->iOffset+1;
}else{
iLimit = pSelect->iLimit;
}
addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
sqlite3VdbeJumpHere(v, addr2);
}
}
/*
** Add code to implement the OFFSET
*/
static void codeOffset(
Vdbe *v, /* Generate code into this VM */
int iOffset, /* Register holding the offset counter */
int iContinue /* Jump here to skip the current record */
){
if( iOffset>0 && iContinue!=0 ){
int addr;
sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset);
addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
VdbeComment((v, "skip OFFSET records"));
sqlite3VdbeJumpHere(v, addr);
}
}
/*
|
︙ | | |
99948
99949
99950
99951
99952
99953
99954
99955
99956
99957
99958
99959
99960
99961
99962
|
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
|
-
+
|
int iMem /* First element */
){
Vdbe *v;
int r1;
v = pParse->pVdbe;
r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
sqlite3ReleaseTempReg(pParse, r1);
}
#ifndef SQLITE_OMIT_SUBQUERY
/*
|
︙ | | |
100029
100030
100031
100032
100033
100034
100035
100036
100037
100038
100039
100040
100041
100042
100043
100044
100045
100046
100047
100048
100049
100050
100051
100052
100053
100054
100055
100056
100057
100058
100059
100060
100061
|
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
|
+
-
+
+
+
+
+
+
+
-
-
+
-
+
|
if( pOrderBy==0 && !hasDistinct ){
codeOffset(v, p->iOffset, iContinue);
}
/* Pull the requested columns.
*/
nResultCol = pEList->nExpr;
if( pDest->iSdst==0 ){
pDest->iSdst = pParse->nMem+1;
pDest->nSdst = nResultCol;
pParse->nMem += nResultCol;
}else if( pDest->iSdst+nResultCol > pParse->nMem ){
/* This is an error condition that can result, for example, when a SELECT
** on the right-hand side of an INSERT contains more result columns than
** there are columns in the table on the left. The error will be caught
** and reported later. But we need to make sure enough memory is allocated
** to avoid other spurious errors in the meantime. */
pParse->nMem += nResultCol;
}else{
assert( pDest->nSdst==nResultCol );
}
pDest->nSdst = nResultCol;
regResult = pDest->iSdst;
if( srcTab>=0 ){
for(i=0; i<nResultCol; i++){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
VdbeComment((v, "%s", pEList->a[i].zName));
}
}else if( eDest!=SRT_Exists ){
/* If the destination is an EXISTS(...) expression, the actual
** values returned by the SELECT are not required.
*/
sqlite3ExprCodeExprList(pParse, pEList, regResult,
(eDest==SRT_Output)?SQLITE_ECEL_DUP:0);
(eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
}
/* If the DISTINCT keyword was present on the SELECT statement
** and this row has been seen before, then do not make this row
** part of the result.
*/
if( hasDistinct ){
|
︙ | | |
100082
100083
100084
100085
100086
100087
100088
100089
100090
100091
100092
100093
100094
100095
100096
100097
100098
|
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
|
+
+
-
+
|
pOp->p2 = regPrev;
iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
for(i=0; i<nResultCol; i++){
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
if( i<nResultCol-1 ){
sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
VdbeCoverage(v);
}else{
sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
VdbeCoverage(v);
}
}
sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
}
assert( sqlite3VdbeCurrentAddr(v)==iJump );
sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
break;
}
|
︙ | | |
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
|
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
|
-
+
|
if( eDest==SRT_DistTable ){
/* If the destination is DistTable, then cursor (iParm+1) is open
** on an ephemeral index. If the current row is already present
** in the index, do not write it to the output. If not, add the
** current row to the index and proceed with writing it to the
** output table as well. */
int addr = sqlite3VdbeCurrentAddr(v) + 4;
sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
assert( pOrderBy==0 );
}
#endif
if( pOrderBy ){
pushOntoSorter(pParse, pOrderBy, p, r1);
}else{
|
︙ | | |
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
|
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
|
-
-
-
-
-
-
+
+
|
sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
/* The LIMIT clause will jump out of the loop for us */
}
break;
}
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
/* Send the data to the callback function or to a subroutine. In the
** case of a subroutine, the subroutine itself is responsible for
** popping the data from the stack.
*/
case SRT_Coroutine:
case SRT_Output: {
case SRT_Coroutine: /* Send data to a co-routine */
case SRT_Output: { /* Return the results */
testcase( eDest==SRT_Coroutine );
testcase( eDest==SRT_Output );
if( pOrderBy ){
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
pushOntoSorter(pParse, pOrderBy, p, r1);
sqlite3ReleaseTempReg(pParse, r1);
|
︙ | | |
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
|
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
|
-
-
+
-
-
+
+
+
+
+
+
|
ExprList *pSO;
pSO = pDest->pOrderBy;
assert( pSO );
nKey = pSO->nExpr;
r1 = sqlite3GetTempReg(pParse);
r2 = sqlite3GetTempRange(pParse, nKey+2);
r3 = r2+nKey+1;
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
if( eDest==SRT_DistQueue ){
/* If the destination is DistQueue, then cursor (iParm+1) is open
** on a second ephemeral index that holds all values every previously
** added to the queue. Only add this new value if it has never before
** added to the queue. */
** been added */
addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, r3, 0);
addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
regResult, nResultCol);
VdbeCoverage(v);
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
if( eDest==SRT_DistQueue ){
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
}
for(i=0; i<nKey; i++){
sqlite3VdbeAddOp2(v, OP_SCopy,
regResult + pSO->a[i].u.x.iOrderByCol - 1,
r2+i);
|
︙ | | |
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
|
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
|
-
+
|
}
/* Jump to the end of the loop if the LIMIT is reached. Except, if
** there is a sorter, in which case the sorter has already limited
** the output for us.
*/
if( pOrderBy==0 && p->iLimit ){
sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
}
}
/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
*/
|
︙ | | |
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
|
101081
101082
101083
101084
101085
101086
101087
101088
101089
101090
101091
101092
101093
101094
101095
101096
101097
101098
101099
101100
101101
|
+
-
+
|
regRowid = sqlite3GetTempReg(pParse);
}
if( p->selFlags & SF_UseSorter ){
int regSortOut = ++pParse->nMem;
int ptab2 = pParse->nTab++;
sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
VdbeCoverage(v);
codeOffset(v, p->iOffset, addrContinue);
sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
}else{
addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
codeOffset(v, p->iOffset, addrContinue);
sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
}
switch( eDest ){
case SRT_Table:
case SRT_EphemTab: {
testcase( eDest==SRT_Table );
|
︙ | | |
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
|
101145
101146
101147
101148
101149
101150
101151
101152
101153
101154
101155
101156
101157
101158
101159
101160
101161
|
-
+
-
+
|
sqlite3ReleaseTempReg(pParse, regRow);
sqlite3ReleaseTempReg(pParse, regRowid);
/* The bottom of the loop
*/
sqlite3VdbeResolveLabel(v, addrContinue);
if( p->selFlags & SF_UseSorter ){
sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
}else{
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
}
sqlite3VdbeResolveLabel(v, addrBreak);
if( eDest==SRT_Output || eDest==SRT_Coroutine ){
sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
}
}
|
︙ | | |
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
|
101518
101519
101520
101521
101522
101523
101524
101525
101526
101527
101528
101529
101530
101531
101532
|
-
+
|
*/
nName = sqlite3Strlen30(zName);
for(j=cnt=0; j<i; j++){
if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
char *zNewName;
int k;
for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
if( zName[k]==':' ) nName = k;
if( k>=0 && zName[k]==':' ) nName = k;
zName[nName] = 0;
zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
sqlite3DbFree(db, zName);
zName = zNewName;
j = -1;
if( zName==0 ) break;
}
|
︙ | | |
101071
101072
101073
101074
101075
101076
101077
101078
101079
101080
101081
101082
101083
101084
101085
101086
101087
101088
101089
|
101631
101632
101633
101634
101635
101636
101637
101638
101639
101640
101641
101642
101643
101644
101645
101646
101647
101648
101649
101650
101651
|
-
-
-
+
+
+
+
+
-
+
|
** Get a VDBE for the given parser context. Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
Vdbe *v = pParse->pVdbe;
if( v==0 ){
v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
#ifndef SQLITE_OMIT_TRACE
if( v ){
sqlite3VdbeAddOp0(v, OP_Trace);
if( v ) sqlite3VdbeAddOp0(v, OP_Init);
if( pParse->pToplevel==0
&& OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
){
pParse->okConstFactor = 1;
}
#endif
}
return v;
}
/*
** Compute the iLimit and iOffset fields of the SELECT based on the
|
︙ | | |
101133
101134
101135
101136
101137
101138
101139
101140
101141
101142
101143
101144
101145
101146
101147
101148
101149
101150
101151
101152
101153
101154
101155
101156
101157
101158
101159
101160
101161
101162
|
101695
101696
101697
101698
101699
101700
101701
101702
101703
101704
101705
101706
101707
101708
101709
101710
101711
101712
101713
101714
101715
101716
101717
101718
101719
101720
101721
101722
101723
101724
|
-
+
-
+
-
+
-
+
-
+
|
if( n==0 ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
}else if( n>=0 && p->nSelectRow>(u64)n ){
p->nSelectRow = n;
}
}else{
sqlite3ExprCode(pParse, p->pLimit, iLimit);
sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
VdbeComment((v, "LIMIT counter"));
sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
}
if( p->pOffset ){
p->iOffset = iOffset = ++pParse->nMem;
pParse->nMem++; /* Allocate an extra register for limit+offset */
sqlite3ExprCode(pParse, p->pOffset, iOffset);
sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
VdbeComment((v, "OFFSET counter"));
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
VdbeComment((v, "LIMIT+OFFSET"));
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
sqlite3VdbeJumpHere(v, addr1);
}
}
}
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
︙ | | |
101331
101332
101333
101334
101335
101336
101337
101338
101339
101340
101341
101342
101343
101344
101345
101346
101347
101348
101349
101350
101351
101352
101353
101354
101355
101356
101357
101358
101359
101360
101361
101362
101363
101364
101365
|
101893
101894
101895
101896
101897
101898
101899
101900
101901
101902
101903
101904
101905
101906
101907
101908
101909
101910
101911
101912
101913
101914
101915
101916
101917
101918
101919
101920
101921
101922
101923
101924
101925
101926
101927
101928
101929
101930
101931
101932
|
+
+
-
+
+
-
+
+
+
|
p->selFlags |= SF_UsesEphemeral;
}
/* Detach the ORDER BY clause from the compound SELECT */
p->pOrderBy = 0;
/* Store the results of the setup-query in Queue. */
pSetup->pNext = 0;
rc = sqlite3Select(pParse, pSetup, &destQueue);
pSetup->pNext = p;
if( rc ) goto end_of_recursive_query;
/* Find the next row in the Queue and output that row */
addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak);
addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
/* Transfer the next row in Queue over to Current */
sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
if( pOrderBy ){
sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
}else{
sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
}
sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
/* Output the single row in Current */
addrCont = sqlite3VdbeMakeLabel(v);
codeOffset(v, regOffset, addrCont);
selectInnerLoop(pParse, p, p->pEList, iCurrent,
0, 0, pDest, addrCont, addrBreak);
if( regLimit ){
if( regLimit ) sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
VdbeCoverage(v);
}
sqlite3VdbeResolveLabel(v, addrCont);
/* Execute the recursive SELECT taking the single row in Current as
** the value for the recursive-table. Store the results in the Queue.
*/
p->pPrior = 0;
sqlite3Select(pParse, p, &destQueue);
|
︙ | | |
101436
101437
101438
101439
101440
101441
101442
101443
101444
101445
101446
101447
101448
101449
101450
101451
|
102003
102004
102005
102006
102007
102008
102009
102010
102011
102012
102013
102014
102015
102016
|
-
-
|
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
*/
assert( p && p->pPrior ); /* Calling function guarantees this much */
assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
db = pParse->db;
pPrior = p->pPrior;
assert( pPrior->pRightmost!=pPrior );
assert( pPrior->pRightmost==p->pRightmost );
dest = *pDest;
if( pPrior->pOrderBy ){
sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
selectOpName(p->op));
rc = 1;
goto multi_select_end;
}
|
︙ | | |
101513
101514
101515
101516
101517
101518
101519
101520
101521
101522
101523
101524
101525
101526
101527
|
102078
102079
102080
102081
102082
102083
102084
102085
102086
102087
102088
102089
102090
102091
102092
|
-
+
|
if( rc ){
goto multi_select_end;
}
p->pPrior = 0;
p->iLimit = pPrior->iLimit;
p->iOffset = pPrior->iOffset;
if( p->iLimit ){
addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
VdbeComment((v, "Jump ahead if LIMIT reached"));
}
explainSetInteger(iSub2, pParse->iNextSelectId);
rc = sqlite3Select(pParse, p, &dest);
testcase( rc!=SQLITE_OK );
pDelete = p->pPrior;
p->pPrior = pPrior;
|
︙ | | |
101545
101546
101547
101548
101549
101550
101551
101552
101553
101554
101555
101556
101557
101558
101559
101560
101561
101562
101563
101564
101565
101566
101567
101568
101569
101570
101571
101572
101573
101574
101575
101576
101577
|
102110
102111
102112
102113
102114
102115
102116
102117
102118
102119
102120
102121
102122
102123
102124
102125
102126
102127
102128
102129
102130
102131
102132
102133
102134
102135
102136
102137
102138
102139
102140
|
-
+
-
-
-
+
|
Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
int addr;
SelectDest uniondest;
testcase( p->op==TK_EXCEPT );
testcase( p->op==TK_UNION );
priorOp = SRT_Union;
if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
if( dest.eDest==priorOp ){
/* We can reuse a temporary table generated by a SELECT to our
** right.
*/
assert( p->pRightmost!=p ); /* Can only happen for leftward elements
** of a 3-way or more compound */
assert( p->pLimit==0 ); /* Not allowed on leftward elements */
assert( p->pOffset==0 ); /* Not allowed on leftward elements */
unionTab = dest.iSDParm;
}else{
/* We will need to create our own temporary table to hold the
** intermediate results.
*/
unionTab = pParse->nTab++;
assert( p->pOrderBy==0 );
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
assert( p->addrOpenEphm[0] == -1 );
p->addrOpenEphm[0] = addr;
p->pRightmost->selFlags |= SF_UsesEphemeral;
findRightmost(p)->selFlags |= SF_UsesEphemeral;
assert( p->pEList );
}
/* Code the SELECT statements to our left
*/
assert( !pPrior->pOrderBy );
sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
|
︙ | | |
101622
101623
101624
101625
101626
101627
101628
101629
101630
101631
101632
101633
101634
101635
101636
101637
101638
101639
101640
101641
|
102185
102186
102187
102188
102189
102190
102191
102192
102193
102194
102195
102196
102197
102198
102199
102200
102201
102202
102203
102204
|
-
+
-
+
|
Select *pFirst = p;
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
}
iBreak = sqlite3VdbeMakeLabel(v);
iCont = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
iStart = sqlite3VdbeCurrentAddr(v);
selectInnerLoop(pParse, p, p->pEList, unionTab,
0, 0, &dest, iCont, iBreak);
sqlite3VdbeResolveLabel(v, iCont);
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
sqlite3VdbeResolveLabel(v, iBreak);
sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
}
break;
}
default: assert( p->op==TK_INTERSECT ); {
int tab1, tab2;
|
︙ | | |
101652
101653
101654
101655
101656
101657
101658
101659
101660
101661
101662
101663
101664
101665
101666
|
102215
102216
102217
102218
102219
102220
102221
102222
102223
102224
102225
102226
102227
102228
102229
|
-
+
|
tab1 = pParse->nTab++;
tab2 = pParse->nTab++;
assert( p->pOrderBy==0 );
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
assert( p->addrOpenEphm[0] == -1 );
p->addrOpenEphm[0] = addr;
p->pRightmost->selFlags |= SF_UsesEphemeral;
findRightmost(p)->selFlags |= SF_UsesEphemeral;
assert( p->pEList );
/* Code the SELECTs to our left into temporary table "tab1".
*/
sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
explainSetInteger(iSub1, pParse->iNextSelectId);
rc = sqlite3Select(pParse, pPrior, &intersectdest);
|
︙ | | |
101697
101698
101699
101700
101701
101702
101703
101704
101705
101706
101707
101708
101709
101710
101711
101712
101713
101714
101715
101716
101717
101718
101719
|
102260
102261
102262
102263
102264
102265
102266
102267
102268
102269
102270
102271
102272
102273
102274
102275
102276
102277
102278
102279
102280
102281
102282
|
-
+
-
+
-
+
|
Select *pFirst = p;
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
}
iBreak = sqlite3VdbeMakeLabel(v);
iCont = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
r1 = sqlite3GetTempReg(pParse);
iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
sqlite3ReleaseTempReg(pParse, r1);
selectInnerLoop(pParse, p, p->pEList, tab1,
0, 0, &dest, iCont, iBreak);
sqlite3VdbeResolveLabel(v, iCont);
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
sqlite3VdbeResolveLabel(v, iBreak);
sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
break;
}
}
|
︙ | | |
101731
101732
101733
101734
101735
101736
101737
101738
101739
101740
101741
101742
101743
101744
101745
|
102294
102295
102296
102297
102298
102299
102300
102301
102302
102303
102304
102305
102306
102307
102308
|
-
+
|
if( p->selFlags & SF_UsesEphemeral ){
int i; /* Loop counter */
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
Select *pLoop; /* For looping through SELECT statements */
CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
int nCol; /* Number of columns in result set */
assert( p->pRightmost==p );
assert( p->pNext==0 );
nCol = p->pEList->nExpr;
pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
if( !pKeyInfo ){
rc = SQLITE_NOMEM;
goto multi_select_end;
}
for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
|
︙ | | |
101812
101813
101814
101815
101816
101817
101818
101819
101820
101821
101822
101823
101824
101825
101826
101827
101828
101829
|
102375
102376
102377
102378
102379
102380
102381
102382
102383
102384
102385
102386
102387
102388
102389
102390
102391
102392
|
-
+
-
+
|
addr = sqlite3VdbeCurrentAddr(v);
iContinue = sqlite3VdbeMakeLabel(v);
/* Suppress duplicates for UNION, EXCEPT, and INTERSECT
*/
if( regPrev ){
int j1, j2;
j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
(char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
}
if( pParse->db->mallocFailed ) return 0;
/* Suppress the first OFFSET entries if there is an OFFSET clause
|
︙ | | |
101916
101917
101918
101919
101920
101921
101922
101923
101924
101925
101926
101927
101928
101929
101930
|
102479
102480
102481
102482
102483
102484
102485
102486
102487
102488
102489
102490
102491
102492
102493
|
-
+
|
break;
}
}
/* Jump to the end of the loop if the LIMIT is reached.
*/
if( p->iLimit ){
sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
}
/* Generate the subroutine return
*/
sqlite3VdbeResolveLabel(v, iContinue);
sqlite3VdbeAddOp1(v, OP_Return, regReturn);
|
︙ | | |
102024
102025
102026
102027
102028
102029
102030
102031
102032
102033
102034
102035
102036
102037
102038
102039
102040
102041
102042
102043
102044
102045
102046
102047
|
102587
102588
102589
102590
102591
102592
102593
102594
102595
102596
102597
102598
102599
102600
102601
102602
102603
102604
102605
102606
102607
102608
102609
|
-
-
+
|
){
int i, j; /* Loop counters */
Select *pPrior; /* Another SELECT immediately to our left */
Vdbe *v; /* Generate code to this VDBE */
SelectDest destA; /* Destination for coroutine A */
SelectDest destB; /* Destination for coroutine B */
int regAddrA; /* Address register for select-A coroutine */
int regEofA; /* Flag to indicate when select-A is complete */
int regAddrB; /* Address register for select-B coroutine */
int regEofB; /* Flag to indicate when select-B is complete */
int addrSelectA; /* Address of the select-A coroutine */
int addrSelectB; /* Address of the select-B coroutine */
int regOutA; /* Address register for the output-A subroutine */
int regOutB; /* Address register for the output-B subroutine */
int addrOutA; /* Address of the output-A subroutine */
int addrOutB = 0; /* Address of the output-B subroutine */
int addrEofA; /* Address of the select-A-exhausted subroutine */
int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
int addrEofB; /* Address of the select-B-exhausted subroutine */
int addrAltB; /* Address of the A<B subroutine */
int addrAeqB; /* Address of the A==B subroutine */
int addrAgtB; /* Address of the A>B subroutine */
int regLimitA; /* Limit register for select-A */
int regLimitB; /* Limit register for select-A */
int regPrev; /* A range of registers to hold previous output */
|
︙ | | |
102148
102149
102150
102151
102152
102153
102154
102155
102156
102157
102158
102159
102160
102161
|
102710
102711
102712
102713
102714
102715
102716
102717
102718
102719
102720
102721
102722
102723
102724
|
+
|
}
}
}
/* Separate the left and the right query from one another
*/
p->pPrior = 0;
pPrior->pNext = 0;
sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
if( pPrior->pPrior==0 ){
sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
}
/* Compute the limit registers */
computeLimitRegisters(pParse, p, labelEnd);
|
︙ | | |
102170
102171
102172
102173
102174
102175
102176
102177
102178
102179
102180
102181
102182
102183
102184
102185
102186
102187
102188
102189
102190
102191
102192
102193
102194
102195
102196
102197
102198
102199
102200
102201
102202
102203
102204
102205
102206
102207
102208
102209
102210
102211
102212
102213
102214
102215
102216
102217
102218
102219
102220
102221
102222
102223
102224
102225
|
102733
102734
102735
102736
102737
102738
102739
102740
102741
102742
102743
102744
102745
102746
102747
102748
102749
102750
102751
102752
102753
102754
102755
102756
102757
102758
102759
102760
102761
102762
102763
102764
102765
102766
102767
102768
102769
102770
102771
102772
102773
102774
102775
102776
102777
102778
102779
|
-
-
-
-
-
-
-
-
-
+
+
-
+
-
-
-
+
+
-
-
+
+
+
-
-
+
-
|
}
sqlite3ExprDelete(db, p->pLimit);
p->pLimit = 0;
sqlite3ExprDelete(db, p->pOffset);
p->pOffset = 0;
regAddrA = ++pParse->nMem;
regEofA = ++pParse->nMem;
regAddrB = ++pParse->nMem;
regEofB = ++pParse->nMem;
regOutA = ++pParse->nMem;
regOutB = ++pParse->nMem;
sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
/* Jump past the various subroutines and coroutines to the main
** merge loop
*/
j1 = sqlite3VdbeAddOp0(v, OP_Goto);
addrSelectA = sqlite3VdbeCurrentAddr(v);
/* Generate a coroutine to evaluate the SELECT statement to the
** left of the compound operator - the "A" select.
*/
addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
VdbeNoopComment((v, "Begin coroutine for left SELECT"));
VdbeComment((v, "left SELECT"));
pPrior->iLimit = regLimitA;
explainSetInteger(iSub1, pParse->iNextSelectId);
sqlite3Select(pParse, pPrior, &destA);
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
VdbeNoopComment((v, "End coroutine for left SELECT"));
sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
sqlite3VdbeJumpHere(v, j1);
/* Generate a coroutine to evaluate the SELECT statement on
** the right - the "B" select
*/
addrSelectB = sqlite3VdbeCurrentAddr(v);
VdbeNoopComment((v, "Begin coroutine for right SELECT"));
addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
VdbeComment((v, "right SELECT"));
savedLimit = p->iLimit;
savedOffset = p->iOffset;
p->iLimit = regLimitB;
p->iOffset = 0;
explainSetInteger(iSub2, pParse->iNextSelectId);
sqlite3Select(pParse, p, &destB);
p->iLimit = savedLimit;
p->iOffset = savedOffset;
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
VdbeNoopComment((v, "End coroutine for right SELECT"));
/* Generate a subroutine that outputs the current row of the A
** select as the next output row of the compound select.
*/
VdbeNoopComment((v, "Output routine for A"));
addrOutA = generateOutputSubroutine(pParse,
p, &destA, pDest, regOutA,
|
︙ | | |
102235
102236
102237
102238
102239
102240
102241
102242
102243
102244
102245
102246
102247
102248
102249
102250
102251
102252
102253
102254
102255
102256
102257
102258
102259
102260
102261
102262
102263
102264
102265
102266
102267
102268
102269
102270
102271
102272
102273
102274
102275
102276
102277
102278
102279
102280
102281
102282
102283
102284
102285
102286
102287
102288
102289
102290
102291
102292
102293
102294
102295
102296
102297
102298
102299
102300
102301
102302
102303
102304
102305
102306
102307
102308
102309
102310
102311
102312
102313
102314
102315
102316
102317
102318
102319
102320
102321
102322
102323
102324
102325
102326
102327
102328
102329
102330
102331
102332
102333
102334
102335
102336
102337
102338
102339
102340
102341
102342
102343
102344
|
102789
102790
102791
102792
102793
102794
102795
102796
102797
102798
102799
102800
102801
102802
102803
102804
102805
102806
102807
102808
102809
102810
102811
102812
102813
102814
102815
102816
102817
102818
102819
102820
102821
102822
102823
102824
102825
102826
102827
102828
102829
102830
102831
102832
102833
102834
102835
102836
102837
102838
102839
102840
102841
102842
102843
102844
102845
102846
102847
102848
102849
102850
102851
102852
102853
102854
102855
102856
102857
102858
102859
102860
102861
102862
102863
102864
102865
102866
102867
102868
102869
102870
102871
102872
102873
102874
102875
102876
102877
102878
102879
102880
102881
102882
102883
102884
102885
102886
102887
102888
102889
102890
102891
|
-
-
+
+
-
-
-
+
+
+
-
-
-
+
+
-
-
+
-
-
+
-
-
+
-
-
+
+
-
-
-
-
-
+
+
|
regPrev, pKeyDup, labelEnd);
}
sqlite3KeyInfoUnref(pKeyDup);
/* Generate a subroutine to run when the results from select A
** are exhausted and only data in select B remains.
*/
VdbeNoopComment((v, "eof-A subroutine"));
if( op==TK_EXCEPT || op==TK_INTERSECT ){
addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
addrEofA_noB = addrEofA = labelEnd;
}else{
VdbeNoopComment((v, "eof-A subroutine"));
addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
p->nSelectRow += pPrior->nSelectRow;
}
/* Generate a subroutine to run when the results from select B
** are exhausted and only data in select A remains.
*/
if( op==TK_INTERSECT ){
addrEofB = addrEofA;
if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
}else{
VdbeNoopComment((v, "eof-B subroutine"));
addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
}
/* Generate code to handle the case of A<B
*/
VdbeNoopComment((v, "A-lt-B subroutine"));
addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
/* Generate code to handle the case of A==B
*/
if( op==TK_ALL ){
addrAeqB = addrAltB;
}else if( op==TK_INTERSECT ){
addrAeqB = addrAltB;
addrAltB++;
}else{
VdbeNoopComment((v, "A-eq-B subroutine"));
addrAeqB =
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
}
/* Generate code to handle the case of A>B
*/
VdbeNoopComment((v, "A-gt-B subroutine"));
addrAgtB = sqlite3VdbeCurrentAddr(v);
if( op==TK_ALL || op==TK_UNION ){
sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
}
sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
/* This code runs once to initialize everything.
*/
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
/* Implement the main merge loop
*/
sqlite3VdbeResolveLabel(v, labelCmpr);
sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
(char*)pKeyMerge, P4_KEYINFO);
sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
/* Jump to the this point in order to terminate the query.
*/
sqlite3VdbeResolveLabel(v, labelEnd);
/* Set the number of output columns
*/
if( pDest->eDest==SRT_Output ){
Select *pFirst = pPrior;
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
}
/* Reassembly the compound query so that it will be freed correctly
** by the calling function */
if( p->pPrior ){
sqlite3SelectDelete(db, p->pPrior);
}
p->pPrior = pPrior;
pPrior->pNext = p;
/*** TBD: Insert subroutine calls to close cursors on incomplete
**** subqueries ****/
explainComposite(pParse, p->op, iSub1, iSub2, 0);
return SQLITE_OK;
}
#endif
|
︙ | | |
102596
102597
102598
102599
102600
102601
102602
102603
102604
102605
102606
102607
102608
102609
102610
|
103143
103144
103145
103146
103147
103148
103149
103150
103151
103152
103153
103154
103155
103156
103157
|
-
+
|
/* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
** because they could be computed at compile-time. But when LIMIT and OFFSET
** became arbitrary expressions, we were forced to add restrictions (13)
** and (14). */
if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
if( pSub->pOffset ) return 0; /* Restriction (14) */
if( p->pRightmost && pSub->pLimit ){
if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
return 0; /* Restriction (15) */
}
if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
return 0; /* Restrictions (8)(9) */
}
|
︙ | | |
102747
102748
102749
102750
102751
102752
102753
102754
102755
102756
102757
102758
102759
102760
102761
102762
102763
102764
102765
102766
102767
102768
|
103294
103295
103296
103297
103298
103299
103300
103301
103302
103303
103304
103305
103306
103307
103308
103309
103310
103311
103312
103313
103314
103315
|
-
-
+
+
-
+
-
-
+
+
|
p->pOffset = 0;
pNew = sqlite3SelectDup(db, p, 0);
p->pOffset = pOffset;
p->pLimit = pLimit;
p->pOrderBy = pOrderBy;
p->pSrc = pSrc;
p->op = TK_ALL;
p->pRightmost = 0;
if( pNew==0 ){
pNew = pPrior;
p->pPrior = pPrior;
}else{
pNew->pPrior = pPrior;
if( pPrior ) pPrior->pNext = pNew;
pNew->pRightmost = 0;
pNew->pNext = p;
}
p->pPrior = pNew;
p->pPrior = pNew;
}
if( db->mallocFailed ) return 1;
}
/* Begin flattening the iFrom-th entry of the FROM clause
** in the outer query.
*/
pSub = pSub1 = pSubitem->pSelect;
|
︙ | | |
103093
103094
103095
103096
103097
103098
103099
103100
103101
103102
103103
103104
103105
103106
|
103640
103641
103642
103643
103644
103645
103646
103647
103648
103649
103650
103651
103652
103653
103654
103655
103656
103657
|
+
+
+
+
|
p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
p->op = TK_SELECT;
p->pWhere = 0;
pNew->pGroupBy = 0;
pNew->pHaving = 0;
pNew->pOrderBy = 0;
p->pPrior = 0;
p->pNext = 0;
p->selFlags &= ~SF_Compound;
assert( pNew->pPrior!=0 );
pNew->pPrior->pNext = pNew;
pNew->pLimit = 0;
pNew->pOffset = 0;
return WRC_Continue;
}
#ifndef SQLITE_OMIT_CTE
/*
|
︙ | | |
103280
103281
103282
103283
103284
103285
103286
103287
103288
103289
103290
103291
103292
103293
103294
103295
103296
|
103831
103832
103833
103834
103835
103836
103837
103838
103839
103840
103841
103842
103843
103844
103845
103846
103847
103848
|
+
-
-
-
+
+
+
|
**
** This function is used as the xSelectCallback2() callback by
** sqlite3SelectExpand() when walking a SELECT tree to resolve table
** names and other FROM clause elements.
*/
static void selectPopWith(Walker *pWalker, Select *p){
Parse *pParse = pWalker->pParse;
With *pWith = findRightmost(p)->pWith;
if( p->pWith ){
assert( pParse->pWith==p->pWith );
pParse->pWith = p->pWith->pOuter;
if( pWith!=0 ){
assert( pParse->pWith==pWith );
pParse->pWith = pWith->pOuter;
}
}
#else
#define selectPopWith 0
#endif
/*
|
︙ | | |
103332
103333
103334
103335
103336
103337
103338
103339
103340
103341
103342
103343
103344
103345
103346
|
103884
103885
103886
103887
103888
103889
103890
103891
103892
103893
103894
103895
103896
103897
103898
|
-
+
|
return WRC_Abort;
}
if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
return WRC_Prune;
}
pTabList = p->pSrc;
pEList = p->pEList;
sqlite3WithPush(pParse, p->pWith, 0);
sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
/* Make sure cursor numbers have been assigned to all entries in
** the FROM clause of the SELECT statement.
*/
sqlite3SrcListAssignCursors(pParse, pTabList);
/* Look up every table named in the FROM clause of the select. If
|
︙ | | |
103845
103846
103847
103848
103849
103850
103851
103852
103853
103854
103855
103856
103857
103858
103859
|
104397
104398
104399
104400
104401
104402
104403
104404
104405
104406
104407
104408
104409
104410
104411
|
-
+
|
** may have been used, invalidating the underlying buffer holding the
** text or blob value. See ticket [883034dcb5].
**
** Another solution would be to change the OP_SCopy used to copy cached
** values to an OP_Copy.
*/
if( regHit ){
addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
}
sqlite3ExprCacheClear(pParse);
for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
}
pAggInfo->directMode = 0;
sqlite3ExprCacheClear(pParse);
|
︙ | | |
104004
104005
104006
104007
104008
104009
104010
104011
104012
104013
104014
104015
104016
104017
104018
104019
104020
104021
104022
104023
104024
104025
104026
104027
104028
104029
104030
104031
104032
104033
104034
104035
104036
104037
104038
104039
104040
104041
104042
104043
104044
104045
104046
104047
104048
104049
104050
104051
104052
104053
104054
104055
104056
104057
104058
104059
104060
104061
104062
104063
104064
104065
104066
104067
104068
104069
104070
104071
104072
104073
104074
|
104556
104557
104558
104559
104560
104561
104562
104563
104564
104565
104566
104567
104568
104569
104570
104571
104572
104573
104574
104575
104576
104577
104578
104579
104580
104581
104582
104583
104584
104585
104586
104587
104588
104589
104590
104591
104592
104593
104594
104595
104596
104597
104598
104599
104600
104601
104602
104603
104604
104605
104606
104607
104608
104609
104610
|
-
-
+
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
+
-
-
-
+
-
-
-
+
-
-
-
+
+
+
+
|
if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
/* This subquery can be absorbed into its parent. */
if( isAggSub ){
isAgg = 1;
p->selFlags |= SF_Aggregate;
}
i = -1;
}else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0
&& OptimizationEnabled(db, SQLITE_SubqCoroutine)
}else if( pTabList->nSrc==1
&& OptimizationEnabled(db, SQLITE_SubqCoroutine)
){
/* Implement a co-routine that will return a single row of the result
** set on each invocation.
*/
int addrTop;
int addrTop = sqlite3VdbeCurrentAddr(v)+1;
int addrEof;
pItem->regReturn = ++pParse->nMem;
addrEof = ++pParse->nMem;
/* Before coding the OP_Goto to jump to the start of the main routine,
** ensure that the jump to the verify-schema routine has already
** been coded. Otherwise, the verify-schema would likely be coded as
** part of the co-routine. If the main routine then accessed the
** database before invoking the co-routine for the first time (for
** example to initialize a LIMIT register from a sub-select), it would
** be doing so without having verified the schema version and obtained
** the required db locks. See ticket d6b36be38. */
sqlite3CodeVerifySchema(pParse, -1);
sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor);
sqlite3VdbeChangeP5(v, 1);
VdbeComment((v, "coroutine for %s", pItem->pTab->zName));
VdbeComment((v, "%s", pItem->pTab->zName));
pItem->addrFillSub = addrTop;
sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof);
sqlite3VdbeChangeP5(v, 1);
sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
sqlite3Select(pParse, pSub, &dest);
pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
pItem->viaCoroutine = 1;
sqlite3VdbeChangeP2(v, addrTop, dest.iSdst);
pItem->regResult = dest.iSdst;
sqlite3VdbeChangeP3(v, addrTop, dest.nSdst);
sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof);
sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn);
sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
VdbeComment((v, "end %s", pItem->pTab->zName));
sqlite3VdbeJumpHere(v, addrTop-1);
sqlite3ClearTempRegCache(pParse);
}else{
/* Generate a subroutine that will fill an ephemeral table with
** the content of this subquery. pItem->addrFillSub will point
** to the address of the generated subroutine. pItem->regReturn
** is a register allocated to hold the subroutine return address
*/
int topAddr;
int onceAddr = 0;
int retAddr;
assert( pItem->addrFillSub==0 );
pItem->regReturn = ++pParse->nMem;
topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
pItem->addrFillSub = topAddr+1;
VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
if( pItem->isCorrelated==0 ){
/* If the subquery is not correlated and if we are not inside of
** a trigger, then we only need to compute the value of the subquery
** once. */
onceAddr = sqlite3CodeOnce(pParse);
onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
}else{
VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
}
sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
sqlite3Select(pParse, pSub, &dest);
pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
|
︙ | | |
104092
104093
104094
104095
104096
104097
104098
104099
104100
104101
104102
104103
104104
104105
104106
104107
104108
104109
104110
104111
104112
104113
104114
104115
104116
104117
104118
104119
104120
|
104628
104629
104630
104631
104632
104633
104634
104635
104636
104637
104638
104639
104640
104641
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
pHaving = p->pHaving;
sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/* If there is are a sequence of queries, do the earlier ones first.
*/
if( p->pPrior ){
if( p->pRightmost==0 ){
Select *pLoop, *pRight = 0;
int cnt = 0;
int mxSelect;
for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
pLoop->pRightmost = p;
pLoop->pNext = pRight;
pRight = pLoop;
}
mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
if( mxSelect && cnt>mxSelect ){
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
goto select_end;
}
}
rc = multiSelect(pParse, p, pDest);
explainSetInteger(pParse->iSelectId, iRestoreSelectId);
return rc;
}
#endif
/* If there is both a GROUP BY and an ORDER BY clause and they are
|
︙ | | |
104410
104411
104412
104413
104414
104415
104416
104417
104418
104419
104420
104421
104422
104423
104424
|
104931
104932
104933
104934
104935
104936
104937
104938
104939
104940
104941
104942
104943
104944
104945
|
-
+
|
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3ReleaseTempRange(pParse, regBase, nCol);
sqlite3WhereEnd(pWInfo);
sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
sortOut = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
VdbeComment((v, "GROUP BY sort"));
VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
sAggInfo.useSortingIdx = 1;
sqlite3ExprCacheClear(pParse);
}
/* Evaluate the current GROUP BY terms and store in b0, b1, b2...
** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
** Then compare the current GROUP BY terms against the GROUP BY terms
|
︙ | | |
104437
104438
104439
104440
104441
104442
104443
104444
104445
104446
104447
104448
104449
104450
104451
104452
104453
104454
104455
104456
104457
104458
104459
104460
104461
104462
104463
104464
104465
104466
104467
104468
104469
104470
104471
104472
104473
104474
104475
104476
104477
104478
104479
104480
104481
|
104958
104959
104960
104961
104962
104963
104964
104965
104966
104967
104968
104969
104970
104971
104972
104973
104974
104975
104976
104977
104978
104979
104980
104981
104982
104983
104984
104985
104986
104987
104988
104989
104990
104991
104992
104993
104994
104995
104996
104997
104998
104999
105000
105001
105002
105003
|
-
+
-
+
+
|
sAggInfo.directMode = 1;
sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
}
}
sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
(char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
j1 = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
/* Generate code that runs whenever the GROUP BY changes.
** Changes in the GROUP BY are detected by the previous code
** block. If there were no changes, this block is skipped.
**
** This code copies current group by terms in b0,b1,b2,...
** over to a0,a1,a2. It then calls the output subroutine
** and resets the aggregate accumulator registers in preparation
** for the next GROUP BY batch.
*/
sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
VdbeComment((v, "output one row"));
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
VdbeComment((v, "check abort flag"));
sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
VdbeComment((v, "reset accumulator"));
/* Update the aggregate accumulators based on the content of
** the current row
*/
sqlite3VdbeJumpHere(v, j1);
updateAccumulator(pParse, &sAggInfo);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
VdbeComment((v, "indicate data in accumulator"));
/* End of the loop
*/
if( groupBySort ){
sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
VdbeCoverage(v);
}else{
sqlite3WhereEnd(pWInfo);
sqlite3VdbeChangeToNoop(v, addrSortingIdx);
}
/* Output the final row of result
*/
|
︙ | | |
104495
104496
104497
104498
104499
104500
104501
104502
104503
104504
104505
104506
104507
104508
104509
|
105017
105018
105019
105020
105021
105022
105023
105024
105025
105026
105027
105028
105029
105030
105031
|
-
+
|
*/
addrSetAbort = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
VdbeComment((v, "set abort flag"));
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
sqlite3VdbeResolveLabel(v, addrOutputRow);
addrOutputRow = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
VdbeComment((v, "Groupby result generator entry point"));
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
finalizeAggFunctions(pParse, &sAggInfo);
sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy,
&sDistinct, pDest,
addrOutputRow+1, addrSetAbort);
|
︙ | | |
104768
104769
104770
104771
104772
104773
104774
104775
104776
104777
104778
104779
104780
104781
104782
104783
104784
104785
|
105290
105291
105292
105293
105294
105295
105296
105297
105298
105299
105300
105301
105302
105303
|
-
-
-
-
|
}
}
SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
if( p==0 ){
sqlite3ExplainPrintf(pVdbe, "(null-select)");
return;
}
while( p->pPrior ){
p->pPrior->pNext = p;
p = p->pPrior;
}
sqlite3ExplainPush(pVdbe);
while( p ){
explainOneSelect(pVdbe, p);
p = p->pNext;
if( p==0 ) break;
sqlite3ExplainNL(pVdbe);
sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
|
︙ | | |
105556
105557
105558
105559
105560
105561
105562
105563
105564
105565
105566
105567
105568
105569
105570
105571
105572
105573
105574
105575
105576
105577
105578
105579
105580
105581
105582
105583
105584
|
106074
106075
106076
106077
106078
106079
106080
106081
106082
106083
106084
106085
106086
106087
106088
106089
106090
106091
106092
106093
106094
106095
106096
106097
106098
106099
106100
106101
106102
106103
|
+
-
+
|
#endif
/* Generate code to destroy the database record of the trigger.
*/
assert( pTable!=0 );
if( (v = sqlite3GetVdbe(pParse))!=0 ){
int base;
static const int iLn = __LINE__+2;
static const VdbeOpList dropTrigger[] = {
{ OP_Rewind, 0, ADDR(9), 0},
{ OP_String8, 0, 1, 0}, /* 1 */
{ OP_Column, 0, 1, 2},
{ OP_Ne, 2, ADDR(8), 1},
{ OP_String8, 0, 1, 0}, /* 4: "trigger" */
{ OP_Column, 0, 0, 2},
{ OP_Ne, 2, ADDR(8), 1},
{ OP_Delete, 0, 0, 0},
{ OP_Next, 0, ADDR(1), 0}, /* 8 */
};
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3OpenMasterTable(pParse, iDb);
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger, iLn);
sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT);
sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
if( pParse->nMem<3 ){
pParse->nMem = 3;
|
︙ | | |
105716
105717
105718
105719
105720
105721
105722
105723
105724
105725
105726
105727
105728
105729
105730
105731
105732
105733
105734
105735
105736
105737
105738
|
106235
106236
106237
106238
106239
106240
106241
106242
106243
106244
106245
106246
106247
106248
106249
|
-
-
-
-
-
-
-
-
+
-
|
** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
** END;
**
** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy
** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy
*/
pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
/* Clear the cookieGoto flag. When coding triggers, the cookieGoto
** variable is used as a flag to indicate to sqlite3ExprCodeConstants()
** that it is not safe to refactor constants (this happens after the
** start of the first loop in the SQL statement is coded - at that
** point code may be conditionally executed, so it is no longer safe to
** initialize constant register values). */
assert( pParse->cookieGoto==0 || pParse->cookieGoto==-1 );
assert( pParse->okConstFactor==0 );
pParse->cookieGoto = 0;
switch( pStep->op ){
case TK_UPDATE: {
sqlite3Update(pParse,
targetSrcList(pParse, pStep),
sqlite3ExprListDup(db, pStep->pExprList, 0),
sqlite3ExprDup(db, pStep->pWhere, 0),
|
︙ | | |
106513
106514
106515
106516
106517
106518
106519
106520
106521
106522
106523
106524
106525
106526
106527
|
107024
107025
107026
107027
107028
107029
107030
107031
107032
107033
107034
107035
107036
107037
107038
|
-
+
|
}
if( okOnePass ){
sqlite3VdbeChangeToNoop(v, addrOpen);
nKey = nPk;
regKey = iPk;
}else{
sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
sqlite3IndexAffinityStr(v, pPk), P4_TRANSIENT);
sqlite3IndexAffinityStr(v, pPk), nPk);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iEph, regKey);
}
sqlite3WhereEnd(pWInfo);
}
/* Initialize the count of updated rows
*/
|
︙ | | |
106557
106558
106559
106560
106561
106562
106563
106564
106565
106566
106567
106568
106569
106570
106571
106572
106573
106574
106575
106576
106577
106578
106579
106580
106581
106582
106583
106584
106585
106586
106587
106588
106589
106590
106591
106592
|
107068
107069
107070
107071
107072
107073
107074
107075
107076
107077
107078
107079
107080
107081
107082
107083
107084
107085
107086
107087
107088
107089
107090
107091
107092
107093
107094
107095
107096
107097
107098
107099
107100
107101
107102
107103
107104
107105
107106
107107
107108
|
+
+
-
+
+
+
+
-
+
|
}
/* Top of the update loop */
if( okOnePass ){
if( aToOpen[iDataCur-iBaseCur] ){
assert( pPk!=0 );
sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
VdbeCoverageNeverTaken(v);
}
labelContinue = labelBreak;
sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
VdbeCoverage(v);
}else if( pPk ){
labelContinue = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey);
sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0);
VdbeCoverage(v);
}else{
labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak,
regOldRowid);
VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
VdbeCoverage(v);
}
/* If the record number will change, set register regNewRowid to
** contain the new value. If the record number is not being modified,
** then regNewRowid is the same register as regOldRowid, which is
** already populated. */
assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid );
if( chngRowid ){
sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v);
}
/* Compute the old pre-UPDATE content of the row being changed, if that
** information is needed */
if( chngPk || hasFK || pTrigger ){
u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0);
oldmask |= sqlite3TriggerColmask(pParse,
|
︙ | | |
106647
106648
106649
106650
106651
106652
106653
106654
106655
106656
106657
106658
106659
106660
106661
106662
106663
106664
106665
106666
106667
106668
106669
106670
106671
106672
106673
106674
106675
|
107163
107164
107165
107166
107167
107168
107169
107170
107171
107172
107173
107174
107175
107176
107177
107178
107179
107180
107181
107182
107183
107184
107185
107186
107187
107188
107189
107190
107191
107192
|
-
-
+
+
+
|
}
}
/* Fire any BEFORE UPDATE triggers. This happens before constraints are
** verified. One could argue that this is wrong.
*/
if( tmask&TRIGGER_BEFORE ){
sqlite3VdbeAddOp2(v, OP_Affinity, regNew, pTab->nCol);
sqlite3TableAffinityStr(v, pTab);
sqlite3TableAffinity(v, pTab, regNew);
sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue);
/* The row-trigger may have deleted the row being updated. In this
** case, jump to the next row. No updates or AFTER triggers are
** required. This behavior - what happens when the row being updated
** is deleted or renamed by a BEFORE trigger - is left undefined in the
** documentation.
*/
if( pPk ){
sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey);
VdbeCoverage(v);
}else{
sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
VdbeCoverage(v);
}
/* If it did not delete it, the row-trigger may still have modified
** some of the columns of the row being updated. Load the values for
** all columns not modified by the update statement into their
** registers in case this has happened.
*/
|
︙ | | |
106697
106698
106699
106700
106701
106702
106703
106704
106705
106706
106707
106708
106709
106710
|
107214
107215
107216
107217
107218
107219
107220
107221
107222
107223
107224
107225
107226
107227
107228
|
+
|
/* Delete the index entries associated with the current record. */
if( bReplace || chngKey ){
if( pPk ){
j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey);
}else{
j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid);
}
VdbeCoverageNeverTaken(v);
}
sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx);
/* If changing the record number, delete the old record. */
if( hasFK || chngKey || pPk!=0 ){
sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
}
|
︙ | | |
106740
106741
106742
106743
106744
106745
106746
106747
106748
106749
106750
106751
106752
106753
106754
|
107258
107259
107260
107261
107262
107263
107264
107265
107266
107267
107268
107269
107270
107271
107272
|
-
+
|
/* Repeat the above with the next record to be updated, until
** all record selected by the WHERE clause have been updated.
*/
if( okOnePass ){
/* Nothing to do at end-of-loop for a single-pass */
}else if( pPk ){
sqlite3VdbeResolveLabel(v, labelContinue);
sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop);
sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v);
}else{
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelContinue);
}
sqlite3VdbeResolveLabel(v, labelBreak);
/* Close all tables */
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
︙ | | |
106869
106870
106871
106872
106873
106874
106875
106876
106877
106878
106879
106880
106881
106882
106883
106884
106885
106886
106887
106888
106889
106890
106891
106892
106893
|
107387
107388
107389
107390
107391
107392
107393
107394
107395
107396
107397
107398
107399
107400
107401
107402
107403
107404
107405
107406
107407
107408
107409
107410
107411
|
-
+
-
+
|
*/
sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
sqlite3Select(pParse, pSelect, &dest);
/* Generate code to scan the ephemeral table and call VUpdate. */
iReg = ++pParse->nMem;
pParse->nMem += pTab->nCol+1;
addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
for(i=0; i<pTab->nCol; i++){
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
}
sqlite3VtabMakeWritable(pParse, pTab);
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB);
sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
sqlite3MayAbort(pParse);
sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1);
sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr);
sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
/* Cleanup */
sqlite3SelectDelete(db, pSelect);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
︙ | | |
108451
108452
108453
108454
108455
108456
108457
108458
108459
108460
108461
108462
108463
108464
108465
|
108969
108970
108971
108972
108973
108974
108975
108976
108977
108978
108979
108980
108981
108982
108983
|
-
+
|
int addrBrk; /* Jump here to break out of the loop */
int addrNxt; /* Jump here to start the next IN combination */
int addrSkip; /* Jump here for next iteration of skip-scan */
int addrCont; /* Jump here to continue with the next loop cycle */
int addrFirst; /* First instruction of interior of the loop */
int addrBody; /* Beginning of the body of this loop */
u8 iFrom; /* Which entry in the FROM clause */
u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */
u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */
int p1, p2; /* Operands of the opcode used to ends the loop */
union { /* Information that depends on pWLoop->wsFlags */
struct {
int nIn; /* Number of entries in aInLoop[] */
struct InLoop {
int iCur; /* The VDBE cursor used by this IN operator */
int addrInTop; /* Top of the IN loop */
|
︙ | | |
108838
108839
108840
108841
108842
108843
108844
108845
108846
108847
108848
108849
108850
108851
|
109356
109357
109358
109359
109360
109361
109362
109363
109364
109365
109366
109367
109368
109369
109370
|
+
|
#define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */
#define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */
#define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */
#define WHERE_ONEROW 0x00001000 /* Selects no more than one row */
#define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */
#define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */
#define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */
#define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/
/************** End of whereInt.h ********************************************/
/************** Continuing where we left off in where.c **********************/
/*
** Return the estimated number of output rows from a WHERE clause
*/
|
︙ | | |
110424
110425
110426
110427
110428
110429
110430
110431
110432
110433
110434
110435
110436
110437
110438
|
110943
110944
110945
110946
110947
110948
110949
110950
110951
110952
110953
110954
110955
110956
110957
|
-
+
|
Bitmask extraCols; /* Bitmap of additional columns */
u8 sentWarning = 0; /* True if a warnning has been issued */
/* Generate code to skip over the creation and initialization of the
** transient index on 2nd and subsequent iterations of the loop. */
v = pParse->pVdbe;
assert( v!=0 );
addrInit = sqlite3CodeOnce(pParse);
addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
/* Count the number of columns that will be added to the index
** and used to match WHERE clause constraints */
nKeyCol = 0;
pTable = pSrc->pTab;
pWCEnd = &pWC->a[pWC->nTerm];
pLoop = pLevel->pWLoop;
|
︙ | | |
110531
110532
110533
110534
110535
110536
110537
110538
110539
110540
110541
110542
110543
110544
110545
110546
110547
110548
110549
110550
|
111050
111051
111052
111053
111054
111055
111056
111057
111058
111059
111060
111061
111062
111063
111064
111065
111066
111067
111068
111069
|
-
+
-
+
|
assert( pLevel->iIdxCur>=0 );
pLevel->iIdxCur = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
VdbeComment((v, "for %s", pTable->zName));
/* Fill the automatic index with content */
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
regRecord = sqlite3GetTempReg(pParse);
sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
sqlite3VdbeJumpHere(v, addrTop);
sqlite3ReleaseTempReg(pParse, regRecord);
/* Jump here when skipping the initialization */
sqlite3VdbeJumpHere(v, addrInit);
}
|
︙ | | |
110736
110737
110738
110739
110740
110741
110742
110743
110744
110745
110746
110747
110748
110749
110750
110751
110752
110753
110754
110755
110756
110757
110758
110759
110760
110761
110762
110763
110764
110765
110766
110767
110768
110769
110770
110771
110772
110773
110774
|
111255
111256
111257
111258
111259
111260
111261
111262
111263
111264
111265
111266
111267
111268
111269
111270
111271
111272
111273
111274
111275
111276
111277
111278
111279
111280
111281
111282
111283
111284
111285
111286
111287
111288
111289
111290
111291
111292
111293
|
-
+
-
+
-
+
-
+
|
#endif
assert( pRec!=0 );
iCol = pRec->nField - 1;
assert( pIdx->nSample>0 );
assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
do{
iTest = (iMin+i)/2;
res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0);
if( res<0 ){
iMin = iTest+1;
}else{
i = iTest;
}
}while( res && iMin<i );
#ifdef SQLITE_DEBUG
/* The following assert statements check that the binary search code
** above found the right answer. This block serves no purpose other
** than to invoke the asserts. */
if( res==0 ){
/* If (res==0) is true, then sample $i must be equal to pRec */
assert( i<pIdx->nSample );
assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)
|| pParse->db->mallocFailed );
}else{
/* Otherwise, pRec must be smaller than sample $i and larger than
** sample ($i-1). */
assert( i==pIdx->nSample
|| sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
|| sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0
|| pParse->db->mallocFailed );
assert( i==0
|| sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
|| sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0
|| pParse->db->mallocFailed );
}
#endif /* ifdef SQLITE_DEBUG */
/* At this point, aSample[i] is the first sample that is greater than
** or equal to pVal. Or if i==pIdx->nSample, then all samples are less
** than pVal. If aSample[i]==pVal, then res==0.
|
︙ | | |
111212
111213
111214
111215
111216
111217
111218
111219
111220
111221
111222
111223
111224
111225
111226
111227
111228
111229
111230
111231
111232
111233
111234
111235
111236
111237
111238
111239
111240
111241
111242
111243
111244
111245
|
111731
111732
111733
111734
111735
111736
111737
111738
111739
111740
111741
111742
111743
111744
111745
111746
111747
111748
111749
111750
111751
111752
111753
111754
111755
111756
111757
111758
111759
111760
111761
111762
111763
111764
111765
111766
|
+
+
-
+
|
eType = sqlite3FindInIndex(pParse, pX, 0);
if( eType==IN_INDEX_INDEX_DESC ){
testcase( bRev );
bRev = !bRev;
}
iTab = pX->iTable;
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
VdbeCoverageIf(v, bRev);
VdbeCoverageIf(v, !bRev);
assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
pLoop->wsFlags |= WHERE_IN_ABLE;
if( pLevel->u.in.nIn==0 ){
pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
}
pLevel->u.in.nIn++;
pLevel->u.in.aInLoop =
sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
pIn = pLevel->u.in.aInLoop;
if( pIn ){
pIn += pLevel->u.in.nIn - 1;
pIn->iCur = iTab;
if( eType==IN_INDEX_ROWID ){
pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
}else{
pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
}
pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
}else{
pLevel->u.in.nIn = 0;
}
#endif
}
disableTerm(pLevel, pTerm);
return iReg;
|
︙ | | |
111326
111327
111328
111329
111330
111331
111332
111333
111334
111335
111336
111337
111338
111339
111340
111341
111342
111343
|
111847
111848
111849
111850
111851
111852
111853
111854
111855
111856
111857
111858
111859
111860
111861
111862
111863
111864
111865
111866
111867
111868
|
+
+
-
+
+
+
|
if( !zAff ){
pParse->db->mallocFailed = 1;
}
if( nSkip ){
int iIdxCur = pLevel->iIdxCur;
sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
j = sqlite3VdbeAddOp0(v, OP_Goto);
pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLt:OP_SeekGt),
pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
iIdxCur, 0, regBase, nSkip);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
sqlite3VdbeJumpHere(v, j);
for(j=0; j<nSkip; j++){
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
assert( pIdx->aiColumn[j]>=0 );
VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
}
}
|
︙ | | |
111362
111363
111364
111365
111366
111367
111368
111369
111370
111371
111372
111373
111374
111375
111376
|
111887
111888
111889
111890
111891
111892
111893
111894
111895
111896
111897
111898
111899
111900
111901
111902
111903
111904
|
+
-
+
+
+
|
sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
}
}
testcase( pTerm->eOperator & WO_ISNULL );
testcase( pTerm->eOperator & WO_IN );
if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
Expr *pRight = pTerm->pExpr->pRight;
if( sqlite3ExprCanBeNull(pRight) ){
sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
VdbeCoverage(v);
}
if( zAff ){
if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
zAff[j] = SQLITE_AFF_NONE;
}
if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
zAff[j] = SQLITE_AFF_NONE;
}
|
︙ | | |
111608
111609
111610
111611
111612
111613
111614
111615
111616
111617
111618
111619
111620
111621
111622
111623
111624
111625
|
112136
112137
112138
112139
112140
112141
112142
112143
112144
112145
112146
112147
112148
112149
112150
112151
112152
112153
|
-
-
-
+
+
+
+
-
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
VdbeComment((v, "init LEFT JOIN no-match flag"));
}
/* Special case of a FROM clause subquery implemented as a co-routine */
if( pTabItem->viaCoroutine ){
int regYield = pTabItem->regReturn;
sqlite3VdbeAddOp2(v, OP_Integer, pTabItem->addrFillSub-1, regYield);
pLevel->p2 = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
VdbeCoverage(v);
VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk);
pLevel->op = OP_Goto;
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
/* Case 1: The table is a virtual-table. Use the VFilter and VNext
** to access the data.
|
︙ | | |
111643
111644
111645
111646
111647
111648
111649
111650
111651
111652
111653
111654
111655
111656
|
112171
112172
112173
112174
112175
112176
112177
112178
112179
112180
112181
112182
112183
112184
112185
|
+
|
}
}
sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
pLoop->u.vtab.idxStr,
pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
VdbeCoverage(v);
pLoop->u.vtab.needFree = 0;
for(j=0; j<nConstraint && j<16; j++){
if( (pLoop->u.vtab.omitMask>>j)&1 ){
disableTerm(pLevel, pLoop->aLTerm[j]);
}
}
pLevel->op = OP_VNext;
|
︙ | | |
111666
111667
111668
111669
111670
111671
111672
111673
111674
111675
111676
111677
111678
111679
111680
111681
111682
111683
111684
111685
111686
111687
111688
111689
|
112195
112196
112197
112198
112199
112200
112201
112202
112203
112204
112205
112206
112207
112208
112209
112210
112211
112212
112213
112214
112215
112216
112217
112218
112219
112220
|
-
+
+
-
+
+
|
){
/* Case 2: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
assert( pLoop->u.btree.nEq==1 );
iReleaseReg = sqlite3GetTempReg(pParse);
pTerm = pLoop->aLTerm[0];
assert( pTerm!=0 );
assert( pTerm->pExpr!=0 );
assert( omitTable==0 );
testcase( pTerm->wtFlags & TERM_VIRTUAL );
iReleaseReg = ++pParse->nMem;
iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
addrNxt = pLevel->addrNxt;
sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
VdbeCoverage(v);
sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
VdbeComment((v, "pk"));
pLevel->op = OP_Noop;
}else if( (pLoop->wsFlags & WHERE_IPK)!=0
&& (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
){
|
︙ | | |
111709
111710
111711
111712
111713
111714
111715
111716
111717
111718
111719
111720
111721
111722
111723
111724
111725
111726
111727
111728
111729
111730
111731
111732
111733
111734
111735
111736
111737
111738
111739
111740
111741
111742
111743
111744
|
112240
112241
112242
112243
112244
112245
112246
112247
112248
112249
112250
112251
112252
112253
112254
112255
112256
112257
112258
112259
112260
112261
112262
112263
112264
112265
112266
112267
112268
112269
112270
112271
112272
112273
112274
112275
112276
112277
112278
112279
112280
112281
|
-
-
-
-
+
+
+
+
+
+
+
+
+
+
|
Expr *pX; /* The expression that defines the start bound */
int r1, rTemp; /* Registers for holding the start boundary */
/* The following constant maps TK_xx codes into corresponding
** seek opcodes. It depends on a particular ordering of TK_xx
*/
const u8 aMoveOp[] = {
/* TK_GT */ OP_SeekGt,
/* TK_LE */ OP_SeekLe,
/* TK_LT */ OP_SeekLt,
/* TK_GE */ OP_SeekGe
/* TK_GT */ OP_SeekGT,
/* TK_LE */ OP_SeekLE,
/* TK_LT */ OP_SeekLT,
/* TK_GE */ OP_SeekGE
};
assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
assert( (pStart->wtFlags & TERM_VNULL)==0 );
testcase( pStart->wtFlags & TERM_VIRTUAL );
pX = pStart->pExpr;
assert( pX!=0 );
testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
VdbeComment((v, "pk"));
VdbeCoverageIf(v, pX->op==TK_GT);
VdbeCoverageIf(v, pX->op==TK_LE);
VdbeCoverageIf(v, pX->op==TK_LT);
VdbeCoverageIf(v, pX->op==TK_GE);
sqlite3ExprCacheAffinityChange(pParse, r1, 1);
sqlite3ReleaseTempReg(pParse, rTemp);
disableTerm(pLevel, pStart);
}else{
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
}
if( pEnd ){
Expr *pX;
pX = pEnd->pExpr;
assert( pX!=0 );
assert( (pEnd->wtFlags & TERM_VNULL)==0 );
testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
|
︙ | | |
111754
111755
111756
111757
111758
111759
111760
111761
111762
111763
111764
111765
111766
111767
111768
111769
111770
111771
|
112291
112292
112293
112294
112295
112296
112297
112298
112299
112300
112301
112302
112303
112304
112305
112306
112307
112308
112309
112310
112311
112312
|
-
+
+
+
+
+
|
}
start = sqlite3VdbeCurrentAddr(v);
pLevel->op = bRev ? OP_Prev : OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
assert( pLevel->p5==0 );
if( testOp!=OP_Noop ){
iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
iRowidReg = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
VdbeCoverageIf(v, testOp==OP_Le);
VdbeCoverageIf(v, testOp==OP_Lt);
VdbeCoverageIf(v, testOp==OP_Ge);
VdbeCoverageIf(v, testOp==OP_Gt);
sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
}
}else if( pLoop->wsFlags & WHERE_INDEXED ){
/* Case 4: A scan using an index.
**
** The WHERE clause may contain zero or more equality
** terms ("==" or "IN" operators) that refer to the N
|
︙ | | |
111797
111798
111799
111800
111801
111802
111803
111804
111805
111806
111807
111808
111809
111810
111811
111812
111813
111814
111815
111816
111817
111818
111819
111820
111821
111822
111823
111824
111825
111826
111827
111828
111829
111830
111831
111832
111833
111834
111835
111836
111837
111838
111839
111840
111841
111842
111843
111844
111845
111846
111847
111848
111849
111850
111851
111852
111853
111854
111855
111856
111857
111858
111859
111860
111861
111862
111863
111864
111865
111866
111867
111868
111869
111870
111871
111872
111873
111874
111875
111876
111877
111878
111879
111880
111881
111882
111883
111884
111885
111886
111887
111888
111889
111890
111891
111892
111893
111894
111895
111896
111897
111898
111899
111900
111901
111902
111903
111904
111905
111906
111907
111908
111909
111910
111911
111912
111913
111914
111915
111916
111917
111918
111919
111920
111921
111922
111923
111924
111925
111926
111927
111928
111929
111930
111931
111932
111933
111934
111935
111936
111937
111938
111939
111940
111941
111942
111943
111944
111945
111946
111947
111948
111949
111950
111951
111952
111953
111954
111955
111956
111957
111958
111959
111960
111961
111962
111963
111964
111965
111966
111967
111968
111969
111970
111971
111972
111973
111974
111975
111976
111977
111978
111979
111980
111981
111982
111983
111984
111985
111986
111987
111988
111989
111990
111991
111992
111993
111994
111995
111996
111997
111998
111999
112000
112001
112002
112003
112004
112005
112006
112007
112008
112009
112010
112011
112012
112013
112014
112015
112016
112017
112018
112019
112020
|
112338
112339
112340
112341
112342
112343
112344
112345
112346
112347
112348
112349
112350
112351
112352
112353
112354
112355
112356
112357
112358
112359
112360
112361
112362
112363
112364
112365
112366
112367
112368
112369
112370
112371
112372
112373
112374
112375
112376
112377
112378
112379
112380
112381
112382
112383
112384
112385
112386
112387
112388
112389
112390
112391
112392
112393
112394
112395
112396
112397
112398
112399
112400
112401
112402
112403
112404
112405
112406
112407
112408
112409
112410
112411
112412
112413
112414
112415
112416
112417
112418
112419
112420
112421
112422
112423
112424
112425
112426
112427
112428
112429
112430
112431
112432
112433
112434
112435
112436
112437
112438
112439
112440
112441
112442
112443
112444
112445
112446
112447
112448
112449
112450
112451
112452
112453
112454
112455
112456
112457
112458
112459
112460
112461
112462
112463
112464
112465
112466
112467
112468
112469
112470
112471
112472
112473
112474
112475
112476
112477
112478
112479
112480
112481
112482
112483
112484
112485
112486
112487
112488
112489
112490
112491
112492
112493
112494
112495
112496
112497
112498
112499
112500
112501
112502
112503
112504
112505
112506
112507
112508
112509
112510
112511
112512
112513
112514
112515
112516
112517
112518
112519
112520
112521
112522
112523
112524
112525
112526
112527
112528
112529
112530
112531
112532
112533
112534
112535
112536
112537
112538
112539
112540
112541
112542
112543
112544
112545
112546
112547
112548
112549
112550
112551
112552
112553
112554
112555
112556
112557
112558
112559
112560
112561
112562
112563
112564
112565
|
-
-
-
-
+
+
+
+
-
-
-
+
+
+
+
-
-
+
+
-
+
+
+
+
+
+
+
+
+
-
-
+
+
+
+
+
-
+
-
+
+
+
-
-
-
-
-
-
+
+
+
+
+
+
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
-
-
+
+
+
+
+
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
+
+
+
|
** to force the output order to conform to an ORDER BY.
*/
static const u8 aStartOp[] = {
0,
0,
OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
OP_Last, /* 3: (!start_constraints && startEq && bRev) */
OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
};
static const u8 aEndOp[] = {
OP_Noop, /* 0: (!end_constraints) */
OP_IdxGE, /* 1: (end_constraints && !bRev) */
OP_IdxLT /* 2: (end_constraints && bRev) */
OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
};
u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
int regBase; /* Base register holding constraint values */
int r1; /* Temp register */
WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
int startEq; /* True if range start uses ==, >= or <= */
int endEq; /* True if range end uses ==, >= or <= */
int start_constraints; /* Start of range is constrained */
int nConstraint; /* Number of constraint terms */
Index *pIdx; /* The index we will be using */
int iIdxCur; /* The VDBE cursor for the index */
int nExtraReg = 0; /* Number of extra registers needed */
int op; /* Instruction opcode */
char *zStartAff; /* Affinity for start of range constraint */
char cEndAff = 0; /* Affinity for end of range constraint */
u8 bSeekPastNull = 0; /* True to seek past initial nulls */
u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
pIdx = pLoop->u.btree.pIndex;
iIdxCur = pLevel->iIdxCur;
assert( nEq>=pLoop->u.btree.nSkip );
/* If this loop satisfies a sort order (pOrderBy) request that
** was passed to this function to implement a "SELECT min(x) ..."
** query, then the caller will only allow the loop to run for
** a single iteration. This means that the first row returned
** should not have a NULL value stored in 'x'. If column 'x' is
** the first one after the nEq equality constraints in the index,
** this requires some special handling.
*/
if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
&& (pWInfo->bOBSat!=0)
&& (pIdx->nKeyCol>nEq)
){
assert( pLoop->u.btree.nSkip==0 );
isMinQuery = 1;
bSeekPastNull = 1;
nExtraReg = 1;
}
/* Find any inequality constraint terms for the start and end
** of the range.
*/
j = nEq;
if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
pRangeStart = pLoop->aLTerm[j++];
nExtraReg = 1;
}
if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
pRangeEnd = pLoop->aLTerm[j++];
nExtraReg = 1;
if( pRangeStart==0
&& (pRangeEnd->wtFlags & TERM_VNULL)==0
&& (j = pIdx->aiColumn[nEq])>=0
&& pIdx->pTable->aCol[j].notNull==0
){
bSeekPastNull = 1;
}
}
/* Generate code to evaluate all constraint terms using == or IN
** and store the values of those terms in an array of registers
** starting at regBase.
*/
regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
if( zStartAff ) cEndAff = zStartAff[nEq];
addrNxt = pLevel->addrNxt;
/* If we are doing a reverse order scan on an ascending index, or
** a forward order scan on a descending index, interchange the
** start and end terms (pRangeStart and pRangeEnd).
*/
if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
|| (bRev && pIdx->nKeyCol==nEq)
){
SWAP(WhereTerm *, pRangeEnd, pRangeStart);
SWAP(u8, bSeekPastNull, bStopAtNull);
}
testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
start_constraints = pRangeStart || nEq>0;
/* Seek the index cursor to the start of the range. */
nConstraint = nEq;
if( pRangeStart ){
Expr *pRight = pRangeStart->pExpr->pRight;
sqlite3ExprCode(pParse, pRight, regBase+nEq);
if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
if( (pRangeStart->wtFlags & TERM_VNULL)==0
&& sqlite3ExprCanBeNull(pRight)
){
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
VdbeCoverage(v);
}
if( zStartAff ){
if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
/* Since the comparison is to be performed with no conversions
** applied to the operands, set the affinity to apply to pRight to
** SQLITE_AFF_NONE. */
zStartAff[nEq] = SQLITE_AFF_NONE;
}
if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
zStartAff[nEq] = SQLITE_AFF_NONE;
}
}
nConstraint++;
testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
}else if( isMinQuery ){
}else if( bSeekPastNull ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
nConstraint++;
startEq = 0;
start_constraints = 1;
}
codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
assert( op!=0 );
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
VdbeCoverage(v);
testcase( op==OP_Rewind );
testcase( op==OP_Last );
testcase( op==OP_SeekGt );
testcase( op==OP_SeekGe );
testcase( op==OP_SeekLe );
testcase( op==OP_SeekLt );
VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
/* Load the value for the inequality constraint at the end of the
** range (if any).
*/
nConstraint = nEq;
if( pRangeEnd ){
Expr *pRight = pRangeEnd->pExpr->pRight;
sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
sqlite3ExprCode(pParse, pRight, regBase+nEq);
if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
if( (pRangeEnd->wtFlags & TERM_VNULL)==0
&& sqlite3ExprCanBeNull(pRight)
){
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
VdbeCoverage(v);
}
if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE
&& !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
){
codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
}
nConstraint++;
testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
}else if( bStopAtNull ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
endEq = 0;
nConstraint++;
}
sqlite3DbFree(db, zStartAff);
/* Top of the loop body */
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
/* Check if the index cursor is past the end of the range. */
if( nConstraint ){
op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
testcase( op==OP_Noop );
testcase( op==OP_IdxGE );
testcase( op==OP_IdxLT );
op = aEndOp[bRev*2 + endEq];
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
if( op!=OP_Noop ){
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
}
testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
/* If there are inequality constraints, check that the value
** of the table column that the inequality contrains is not NULL.
** If it is, jump to the next iteration of the loop.
*/
r1 = sqlite3GetTempReg(pParse);
testcase( pLoop->wsFlags & WHERE_BTM_LIMIT );
testcase( pLoop->wsFlags & WHERE_TOP_LIMIT );
if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
&& (j = pIdx->aiColumn[nEq])>=0
&& pIdx->pTable->aCol[j].notNull==0
&& (nEq || (pLoop->wsFlags & WHERE_BTM_LIMIT)==0)
){
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
VdbeComment((v, "%s", pIdx->pTable->aCol[j].zName));
sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
}
sqlite3ReleaseTempReg(pParse, r1);
/* Seek the table cursor, if required */
disableTerm(pLevel, pRangeStart);
disableTerm(pLevel, pRangeEnd);
if( omitTable ){
/* pIdx is a covering index. No need to access the main table. */
}else if( HasRowid(pIdx->pTable) ){
iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
iRowidReg = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
}else{
Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
for(j=0; j<pPk->nKeyCol; j++){
k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
}
sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
iRowidReg, pPk->nKeyCol);
iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
}
/* Record the instruction used to terminate the loop. Disable
** WHERE clause terms made redundant by the index range scan.
*/
if( pLoop->wsFlags & WHERE_ONEROW ){
pLevel->op = OP_Noop;
}else if( bRev ){
pLevel->op = OP_Prev;
}else{
pLevel->op = OP_Next;
}
pLevel->p1 = iIdxCur;
assert( (WHERE_UNQ_WANTED>>16)==1 );
pLevel->p3 = (pLoop->wsFlags>>16)&1;
if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
}else{
assert( pLevel->p5==0 );
}
}else
|
︙ | | |
112175
112176
112177
112178
112179
112180
112181
112182
112183
112184
112185
112186
112187
112188
|
112720
112721
112722
112723
112724
112725
112726
112727
112728
112729
112730
112731
112732
112733
112734
|
+
|
if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
int r;
r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
regRowid, 0);
sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
sqlite3VdbeCurrentAddr(v)+2, r, iSet);
VdbeCoverage(v);
}
sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
/* The pSubWInfo->untestedTerms flag means that this OR term
** contained one or more AND term from a notReady table. The
** terms from the notReady table could not be tested and will
** need to be tested later.
|
︙ | | |
112243
112244
112245
112246
112247
112248
112249
112250
112251
112252
112253
112254
112255
112256
|
112789
112790
112791
112792
112793
112794
112795
112796
112797
112798
112799
112800
112801
112802
112803
112804
|
+
+
|
/* Tables marked isRecursive have only a single row that is stored in
** a pseudo-cursor. No need to Rewind or Next such cursors. */
pLevel->op = OP_Noop;
}else{
pLevel->op = aStep[bRev];
pLevel->p1 = iCur;
pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
}
}
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
|
︙ | | |
112324
112325
112326
112327
112328
112329
112330
112331
112332
112333
112334
112335
112336
112337
112338
|
112872
112873
112874
112875
112876
112877
112878
112879
112880
112881
112882
112883
112884
112885
|
-
|
continue;
}
assert( pTerm->pExpr );
sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
pTerm->wtFlags |= TERM_CODED;
}
}
sqlite3ReleaseTempReg(pParse, iReleaseReg);
return pLevel->notReady;
}
#if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
/*
** Generate "Explanation" text for a WhereTerm.
|
︙ | | |
112811
112812
112813
112814
112815
112816
112817
112818
112819
112820
112821
112822
112823
112824
112825
112826
112827
112828
112829
112830
|
113358
113359
113360
113361
113362
113363
113364
113365
113366
113367
113368
113369
113370
113371
113372
113373
113374
113375
113376
113377
113378
|
-
-
-
+
-
+
+
+
-
+
+
|
pNew->nOut = nRowEst + nInMul + nIn;
}else if( pTerm->eOperator & (WO_EQ) ){
assert(
(pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN|WHERE_SKIPSCAN))!=0
|| nInMul==0
);
pNew->wsFlags |= WHERE_COLUMN_EQ;
if( iCol<0
|| (pProbe->onError!=OE_None && nInMul==0
&& pNew->u.btree.nEq==pProbe->nKeyCol-1)
if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1)){
){
assert( (pNew->wsFlags & WHERE_COLUMN_IN)==0 || iCol<0 );
if( iCol>=0 && pProbe->onError==OE_None ){
pNew->wsFlags |= WHERE_UNQ_WANTED;
}else{
pNew->wsFlags |= WHERE_ONEROW;
pNew->wsFlags |= WHERE_ONEROW;
}
}
pNew->u.btree.nEq++;
pNew->nOut = nRowEst + nInMul;
}else if( pTerm->eOperator & (WO_ISNULL) ){
pNew->wsFlags |= WHERE_COLUMN_NULL;
pNew->u.btree.nEq++;
/* TUNING: IS NULL selects 2 rows */
|
︙ | | |
113695
113696
113697
113698
113699
113700
113701
113702
113703
113704
113705
113706
113707
113708
113709
113710
113711
|
114243
114244
114245
114246
114247
114248
114249
114250
114251
114252
114253
114254
114255
114256
114257
114258
114259
114260
114261
114262
|
+
-
+
+
+
|
} /* end-if not one-row */
/* Mark off any other ORDER BY terms that reference pLoop */
if( isOrderDistinct ){
orderDistinctMask |= pLoop->maskSelf;
for(i=0; i<nOrderBy; i++){
Expr *p;
Bitmask mTerm;
if( MASKBIT(i) & obSat ) continue;
p = pOrderBy->a[i].pExpr;
if( (exprTableUsage(&pWInfo->sMaskSet, p)&~orderDistinctMask)==0 ){
mTerm = exprTableUsage(&pWInfo->sMaskSet,p);
if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
if( (mTerm&~orderDistinctMask)==0 ){
obSat |= MASKBIT(i);
}
}
}
} /* End the loop over all WhereLoops from outer-most down to inner-most */
if( obSat==obDone ) return 1;
if( !isOrderDistinct ) return 0;
|
︙ | | |
114259
114260
114261
114262
114263
114264
114265
114266
114267
114268
114269
114270
114271
114272
114273
|
114810
114811
114812
114813
114814
114815
114816
114817
114818
114819
114820
114821
114822
114823
|
-
|
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator.
*/
initMaskSet(pMaskSet);
whereClauseInit(&pWInfo->sWC, pWInfo);
whereSplit(&pWInfo->sWC, pWhere, TK_AND);
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
for(ii=0; ii<sWLB.pWC->nTerm; ii++){
if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
|
︙ | | |
114321
114322
114323
114324
114325
114326
114327
114328
114329
114330
114331
114332
114333
114334
114335
114336
114337
114338
114339
114340
114341
114342
114343
114344
114345
114346
114347
114348
114349
114350
|
114871
114872
114873
114874
114875
114876
114877
114878
114879
114880
114881
114882
114883
114884
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
** and work forward so that the added virtual terms are never processed.
*/
exprAnalyzeAll(pTabList, &pWInfo->sWC);
if( db->mallocFailed ){
goto whereBeginError;
}
/* If the ORDER BY (or GROUP BY) clause contains references to general
** expressions, then we won't be able to satisfy it using indices, so
** go ahead and disable it now.
*/
if( pOrderBy && (wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){
for(ii=0; ii<pOrderBy->nExpr; ii++){
Expr *pExpr = sqlite3ExprSkipCollate(pOrderBy->a[ii].pExpr);
if( pExpr->op!=TK_COLUMN ){
pWInfo->pOrderBy = pOrderBy = 0;
break;
}else if( pExpr->iColumn<0 ){
break;
}
}
}
if( wctrlFlags & WHERE_WANT_DISTINCT ){
if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
/* The DISTINCT marking is pointless. Ignore it. */
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}else if( pOrderBy==0 ){
/* Try to ORDER BY the result set to make distinct processing easier */
pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
|
︙ | | |
114548
114549
114550
114551
114552
114553
114554
114555
114556
114557
114558
114559
114560
114561
114562
|
115082
115083
115084
115085
115086
115087
115088
115089
115090
115091
115092
115093
115094
115095
115096
|
-
+
|
pLevel->iIdxCur = iIndexCur;
assert( pIx->pSchema==pTab->pSchema );
assert( iIndexCur>=0 );
sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
sqlite3VdbeSetP4KeyInfo(pParse, pIx);
VdbeComment((v, "%s", pIx->zName));
}
sqlite3CodeVerifySchema(pParse, iDb);
if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
if( db->mallocFailed ) goto whereBeginError;
/* Generate the code to do the search. Each iteration of the for
** loop below generates code for a single nested loop of the VM
|
︙ | | |
114610
114611
114612
114613
114614
114615
114616
114617
114618
114619
114620
114621
114622
114623
114624
114625
114626
114627
114628
114629
114630
114631
114632
114633
114634
114635
114636
114637
114638
114639
114640
114641
114642
114643
114644
114645
114646
|
115144
115145
115146
115147
115148
115149
115150
115151
115152
115153
115154
115155
115156
115157
115158
115159
115160
115161
115162
115163
115164
115165
115166
115167
115168
115169
115170
115171
115172
115173
115174
115175
115176
115177
115178
115179
115180
115181
115182
115183
115184
115185
115186
115187
|
-
+
+
+
+
+
+
+
+
-
+
|
sqlite3ExprCacheClear(pParse);
for(i=pWInfo->nLevel-1; i>=0; i--){
int addr;
pLevel = &pWInfo->a[i];
pLoop = pLevel->pWLoop;
sqlite3VdbeResolveLabel(v, pLevel->addrCont);
if( pLevel->op!=OP_Noop ){
sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
sqlite3VdbeChangeP5(v, pLevel->p5);
VdbeCoverage(v);
VdbeCoverageIf(v, pLevel->op==OP_Next);
VdbeCoverageIf(v, pLevel->op==OP_Prev);
VdbeCoverageIf(v, pLevel->op==OP_VNext);
}
if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
struct InLoop *pIn;
int j;
sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
VdbeCoverage(v);
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
}
sqlite3DbFree(db, pLevel->u.in.aInLoop);
}
sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
if( pLevel->addrSkip ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip);
VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
sqlite3VdbeJumpHere(v, pLevel->addrSkip);
sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
}
if( pLevel->iLeftJoin ){
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
|| (pLoop->wsFlags & WHERE_INDEXED)!=0 );
if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
}
if( pLoop->wsFlags & WHERE_INDEXED ){
sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
|
︙ | | |
114659
114660
114661
114662
114663
114664
114665
114666
114667
114668
114669
114670
114671
114672
114673
114674
114675
114676
114677
|
115200
115201
115202
115203
115204
115205
115206
115207
115208
115209
115210
115211
115212
115213
115214
115215
115216
115217
115218
115219
115220
115221
115222
115223
115224
115225
115226
115227
115228
115229
115230
115231
115232
115233
115234
115235
115236
115237
115238
115239
115240
115241
115242
115243
115244
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
/* The "break" point is here, just past the end of the outer loop.
** Set it.
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
assert( pWInfo->nLevel<=pTabList->nSrc );
for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
int k, last;
VdbeOp *pOp;
Index *pIdx = 0;
struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
pLoop = pLevel->pWLoop;
/* For a co-routine, change all OP_Column references to the table of
** the co-routine into OP_SCopy of result contained in a register.
** OP_Rowid becomes OP_Null.
*/
if( pTabItem->viaCoroutine && !db->mallocFailed ){
last = sqlite3VdbeCurrentAddr(v);
k = pLevel->addrBody;
pOp = sqlite3VdbeGetOp(v, k);
for(; k<last; k++, pOp++){
if( pOp->p1!=pLevel->iTabCur ) continue;
if( pOp->opcode==OP_Column ){
pOp->opcode = OP_SCopy;
pOp->p1 = pOp->p2 + pTabItem->regResult;
pOp->p2 = pOp->p3;
pOp->p3 = 0;
}else if( pOp->opcode==OP_Rowid ){
pOp->opcode = OP_Null;
pOp->p1 = 0;
pOp->p3 = 0;
}
}
continue;
}
/* Close all of the cursors that were opened by sqlite3WhereBegin.
** Except, do not close cursors that will be reused by the OR optimization
** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors
** created for the ONEPASS optimization.
*/
if( (pTab->tabFlags & TF_Ephemeral)==0
|
︙ | | |
114703
114704
114705
114706
114707
114708
114709
114710
114711
114712
114713
114714
114715
114716
114717
114718
114719
|
115270
115271
115272
115273
115274
115275
115276
115277
115278
115279
115280
115281
115282
115283
|
-
-
-
|
*/
if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
pIdx = pLoop->u.btree.pIndex;
}else if( pLoop->wsFlags & WHERE_MULTI_OR ){
pIdx = pLevel->u.pCovidx;
}
if( pIdx && !db->mallocFailed ){
int k, last;
VdbeOp *pOp;
last = sqlite3VdbeCurrentAddr(v);
k = pLevel->addrBody;
pOp = sqlite3VdbeGetOp(v, k);
for(; k<last; k++, pOp++){
if( pOp->p1!=pLevel->iTabCur ) continue;
if( pOp->opcode==OP_Column ){
int x = pOp->p2;
|
︙ | | |
117119
117120
117121
117122
117123
117124
117125
117126
117127
117128
117129
117130
117131
117132
117133
117134
117135
117136
117137
117138
117139
117140
117141
117142
117143
117144
117145
117146
117147
117148
117149
117150
117151
117152
117153
117154
117155
|
117683
117684
117685
117686
117687
117688
117689
117690
117691
117692
117693
117694
117695
117696
117697
117698
117699
117700
117701
117702
117703
117704
117705
117706
117707
117708
117709
117710
117711
117712
117713
117714
117715
117716
117717
117718
117719
117720
117721
117722
117723
117724
117725
117726
117727
117728
117729
117730
117731
117732
117733
117734
117735
117736
117737
117738
117739
117740
|
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
-
+
|
sqlite3ExplainBegin(pParse->pVdbe);
sqlite3ExplainSelect(pParse->pVdbe, yymsp[0].minor.yy3);
sqlite3ExplainFinish(pParse->pVdbe);
sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
}
break;
case 112: /* select ::= with selectnowith */
{
if( yymsp[0].minor.yy3 ){
yymsp[0].minor.yy3->pWith = yymsp[-1].minor.yy59;
{
Select *p = yymsp[0].minor.yy3, *pNext, *pLoop;
if( p ){
int cnt = 0, mxSelect;
p->pWith = yymsp[-1].minor.yy59;
if( p->pPrior ){
pNext = 0;
for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
pLoop->pNext = pNext;
pLoop->selFlags |= SF_Compound;
}
mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
if( mxSelect && cnt>mxSelect ){
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
}
}
}else{
sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy59);
}
yygotominor.yy3 = yymsp[0].minor.yy3;
yygotominor.yy3 = p;
}
break;
case 113: /* selectnowith ::= oneselect */
case 119: /* oneselect ::= values */ yytestcase(yyruleno==119);
{yygotominor.yy3 = yymsp[0].minor.yy3;}
break;
case 114: /* selectnowith ::= selectnowith multiselect_op oneselect */
{
if( yymsp[0].minor.yy3 ){
yymsp[0].minor.yy3->op = (u8)yymsp[-1].minor.yy328;
yymsp[0].minor.yy3->pPrior = yymsp[-2].minor.yy3;
Select *pRhs = yymsp[0].minor.yy3;
if( pRhs && pRhs->pPrior ){
SrcList *pFrom;
Token x;
x.n = 0;
pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
}
if( pRhs ){
pRhs->op = (u8)yymsp[-1].minor.yy328;
pRhs->pPrior = yymsp[-2].minor.yy3;
if( yymsp[-1].minor.yy328!=TK_ALL ) pParse->hasCompound = 1;
}else{
sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy3);
}
yygotominor.yy3 = yymsp[0].minor.yy3;
yygotominor.yy3 = pRhs;
}
break;
case 116: /* multiselect_op ::= UNION ALL */
{yygotominor.yy328 = TK_ALL;}
break;
case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
|
︙ | | |
122709
122710
122711
122712
122713
122714
122715
122716
122717
122718
122719
122720
122721
122722
|
123294
123295
123296
123297
123298
123299
123300
123301
123302
123303
123304
123305
123306
123307
123308
123309
123310
123311
123312
123313
123314
123315
123316
123317
123318
123319
123320
123321
123322
|
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
** that demonstrat invariants on well-formed database files.
*/
case SQLITE_TESTCTRL_NEVER_CORRUPT: {
sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
break;
}
/* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
**
** Set the VDBE coverage callback function to xCallback with context
** pointer ptr.
*/
case SQLITE_TESTCTRL_VDBE_COVERAGE: {
#ifdef SQLITE_VDBE_COVERAGE
typedef void (*branch_callback)(void*,int,u8,u8);
sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
#endif
break;
}
}
va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
return rc;
}
/*
|
︙ | | |