/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** ** $Id: where.c,v 1.4 2005/05/24 22:10:31 rmsimpson Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. ** ** The idxLeft and idxRight fields are the VDBE cursor numbers for the ** table that contains the column that appears on the left-hand and ** right-hand side of ExprInfo.p. If either side of ExprInfo.p is ** something other than a simple column reference, then idxLeft or ** idxRight are -1. ** ** It is the VDBE cursor number is the value stored in Expr.iTable ** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor. ** ** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers, ** but they do so indirectly. A single ExprMaskSet structure translates ** cursor number into bits and the translated bit is stored in the prereq ** fields. The translation is used in order to maximize the number of ** bits that will fit in a Bitmask. The VDBE cursor numbers might be ** spread out over the non-negative integers. For example, the cursor ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet ** translates these sparse cursor numbers into consecutive integers ** beginning with 0 in order to make the best possible use of the available ** bits in the Bitmask. So, in the example above, the cursor numbers ** would be mapped into integers 0 through 7. ** ** prereqLeft tells us every VDBE cursor that is referenced on the ** left-hand side of ExprInfo.p. prereqRight does the same for the ** right-hand side of the expression. The following identity always ** holds: ** ** prereqAll = prereqLeft | prereqRight ** ** The ExprInfo.indexable field is true if the ExprInfo.p expression ** is of a form that might control an index. Indexable expressions ** look like this: ** ** ** ** Where is a simple column name and is on of the operators ** that allowedOp() recognizes. */ typedef struct ExprInfo ExprInfo; struct ExprInfo { Expr *p; /* Pointer to the subexpression */ u8 indexable; /* True if this subexprssion is usable by an index */ short int idxLeft; /* p->pLeft is a column in this table number. -1 if ** p->pLeft is not the column of any table */ short int idxRight; /* p->pRight is a column in this table number. -1 if ** p->pRight is not the column of any table */ Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */ Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */ Bitmask prereqAll; /* Bitmask of tables referenced by p */ }; /* ** An instance of the following structure keeps track of a mapping ** between VDBE cursor numbers and bits of the bitmasks in ExprInfo. ** ** The VDBE cursor numbers are small integers contained in ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE ** clause, the cursor numbers might not begin with 0 and they might ** contain gaps in the numbering sequence. But we want to make maximum ** use of the bits in our bitmasks. This structure provides a mapping ** from the sparse cursor numbers into consecutive integers beginning ** with 0. ** ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<3, 5->1, 8->2, 29->0, ** 57->5, 73->4. Or one of 719 other combinations might be used. It ** does not really matter. What is important is that sparse cursor ** numbers all get mapped into bit numbers that begin with 0 and contain ** no gaps. */ typedef struct ExprMaskSet ExprMaskSet; struct ExprMaskSet { int n; /* Number of assigned cursor values */ int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ }; /* ** Determine the number of elements in an array. */ #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) /* ** This routine identifies subexpressions in the WHERE clause where ** each subexpression is separate by the AND operator. aSlot is ** filled with pointers to the subexpressions. For example: ** ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) ** \________/ \_______________/ \________________/ ** slot[0] slot[1] slot[2] ** ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make aSlot[] entries point to substructure within pExpr. ** ** aSlot[] is an array of subexpressions structures. There are nSlot ** spaces left in this array. This routine finds as many AND-separated ** subexpressions as it can and puts pointers to those subexpressions ** into aSlot[] entries. The return value is the number of slots filled. */ static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ int cnt = 0; if( pExpr==0 || nSlot<1 ) return 0; if( nSlot==1 || pExpr->op!=TK_AND ){ aSlot[0].p = pExpr; return 1; } if( pExpr->pLeft->op!=TK_AND ){ aSlot[0].p = pExpr->pLeft; cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); }else{ cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); } return cnt; } /* ** Initialize an expression mask set */ #define initMaskSet(P) memset(P, 0, sizeof(*P)) /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ int i; for(i=0; in; i++){ if( pMaskSet->ix[i]==iCursor ){ return ((Bitmask)1)<nix) ){ pMaskSet->ix[pMaskSet->n++] = iCursor; } } /* ** Destroy an expression mask set */ #define freeMaskSet(P) /* NO-OP */ /* ** This routine walks (recursively) an expression tree and generates ** a bitmask indicating which tables are used in that expression ** tree. ** ** In order for this routine to work, the calling function must have ** previously invoked sqlite3ExprResolveNames() on the expression. See ** the header comment on that routine for additional information. ** The sqlite3ExprResolveNames() routines looks for column names and ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to ** the VDBE cursor number of the table. */ static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *); static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ Bitmask mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ mask = getMask(pMaskSet, p->iTable); return mask; } mask = exprTableUsage(pMaskSet, p->pRight); mask |= exprTableUsage(pMaskSet, p->pLeft); mask |= exprListTableUsage(pMaskSet, p->pList); if( p->pSelect ){ Select *pS = p->pSelect; mask |= exprListTableUsage(pMaskSet, pS->pEList); mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); mask |= exprTableUsage(pMaskSet, pS->pWhere); mask |= exprTableUsage(pMaskSet, pS->pHaving); } return mask; } static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ int i; Bitmask mask = 0; if( pList ){ for(i=0; inExpr; i++){ mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); } } return mask; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", and "IN". */ static int allowedOp(int op){ assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1); return op==TK_IN || (op>=TK_EQ && op<=TK_GE); } /* ** Swap two objects of type T. */ #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Return the index in the SrcList that uses cursor iCur. If iCur is ** used by the first entry in SrcList return 0. If iCur is used by ** the second entry return 1. And so forth. ** ** SrcList is the set of tables in the FROM clause in the order that ** they will be processed. The value returned here gives us an index ** of which tables will be processed first. */ static int tableOrder(SrcList *pList, int iCur){ int i; struct SrcList_item *pItem; for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pItem->iCursor==iCur ) return i; } return -1; } /* ** The input to this routine is an ExprInfo structure with only the ** "p" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the ExprInfo ** structure. */ static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){ Expr *pExpr = pInfo->p; pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); pInfo->indexable = 0; pInfo->idxLeft = -1; pInfo->idxRight = -1; if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ pInfo->idxRight = pExpr->pRight->iTable; pInfo->indexable = 1; } if( pExpr->pLeft->op==TK_COLUMN ){ pInfo->idxLeft = pExpr->pLeft->iTable; pInfo->indexable = 1; } } if( pInfo->indexable ){ assert( pInfo->idxLeft!=pInfo->idxRight ); /* We want the expression to be of the form "X = expr", not "expr = X". ** So flip it over if necessary. If the expression is "X = Y", then ** we want Y to come from an earlier table than X. ** ** The collating sequence rule is to always choose the left expression. ** So if we do a flip, we also have to move the collating sequence. */ if( tableOrder(pSrc,pInfo->idxLeft)idxRight) ){ assert( pExpr->op!=TK_IN ); SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); SWAP(Expr*,pExpr->pRight,pExpr->pLeft); if( pExpr->op>=TK_GT ){ assert( TK_LT==TK_GT+2 ); assert( TK_GE==TK_LE+2 ); assert( TK_GT>TK_EQ ); assert( TK_GTop>=TK_GT && pExpr->op<=TK_GE ); pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; } SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight); SWAP(short int, pInfo->idxLeft, pInfo->idxRight); } } } /* ** This routine decides if pIdx can be used to satisfy the ORDER BY ** clause. If it can, it returns 1. If pIdx cannot satisfy the ** ORDER BY clause, this routine returns 0. ** ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the ** left-most table in the FROM clause of that same SELECT statement and ** the table has a cursor number of "base". pIdx is an index on pTab. ** ** nEqCol is the number of columns of pIdx that are used as equality ** constraints. Any of these columns may be missing from the ORDER BY ** clause and the match can still be a success. ** ** If the index is UNIQUE, then the ORDER BY clause is allowed to have ** additional terms past the end of the index and the match will still ** be a success. ** ** All terms of the ORDER BY that match against the index must be either ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE ** index do not need to satisfy this constraint.) The *pbRev value is ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if ** the ORDER BY clause is all ASC. */ static int isSortingIndex( Parse *pParse, /* Parsing context */ Index *pIdx, /* The index we are testing */ Table *pTab, /* The table to be sorted */ int base, /* Cursor number for pTab */ ExprList *pOrderBy, /* The ORDER BY clause */ int nEqCol, /* Number of index columns with == constraints */ int *pbRev /* Set to 1 if ORDER BY is DESC */ ){ int i, j; /* Loop counters */ int sortOrder; /* Which direction we are sorting */ int nTerm; /* Number of ORDER BY terms */ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; assert( pOrderBy!=0 ); nTerm = pOrderBy->nExpr; assert( nTerm>0 ); /* Match terms of the ORDER BY clause against columns of ** the index. */ for(i=j=0, pTerm=pOrderBy->a; jnColumn; i++){ Expr *pExpr; /* The expression of the ORDER BY pTerm */ CollSeq *pColl; /* The collating sequence of pExpr */ pExpr = pTerm->pExpr; if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ /* Can not use an index sort on anything that is not a column in the ** left-most table of the FROM clause */ return 0; } pColl = sqlite3ExprCollSeq(pParse, pExpr); if( !pColl ) pColl = db->pDfltColl; if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){ /* Term j of the ORDER BY clause does not match column i of the index */ if( inEqCol ){ if( pTerm->sortOrder!=sortOrder ){ /* Indices can only be used if all ORDER BY terms past the ** equality constraints are all either DESC or ASC. */ return 0; } }else{ sortOrder = pTerm->sortOrder; } j++; pTerm++; } /* The index can be used for sorting if all terms of the ORDER BY clause ** or covered or if we ran out of index columns and the it is a UNIQUE ** index. */ if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){ *pbRev = sortOrder==SQLITE_SO_DESC; return 1; } return 0; } /* ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied ** by sorting in order of ROWID. Return true if so and set *pbRev to be ** true for reverse ROWID and false for forward ROWID order. */ static int sortableByRowid( int base, /* Cursor number for table to be sorted */ ExprList *pOrderBy, /* The ORDER BY clause */ int *pbRev /* Set to 1 if ORDER BY is DESC */ ){ Expr *p; assert( pOrderBy!=0 ); assert( pOrderBy->nExpr>0 ); p = pOrderBy->a[0].pExpr; if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){ *pbRev = pOrderBy->a[0].sortOrder; return 1; } return 0; } /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. We would get the correct ** results if nothing were ever disabled, but joins might run a little ** slower. The trick is to disable as much as we can without disabling ** too much. If we disabled in (1), we'd get the wrong answer. ** See ticket #813. */ static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){ Expr *pExpr = *ppExpr; if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){ *ppExpr = 0; } } /* ** Generate code that builds a probe for an index. Details: ** ** * Check the top nColumn entries on the stack. If any ** of those entries are NULL, jump immediately to brk, ** which is the loop exit, since no index entry will match ** if any part of the key is NULL. ** ** * Construct a probe entry from the top nColumn entries in ** the stack with affinities appropriate for index pIdx. */ static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){ sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); sqlite3IndexAffinityStr(v, pIdx); } /* ** Generate code for an equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the X. */ static void codeEqualityTerm( Parse *pParse, /* The parsing context */ ExprInfo *pTerm, /* The term of the WHERE clause to be coded */ int brk, /* Jump here to abandon the loop */ WhereLevel *pLevel /* When level of the FROM clause we are working on */ ){ Expr *pX = pTerm->p; if( pX->op!=TK_IN ){ assert( pX->op==TK_EQ ); sqlite3ExprCode(pParse, pX->pRight); #ifndef SQLITE_OMIT_SUBQUERY }else{ int iTab; Vdbe *v = pParse->pVdbe; sqlite3CodeSubselect(pParse, pX); iTab = pX->iTable; sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk); sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1); VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); pLevel->inOp = OP_Next; pLevel->inP1 = iTab; #endif } disableTerm(pLevel, &pTerm->p); } /* ** The number of bits in a Bitmask */ #define BMS (sizeof(Bitmask)*8-1) /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. ** ** The basic idea is to do a nested loop, one loop for each table in ** the FROM clause of a select. (INSERT and UPDATE statements are the ** same as a SELECT with only a single table in the FROM clause.) For ** example, if the SQL is this: ** ** SELECT * FROM t1, t2, t3 WHERE ...; ** ** Then the code generated is conceptually like the following: ** ** foreach row1 in t1 do \ Code generated ** foreach row2 in t2 do |-- by sqlite3WhereBegin() ** foreach row3 in t3 do / ** ... ** end \ Code generated ** end |-- by sqlite3WhereEnd() ** end / ** ** There are Btree cursors associated with each table. t1 uses cursor ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. ** And so forth. This routine generates code to open those VDBE cursors ** and sqlite3WhereEnd() generates the code to close them. ** ** The code that sqlite3WhereBegin() generates leaves the cursors named ** in pTabList pointing at their appropriate entries. The [...] code ** can use OP_Column and OP_Recno opcodes on these cursors to extract ** data from the various tables of the loop. ** ** If the WHERE clause is empty, the foreach loops must each scan their ** entire tables. Thus a three-way join is an O(N^3) operation. But if ** the tables have indices and there are terms in the WHERE clause that ** refer to those indices, a complete table scan can be avoided and the ** code will run much faster. Most of the work of this routine is checking ** to see if there are indices that can be used to speed up the loop. ** ** Terms of the WHERE clause are also used to limit which rows actually ** make it to the "..." in the middle of the loop. After each "foreach", ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** ** An outer join of tables t1 and t2 is conceptally coded as follows: ** ** foreach row1 in t1 do ** flag = 0 ** foreach row2 in t2 do ** start: ** ... ** flag = 1 ** end ** if flag==0 then ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, ** if there is one. If there is no ORDER BY clause or if this routine ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. ** ** If an index can be used so that the natural output order of the table ** scan is correct for the ORDER BY clause, then that index is used and ** *ppOrderBy is set to NULL. This is an optimization that prevents an ** unnecessary sort of the result set if an index appropriate for the ** ORDER BY clause already exists. ** ** If the where clause loops cannot be arranged to provide the correct ** output order, then the *ppOrderBy is unchanged. */ WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ Fetch *pFetch /* Initial location of cursors. NULL otherwise */ ){ int i; /* Loop counter */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ int brk, cont = 0; /* Addresses used during code generation */ int nExpr; /* Number of subexpressions in the WHERE clause */ Bitmask loopMask; /* One bit set for each outer loop */ ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */ ExprMaskSet maskSet; /* The expression mask set */ int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */ int iDirectLt[BMS]; /* Term of the form ROWIDX or ROWID>=X */ ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */ struct SrcList_item *pTabItem; /* A single entry from pTabList */ WhereLevel *pLevel; /* A single level in the pWInfo list */ /* The number of terms in the FROM clause is limited by the number of ** bits in a Bitmask */ if( pTabList->nSrc>sizeof(Bitmask)*8 ){ sqlite3ErrorMsg(pParse, "at most %d tables in a join", sizeof(Bitmask)*8); return 0; } /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. If the aExpr[] ** array fills up, the last entry might point to an expression which ** contains additional unfactored AND operators. */ initMaskSet(&maskSet); memset(aExpr, 0, sizeof(aExpr)); nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); if( nExpr==ARRAYSIZE(aExpr) ){ sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more " "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); return 0; } /* Allocate and initialize the WhereInfo structure that will become the ** return value. */ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); if( sqlite3_malloc_failed ){ sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */ return 0; } pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->iBreak = sqlite3VdbeMakeLabel(v); /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); pWhere = 0; } /* Analyze all of the subexpressions. */ for(i=0; inSrc; i++){ createMask(&maskSet, pTabList->a[i].iCursor); } for(pTerm=aExpr, i=0; ia[i].pIdx point to the index to use for the i-th nested ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner ** loop. ** ** If terms exist that use the ROWID of any table, then set the ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table ** to the index of the term containing the ROWID. We always prefer ** to use a ROWID which can directly access a table rather than an ** index which requires reading an index first to get the rowid then ** doing a second read of the actual database table. ** ** Actually, if there are more than 32 tables in the join, only the ** first 32 tables are candidates for indices. This is (again) due ** to the limit of 32 bits in an integer bitmask. */ loopMask = 0; pTabItem = pTabList->a; pLevel = pWInfo->a; for(i=0; inSrc && iiCursor; /* The cursor for this table */ Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ Table *pTab = pTabItem->pTab; Index *pIdx; Index *pBestIdx = 0; int bestScore = 0; int bestRev = 0; /* Check to see if there is an expression that uses only the ** ROWID field of this table. For terms of the form ROWID==expr ** set iDirectEq[i] to the index of the term. For terms of the ** form ROWIDexpr or ROWID>=expr set iDirectGt[i]. ** ** (Added:) Treat ROWID IN expr like ROWID=expr. */ pLevel->iIdxCur = -1; iDirectEq[i] = -1; iDirectLt[i] = -1; iDirectGt[i] = -1; for(pTerm=aExpr, j=0; jp; if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){ switch( pX->op ){ case TK_IN: case TK_EQ: iDirectEq[i] = j; break; case TK_LE: case TK_LT: iDirectLt[i] = j; break; case TK_GE: case TK_GT: iDirectGt[i] = j; break; } } } /* If we found a term that tests ROWID with == or IN, that term ** will be used to locate the rows in the database table. There ** is not need to continue into the code below that looks for ** an index. We will always use the ROWID over an index. */ if( iDirectEq[i]>=0 ){ loopMask |= mask; pLevel->pIdx = 0; continue; } /* Do a search for usable indices. Leave pBestIdx pointing to ** the "best" index. pBestIdx is left set to NULL if no indices ** are usable. ** ** The best index is the one with the highest score. The score ** for the index is determined as follows. For each of the ** left-most terms that is fixed by an equality operator, add ** 32 to the score. The right-most term of the index may be ** constrained by an inequality. Add 4 if for an "x<..." constraint ** and add 8 for an "x>..." constraint. If both constraints ** are present, add 12. ** ** If the left-most term of the index uses an IN operator ** (ex: "x IN (...)") then add 16 to the score. ** ** If an index can be used for sorting, add 2 to the score. ** If an index contains all the terms of a table that are ever ** used by any expression in the SQL statement, then add 1 to ** the score. ** ** This scoring system is designed so that the score can later be ** used to determine how the index is used. If the score&0x1c is 0 ** then all constraints are equalities. If score&0x4 is not 0 then ** there is an inequality used as a termination key. (ex: "x<...") ** If score&0x8 is not 0 then there is an inequality used as the ** start key. (ex: "x>..."). A score or 0x10 is the special case ** of an IN operator constraint. (ex: "x IN ..."). ** ** The IN operator (as in " IN (...)") is treated the same as ** an equality comparison except that it can only be used on the ** left-most column of an index and other terms of the WHERE clause ** cannot be used in conjunction with the IN operator to help satisfy ** other columns of the index. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ Bitmask eqMask = 0; /* Index columns covered by an x=... term */ Bitmask ltMask = 0; /* Index columns covered by an x<... term */ Bitmask gtMask = 0; /* Index columns covered by an x>... term */ Bitmask inMask = 0; /* Index columns covered by an x IN .. term */ Bitmask m; int nEq, score, bRev = 0; if( pIdx->nColumn>sizeof(eqMask)*8 ){ continue; /* Ignore indices with too many columns to analyze */ } for(pTerm=aExpr, j=0; jp; CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); if( !pColl && pX->pRight ){ pColl = sqlite3ExprCollSeq(pParse, pX->pRight); } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( pTerm->idxLeft==iCur && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){ int iColumn = pX->pLeft->iColumn; int k; char idxaff = pIdx->pTable->aCol[iColumn].affinity; for(k=0; knColumn; k++){ /* If the collating sequences or affinities don't match, ** ignore this index. */ if( pColl!=pIdx->keyInfo.aColl[k] ) continue; if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; if( pIdx->aiColumn[k]==iColumn ){ switch( pX->op ){ case TK_IN: { if( k==0 ) inMask |= 1; break; } case TK_EQ: { eqMask |= ((Bitmask)1)<nColumn; nEq++){ m = (((Bitmask)1)<<(nEq+1))-1; if( (m & eqMask)!=m ) break; } /* Begin assemblying the score */ score = nEq*32; /* Base score is 32 times number of == constraints */ m = ((Bitmask)1)< constraint */ if( score==0 && inMask ) score = 16; /* Default score for IN constraint */ /* Give bonus points if this index can be used for sorting */ if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){ int base = pTabList->a[0].iCursor; if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){ score += 2; } } /* Check to see if we can get away with using just the index without ** ever reading the table. If that is the case, then add one bonus ** point to the score. */ if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){ for(m=0, j=0; jnColumn; j++){ int x = pIdx->aiColumn[j]; if( xcolUsed & m)==pTabItem->colUsed ){ score++; } } /* If the score for this index is the best we have seen so far, then ** save it */ if( score>bestScore ){ pBestIdx = pIdx; bestScore = score; bestRev = bRev; } } pLevel->pIdx = pBestIdx; pLevel->score = bestScore; pLevel->bRev = bestRev; loopMask |= mask; if( pBestIdx ){ pLevel->iIdxCur = pParse->nTab++; } } /* Check to see if the ORDER BY clause is or can be satisfied by the ** use of an index on the first table. */ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ Index *pIdx; /* Index derived from the WHERE clause */ Table *pTab; /* Left-most table in the FROM clause */ int bRev = 0; /* True to reverse the output order */ int iCur; /* Btree-cursor that will be used by pTab */ WhereLevel *pLevel0 = &pWInfo->a[0]; pTab = pTabList->a[0].pTab; pIdx = pLevel0->pIdx; iCur = pTabList->a[0].iCursor; if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){ /* The ORDER BY clause specifies ROWID order, which is what we ** were going to be doing anyway... */ *ppOrderBy = 0; pLevel0->bRev = bRev; }else if( pLevel0->score==16 ){ /* If there is already an IN index on the left-most table, ** it will not give the correct sort order. ** So, pretend that no suitable index is found. */ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ /* If the left-most column is accessed using its ROWID, then do ** not try to sort by index. But do delete the ORDER BY clause ** if it is redundant. */ }else if( (pLevel0->score&2)!=0 ){ /* The index that was selected for searching will cause rows to ** appear in sorted order. */ *ppOrderBy = 0; } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ pLevel = pWInfo->a; for(i=0, pTabItem=pTabList->a; inSrc; i++, pTabItem++, pLevel++){ Table *pTab; Index *pIx; int iIdxCur = pLevel->iIdxCur; pTab = pTabItem->pTab; if( pTab->isTransient || pTab->pSelect ) continue; if( (pLevel->score & 1)==0 ){ sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab); } pLevel->iTabCur = pTabItem->iCursor; if( (pIx = pLevel->pIdx)!=0 ){ sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0); sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, (char*)&pIx->keyInfo, P3_KEYINFO); } if( (pLevel->score & 1)!=0 ){ sqlite3VdbeAddOp(v, OP_KeyAsData, iIdxCur, 1); sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); } sqlite3CodeVerifySchema(pParse, pTab->iDb); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); /* Generate the code to do the search */ loopMask = 0; pLevel = pWInfo->a; pTabItem = pTabList->a; for(i=0; inSrc; i++, pTabItem++, pLevel++){ int j, k; int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int omitTable; /* True if we use the index only */ pIdx = pLevel->pIdx; iIdxCur = pLevel->iIdxCur; pLevel->inOp = OP_Noop; /* Check to see if it is appropriate to omit the use of the table ** here and use its index instead. */ omitTable = (pLevel->score&1)!=0; /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ if( !pParse->nMem ) pParse->nMem++; pLevel->iLeftJoin = pParse->nMem++; sqlite3VdbeAddOp(v, OP_String8, 0, 0); sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); VdbeComment((v, "# init LEFT JOIN no-match flag")); } if( i=0 ){ /* Case 1: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( kp!=0 ); assert( pTerm->idxLeft==iCur ); assert( omitTable==0 ); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); codeEqualityTerm(pParse, pTerm, brk, pLevel); cont = pLevel->cont = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); VdbeComment((v, "pk")); pLevel->op = OP_Noop; }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){ /* Case 2: There is an index and all terms of the WHERE clause that ** refer to the index using the "==" or "IN" operators. */ int start; int nColumn = (pLevel->score+16)/32; brk = pLevel->brk = sqlite3VdbeMakeLabel(v); /* For each column of the index, find the term of the WHERE clause that ** constraints that column. If the WHERE clause term is X=expr, then ** evaluation expr and leave the result on the stack */ for(j=0; jp; if( pX==0 ) continue; if( pTerm->idxLeft==iCur && (pTerm->prereqRight & loopMask)==pTerm->prereqRight && pX->pLeft->iColumn==pIdx->aiColumn[j] && (pX->op==TK_EQ || pX->op==TK_IN) ){ char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity; if( sqlite3IndexAffinityOk(pX, idxaff) ){ codeEqualityTerm(pParse, pTerm, brk, pLevel); break; } } } } pLevel->iMem = pParse->nMem++; cont = pLevel->cont = sqlite3VdbeMakeLabel(v); buildIndexProbe(v, nColumn, brk, pIdx); sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); /* Generate code (1) to move to the first matching element of the table. ** Then generate code (2) that jumps to "brk" after the cursor is past ** the last matching element of the table. The code (1) is executed ** once to initialize the search, the code (2) is executed before each ** iteration of the scan to see if the scan has finished. */ if( pLevel->bRev ){ /* Scan in reverse order */ sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); pLevel->op = OP_Prev; }else{ /* Scan in the forward order */ sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); pLevel->op = OP_Next; } sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont); if( !omitTable ){ sqlite3VdbeAddOp(v, OP_IdxRecno, iIdxCur, 0); sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); } pLevel->p1 = iIdxCur; pLevel->p2 = start; }else if( i=0 || iDirectGt[i]>=0) ){ /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int bRev = pLevel->bRev; assert( omitTable==0 ); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); cont = pLevel->cont = sqlite3VdbeMakeLabel(v); if( bRev ){ int t = iDirectGt[i]; iDirectGt[i] = iDirectLt[i]; iDirectLt[i] = t; } if( iDirectGt[i]>=0 ){ Expr *pX; k = iDirectGt[i]; assert( kp; assert( pX!=0 ); assert( pTerm->idxLeft==iCur ); sqlite3ExprCode(pParse, pX->pRight); sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); VdbeComment((v, "pk")); disableTerm(pLevel, &pTerm->p); }else{ sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); } if( iDirectLt[i]>=0 ){ Expr *pX; k = iDirectLt[i]; assert( kp; assert( pX!=0 ); assert( pTerm->idxLeft==iCur ); sqlite3ExprCode(pParse, pX->pRight); pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); if( pX->op==TK_LT || pX->op==TK_GT ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } disableTerm(pLevel, &pTerm->p); } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; if( testOp!=OP_Noop ){ sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, testOp, (int)(('n'<<8)&0x0000FF00), brk); } }else if( pIdx==0 ){ /* Case 4: There is no usable index. We must do a complete ** scan of the entire database table. */ int start; int opRewind; assert( omitTable==0 ); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); cont = pLevel->cont = sqlite3VdbeMakeLabel(v); if( pLevel->bRev ){ opRewind = OP_Last; pLevel->op = OP_Prev; }else{ opRewind = OP_Rewind; pLevel->op = OP_Next; } sqlite3VdbeAddOp(v, opRewind, iCur, brk); start = sqlite3VdbeCurrentAddr(v); pLevel->p1 = iCur; pLevel->p2 = start; }else{ /* Case 5: The WHERE clause term that refers to the right-most ** column of the index is an inequality. For example, if ** the index is on (x,y,z) and the WHERE clause is of the ** form "x=5 AND y<10" then this case is used. Only the ** right-most column can be an inequality - the rest must ** use the "==" operator. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ int score = pLevel->score; int nEqColumn = score/32; int start; int leFlag=0, geFlag=0; int testOp; /* Evaluate the equality constraints */ for(j=0; jaiColumn[j]; for(pTerm=aExpr, k=0; kp; if( pX==0 ) continue; if( pTerm->idxLeft==iCur && pX->op==TK_EQ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight && pX->pLeft->iColumn==iIdxCol ){ sqlite3ExprCode(pParse, pX->pRight); disableTerm(pLevel, &pTerm->p); break; } } } /* Duplicate the equality term values because they will all be ** used twice: once to make the termination key and once to make the ** start key. */ for(j=0; jcont = sqlite3VdbeMakeLabel(v); brk = pLevel->brk = sqlite3VdbeMakeLabel(v); /* Generate the termination key. This is the key value that ** will end the search. There is no termination key if there ** are no equality terms and no "X<..." term. ** ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" ** key computed here really ends up being the start key. */ if( (score & 4)!=0 ){ for(pTerm=aExpr, k=0; kp; if( pX==0 ) continue; if( pTerm->idxLeft==iCur && (pX->op==TK_LT || pX->op==TK_LE) && (pTerm->prereqRight & loopMask)==pTerm->prereqRight && pX->pLeft->iColumn==pIdx->aiColumn[j] ){ sqlite3ExprCode(pParse, pX->pRight); leFlag = pX->op==TK_LE; disableTerm(pLevel, &pTerm->p); break; } } testOp = OP_IdxGE; }else{ testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; leFlag = 1; } if( testOp!=OP_Noop ){ int nCol = nEqColumn + ((score & 4)!=0); pLevel->iMem = pParse->nMem++; buildIndexProbe(v, nCol, brk, pIdx); if( pLevel->bRev ){ int op = leFlag ? OP_MoveLe : OP_MoveLt; sqlite3VdbeAddOp(v, op, iIdxCur, brk); }else{ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); } }else if( pLevel->bRev ){ sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); } /* Generate the start key. This is the key that defines the lower ** bound on the search. There is no start key if there are no ** equality terms and if there is no "X>..." term. In ** that case, generate a "Rewind" instruction in place of the ** start key search. ** ** 2002-Dec-04: In the case of a reverse-order search, the so-called ** "start" key really ends up being used as the termination key. */ if( (score & 8)!=0 ){ for(pTerm=aExpr, k=0; kp; if( pX==0 ) continue; if( pTerm->idxLeft==iCur && (pX->op==TK_GT || pX->op==TK_GE) && (pTerm->prereqRight & loopMask)==pTerm->prereqRight && pX->pLeft->iColumn==pIdx->aiColumn[j] ){ sqlite3ExprCode(pParse, pX->pRight); geFlag = pX->op==TK_GE; disableTerm(pLevel, &pTerm->p); break; } } }else{ geFlag = 1; } if( nEqColumn>0 || (score&8)!=0 ){ int nCol = nEqColumn + ((score&8)!=0); buildIndexProbe(v, nCol, brk, pIdx); if( pLevel->bRev ){ pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); testOp = OP_IdxLT; }else{ int op = geFlag ? OP_MoveGe : OP_MoveGt; sqlite3VdbeAddOp(v, op, iIdxCur, brk); } }else if( pLevel->bRev ){ testOp = OP_Noop; }else{ sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); } /* Generate the the top of the loop. If there is a termination ** key we have to test for that key and abort at the top of the ** loop. */ start = sqlite3VdbeCurrentAddr(v); if( testOp!=OP_Noop ){ sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){ sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); } } sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont); if( !omitTable ){ sqlite3VdbeAddOp(v, OP_IdxRecno, iIdxCur, 0); sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); } /* Record the instruction used to terminate the loop. */ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; pLevel->p1 = iIdxCur; pLevel->p2 = start; } loopMask |= getMask(&maskSet, iCur); /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=aExpr, j=0; jp==0 ) continue; if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue; if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){ continue; } sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1); pTerm->p = 0; } brk = cont; /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->top = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp(v, OP_Integer, 1, 0); sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); VdbeComment((v, "# record LEFT JOIN hit")); for(pTerm=aExpr, j=0; jp==0 ) continue; if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue; sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1); pTerm->p = 0; } } } pWInfo->iContinue = cont; freeMaskSet(&maskSet); return pWInfo; } /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ void sqlite3WhereEnd(WhereInfo *pWInfo){ Vdbe *v = pWInfo->pParse->pVdbe; int i; WhereLevel *pLevel; SrcList *pTabList = pWInfo->pTabList; struct SrcList_item *pTabItem; /* Generate loop termination code. */ for(i=pTabList->nSrc-1; i>=0; i--){ pLevel = &pWInfo->a[i]; sqlite3VdbeResolveLabel(v, pLevel->cont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); } sqlite3VdbeResolveLabel(v, pLevel->brk); if( pLevel->inOp!=OP_Noop ){ sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); } if( pLevel->iLeftJoin ){ int addr; addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0)); sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); if( pLevel->iIdxCur>=0 ){ sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); } sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); } } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); /* Close all of the cursors that were opend by sqlite3WhereBegin. */ pLevel = pWInfo->a; pTabItem = pTabList->a; for(i=0; inSrc; i++, pTabItem++, pLevel++){ Table *pTab = pTabItem->pTab; assert( pTab!=0 ); if( pTab->isTransient || pTab->pSelect ) continue; if( (pLevel->score & 1)==0 ){ sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); } if( pLevel->pIdx!=0 ){ sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); } /* Make cursor substitutions for cases where we want to use ** just the index and never reference the table. ** ** Calls to the code generator in between sqlite3WhereBegin and ** sqlite3WhereEnd will have created code that references the table ** directly. This loop scans all that code looking for opcodes ** that reference the table and converts them into opcodes that ** reference the index. */ if( pLevel->score & 1 ){ int i, j, last; VdbeOp *pOp; Index *pIdx = pLevel->pIdx; assert( pIdx!=0 ); pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); last = sqlite3VdbeCurrentAddr(v); for(i=pWInfo->iTop; ip1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ pOp->p1 = pLevel->iIdxCur; for(j=0; jnColumn; j++){ if( pOp->p2==pIdx->aiColumn[j] ){ pOp->p2 = j; break; } } }else if( pOp->opcode==OP_Recno ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRecno; }else if( pOp->opcode==OP_NullRow ){ pOp->opcode = OP_Noop; } } } } /* Final cleanup */ sqliteFree(pWInfo); return; }