/* ** 2008 July 24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains an alternative memory allocation system for SQLite. ** This system is implemented as a wrapper around the system provided ** by the operating system - vanilla malloc(), realloc() and free(). ** ** This system differentiates between requests for "small" allocations ** (by default those of 128 bytes or less) and "large" allocations (all ** others). The 256 byte threshhold is configurable at runtime. ** ** All requests for large allocations are passed through to the ** default system. ** ** Requests for small allocations are met by allocating space within ** one or more larger "chunks" of memory obtained from the default ** memory allocation system. Chunks of memory are usually 64KB or ** larger. The algorithm used to manage space within each chunk is ** the same as that used by mem5.c. ** ** This strategy is designed to prevent the default memory allocation ** system (usually the system malloc) from suffering from heap ** fragmentation. On some systems, heap fragmentation can cause a ** significant real-time slowdown. ** ** $Id: mem6.c,v 1.1 2008/08/06 21:48:06 rmsimpson Exp $ */ #ifdef SQLITE_ENABLE_MEMSYS6 #include "sqliteInt.h" /* ** Maximum size of any "small" allocation is ((1<zPool[(idx)*pChunk->nAtom])) struct Mem6Global { int nMinAlloc; /* Minimum allowed allocation size */ int nThreshold; /* Allocs larger than this go to malloc() */ int nLogThreshold; /* log2 of (nThreshold/nMinAlloc) */ sqlite3_mutex *mutex; Mem6Chunk *pChunk; /* Singly linked list of all memory chunks */ } mem6; /* ** Unlink the chunk at pChunk->aPool[i] from list it is currently ** on. It should be found on pChunk->aiFreelist[iLogsize]. */ static void memsys6Unlink(Mem6Chunk *pChunk, int i, int iLogsize){ int next, prev; assert( i>=0 && inBlock ); assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold ); assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); next = MEM6LINK(i)->next; prev = MEM6LINK(i)->prev; if( prev<0 ){ pChunk->aiFreelist[iLogsize] = next; }else{ MEM6LINK(prev)->next = next; } if( next>=0 ){ MEM6LINK(next)->prev = prev; } } /* ** Link the chunk at mem5.aPool[i] so that is on the iLogsize ** free list. */ static void memsys6Link(Mem6Chunk *pChunk, int i, int iLogsize){ int x; assert( i>=0 && inBlock ); assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold ); assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); x = MEM6LINK(i)->next = pChunk->aiFreelist[iLogsize]; MEM6LINK(i)->prev = -1; if( x>=0 ){ assert( xnBlock ); MEM6LINK(x)->prev = i; } pChunk->aiFreelist[iLogsize] = i; } /* ** Find the first entry on the freelist iLogsize. Unlink that ** entry and return its index. */ static int memsys6UnlinkFirst(Mem6Chunk *pChunk, int iLogsize){ int i; int iFirst; assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold ); i = iFirst = pChunk->aiFreelist[iLogsize]; assert( iFirst>=0 ); memsys6Unlink(pChunk, iFirst, iLogsize); return iFirst; } static int roundupLog2(int n){ static const char LogTable256[256] = { 0, /* 1 */ 1, /* 2 */ 2, 2, /* 3..4 */ 3, 3, 3, 3, /* 5..8 */ 4, 4, 4, 4, 4, 4, 4, 4, /* 9..16 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, /* 17..32 */ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, /* 33..64 */ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, /* 65..128 */ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, /* 129..256 */ }; assert(n<=(1<<16) && n>0); if( n<=256 ) return LogTable256[n-1]; return LogTable256[(n>>8) - ((n&0xFF)?0:1)] + 8; } /* ** Allocate and return a block of (pChunk->nAtom << iLogsize) bytes from chunk ** pChunk. If the allocation request cannot be satisfied, return 0. */ static void *chunkMalloc(Mem6Chunk *pChunk, int iLogsize){ int i; /* Index of a mem5.aPool[] slot */ int iBin; /* Index into mem5.aiFreelist[] */ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free ** block. If not, then split a block of the next larger power of ** two in order to create a new free block of size iLogsize. */ for(iBin=iLogsize; pChunk->aiFreelist[iBin]<0 && iBin<=mem6.nLogThreshold; iBin++){} if( iBin>mem6.nLogThreshold ) return 0; i = memsys6UnlinkFirst(pChunk, iBin); while( iBin>iLogsize ){ int newSize; iBin--; newSize = 1 << iBin; pChunk->aCtrl[i+newSize] = CTRL_FREE | iBin; memsys6Link(pChunk, i+newSize, iBin); } pChunk->aCtrl[i] = iLogsize; /* Return a pointer to the allocated memory. */ pChunk->nCheckedOut++; return (void*)&pChunk->zPool[i*pChunk->nAtom]; } /* ** Free the allocation pointed to by p, which is guaranteed to be non-zero ** and a part of chunk object pChunk. */ static void chunkFree(Mem6Chunk *pChunk, void *pOld){ u32 size, iLogsize; int iBlock; /* Set iBlock to the index of the block pointed to by pOld in ** the array of pChunk->nAtom byte blocks pointed to by pChunk->zPool. */ iBlock = ((u8 *)pOld-pChunk->zPool)/pChunk->nAtom; /* Check that the pointer pOld points to a valid, non-free block. */ assert( iBlock>=0 && iBlocknBlock ); assert( ((u8 *)pOld-pChunk->zPool)%pChunk->nAtom==0 ); assert( (pChunk->aCtrl[iBlock] & CTRL_FREE)==0 ); iLogsize = pChunk->aCtrl[iBlock] & CTRL_LOGSIZE; size = 1<nBlock ); pChunk->aCtrl[iBlock] |= CTRL_FREE; pChunk->aCtrl[iBlock+size-1] |= CTRL_FREE; pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize; while( iLogsize>iLogsize) & 1 ){ iBuddy = iBlock - size; }else{ iBuddy = iBlock + size; } assert( iBuddy>=0 ); if( (iBuddy+(1<pChunk->nBlock ) break; if( pChunk->aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; memsys6Unlink(pChunk, iBuddy, iLogsize); iLogsize++; if( iBuddyaCtrl[iBuddy] = CTRL_FREE | iLogsize; pChunk->aCtrl[iBlock] = 0; iBlock = iBuddy; }else{ pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize; pChunk->aCtrl[iBuddy] = 0; } size *= 2; } pChunk->nCheckedOut--; memsys6Link(pChunk, iBlock, iLogsize); } /* ** Return the actual size of the block pointed to by p, which is guaranteed ** to have been allocated from chunk pChunk. */ static int chunkSize(Mem6Chunk *pChunk, void *p){ int iSize = 0; if( p ){ int i = ((u8 *)p-pChunk->zPool)/pChunk->nAtom; assert( i>=0 && inBlock ); iSize = pChunk->nAtom * (1 << (pChunk->aCtrl[i]&CTRL_LOGSIZE)); } return iSize; } /* ** Return true if there are currently no outstanding allocations. */ static int chunkIsEmpty(Mem6Chunk *pChunk){ return (pChunk->nCheckedOut==0); } /* ** Initialize the buffer zChunk, which is nChunk bytes in size, as ** an Mem6Chunk object. Return a copy of the zChunk pointer. */ static Mem6Chunk *chunkInit(u8 *zChunk, int nChunk, int nMinAlloc){ int ii; int iOffset; Mem6Chunk *pChunk = (Mem6Chunk *)zChunk; assert( nChunk>sizeof(Mem6Chunk) ); assert( nMinAlloc>sizeof(Mem6Link) ); memset(pChunk, 0, sizeof(Mem6Chunk)); pChunk->nAtom = nMinAlloc; pChunk->nBlock = ((nChunk-sizeof(Mem6Chunk)) / (pChunk->nAtom+sizeof(u8))); pChunk->zPool = (u8 *)&pChunk[1]; pChunk->aCtrl = &pChunk->zPool[pChunk->nBlock*pChunk->nAtom]; for(ii=0; ii<=mem6.nLogThreshold; ii++){ pChunk->aiFreelist[ii] = -1; } iOffset = 0; for(ii=mem6.nLogThreshold; ii>=0; ii--){ int nAlloc = (1<nBlock ){ pChunk->aCtrl[iOffset] = ii | CTRL_FREE; memsys6Link(pChunk, iOffset, ii); iOffset += nAlloc; } } return pChunk; } static void mem6Enter(void){ sqlite3_mutex_enter(mem6.mutex); } static void mem6Leave(void){ sqlite3_mutex_leave(mem6.mutex); } /* ** Based on the number and size of the currently allocated chunks, return ** the size of the next chunk to allocate, in bytes. */ static int nextChunkSize(void){ int iTotal = MIN_CHUNKSIZE; Mem6Chunk *p; for(p=mem6.pChunk; p; p=p->pNext){ iTotal = iTotal*2; } return iTotal; } static void freeChunk(Mem6Chunk *pChunk){ Mem6Chunk **pp = &mem6.pChunk; for( pp=&mem6.pChunk; *pp!=pChunk; pp = &(*pp)->pNext ); *pp = (*pp)->pNext; free(pChunk); } static void *memsys6Malloc(int nByte){ Mem6Chunk *pChunk; void *p = 0; int nTotal = nByte+8; int iOffset = 0; if( nTotal>mem6.nThreshold ){ p = malloc(nTotal); }else{ int iLogsize = 0; if( nTotal>(1<pNext){ p = chunkMalloc(pChunk, iLogsize); if( p ){ break; } } if( !p ){ int iSize = nextChunkSize(); p = malloc(iSize); if( p ){ pChunk = chunkInit((u8 *)p, iSize, mem6.nMinAlloc); pChunk->pNext = mem6.pChunk; mem6.pChunk = pChunk; p = chunkMalloc(pChunk, iLogsize); assert(p); } } iOffset = ((u8*)p - (u8*)pChunk); mem6Leave(); } if( !p ){ return 0; } ((u32 *)p)[0] = iOffset; ((u32 *)p)[1] = nByte; return &((u32 *)p)[2]; } static int memsys6Size(void *pPrior){ if( pPrior==0 ) return 0; return ((u32*)pPrior)[-1]; } static void memsys6Free(void *pPrior){ int iSlot; void *p = &((u32 *)pPrior)[-2]; iSlot = ((u32 *)p)[0]; if( iSlot ){ Mem6Chunk *pChunk; mem6Enter(); pChunk = (Mem6Chunk *)(&((u8 *)p)[-1 * iSlot]); chunkFree(pChunk, p); if( chunkIsEmpty(pChunk) ){ freeChunk(pChunk); } mem6Leave(); }else{ free(p); } } static void *memsys6Realloc(void *p, int nByte){ void *p2; if( p && nByte<=memsys6Size(p) ){ p2 = p; }else{ p2 = memsys6Malloc(nByte); if( p && p2 ){ memcpy(p2, p, memsys6Size(p)); memsys6Free(p); } } return p2; } static int memsys6Roundup(int n){ if( n>mem6.nThreshold ){ return n; }else{ return (1<