System.Data.SQLite
Check-in [e7d1758f41]
Not logged in

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:3.6.15
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | sourceforge
Files: files | file ages | folders
SHA1:e7d1758f41fa10c6b186a802af06862d57c15ac5
User & Date: rmsimpson 2009-06-19 21:04:12
Context
2009-06-29
22:59
1.0.63.0 check-in: 26297c39cc user: rmsimpson tags: sourceforge
2009-06-19
21:04
3.6.15 check-in: e7d1758f41 user: rmsimpson tags: sourceforge
20:57
1.0.62.0 check-in: 5ab035e676 user: rmsimpson tags: sourceforge
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to SQLite.Interop/src/sqlite3.c.

more than 10,000 changes

Changes to SQLite.Interop/src/sqlite3.h.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
...
698
699
700
701
702
703
704
705






706
707
708
709
710
711
712
713
714
...
786
787
788
789
790
791
792





793
794
795
796
797
798
799
....
1022
1023
1024
1025
1026
1027
1028
1029
1030


1031
1032
1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1050



1051
1052
1053
1054
1055
1056
1057


1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070


1071
1072
1073
1074
1075
1076
1077
....
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
....
1213
1214
1215
1216
1217
1218
1219



1220
1221
1222
1223
1224
1225
1226
1227

1228
1229
1230
1231
1232
1233
1234
1235
....
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276
1277



1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

1294
1295
1296
1297
1298
1299
1300
....
1320
1321
1322
1323
1324
1325
1326








1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350




1351
1352
1353






1354
1355
1356
1357
1358
1359
1360
....
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796











1797
1798
1799
1800
1801
1802
1803
....
1823
1824
1825
1826
1827
1828
1829
1830


1831
1832
1833
1834
1835
1836
1837
....
3045
3046
3047
3048
3049
3050
3051
3052
3053



3054
3055
3056
3057
3058
3059
3060
....
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
....
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489


3490
3491
3492
3493
3494
3495
3496
3497
3498
....
3508
3509
3510
3511
3512
3513
3514


3515
3516
3517
3518
3519
3520
3521
....
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
....
3732
3733
3734
3735
3736
3737
3738






3739
3740
3741
3742
3743
3744
3745
3746


3747
3748
3749
3750
3751
3752
3753
....
3771
3772
3773
3774
3775
3776
3777







3778
3779
3780
3781
3782
3783
3784
3785
3786
3787



3788
3789
3790
3791
3792
3793
3794
....
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077





4078
4079
4080
4081
4082
4083
4084
....
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
....
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146


4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
....
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203








4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218


4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234

4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

4266



4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285

4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298

4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
....
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365



4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376













4377
4378
4379
4380
4381
4382
4383
....
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408



4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419







4420
4421
4422
4423
4424
4425
4426
....
4429
4430
4431
4432
4433
4434
4435


4436
4437
4438
4439
4440
4441







4442
4443
4444
4445
4446
4447
4448
....
4457
4458
4459
4460
4461
4462
4463


4464
4465
4466
4467
4468
4469
4470
4471
4472
4473







4474
4475
4476
4477
4478
4479
4480
....
4818
4819
4820
4821
4822
4823
4824


4825
4826
4827
4828
4829
4830
4831
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite3.h,v 1.39 2009/04/28 16:17:45 rmsimpson Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
................................................................................
** The Z value is the release number and is incremented with
** each release but resets back to 0 whenever Y is incremented.
**
** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION         "3.6.13"
#define SQLITE_VERSION_NUMBER  3006013

/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
................................................................................
** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the xOpen method of the
** [sqlite3_vfs] object.
*/
#define SQLITE_OPEN_READONLY         0x00000001
#define SQLITE_OPEN_READWRITE        0x00000002
#define SQLITE_OPEN_CREATE           0x00000004
#define SQLITE_OPEN_DELETEONCLOSE    0x00000008
#define SQLITE_OPEN_EXCLUSIVE        0x00000010
#define SQLITE_OPEN_MAIN_DB          0x00000100
#define SQLITE_OPEN_TEMP_DB          0x00000200
#define SQLITE_OPEN_TRANSIENT_DB     0x00000400
#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800
#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000
#define SQLITE_OPEN_SUBJOURNAL       0x00002000
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000
#define SQLITE_OPEN_NOMUTEX          0x00008000
#define SQLITE_OPEN_FULLMUTEX        0x00010000

/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
................................................................................
** <li> [SQLITE_OPEN_EXCLUSIVE]
** </ul>
**
** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
** deleted when it is closed.  The [SQLITE_OPEN_DELETEONCLOSE]
** will be set for TEMP  databases, journals and for subjournals.
**
** The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened






** for exclusive access.  This flag is set for all files except
** for the main database file.
**
** At least szOsFile bytes of memory are allocated by SQLite
** to hold the  [sqlite3_file] structure passed as the third
** argument to xOpen.  The xOpen method does not have to
** allocate the structure; it should just fill it in.
**
** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
................................................................................
**
** A call to sqlite3_initialize() is an "effective" call if it is
** the first time sqlite3_initialize() is invoked during the lifetime of
** the process, or if it is the first time sqlite3_initialize() is invoked
** following a call to sqlite3_shutdown().  Only an effective call
** of sqlite3_initialize() does any initialization.  All other calls
** are harmless no-ops.





**
** Among other things, sqlite3_initialize() shall invoke
** sqlite3_os_init().  Similarly, sqlite3_shutdown()
** shall invoke sqlite3_os_end().
**
** The sqlite3_initialize() routine returns [SQLITE_OK] on success.
** If for some reason, sqlite3_initialize() is unable to initialize
................................................................................
**   <li> [sqlite3_soft_heap_limit()]
**   <li> [sqlite3_status()]
**   </ul>
** </dd>
**
** <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd>This option specifies a static memory buffer that SQLite can use for
** scratch memory.  There are three arguments:  A pointer to the memory, the
** size of each scratch buffer (sz), and the number of buffers (N).  The sz


** argument must be a multiple of 16. The sz parameter should be a few bytes
** larger than the actual scratch space required due internal overhead.
** The first

** argument should point to an allocation of at least sz*N bytes of memory.
** SQLite will use no more than one scratch buffer at once per thread, so
** N should be set to the expected maximum number of threads.  The sz
** parameter should be 6 times the size of the largest database page size.
** Scratch buffers are used as part of the btree balance operation.  If
** The btree balancer needs additional memory beyond what is provided by
** scratch buffers or if no scratch buffer space is specified, then SQLite
** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
**
** <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd>This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implemenation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
** There are three arguments to this option: A pointer to the
** memory, the size of each page buffer (sz), and the number of pages (N).

** The sz argument must be a power of two between 512 and 32768.  The first



** argument should point to an allocation of at least sz*N bytes of memory.
** SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** The implementation might use one or more of the N buffers to hold 
** memory accounting information. </dd>


**
** <dt>SQLITE_CONFIG_HEAP</dt>
** <dd>This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided
** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
** There are three arguments: A pointer to the memory, the number of
** bytes in the memory buffer, and the minimum allocation size.  If
** the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.</dd>


**
** <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd>This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.</dd>
**
................................................................................
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to a memory buffer to use for lookaside memory.  The first
** argument may be NULL in which case SQLite will allocate the lookaside
** buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.</dd>
**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */
................................................................................
** This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the [database connection] specified by the first parameter.
** Only changes that are directly specified by the [INSERT], [UPDATE],
** or [DELETE] statement are counted.  Auxiliary changes caused by
** triggers are not counted. Use the [sqlite3_total_changes()] function
** to find the total number of changes including changes caused by triggers.



**
** A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
** are changed as side effects of REPLACE constraint resolution,
** rollback, ABORT processing, DROP TABLE, or by any other
** mechanisms do not count as direct row changes.
**
** A "trigger context" is a scope of execution that begins and

** ends with the script of a trigger.  Most SQL statements are
** evaluated outside of any trigger.  This is the "top level"
** trigger context.  If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger.  Subtriggers create subcontexts for their duration.
**
** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
................................................................................
** that also occurred at the top level.  Within the body of a trigger,
** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include changes
** caused by subtriggers since those have their own context.
**
** SQLite implements the command "DELETE FROM table" without a WHERE clause
** by dropping and recreating the table.  Doing so is much faster than going
** through and deleting individual elements from the table.  Because of this
** optimization, the deletions in "DELETE FROM table" are not row changes and
** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()]
** functions, regardless of the number of elements that were originally
** in the table.  To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.  Or recompile using the
** [SQLITE_OMIT_TRUNCATE_OPTIMIZATION] compile-time option to disable the
** optimization on all queries.

**
** Requirements:
** [H12241] [H12243]
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
**
** This function returns the number of row changes caused by INSERT,
** UPDATE or DELETE statements since the [database connection] was opened.
** The count includes all changes from all trigger contexts.  However,

** the count does not include changes used to implement REPLACE constraints,
** do rollbacks or ABORT processing, or DROP table processing.



** The changes are counted as soon as the statement that makes them is
** completed (when the statement handle is passed to [sqlite3_reset()] or
** [sqlite3_finalize()]).
**
** SQLite implements the command "DELETE FROM table" without a WHERE clause
** by dropping and recreating the table.  (This is much faster than going
** through and deleting individual elements from the table.)  Because of this
** optimization, the deletions in "DELETE FROM table" are not row changes and
** will not be counted by the sqlite3_changes() or [sqlite3_total_changes()]
** functions, regardless of the number of elements that were originally
** in the table.  To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.   Or recompile using the
** [SQLITE_OMIT_TRUNCATE_OPTIMIZATION] compile-time option to disable the
** optimization on all queries.
**
** See also the [sqlite3_changes()] interface.

**
** Requirements:
** [H12261] [H12263]
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
................................................................................
** to be interrupted and might continue to completion.
**
** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
** that is inside an explicit transaction, then the entire transaction
** will be rolled back automatically.
**








** A call to sqlite3_interrupt() has no effect on SQL statements
** that are started after sqlite3_interrupt() returns.
**
** Requirements:
** [H12271] [H12272]
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
**
** These routines are useful for command-line input to determine if the
** currently entered text seems to form complete a SQL statement or
** if additional input is needed before sending the text into
** SQLite for parsing.  These routines return true if the input string
** appears to be a complete SQL statement.  A statement is judged to be
** complete if it ends with a semicolon token and is not a fragment of a
** CREATE TRIGGER statement.  Semicolons that are embedded within
** string literals or quoted identifier names or comments are not
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.




**
** These routines do not parse the SQL statements thus
** will not detect syntactically incorrect SQL.






**
** Requirements: [H10511] [H10512]
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
................................................................................
** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** requested is ok.  When the callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that triggered the
** authorizer will fail with an error message explaining that
** access is denied.  If the authorizer code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
**
** The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.
**











** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
** try to execute malicious statements that damage the database.  For
** example, an application may allow a user to enter arbitrary
** SQL queries for evaluation by a database.  But the application does
** not want the user to be able to make arbitrary changes to the
................................................................................
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be reprepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()].


**
** Requirements:
** [H12501] [H12502] [H12503] [H12504] [H12505] [H12506] [H12507] [H12510]
** [H12511] [H12512] [H12520] [H12521] [H12522]
*/
int sqlite3_set_authorizer(
  sqlite3*,
................................................................................
** redefined.  The length of the name is limited to 255 bytes, exclusive of
** the zero-terminator.  Note that the name length limit is in bytes, not
** characters.  Any attempt to create a function with a longer name
** will result in [SQLITE_ERROR] being returned.
**
** The third parameter (nArg)
** is the number of arguments that the SQL function or
** aggregate takes. If this parameter is negative, then the SQL function or
** aggregate may take any number of arguments.



**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  It is allowed to
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
................................................................................
**
** An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
**
** Requirements:
** [H16103] [H16106] [H16109] [H16112] [H16118] [H16121] [H16124] [H16127]
** [H16130] [H16133] [H16136] [H16139] [H16142]
*/
int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
................................................................................
**
** The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** and a UTF-16 string for sqlite3_create_collation16(). In all cases
** the name is passed as the second function argument.
**
** The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that


** the routine expects pointers to 16-bit word aligned strings
** of UTF-16 in the native byte order of the host computer.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument.  If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
** Each time the application supplied function is invoked, it is passed
** as its first parameter a copy of the void* passed as the fourth argument
** to sqlite3_create_collation() or sqlite3_create_collation16().
................................................................................
** except that it takes an extra argument which is a destructor for
** the collation.  The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
** Collations are destroyed when they are overridden by later calls to the
** collation creation functions or when the [database connection] is closed
** using [sqlite3_close()].


**
** Requirements:
** [H16603] [H16604] [H16606] [H16609] [H16612] [H16615] [H16618] [H16621]
** [H16624] [H16627] [H16630]
*/
int sqlite3_create_collation(
  sqlite3*, 
................................................................................
*/
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
**
** The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is committed.
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The sqlite3_rollback_hook() interface registers a callback
** function to be invoked whenever a transaction is committed.
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The pArg argument is passed through to the callback.
** If the callback on a commit hook function returns non-zero,
** then the commit is converted into a rollback.
**
** If another function was previously registered, its
................................................................................
** completion of the [sqlite3_step()] call that triggered the commit
** or rollback hook in the first place.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** Registering a NULL function disables the callback.
**






** For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
** The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.
** <todo> Check on this </todo>


**
** Requirements:
** [H12951] [H12952] [H12953] [H12954] [H12955]
** [H12961] [H12962] [H12963] [H12964]
*/
void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
................................................................................
** The third and fourth arguments to the callback contain pointers to the
** database and table name containing the affected row.
** The final callback parameter is the [rowid] of the row.
** In the case of an update, this is the [rowid] after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).







**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
** to modify the database connection must be deferred until after the
** completion of the [sqlite3_step()] call that triggered the update hook.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** If another function was previously registered, its pArg value
** is returned.  Otherwise NULL is returned.



**
** Requirements:
** [H12971] [H12973] [H12975] [H12977] [H12979] [H12981] [H12983] [H12986]
*/
void *sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
................................................................................
typedef struct sqlite3_vtab sqlite3_vtab;
typedef struct sqlite3_index_info sqlite3_index_info;
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;

/*
** CAPI3REF: Virtual Table Object {H18000} <S20400>
** KEYWORDS: sqlite3_module
** EXPERIMENTAL
**
** A module is a class of virtual tables.  Each module is defined
** by an instance of the following structure.  This structure consists
** mostly of methods for the module.
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.





*/
struct sqlite3_module {
  int iVersion;
  int (*xCreate)(sqlite3*, void *pAux,
               int argc, const char *const*argv,
               sqlite3_vtab **ppVTab, char**);
  int (*xConnect)(sqlite3*, void *pAux,
................................................................................

/*
** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
** KEYWORDS: sqlite3_index_info
** EXPERIMENTAL
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the xBestIndex
** method of an sqlite3_module.  The fields under **Inputs** are the
** inputs to xBestIndex and are read-only.  xBestIndex inserts its
** results into the **Outputs** fields.
**
** The aConstraint[] array records WHERE clause constraints of the form:
**
** <pre>column OP expr</pre>
**
................................................................................
** get as many WHERE clause terms into the form shown above as possible.
** The aConstraint[] array only reports WHERE clause terms in the correct
** form that refer to the particular virtual table being queried.
**
** Information about the ORDER BY clause is stored in aOrderBy[].
** Each term of aOrderBy records a column of the ORDER BY clause.
**
** The xBestIndex method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.
**
** The idxNum and idxPtr values are recorded and passed into xFilter.


** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
**
** The orderByConsumed means that output from xFilter will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
** The estimatedCost value is an estimate of the cost of doing the
** particular lookup.  A full scan of a table with N entries should have
** a cost of N.  A binary search of a table of N entries should have a
** cost of approximately log(N).
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */
................................................................................
#define SQLITE_INDEX_CONSTRAINT_GE    32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64

/*
** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
** EXPERIMENTAL
**
** This routine is used to register a new module name with a
** [database connection].  Module names must be registered before
** creating new virtual tables on the module, or before using
** preexisting virtual tables of the module.
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.








*/
SQLITE_EXPERIMENTAL int sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *,    /* Methods for the module */
  void *                     /* Client data for xCreate/xConnect */
);

/*
** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
** EXPERIMENTAL
**
** This routine is identical to the [sqlite3_create_module()] method above,
** except that it allows a destructor function to be specified. It is
** even more experimental than the rest of the virtual tables API.


*/
SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *,    /* Methods for the module */
  void *,                    /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);

/*
** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
** KEYWORDS: sqlite3_vtab
** EXPERIMENTAL
**
** Every module implementation uses a subclass of the following structure
** to describe a particular instance of the module.  Each subclass will

** be tailored to the specific needs of the module implementation.
** The purpose of this superclass is to define certain fields that are
** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
** string obtained from [sqlite3_mprintf()] to zErrMsg.  The method should
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.  Note
** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
** since virtual tables are commonly implemented in loadable extensions which
** do not have access to sqlite3MPrintf() or sqlite3Free().
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* Used internally */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object  {H18020} <S20400>
** KEYWORDS: sqlite3_vtab_cursor
** EXPERIMENTAL
**
** Every module implementation uses a subclass of the following structure
** to describe cursors that point into the virtual table and are used

** to loop through the virtual table.  Cursors are created using the



** xOpen method of the module.  Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.
*/
struct sqlite3_vtab_cursor {
  sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
** EXPERIMENTAL
**
** The xCreate and xConnect methods of a module use the following API

** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.
*/
SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);

/*
** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
** EXPERIMENTAL
**
** Virtual tables can provide alternative implementations of functions

** using the xFindFunction method.  But global versions of those functions
** must exist in order to be overloaded.
**
** This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.  The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by virtual tables.
**
** This API should be considered part of the virtual table interface,
** which is experimental and subject to change.
*/
SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental.  The interface might change in incompatible ways.
................................................................................
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre> {END}
**
** If the flags parameter is non-zero, the the BLOB is opened for read
** and write access. If it is zero, the BLOB is opened for read access.
**
** Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** is assigned when the database is connected using [ATTACH].
** For the main database file, the database name is "main".
** For TEMP tables, the database name is "temp".
**
** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and any value written
** to *ppBlob should not be used by the caller.
** This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].



**
** If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.
** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.













**
** Requirements:
** [H17813] [H17814] [H17816] [H17819] [H17821] [H17824]
*/
int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
................................................................................
**
** Closes an open [BLOB handle].
**
** Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit. {END}
**
** Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  {H17833} Any errors that occur during
** closing are reported as a non-zero return value.
**
** The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.



**
** Requirements:
** [H17833] [H17836] [H17839]
*/
int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
**
** Returns the size in bytes of the BLOB accessible via the open
** []BLOB handle] in its only argument.







**
** Requirements:
** [H17843]
*/
int sqlite3_blob_bytes(sqlite3_blob *);

/*
................................................................................
** This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.
**
** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read.  If N or iOffset is
** less than zero, [SQLITE_ERROR] is returned and no data is read.


**
** An attempt to read from an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].
**
** On success, SQLITE_OK is returned.
** Otherwise, an [error code] or an [extended error code] is returned.







**
** Requirements:
** [H17853] [H17856] [H17859] [H17862] [H17863] [H17865] [H17868]
*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
................................................................................
** this function returns [SQLITE_READONLY].
**
** This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.


**
** An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** On success, SQLITE_OK is returned.
** Otherwise, an  [error code] or an [extended error code] is returned.







**
** Requirements:
** [H17873] [H17874] [H17875] [H17876] [H17877] [H17879] [H17882] [H17885]
** [H17888]
*/
int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

................................................................................
#define SQLITE_TESTCTRL_PRNG_SAVE                5
#define SQLITE_TESTCTRL_PRNG_RESTORE             6
#define SQLITE_TESTCTRL_PRNG_RESET               7
#define SQLITE_TESTCTRL_BITVEC_TEST              8
#define SQLITE_TESTCTRL_FAULT_INSTALL            9
#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
#define SQLITE_TESTCTRL_PENDING_BYTE            11



/*
** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
** EXPERIMENTAL
**
** This interface is used to retrieve runtime status information
** about the preformance of SQLite, and optionally to reset various







|







 







|
|







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|







 







|
>
>
>
>
>
>
|
<







 







>
>
>
>
>







 







|
|
>
>

|
<
>
|













|

>
|
>
>
>






|
>
>





|
|
|




|
>
>







 







|
|
|







 







>
>
>



|
|



>
|







 







<
<
<
<
|
<
<
<
<
<
>













|
|
|
>
|
|
>
>
>




<
<
<
<
<
<
<
<
<
<
<
|
>







 







>
>
>
>
>
>
>
>
|
|












|
|

|

|
|


|
>
>
>
>



>
>
>
>
>
>







 







|
<
<
<
<
<
<








>
>
>
>
>
>
>
>
>
>
>







 







|
>
>







 







|
|
>
>
>







 







|







 







|


|
>
>

|







 







>
>







 







|



|







 







>
>
>
>
>
>








>
>







 







>
>
>
>
>
>
>










>
>
>







 







|


|
|
|

|
|
>
>
>
>
>







 







|
|







 







|






|
>
>
|

|







<
<
<







 







|
|
|
|

|
|
>
>
>
>
>
>
>
>




|
|






|
|
|
>
>




|
|








|
|
>









|
<
<
<
<
<
<










|


|
|
>

>
>
>
|




<
<
<










|
>


<
<
<

|






>
|








|
<
<
<







 







|









|
|

|
>
>
>











>
>
>
>
>
>
>
>
>
>
>
>
>







 







|



|




>
>
>









|
|
>
>
>
>
>
>
>







 







>
>






>
>
>
>
>
>
>







 







>
>










>
>
>
>
>
>
>







 







>
>







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
...
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

713
714
715
716
717
718
719
...
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
....
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
....
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
....
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
....
1267
1268
1269
1270
1271
1272
1273




1274





1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301











1302
1303
1304
1305
1306
1307
1308
1309
1310
....
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
....
1803
1804
1805
1806
1807
1808
1809
1810






1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
....
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
....
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
....
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
....
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
....
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
....
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
....
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
....
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
....
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
....
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
....
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223



4224
4225
4226
4227
4228
4229
4230
....
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319






4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344



4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358



4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377



4378
4379
4380
4381
4382
4383
4384
....
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
....
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
....
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
....
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
....
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite3.h,v 1.40 2009/06/19 21:04:12 rmsimpson Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
................................................................................
** The Z value is the release number and is incremented with
** each release but resets back to 0 whenever Y is incremented.
**
** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION         "3.6.15"
#define SQLITE_VERSION_NUMBER  3006015

/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
................................................................................
** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the xOpen method of the
** [sqlite3_vfs] object.
*/
#define SQLITE_OPEN_READONLY         0x00000001  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_READWRITE        0x00000002  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_CREATE           0x00000004  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_DELETEONCLOSE    0x00000008  /* VFS only */
#define SQLITE_OPEN_EXCLUSIVE        0x00000010  /* VFS only */
#define SQLITE_OPEN_MAIN_DB          0x00000100  /* VFS only */
#define SQLITE_OPEN_TEMP_DB          0x00000200  /* VFS only */
#define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
#define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */

/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
................................................................................
** <li> [SQLITE_OPEN_EXCLUSIVE]
** </ul>
**
** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
** deleted when it is closed.  The [SQLITE_OPEN_DELETEONCLOSE]
** will be set for TEMP  databases, journals and for subjournals.
**
** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
** with the [SQLITE_OPEN_CREATE] flag, which are both directly
** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
** API.  The SQLITE_OPEN_EXCLUSIVE flag, when paired with the 
** SQLITE_OPEN_CREATE, is used to indicate that file should always
** be created, and that it is an error if it already exists.
** It is <i>not</i> used to indicate the file should be opened 
** for exclusive access.

**
** At least szOsFile bytes of memory are allocated by SQLite
** to hold the  [sqlite3_file] structure passed as the third
** argument to xOpen.  The xOpen method does not have to
** allocate the structure; it should just fill it in.
**
** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
................................................................................
**
** A call to sqlite3_initialize() is an "effective" call if it is
** the first time sqlite3_initialize() is invoked during the lifetime of
** the process, or if it is the first time sqlite3_initialize() is invoked
** following a call to sqlite3_shutdown().  Only an effective call
** of sqlite3_initialize() does any initialization.  All other calls
** are harmless no-ops.
**
** A call to sqlite3_shutdown() is an "effective" call if it is the first
** call to sqlite3_shutdown() since the last sqlite3_initialize().  Only
** an effective call to sqlite3_shutdown() does any deinitialization.
** All other calls to sqlite3_shutdown() are harmless no-ops.
**
** Among other things, sqlite3_initialize() shall invoke
** sqlite3_os_init().  Similarly, sqlite3_shutdown()
** shall invoke sqlite3_os_end().
**
** The sqlite3_initialize() routine returns [SQLITE_OK] on success.
** If for some reason, sqlite3_initialize() is unable to initialize
................................................................................
**   <li> [sqlite3_soft_heap_limit()]
**   <li> [sqlite3_status()]
**   </ul>
** </dd>
**
** <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd>This option specifies a static memory buffer that SQLite can use for
** scratch memory.  There are three arguments:  A pointer an 8-byte
** aligned memory buffer from which the scrach allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).  The sz
** argument must be a multiple of 16. The sz parameter should be a few bytes
** larger than the actual scratch space required due to internal overhead.

** The first argument should pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** SQLite will use no more than one scratch buffer at once per thread, so
** N should be set to the expected maximum number of threads.  The sz
** parameter should be 6 times the size of the largest database page size.
** Scratch buffers are used as part of the btree balance operation.  If
** The btree balancer needs additional memory beyond what is provided by
** scratch buffers or if no scratch buffer space is specified, then SQLite
** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
**
** <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd>This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implemenation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
** There are three arguments to this option: A pointer to 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus a little extra for each
** page header.  The page header size is 20 to 40 bytes depending on
** the host architecture.  It is harmless, apart from the wasted memory,
** to make sz a little too large.  The first
** argument should point to an allocation of at least sz*N bytes of memory.
** SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** The implementation might use one or more of the N buffers to hold 
** memory accounting information. The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** <dt>SQLITE_CONFIG_HEAP</dt>
** <dd>This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided
** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
** There are three arguments: An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.</dd>
**
** <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd>This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.</dd>
**
................................................................................
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an 8-byte aligned memory buffer to use for lookaside memory.
** The first argument may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.</dd>
**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */
................................................................................
** This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the [database connection] specified by the first parameter.
** Only changes that are directly specified by the [INSERT], [UPDATE],
** or [DELETE] statement are counted.  Auxiliary changes caused by
** triggers are not counted. Use the [sqlite3_total_changes()] function
** to find the total number of changes including changes caused by triggers.
**
** Changes to a view that are simulated by an [INSTEAD OF trigger]
** are not counted.  Only real table changes are counted.
**
** A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
** are changed as side effects of [REPLACE] constraint resolution,
** rollback, ABORT processing, [DROP TABLE], or by any other
** mechanisms do not count as direct row changes.
**
** A "trigger context" is a scope of execution that begins and
** ends with the script of a [CREATE TRIGGER | trigger]. 
** Most SQL statements are
** evaluated outside of any trigger.  This is the "top level"
** trigger context.  If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger.  Subtriggers create subcontexts for their duration.
**
** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
................................................................................
** that also occurred at the top level.  Within the body of a trigger,
** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include changes
** caused by subtriggers since those have their own context.
**




** See also the [sqlite3_total_changes()] interface and the





** [count_changes pragma].
**
** Requirements:
** [H12241] [H12243]
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
**
** This function returns the number of row changes caused by [INSERT],
** [UPDATE] or [DELETE] statements since the [database connection] was opened.
** The count includes all changes from all 
** [CREATE TRIGGER | trigger] contexts.  However,
** the count does not include changes used to implement [REPLACE] constraints,
** do rollbacks or ABORT processing, or [DROP TABLE] processing.  The
** count does not include rows of views that fire an [INSTEAD OF trigger],
** though if the INSTEAD OF trigger makes changes of its own, those changes 
** are counted.
** The changes are counted as soon as the statement that makes them is
** completed (when the statement handle is passed to [sqlite3_reset()] or
** [sqlite3_finalize()]).
**











** See also the [sqlite3_changes()] interface and the
** [count_changes pragma].
**
** Requirements:
** [H12261] [H12263]
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
................................................................................
** to be interrupted and might continue to completion.
**
** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
** that is inside an explicit transaction, then the entire transaction
** will be rolled back automatically.
**
** The sqlite3_interrupt(D) call is in effect until all currently running
** SQL statements on [database connection] D complete.  Any new SQL statements
** that are started after the sqlite3_interrupt() call and before the 
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** Requirements:
** [H12271] [H12272]
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into
** SQLite for parsing.  These routines return 1 if the input string
** appears to be a complete SQL statement.  A statement is judged to be
** complete if it ends with a semicolon token and is not a prefix of a
** well-formed CREATE TRIGGER statement.  Semicolons that are embedded within
** string literals or quoted identifier names or comments are not
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.  Whitespace
** and comments that follow the final semicolon are ignored.
**
** These routines return 0 if the statement is incomplete.  If a
** memory allocation fails, then SQLITE_NOMEM is returned.
**
** These routines do not parse the SQL statements thus
** will not detect syntactically incorrect SQL.
**
** If SQLite has not been initialized using [sqlite3_initialize()] prior 
** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
** automatically by sqlite3_complete16().  If that initialization fails,
** then the return value from sqlite3_complete16() will be non-zero
** regardless of whether or not the input SQL is complete.
**
** Requirements: [H10511] [H10512]
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
................................................................................
** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** requested is ok.  When the callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that triggered the
** authorizer will fail with an error message explaining that
** access is denied. 






**
** The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.
**
** If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
** If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
** try to execute malicious statements that damage the database.  For
** example, an application may allow a user to enter arbitrary
** SQL queries for evaluation by a database.  But the application does
** not want the user to be able to make arbitrary changes to the
................................................................................
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be reprepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
**
** Requirements:
** [H12501] [H12502] [H12503] [H12504] [H12505] [H12506] [H12507] [H12510]
** [H12511] [H12512] [H12520] [H12521] [H12522]
*/
int sqlite3_set_authorizer(
  sqlite3*,
................................................................................
** redefined.  The length of the name is limited to 255 bytes, exclusive of
** the zero-terminator.  Note that the name length limit is in bytes, not
** characters.  Any attempt to create a function with a longer name
** will result in [SQLITE_ERROR] being returned.
**
** The third parameter (nArg)
** is the number of arguments that the SQL function or
** aggregate takes. If this parameter is -1, then the SQL function or
** aggregate may take any number of arguments between 0 and the limit
** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]).  If the third
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  It is allowed to
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
................................................................................
**
** An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
**
** Requirements:
** [H16103] [H16106] [H16109] [H16112] [H16118] [H16121] [H16127]
** [H16130] [H16133] [H16136] [H16139] [H16142]
*/
int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
................................................................................
**
** The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** and a UTF-16 string for sqlite3_create_collation16(). In all cases
** the name is passed as the second function argument.
**
** The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
** third argument might also be [SQLITE_UTF16] to indicate that the routine
** expects pointers to be UTF-16 strings in the native byte order, or the
** argument can be [SQLITE_UTF16_ALIGNED] if the
** the routine expects pointers to 16-bit word aligned strings
** of UTF-16 in the native byte order.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument.  If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
** Each time the application supplied function is invoked, it is passed
** as its first parameter a copy of the void* passed as the fourth argument
** to sqlite3_create_collation() or sqlite3_create_collation16().
................................................................................
** except that it takes an extra argument which is a destructor for
** the collation.  The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
** Collations are destroyed when they are overridden by later calls to the
** collation creation functions or when the [database connection] is closed
** using [sqlite3_close()].
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
**
** Requirements:
** [H16603] [H16604] [H16606] [H16609] [H16612] [H16615] [H16618] [H16621]
** [H16624] [H16627] [H16630]
*/
int sqlite3_create_collation(
  sqlite3*, 
................................................................................
*/
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
**
** The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The sqlite3_rollback_hook() interface registers a callback
** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The pArg argument is passed through to the callback.
** If the callback on a commit hook function returns non-zero,
** then the commit is converted into a rollback.
**
** If another function was previously registered, its
................................................................................
** completion of the [sqlite3_step()] call that triggered the commit
** or rollback hook in the first place.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** Registering a NULL function disables the callback.
**
** When the commit hook callback routine returns zero, the [COMMIT]
** operation is allowed to continue normally.  If the commit hook
** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
** The rollback hook is invoked on a rollback that results from a commit
** hook returning non-zero, just as it would be with any other rollback.
**
** For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
** The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.
** <todo> Check on this </todo>
**
** See also the [sqlite3_update_hook()] interface.
**
** Requirements:
** [H12951] [H12952] [H12953] [H12954] [H12955]
** [H12961] [H12962] [H12963] [H12964]
*/
void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
................................................................................
** The third and fourth arguments to the callback contain pointers to the
** database and table name containing the affected row.
** The final callback parameter is the [rowid] of the row.
** In the case of an update, this is the [rowid] after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
** In the current implementation, the update hook
** is not invoked when duplication rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
** to modify the database connection must be deferred until after the
** completion of the [sqlite3_step()] call that triggered the update hook.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** If another function was previously registered, its pArg value
** is returned.  Otherwise NULL is returned.
**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.
**
** Requirements:
** [H12971] [H12973] [H12975] [H12977] [H12979] [H12981] [H12983] [H12986]
*/
void *sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
................................................................................
typedef struct sqlite3_vtab sqlite3_vtab;
typedef struct sqlite3_index_info sqlite3_index_info;
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;

/*
** CAPI3REF: Virtual Table Object {H18000} <S20400>
** KEYWORDS: sqlite3_module {virtual table module}
** EXPERIMENTAL
**
** This structure, sometimes called a a "virtual table module", 
** defines the implementation of a [virtual tables].  
** This structure consists mostly of methods for the module.
**
** A virtual table module is created by filling in a persistent
** instance of this structure and passing a pointer to that instance
** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
** The registration remains valid until it is replaced by a different
** module or until the [database connection] closes.  The content
** of this structure must not change while it is registered with
** any database connection.
*/
struct sqlite3_module {
  int iVersion;
  int (*xCreate)(sqlite3*, void *pAux,
               int argc, const char *const*argv,
               sqlite3_vtab **ppVTab, char**);
  int (*xConnect)(sqlite3*, void *pAux,
................................................................................

/*
** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
** KEYWORDS: sqlite3_index_info
** EXPERIMENTAL
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the [xBestIndex]
** method of a [virtual table module].  The fields under **Inputs** are the
** inputs to xBestIndex and are read-only.  xBestIndex inserts its
** results into the **Outputs** fields.
**
** The aConstraint[] array records WHERE clause constraints of the form:
**
** <pre>column OP expr</pre>
**
................................................................................
** get as many WHERE clause terms into the form shown above as possible.
** The aConstraint[] array only reports WHERE clause terms in the correct
** form that refer to the particular virtual table being queried.
**
** Information about the ORDER BY clause is stored in aOrderBy[].
** Each term of aOrderBy records a column of the ORDER BY clause.
**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.
**
** The idxNum and idxPtr values are recorded and passed into the
** [xFilter] method.
** [sqlite3_free()] is used to free idxPtr if and only iff
** needToFreeIdxPtr is true.
**
** The orderByConsumed means that output from [xFilter]/[xNext] will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
** The estimatedCost value is an estimate of the cost of doing the
** particular lookup.  A full scan of a table with N entries should have
** a cost of N.  A binary search of a table of N entries should have a
** cost of approximately log(N).



*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */
................................................................................
#define SQLITE_INDEX_CONSTRAINT_GE    32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64

/*
** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
** EXPERIMENTAL
**
** This routine is used to register a new [virtual table module] name.
** Module names must be registered before
** creating a new [virtual table] using the module, or before using a
** preexisting [virtual table] for the module.
**
** The module name is registered on the [database connection] specified
** by the first parameter.  The name of the module is given by the 
** second parameter.  The third parameter is a pointer to
** the implementation of the [virtual table module].   The fourth
** parameter is an arbitrary client data pointer that is passed through
** into the [xCreate] and [xConnect] methods of the virtual table module
** when a new virtual table is be being created or reinitialized.
**
** This interface has exactly the same effect as calling
** [sqlite3_create_module_v2()] with a NULL client data destructor.
*/
SQLITE_EXPERIMENTAL int sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);

/*
** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
** EXPERIMENTAL
**
** This routine is identical to the [sqlite3_create_module()] method,
** except that it has an extra parameter to specify 
** a destructor function for the client data pointer.  SQLite will
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  
*/
SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);

/*
** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
** KEYWORDS: sqlite3_vtab
** EXPERIMENTAL
**
** Every [virtual table module] implementation uses a subclass
** of the following structure to describe a particular instance
** of the [virtual table].  Each subclass will
** be tailored to the specific needs of the module implementation.
** The purpose of this superclass is to define certain fields that are
** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
** string obtained from [sqlite3_mprintf()] to zErrMsg.  The method should
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.






*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* Used internally */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object  {H18020} <S20400>
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
** EXPERIMENTAL
**
** Every [virtual table module] implementation uses a subclass of the
** following structure to describe cursors that point into the
** [virtual table] and are used
** to loop through the virtual table.  Cursors are created using the
** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
** by the [sqlite3_module.xClose | xClose] method.  Cussors are used
** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
** of the module.  Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.



*/
struct sqlite3_vtab_cursor {
  sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
** EXPERIMENTAL
**
** The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.



*/
SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
** EXPERIMENTAL
**
** Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.
**
** This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.  The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].



*/
SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental.  The interface might change in incompatible ways.
................................................................................
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre> {END}
**
** If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. If it is zero, the BLOB is opened for read access.
**
** Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** is assigned when the database is connected using [ATTACH].
** For the main database file, the database name is "main".
** For TEMP tables, the database name is "temp".
**
** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
** to be a null pointer.
** This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
** functions.  Note that the *ppBlob variable is always initialized in a
** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
** regardless of the success or failure of this routine.
**
** If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.
** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.
**
** Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  The size of a blob may not be changed by this
** underface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
**
** Requirements:
** [H17813] [H17814] [H17816] [H17819] [H17821] [H17824]
*/
int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
................................................................................
**
** Closes an open [BLOB handle].
**
** Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit.
**
** Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  Any errors that occur during
** closing are reported as a non-zero return value.
**
** The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.
**
** Calling this routine with a null pointer (which as would be returned
** by failed call to [sqlite3_blob_open()]) is a harmless no-op.
**
** Requirements:
** [H17833] [H17836] [H17839]
*/
int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
**
** Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** Requirements:
** [H17843]
*/
int sqlite3_blob_bytes(sqlite3_blob *);

/*
................................................................................
** This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.
**
** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read.  If N or iOffset is
** less than zero, [SQLITE_ERROR] is returned and no data is read.
** The size of the blob (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.
**
** An attempt to read from an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].
**
** On success, SQLITE_OK is returned.
** Otherwise, an [error code] or an [extended error code] is returned.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].
**
** Requirements:
** [H17853] [H17856] [H17859] [H17862] [H17863] [H17865] [H17868]
*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
................................................................................
** this function returns [SQLITE_READONLY].
**
** This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
** The size of the BLOB (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.
**
** An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** On success, SQLITE_OK is returned.
** Otherwise, an  [error code] or an [extended error code] is returned.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
**
** Requirements:
** [H17873] [H17874] [H17875] [H17876] [H17877] [H17879] [H17882] [H17885]
** [H17888]
*/
int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

................................................................................
#define SQLITE_TESTCTRL_PRNG_SAVE                5
#define SQLITE_TESTCTRL_PRNG_RESTORE             6
#define SQLITE_TESTCTRL_PRNG_RESET               7
#define SQLITE_TESTCTRL_BITVEC_TEST              8
#define SQLITE_TESTCTRL_FAULT_INSTALL            9
#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13

/*
** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
** EXPERIMENTAL
**
** This interface is used to retrieve runtime status information
** about the preformance of SQLite, and optionally to reset various

Changes to SQLite.Interop/src/sqlite3ext.h.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** This header file defines the SQLite interface for use by
** shared libraries that want to be imported as extensions into
** an SQLite instance.  Shared libraries that intend to be loaded
** as extensions by SQLite should #include this file instead of 
** sqlite3.h.
**
** @(#) $Id: sqlite3ext.h,v 1.16 2009/04/28 16:17:45 rmsimpson Exp $
*/
#ifndef _SQLITE3EXT_H_
#define _SQLITE3EXT_H_
#include "sqlite3.h"

typedef struct sqlite3_api_routines sqlite3_api_routines;








|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** This header file defines the SQLite interface for use by
** shared libraries that want to be imported as extensions into
** an SQLite instance.  Shared libraries that intend to be loaded
** as extensions by SQLite should #include this file instead of 
** sqlite3.h.
**
** @(#) $Id: sqlite3ext.h,v 1.17 2009/06/19 21:04:12 rmsimpson Exp $
*/
#ifndef _SQLITE3EXT_H_
#define _SQLITE3EXT_H_
#include "sqlite3.h"

typedef struct sqlite3_api_routines sqlite3_api_routines;

Changes to System.Data.SQLite/AssemblyInfo.cs.

43
44
45
46
47
48
49
50
51
52
53
//      Major Version
//      Minor Version 
//      Build Number
//      Revision
//
// You can specify all the values or you can default the Revision and Build Numbers 
// by using the '*' as shown below:
[assembly: AssemblyVersion("1.0.61.0")]
#if !PLATFORM_COMPACTFRAMEWORK
[assembly: AssemblyFileVersion("1.0.61.0")]
#endif







|

|

43
44
45
46
47
48
49
50
51
52
53
//      Major Version
//      Minor Version 
//      Build Number
//      Revision
//
// You can specify all the values or you can default the Revision and Build Numbers 
// by using the '*' as shown below:
[assembly: AssemblyVersion("1.0.62.0")]
#if !PLATFORM_COMPACTFRAMEWORK
[assembly: AssemblyFileVersion("1.0.62.0")]
#endif

Changes to System.Data.SQLite/SQLite3.cs.

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
...
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
...
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
            if ((uint)Environment.TickCount - starttick > timeout)
            {
              throw new SQLiteException(r, SQLiteLastError());
            }
            else
            {
              // Otherwise sleep for a random amount of time up to 150ms
              System.Threading.Thread.CurrentThread.Join(rnd.Next(1, 150));
            }
          }
        }
      }
    }

    internal override int Reset(SQLiteStatement stmt)
................................................................................
            if ((uint)Environment.TickCount - starttick > timeoutMS)
            {
              throw new SQLiteException(n, SQLiteLastError());
            }
            else
            {
              // Otherwise sleep for a random amount of time up to 150ms
              System.Threading.Thread.CurrentThread.Join(rnd.Next(1, 150));
            }
          }
        }

        if (n > 0) throw new SQLiteException(n, SQLiteLastError());

        strRemain = UTF8ToString(ptr, len);
................................................................................

      if (bDest == null) return nlen;

      if (nCopied + nStart > bDest.Length) nCopied = bDest.Length - nStart;
      if (nCopied + nDataOffset > nlen) nCopied = nlen - nDataOffset;

      if (nCopied > 0)
        Marshal.Copy((IntPtr)(ptr.ToInt32() + nDataOffset), bDest, nStart, nCopied);
      else nCopied = 0;

      return nCopied;
    }

    internal override long GetChars(SQLiteStatement stmt, int index, int nDataOffset, char[] bDest, int nStart, int nLength)
    {







|







 







|







 







|







170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
...
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
...
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
            if ((uint)Environment.TickCount - starttick > timeout)
            {
              throw new SQLiteException(r, SQLiteLastError());
            }
            else
            {
              // Otherwise sleep for a random amount of time up to 150ms
              System.Threading.Thread.Sleep(rnd.Next(1, 150));
            }
          }
        }
      }
    }

    internal override int Reset(SQLiteStatement stmt)
................................................................................
            if ((uint)Environment.TickCount - starttick > timeoutMS)
            {
              throw new SQLiteException(n, SQLiteLastError());
            }
            else
            {
              // Otherwise sleep for a random amount of time up to 150ms
              System.Threading.Thread.Sleep(rnd.Next(1, 150));
            }
          }
        }

        if (n > 0) throw new SQLiteException(n, SQLiteLastError());

        strRemain = UTF8ToString(ptr, len);
................................................................................

      if (bDest == null) return nlen;

      if (nCopied + nStart > bDest.Length) nCopied = bDest.Length - nStart;
      if (nCopied + nDataOffset > nlen) nCopied = nlen - nDataOffset;

      if (nCopied > 0)
        Marshal.Copy((IntPtr)(ptr.ToInt64() + nDataOffset), bDest, nStart, nCopied);
      else nCopied = 0;

      return nCopied;
    }

    internal override long GetChars(SQLiteStatement stmt, int index, int nDataOffset, char[] bDest, int nStart, int nLength)
    {

Changes to System.Data.SQLite/SQLiteDataReader.cs.

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    /// <returns>decimal</returns>
    public override decimal GetDecimal(int i)
    {
      if (i >= VisibleFieldCount && _keyInfo != null)
        return _keyInfo.GetDecimal(i - VisibleFieldCount);

      VerifyType(i, DbType.Decimal);
      return Decimal.Parse(_activeStatement._sql.GetText(_activeStatement, i), NumberStyles.AllowDecimalPoint | NumberStyles.AllowExponent, CultureInfo.InvariantCulture);
    }

    /// <summary>
    /// Returns the column as a double
    /// </summary>
    /// <param name="i">The index of the column to retrieve</param>
    /// <returns>double</returns>







|







398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    /// <returns>decimal</returns>
    public override decimal GetDecimal(int i)
    {
      if (i >= VisibleFieldCount && _keyInfo != null)
        return _keyInfo.GetDecimal(i - VisibleFieldCount);

      VerifyType(i, DbType.Decimal);
      return Decimal.Parse(_activeStatement._sql.GetText(_activeStatement, i), NumberStyles.AllowDecimalPoint | NumberStyles.AllowExponent | NumberStyles.AllowLeadingSign, CultureInfo.InvariantCulture);
    }

    /// <summary>
    /// Returns the column as a double
    /// </summary>
    /// <param name="i">The index of the column to retrieve</param>
    /// <returns>double</returns>

Changes to System.Data.SQLite/UnsafeNativeMethods.cs.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#if !SQLITE_STANDARD

#if !USE_INTEROP_DLL

#if !PLATFORM_COMPACTFRAMEWORK
    private const string SQLITE_DLL = "System.Data.SQLite.DLL";
#else
    internal const string SQLITE_DLL = "SQLite.Interop.061.DLL";
#endif // PLATFORM_COMPACTFRAMEWORK

#else
    private const string SQLITE_DLL = "SQLite.Interop.DLL";
#endif // USE_INTEROP_DLL

#else







|







19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#if !SQLITE_STANDARD

#if !USE_INTEROP_DLL

#if !PLATFORM_COMPACTFRAMEWORK
    private const string SQLITE_DLL = "System.Data.SQLite.DLL";
#else
    internal const string SQLITE_DLL = "SQLite.Interop.062.DLL";
#endif // PLATFORM_COMPACTFRAMEWORK

#else
    private const string SQLITE_DLL = "SQLite.Interop.DLL";
#endif // USE_INTEROP_DLL

#else