Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update SQLite core library to the latest trunk code. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
d545007d7ae6bb344faef9bf83dc4c0b |
User & Date: | mistachkin 2015-07-03 21:57:00.301 |
Context
2015-07-11
| ||
08:05 | Improve build instructions for Mono to prevent use of the per-user configuration files (i.e. when building from a source checkout instead of an official source release package). check-in: 001c0b4dae user: mistachkin tags: trunk | |
2015-07-03
| ||
21:57 | Update SQLite core library to the latest trunk code. check-in: d545007d7a user: mistachkin tags: trunk | |
2015-07-02
| ||
01:44 | Update SQLite core library to the latest 3.8.11 alpha. check-in: 9d53109ce0 user: mistachkin tags: trunk | |
Changes
Changes to SQLite.Interop/src/core/sqlite3.c.
︙ | ︙ | |||
323 324 325 326 327 328 329 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 #define SQLITE_SOURCE_ID "2015-07-03 21:38:09 b202e2a1d73d104d795d2252b1c6f61d65bfb295" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 | #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument | > > > | 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 | #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ #define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */ #define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */ #define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */ /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument |
︙ | ︙ | |||
10331 10332 10333 10334 10335 10336 10337 | #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); #endif /* Functions used to query pager state and configuration. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*); | > | > | 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 | #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); #endif /* Functions used to query pager state and configuration. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); #endif SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*); SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int); SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*); SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); SQLITE_PRIVATE int sqlite3PagerNosync(Pager*); SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); |
︙ | ︙ | |||
19450 19451 19452 19453 19454 19455 19456 | /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. */ static sqlite3_mutex *debugMutexAlloc(int id){ | | | 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 | /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. */ static sqlite3_mutex *debugMutexAlloc(int id){ static sqlite3_debug_mutex aStatic[SQLITE_MUTEX_STATIC_VFS3 - 1]; sqlite3_debug_mutex *pNew = 0; switch( id ){ case SQLITE_MUTEX_FAST: case SQLITE_MUTEX_RECURSIVE: { pNew = sqlite3Malloc(sizeof(*pNew)); if( pNew ){ pNew->id = id; |
︙ | ︙ | |||
19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 | ** <li> SQLITE_MUTEX_STATIC_OPEN ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_PMEM ** <li> SQLITE_MUTEX_STATIC_APP1 ** <li> SQLITE_MUTEX_STATIC_APP2 ** <li> SQLITE_MUTEX_STATIC_APP3 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does | > > > | 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 | ** <li> SQLITE_MUTEX_STATIC_OPEN ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_PMEM ** <li> SQLITE_MUTEX_STATIC_APP1 ** <li> SQLITE_MUTEX_STATIC_APP2 ** <li> SQLITE_MUTEX_STATIC_APP3 ** <li> SQLITE_MUTEX_STATIC_VFS1 ** <li> SQLITE_MUTEX_STATIC_VFS2 ** <li> SQLITE_MUTEX_STATIC_VFS3 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does |
︙ | ︙ | |||
19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 | ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *pthreadMutexAlloc(int iType){ static sqlite3_mutex staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, | > > > | 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 | ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *pthreadMutexAlloc(int iType){ static sqlite3_mutex staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, |
︙ | ︙ | |||
20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 | SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER }; static int winMutex_isInit = 0; static int winMutex_isNt = -1; /* <0 means "need to query" */ /* As the winMutexInit() and winMutexEnd() functions are called as part | > > > | 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 | SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER }; static int winMutex_isInit = 0; static int winMutex_isNt = -1; /* <0 means "need to query" */ /* As the winMutexInit() and winMutexEnd() functions are called as part |
︙ | ︙ | |||
20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 | ** <li> SQLITE_MUTEX_STATIC_OPEN ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_PMEM ** <li> SQLITE_MUTEX_STATIC_APP1 ** <li> SQLITE_MUTEX_STATIC_APP2 ** <li> SQLITE_MUTEX_STATIC_APP3 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does | > > > | 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 | ** <li> SQLITE_MUTEX_STATIC_OPEN ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_PMEM ** <li> SQLITE_MUTEX_STATIC_APP1 ** <li> SQLITE_MUTEX_STATIC_APP2 ** <li> SQLITE_MUTEX_STATIC_APP3 ** <li> SQLITE_MUTEX_STATIC_VFS1 ** <li> SQLITE_MUTEX_STATIC_VFS2 ** <li> SQLITE_MUTEX_STATIC_VFS3 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does |
︙ | ︙ | |||
24928 24929 24930 24931 24932 24933 24934 | ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ #if SQLITE_BYTEORDER==4321 u32 x; memcpy(&x,p,4); return x; | | | | 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 | ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ #if SQLITE_BYTEORDER==4321 u32 x; memcpy(&x,p,4); return x; #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) && GCC_VERSION>=4003000 u32 x; memcpy(&x,p,4); return __builtin_bswap32(x); #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 u32 x; memcpy(&x,p,4); return _byteswap_ulong(x); #else testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; #endif } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ #if SQLITE_BYTEORDER==4321 memcpy(p,&v,4); #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) && GCC_VERSION>=4003000 u32 x = __builtin_bswap32(v); memcpy(p,&x,4); #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 u32 x = _byteswap_ulong(v); memcpy(p,&x,4); #else p[0] = (u8)(v>>24); |
︙ | ︙ | |||
26518 26519 26520 26521 26522 26523 26524 | ** statements. e.g. ** ** unixEnterMutex() ** assert( unixMutexHeld() ); ** unixEnterLeave() */ static void unixEnterMutex(void){ | | | | | 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 | ** statements. e.g. ** ** unixEnterMutex() ** assert( unixMutexHeld() ); ** unixEnterLeave() */ static void unixEnterMutex(void){ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); } static void unixLeaveMutex(void){ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); } #ifdef SQLITE_DEBUG static int unixMutexHeld(void) { return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); } #endif #ifdef SQLITE_HAVE_OS_TRACE /* ** Helper function for printing out trace information from debugging |
︙ | ︙ | |||
37043 37044 37045 37046 37047 37048 37049 | ** statements. e.g. ** ** winShmEnterMutex() ** assert( winShmMutexHeld() ); ** winShmLeaveMutex() */ static void winShmEnterMutex(void){ | | | | | 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 | ** statements. e.g. ** ** winShmEnterMutex() ** assert( winShmMutexHeld() ); ** winShmLeaveMutex() */ static void winShmEnterMutex(void){ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); } static void winShmLeaveMutex(void){ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); } #ifndef NDEBUG static int winShmMutexHeld(void) { return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); } #endif /* ** Object used to represent a single file opened and mmapped to provide ** shared memory. When multiple threads all reference the same ** log-summary, each thread has its own winFile object, but they all |
︙ | ︙ | |||
48518 48519 48520 48521 48522 48523 48524 48525 48526 48527 48528 48529 48530 48531 48532 48533 48534 48535 48536 48537 | ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){ return pPager->readOnly; } /* ** Return the number of references to the pager. */ SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ return sqlite3PcacheRefCount(pPager->pPCache); } /* ** Return the approximate number of bytes of memory currently ** used by the pager and its associated cache. */ SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){ int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) | > > | 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 | ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){ return pPager->readOnly; } #ifdef SQLITE_DEBUG /* ** Return the number of references to the pager. */ SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ return sqlite3PcacheRefCount(pPager->pPCache); } #endif /* ** Return the approximate number of bytes of memory currently ** used by the pager and its associated cache. */ SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){ int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) |
︙ | ︙ | |||
53262 53263 53264 53265 53266 53267 53268 53269 53270 53271 53272 53273 53274 53275 | Pgno nPage; /* Number of pages in the database */ int mxErr; /* Stop accumulating errors when this reaches zero */ int nErr; /* Number of messages written to zErrMsg so far */ int mallocFailed; /* A memory allocation error has occurred */ const char *zPfx; /* Error message prefix */ int v1, v2; /* Values for up to two %d fields in zPfx */ StrAccum errMsg; /* Accumulate the error message text here */ }; /* ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) | > | 53281 53282 53283 53284 53285 53286 53287 53288 53289 53290 53291 53292 53293 53294 53295 | Pgno nPage; /* Number of pages in the database */ int mxErr; /* Stop accumulating errors when this reaches zero */ int nErr; /* Number of messages written to zErrMsg so far */ int mallocFailed; /* A memory allocation error has occurred */ const char *zPfx; /* Error message prefix */ int v1, v2; /* Values for up to two %d fields in zPfx */ StrAccum errMsg; /* Accumulate the error message text here */ u32 *heap; /* Min-heap used for analyzing cell coverage */ }; /* ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) |
︙ | ︙ | |||
54613 54614 54615 54616 54617 54618 54619 54620 54621 54622 54623 54624 54625 54626 | u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 ); assert( pPage->noPayload ); assert( pPage->childPtrSize==4 ); pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); pInfo->nPayload = 0; pInfo->nLocal = 0; pInfo->iOverflow = 0; pInfo->pPayload = 0; return; } | > > > | 54633 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 54649 | u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 ); assert( pPage->noPayload ); assert( pPage->childPtrSize==4 ); #ifndef SQLITE_DEBUG UNUSED_PARAMETER(pPage); #endif pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); pInfo->nPayload = 0; pInfo->nLocal = 0; pInfo->iOverflow = 0; pInfo->pPayload = 0; return; } |
︙ | ︙ | |||
54810 54811 54812 54813 54814 54815 54816 54817 54818 54819 54820 54821 54822 54823 | #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->childPtrSize==4 ); pEnd = pIter + 9; while( (*pIter++)&0x80 && pIter<pEnd ); assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); return (u16)(pIter - pCell); | > > | 54833 54834 54835 54836 54837 54838 54839 54840 54841 54842 54843 54844 54845 54846 54847 54848 | #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #else UNUSED_PARAMETER(pPage); #endif assert( pPage->childPtrSize==4 ); pEnd = pIter + 9; while( (*pIter++)&0x80 && pIter<pEnd ); assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); return (u16)(pIter - pCell); |
︙ | ︙ | |||
57160 57161 57162 57163 57164 57165 57166 | ** the database file should be truncated to during the commit process. ** i.e. the database has been reorganized so that only the first *pnTrunc ** pages are in use. */ static int autoVacuumCommit(BtShared *pBt){ int rc = SQLITE_OK; Pager *pPager = pBt->pPager; | | | 57185 57186 57187 57188 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 | ** the database file should be truncated to during the commit process. ** i.e. the database has been reorganized so that only the first *pnTrunc ** pages are in use. */ static int autoVacuumCommit(BtShared *pBt){ int rc = SQLITE_OK; Pager *pPager = pBt->pPager; VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) assert( sqlite3_mutex_held(pBt->mutex) ); invalidateAllOverflowCache(pBt); assert(pBt->autoVacuum); if( !pBt->incrVacuum ){ Pgno nFin; /* Number of pages in database after autovacuuming */ Pgno nFree; /* Number of pages on the freelist initially */ |
︙ | ︙ | |||
62495 62496 62497 62498 62499 62500 62501 | ** the tree depth. Root pages return 0. Parents of root pages ** return 1, and so forth. ** ** These checks are done: ** ** 1. Make sure that cells and freeblocks do not overlap ** but combine to completely cover the page. | | < < | | | < < | | | > > | > > > | | > > > | > > | > | > | | < < < < < > > > > > > | > > > > | > > > > > | | > > > > > > > > > > | > > > > > | > > > | < < | > > > > > > | > > | | > | > > | > < < | | < | > > | > > | < | | < < > | > | < | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < | < < > | < < < < | | < < < < < < < < < < < < < > > > > | | < < < | < < < < < < < < < | > | < < < < < < < < > > | | > | | | > > > > > > > > > > > > > | | < < | | | | | < < > | 62520 62521 62522 62523 62524 62525 62526 62527 62528 62529 62530 62531 62532 62533 62534 62535 62536 62537 62538 62539 62540 62541 62542 62543 62544 62545 62546 62547 62548 62549 62550 62551 62552 62553 62554 62555 62556 62557 62558 62559 62560 62561 62562 62563 62564 62565 62566 62567 62568 62569 62570 62571 62572 62573 62574 62575 62576 62577 62578 62579 62580 62581 62582 62583 62584 62585 62586 62587 62588 62589 62590 62591 62592 62593 62594 62595 62596 62597 62598 62599 62600 62601 62602 62603 62604 62605 62606 62607 62608 62609 62610 62611 62612 62613 62614 62615 62616 62617 62618 62619 62620 62621 62622 62623 62624 62625 62626 62627 62628 62629 62630 62631 62632 62633 62634 62635 62636 62637 62638 62639 62640 62641 62642 62643 62644 62645 62646 62647 62648 62649 62650 62651 62652 62653 62654 62655 62656 62657 62658 62659 62660 62661 62662 62663 62664 62665 62666 62667 62668 62669 62670 62671 62672 62673 62674 62675 62676 62677 62678 62679 62680 62681 62682 62683 62684 62685 62686 62687 62688 62689 62690 62691 62692 62693 62694 62695 62696 62697 62698 62699 62700 62701 62702 62703 62704 62705 62706 62707 62708 62709 62710 62711 62712 62713 62714 62715 62716 62717 62718 62719 62720 62721 62722 62723 62724 62725 62726 62727 62728 62729 62730 62731 62732 62733 62734 62735 62736 62737 62738 62739 62740 62741 62742 62743 62744 62745 62746 62747 62748 62749 62750 62751 62752 62753 62754 62755 62756 62757 62758 62759 62760 62761 62762 62763 62764 62765 62766 62767 62768 62769 62770 62771 62772 62773 62774 62775 62776 62777 62778 | ** the tree depth. Root pages return 0. Parents of root pages ** return 1, and so forth. ** ** These checks are done: ** ** 1. Make sure that cells and freeblocks do not overlap ** but combine to completely cover the page. ** 2. Make sure integer cell keys are in order. ** 3. Check the integrity of overflow pages. ** 4. Recursively call checkTreePage on all children. ** 5. Verify that the depth of all children is the same. */ static int checkTreePage( IntegrityCk *pCheck, /* Context for the sanity check */ int iPage, /* Page number of the page to check */ i64 *piMinKey, /* Write minimum integer primary key here */ i64 maxKey /* Error if integer primary key greater than this */ ){ MemPage *pPage = 0; /* The page being analyzed */ int i; /* Loop counter */ int rc; /* Result code from subroutine call */ int depth = -1, d2; /* Depth of a subtree */ int pgno; /* Page number */ int nFrag; /* Number of fragmented bytes on the page */ int hdr; /* Offset to the page header */ int cellStart; /* Offset to the start of the cell pointer array */ int nCell; /* Number of cells */ int doCoverageCheck = 1; /* True if cell coverage checking should be done */ int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey ** False if IPK must be strictly less than maxKey */ u8 *data; /* Page content */ u8 *pCell; /* Cell content */ u8 *pCellIdx; /* Next element of the cell pointer array */ BtShared *pBt; /* The BtShared object that owns pPage */ u32 pc; /* Address of a cell */ u32 usableSize; /* Usable size of the page */ u32 contentOffset; /* Offset to the start of the cell content area */ u32 *heap = 0; /* Min-heap used for checking cell coverage */ u32 x, prev = 0; /* Next and previous entry on the min-heap */ const char *saved_zPfx = pCheck->zPfx; int saved_v1 = pCheck->v1; int saved_v2 = pCheck->v2; /* Check that the page exists */ pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage) ) return 0; pCheck->zPfx = "Page %d: "; pCheck->v1 = iPage; if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ checkAppendMsg(pCheck, "unable to get the page. error code=%d", rc); goto end_of_check; } /* Clear MemPage.isInit to make sure the corruption detection code in ** btreeInitPage() is executed. */ pPage->isInit = 0; if( (rc = btreeInitPage(pPage))!=0 ){ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ checkAppendMsg(pCheck, "btreeInitPage() returns error code %d", rc); goto end_of_check; } data = pPage->aData; hdr = pPage->hdrOffset; /* Set up for cell analysis */ pCheck->zPfx = "On tree page %d cell %d: "; contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ nCell = get2byte(&data[hdr+3]); assert( pPage->nCell==nCell ); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; assert( pPage->aCellIdx==&data[cellStart] ); pCellIdx = &data[cellStart + 2*(nCell-1)]; if( !pPage->leaf ){ /* Analyze the right-child page of internal pages */ pgno = get4byte(&data[hdr+8]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ pCheck->zPfx = "On page %d at right child: "; checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); } #endif depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); keyCanBeEqual = 0; }else{ /* For leaf pages, the coverage check will occur in the same loop ** as the other cell checks, so initialize the heap. */ heap = pCheck->heap; heap[0] = 0; } /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ CellInfo info; /* Check cell size */ pCheck->v2 = i; assert( pCellIdx==&data[cellStart + i*2] ); pc = get2byteAligned(pCellIdx); pCellIdx -= 2; if( pc<contentOffset || pc>usableSize-4 ){ checkAppendMsg(pCheck, "Offset %d out of range %d..%d", pc, contentOffset, usableSize-4); doCoverageCheck = 0; continue; } pCell = &data[pc]; pPage->xParseCell(pPage, pCell, &info); if( pc+info.nSize>usableSize ){ checkAppendMsg(pCheck, "Extends off end of page"); doCoverageCheck = 0; continue; } /* Check for integer primary key out of range */ if( pPage->intKey ){ if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); } maxKey = info.nKey; } /* Check the content overflow list */ if( info.nPayload>info.nLocal ){ int nPage; /* Number of pages on the overflow chain */ Pgno pgnoOvfl; /* First page of the overflow chain */ assert( pc + info.iOverflow <= usableSize ); nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); pgnoOvfl = get4byte(&pCell[info.iOverflow]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); } #endif checkList(pCheck, 0, pgnoOvfl, nPage); } if( !pPage->leaf ){ /* Check sanity of left child page for internal pages */ pgno = get4byte(pCell); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); } #endif d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); keyCanBeEqual = 0; if( d2!=depth ){ checkAppendMsg(pCheck, "Child page depth differs"); depth = d2; } }else{ /* Populate the coverage-checking heap for leaf pages */ btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); } } *piMinKey = maxKey; /* Check for complete coverage of the page */ pCheck->zPfx = 0; if( doCoverageCheck && pCheck->mxErr>0 ){ /* For leaf pages, the min-heap has already been initialized and the ** cells have already been inserted. But for internal pages, that has ** not yet been done, so do it now */ if( !pPage->leaf ){ heap = pCheck->heap; heap[0] = 0; for(i=nCell-1; i>=0; i--){ u32 size; pc = get2byteAligned(&data[cellStart+i*2]); size = pPage->xCellSize(pPage, &data[pc]); btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); } } /* Add the freeblocks to the min-heap ** ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header ** is the offset of the first freeblock, or zero if there are no ** freeblocks on the page. */ i = get2byte(&data[hdr+1]); while( i>0 ){ int size, j; assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ size = get2byte(&data[i+2]); assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ btreeHeapInsert(heap, (i<<16)|(i+size-1)); /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a ** big-endian integer which is the offset in the b-tree page of the next ** freeblock in the chain, or zero if the freeblock is the last on the ** chain. */ j = get2byte(&data[i]); /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ i = j; } /* Analyze the min-heap looking for overlap between cells and/or ** freeblocks, and counting the number of untracked bytes in nFrag. ** ** Each min-heap entry is of the form: (start_address<<16)|end_address. ** There is an implied first entry the covers the page header, the cell ** pointer index, and the gap between the cell pointer index and the start ** of cell content. ** ** The loop below pulls entries from the min-heap in order and compares ** the start_address against the previous end_address. If there is an ** overlap, that means bytes are used multiple times. If there is a gap, ** that gap is added to the fragmentation count. */ nFrag = 0; prev = contentOffset - 1; /* Implied first min-heap entry */ while( btreeHeapPull(heap,&x) ){ if( (prev&0xffff)>=(x>>16) ){ checkAppendMsg(pCheck, "Multiple uses for byte %u of page %d", x>>16, iPage); break; }else{ nFrag += (x>>16) - (prev&0xffff) - 1; prev = x; } } nFrag += usableSize - (prev&0xffff) - 1; /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments ** is stored in the fifth field of the b-tree page header. ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the ** number of fragmented free bytes within the cell content area. */ if( heap[0]==0 && nFrag!=data[hdr+7] ){ checkAppendMsg(pCheck, "Fragmentation of %d bytes reported as %d on page %d", nFrag, data[hdr+7], iPage); } } end_of_check: releasePage(pPage); pCheck->zPfx = saved_zPfx; pCheck->v1 = saved_v1; pCheck->v2 = saved_v2; return depth+1; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
︙ | ︙ | |||
62774 62775 62776 62777 62778 62779 62780 | Btree *p, /* The btree to be checked */ int *aRoot, /* An array of root pages numbers for individual trees */ int nRoot, /* Number of entries in aRoot[] */ int mxErr, /* Stop reporting errors after this many */ int *pnErr /* Write number of errors seen to this variable */ ){ Pgno i; | < > > | > | > < < > | > > | < > > > > < > > > < | < > | 62794 62795 62796 62797 62798 62799 62800 62801 62802 62803 62804 62805 62806 62807 62808 62809 62810 62811 62812 62813 62814 62815 62816 62817 62818 62819 62820 62821 62822 62823 62824 62825 62826 62827 62828 62829 62830 62831 62832 62833 62834 62835 62836 62837 62838 62839 62840 62841 62842 62843 62844 62845 62846 62847 62848 62849 62850 62851 62852 62853 62854 62855 62856 62857 62858 62859 62860 62861 62862 62863 62864 62865 62866 62867 62868 | Btree *p, /* The btree to be checked */ int *aRoot, /* An array of root pages numbers for individual trees */ int nRoot, /* Number of entries in aRoot[] */ int mxErr, /* Stop reporting errors after this many */ int *pnErr /* Write number of errors seen to this variable */ ){ Pgno i; IntegrityCk sCheck; BtShared *pBt = p->pBt; int savedDbFlags = pBt->db->flags; char zErr[100]; VVA_ONLY( int nRef ); sqlite3BtreeEnter(p); assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 ); sCheck.pBt = pBt; sCheck.pPager = pBt->pPager; sCheck.nPage = btreePagecount(sCheck.pBt); sCheck.mxErr = mxErr; sCheck.nErr = 0; sCheck.mallocFailed = 0; sCheck.zPfx = 0; sCheck.v1 = 0; sCheck.v2 = 0; sCheck.aPgRef = 0; sCheck.heap = 0; sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); if( sCheck.nPage==0 ){ goto integrity_ck_cleanup; } sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); if( !sCheck.aPgRef ){ sCheck.mallocFailed = 1; goto integrity_ck_cleanup; } sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); if( sCheck.heap==0 ){ sCheck.mallocFailed = 1; goto integrity_ck_cleanup; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); /* Check the integrity of the freelist */ sCheck.zPfx = "Main freelist: "; checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36])); sCheck.zPfx = 0; /* Check all the tables. */ testcase( pBt->db->flags & SQLITE_CellSizeCk ); pBt->db->flags &= ~SQLITE_CellSizeCk; for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ i64 notUsed; if( aRoot[i]==0 ) continue; #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum && aRoot[i]>1 ){ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); } #endif checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); } pBt->db->flags = savedDbFlags; /* Make sure every page in the file is referenced */ for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ #ifdef SQLITE_OMIT_AUTOVACUUM if( getPageReferenced(&sCheck, i)==0 ){ checkAppendMsg(&sCheck, "Page %d is never used", i); |
︙ | ︙ | |||
62850 62851 62852 62853 62854 62855 62856 | if( getPageReferenced(&sCheck, i)!=0 && (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); } #endif } | < < < < < < < < < < < > | | < > > > | 62878 62879 62880 62881 62882 62883 62884 62885 62886 62887 62888 62889 62890 62891 62892 62893 62894 62895 62896 62897 62898 62899 62900 62901 62902 62903 62904 62905 | if( getPageReferenced(&sCheck, i)!=0 && (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); } #endif } /* Clean up and report errors. */ integrity_ck_cleanup: sqlite3PageFree(sCheck.heap); sqlite3_free(sCheck.aPgRef); if( sCheck.mallocFailed ){ sqlite3StrAccumReset(&sCheck.errMsg); sCheck.nErr++; } *pnErr = sCheck.nErr; if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); /* Make sure this analysis did not leave any unref() pages. */ assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); sqlite3BtreeLeave(p); return sqlite3StrAccumFinish(&sCheck.errMsg); } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** Return the full pathname of the underlying database file. Return ** an empty string if the database is in-memory or a TEMP database. |
︙ | ︙ | |||
63839 63840 63841 63842 63843 63844 63845 | ** to be updated with the new data before the backup operation is ** complete. ** ** It is assumed that the mutex associated with the BtShared object ** corresponding to the source database is held when this function is ** called. */ | | | > > | > > > | > > | 63859 63860 63861 63862 63863 63864 63865 63866 63867 63868 63869 63870 63871 63872 63873 63874 63875 63876 63877 63878 63879 63880 63881 63882 63883 63884 63885 63886 63887 63888 63889 63890 63891 63892 63893 63894 63895 63896 63897 63898 63899 | ** to be updated with the new data before the backup operation is ** complete. ** ** It is assumed that the mutex associated with the BtShared object ** corresponding to the source database is held when this function is ** called. */ static SQLITE_NOINLINE void backupUpdate( sqlite3_backup *p, Pgno iPage, const u8 *aData ){ assert( p!=0 ); do{ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); if( !isFatalError(p->rc) && iPage<p->iNext ){ /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ int rc; assert( p->pDestDb ); sqlite3_mutex_enter(p->pDestDb->mutex); rc = backupOnePage(p, iPage, aData, 1); sqlite3_mutex_leave(p->pDestDb->mutex); assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); if( rc!=SQLITE_OK ){ p->rc = rc; } } }while( (p = p->pNext)!=0 ); } SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){ if( pBackup ) backupUpdate(pBackup, iPage, aData); } /* ** Restart the backup process. This is called when the pager layer ** detects that the database has been modified by an external database ** connection. In this case there is no way of knowing which of the ** pages that have been copied into the destination database are still |
︙ | ︙ | |||
112064 112065 112066 112067 112068 112069 112070 | Select *p, /* The SELECT statement being coded. */ SelectDest *pDest /* What to do with the query results */ ){ int i, j; /* Loop counters */ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ Vdbe *v; /* The virtual machine under construction */ int isAgg; /* True for select lists like "count(*)" */ | | | 112091 112092 112093 112094 112095 112096 112097 112098 112099 112100 112101 112102 112103 112104 112105 | Select *p, /* The SELECT statement being coded. */ SelectDest *pDest /* What to do with the query results */ ){ int i, j; /* Loop counters */ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ Vdbe *v; /* The virtual machine under construction */ int isAgg; /* True for select lists like "count(*)" */ ExprList *pEList = 0; /* List of columns to extract. */ SrcList *pTabList; /* List of tables to select from */ Expr *pWhere; /* The WHERE clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ int rc = 1; /* Value to return from this function */ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ SortCtx sSort; /* Info on how to code the ORDER BY clause */ |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.h.
︙ | ︙ | |||
109 110 111 112 113 114 115 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 | | | 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 #define SQLITE_SOURCE_ID "2015-07-03 21:38:09 b202e2a1d73d104d795d2252b1c6f61d65bfb295" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 | #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument | > > > | 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 | #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ #define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */ #define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */ #define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */ /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument |
︙ | ︙ |