Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Pre 3.7.6 check-in for testing. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
1cb02b0a7bd24de9db576dbadd9ad634 |
User & Date: | shaneh 2011-04-12 05:24:29.473 |
Context
2011-04-12
| ||
05:26 | Added documentation for building. check-in: f8c5d3f07e user: shaneh tags: trunk | |
05:24 | Pre 3.7.6 check-in for testing. check-in: 1cb02b0a7b user: shaneh tags: trunk | |
2011-04-10
| ||
01:50 | Make sure all new build system metadata files are accessible in the IDE via the solutions. check-in: 191aeaf73e user: mistachkin tags: trunk | |
Changes
Changes to SQLite.Interop/src/core/sqlite3.c.
1 2 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite | | | | 1 2 3 4 5 6 7 8 9 10 11 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.7.6. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other ** programs, you need this file and the "sqlite3.h" header file that defines |
︙ | ︙ | |||
196 197 198 199 200 201 202 | */ #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 #endif /* ** The maximum number of attached databases. This must be between 0 | | | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | */ #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 #endif /* ** The maximum number of attached databases. This must be between 0 ** and 62. The upper bound on 62 is because a 64-bit integer bitmap ** is used internally to track attached databases. */ #ifndef SQLITE_MAX_ATTACHED # define SQLITE_MAX_ATTACHED 10 #endif |
︙ | ︙ | |||
646 647 648 649 650 651 652 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.6" #define SQLITE_VERSION_NUMBER 3007006 #define SQLITE_SOURCE_ID "2011-04-11 18:35:09 51029d8430d2dbc782f161577d47e3dd11c4e4d7" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 | #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ /* ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] | > > | 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 | #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ /* Reserved: 0x00F00000 */ /* ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] |
︙ | ︙ | |||
1269 1270 1271 1272 1273 1274 1275 | ** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by ** SQLite and sent to all VFSes in place of a call to the xSync method ** when the database connection has [PRAGMA synchronous] set to OFF.)^ ** Some specialized VFSes need this signal in order to operate correctly ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this | | | 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 | ** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by ** SQLite and sent to all VFSes in place of a call to the xSync method ** when the database connection has [PRAGMA synchronous] set to OFF.)^ ** Some specialized VFSes need this signal in order to operate correctly ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this ** opcode as doing so may disrupt the operation of the specialized VFSes ** that do require it. */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 |
︙ | ︙ | |||
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 | ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian ** Day Number multipled by 86400000 (the number of milliseconds in ** a 24-hour day). ** ^SQLite will use the xCurrentTimeInt64() method to get the current ** date and time if that method is available (if iVersion is 2 or ** greater and the function pointer is not NULL) and will fall back ** to xCurrentTime() if xCurrentTimeInt64() is unavailable. */ typedef struct sqlite3_vfs sqlite3_vfs; struct sqlite3_vfs { | > > > > > > > > > > > > > | | 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian ** Day Number multipled by 86400000 (the number of milliseconds in ** a 24-hour day). ** ^SQLite will use the xCurrentTimeInt64() method to get the current ** date and time if that method is available (if iVersion is 2 or ** greater and the function pointer is not NULL) and will fall back ** to xCurrentTime() if xCurrentTimeInt64() is unavailable. ** ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces ** are not used by the SQLite core. These optional interfaces are provided ** by some VFSes to facilitate testing of the VFS code. By overriding ** system calls with functions under its control, a test program can ** simulate faults and error conditions that would otherwise be difficult ** or impossible to induce. The set of system calls that can be overridden ** varies from one VFS to another, and from one version of the same VFS to the ** next. Applications that use these interfaces must be prepared for any ** or all of these interfaces to be NULL or for their behavior to change ** from one release to the next. Applications must not attempt to access ** any of these methods if the iVersion of the VFS is less than 3. */ typedef struct sqlite3_vfs sqlite3_vfs; typedef void (*sqlite3_syscall_ptr)(void); struct sqlite3_vfs { int iVersion; /* Structure version number (currently 3) */ int szOsFile; /* Size of subclassed sqlite3_file */ int mxPathname; /* Maximum file pathname length */ sqlite3_vfs *pNext; /* Next registered VFS */ const char *zName; /* Name of this virtual file system */ void *pAppData; /* Pointer to application-specific data */ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, int flags, int *pOutFlags); |
︙ | ︙ | |||
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 | /* ** The methods above are in version 1 of the sqlite_vfs object ** definition. Those that follow are added in version 2 or later */ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); /* ** The methods above are in versions 1 and 2 of the sqlite_vfs object. ** New fields may be appended in figure versions. The iVersion ** value will increment whenever this happens. */ }; /* ** CAPI3REF: Flags for the xAccess VFS method | > > > > > > > | 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 | /* ** The methods above are in version 1 of the sqlite_vfs object ** definition. Those that follow are added in version 2 or later */ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); /* ** The methods above are in versions 1 and 2 of the sqlite_vfs object. ** Those below are for version 3 and greater. */ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); /* ** The methods above are in versions 1 through 3 of the sqlite_vfs object. ** New fields may be appended in figure versions. The iVersion ** value will increment whenever this happens. */ }; /* ** CAPI3REF: Flags for the xAccess VFS method |
︙ | ︙ | |||
1648 1649 1650 1651 1652 1653 1654 | /* ** CAPI3REF: Configure database connections ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single | | < < < | | < < | | 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 | /* ** CAPI3REF: Configure database connections ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single ** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code ** that indicates what aspect of the [database connection] is being configured. ** Subsequent arguments vary depending on the configuration verb. ** ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if ** the call is considered successful. */ SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...); /* |
︙ | ︙ | |||
1836 1837 1838 1839 1840 1841 1842 | ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. ** </dd> ** ** <dt>SQLITE_CONFIG_SCRATCH</dt> ** <dd> ^This option specifies a static memory buffer that SQLite can use for ** scratch memory. There are three arguments: A pointer an 8-byte | | | 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 | ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. ** </dd> ** ** <dt>SQLITE_CONFIG_SCRATCH</dt> ** <dd> ^This option specifies a static memory buffer that SQLite can use for ** scratch memory. There are three arguments: A pointer an 8-byte ** aligned memory buffer from which the scratch allocations will be ** drawn, the size of each scratch allocation (sz), ** and the maximum number of scratch allocations (N). The sz ** argument must be a multiple of 16. ** The first argument must be a pointer to an 8-byte aligned buffer ** of at least sz*N bytes of memory. ** ^SQLite will use no more than two scratch buffers per thread. So ** N should be set to twice the expected maximum number of threads. |
︙ | ︙ | |||
1883 1884 1885 1886 1887 1888 1889 | ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte | | > > | 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 | ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte ** boundary or subsequent behavior of SQLite will be undefined. ** The minimum allocation size is capped at 2^12. Reasonable values ** for the minimum allocation size are 2^5 through 2^8.</dd> ** ** <dt>SQLITE_CONFIG_MUTEX</dt> ** <dd> ^(This option takes a single argument which is a pointer to an ** instance of the [sqlite3_mutex_methods] structure. The argument specifies ** alternative low-level mutex routines to be used in place ** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the ** content of the [sqlite3_mutex_methods] structure before the call to |
︙ | ︙ | |||
1986 1987 1988 1989 1990 1991 1992 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a | | > > > > > > > > > > > > > > > > > > > > | > > | 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the ** size of each lookaside buffer slot. ^The third argument is the number of ** slots. The size of the buffer in the first argument must be greater than ** or equal to the product of the second and third arguments. The buffer ** must be aligned to an 8-byte boundary. ^If the second argument to ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally ** rounded down to the next smaller multiple of 8. ^(The lookaside memory ** configuration for a database connection can only be changed when that ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^</dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> ** <dd> ^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. </dd> ** ** </dl> */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result |
︙ | ︙ | |||
2608 2609 2610 2611 2612 2613 2614 | ** method. */ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** | | | 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 | ** method. */ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. ** ^The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various ** points during the compilation process, as logic is being created ** to perform various actions, the authorizer callback is invoked to ** see if those actions are allowed. ^The authorizer callback should |
︙ | ︙ | |||
3210 3211 3212 3213 3214 3215 3216 | ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** | | | 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 | ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to ** the content of the database file. ** ** Note that [application-defined SQL functions] or ** [virtual tables] might change the database indirectly as a side effect. ** ^(For example, if an application defines a function "eval()" that ** calls [sqlite3_exec()], then the following SQL statement would |
︙ | ︙ | |||
3254 3255 3256 3257 3258 3259 3260 | ** An sqlite3_value object may be either "protected" or "unprotected". ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies ** whether or not it requires a protected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not | | | 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 | ** An sqlite3_value object may be either "protected" or "unprotected". ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies ** whether or not it requires a protected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not ** a mutex is held. An internal mutex is held for a protected ** sqlite3_value object but no mutex is held for an unprotected ** sqlite3_value object. If SQLite is compiled to be single-threaded ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) ** or if SQLite is run in one of reduced mutex modes ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] ** then there is no distinction between protected and unprotected ** sqlite3_value objects and they can be used interchangeably. However, |
︙ | ︙ | |||
3478 3479 3480 3481 3482 3483 3484 | ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the ** column number. ^The leftmost column is number 0. ** ** ^The returned string pointer is valid until either the [prepared statement] | | > > | 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 | ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the ** column number. ^The leftmost column is number 0. ** ** ^The returned string pointer is valid until either the [prepared statement] ** is destroyed by [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the next call to ** sqlite3_column_name() or sqlite3_column_name16() on the same column. ** ** ^If sqlite3_malloc() fails during the processing of either routine ** (for example during a conversion from UTF-8 to UTF-16) then a ** NULL pointer is returned. ** ** ^The name of a result column is the value of the "AS" clause for |
︙ | ︙ | |||
3504 3505 3506 3507 3508 3509 3510 | ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** ^The returned string is valid until the [prepared statement] is destroyed | | > > | 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 | ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** ^The returned string is valid until the [prepared statement] is destroyed ** using [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the same information is requested ** again in a different encoding. ** ** ^The names returned are the original un-aliased names of the ** database, table, and column. ** ** ^The first argument to these interfaces is a [prepared statement]. ** ^These functions return information about the Nth result column returned by |
︙ | ︙ | |||
3936 3937 3938 3939 3940 3941 3942 | ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** these routines are the text encoding expected for | | | 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 | ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** these routines are the text encoding expected for ** the second parameter (the name of the function being created) ** and the presence or absence of a destructor callback for ** the application data pointer. ** ** ^The first parameter is the [database connection] to which the SQL ** function is to be added. ^If an application uses more than one database ** connection then application-defined SQL functions must be added ** to each database connection separately. |
︙ | ︙ | |||
3981 3982 3983 3984 3985 3986 3987 | ** ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or ** aggregate. ^A scalar SQL function requires an implementation of the xFunc ** callback only; NULL pointers must be passed as the xStep and xFinal ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing | | | 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 | ** ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or ** aggregate. ^A scalar SQL function requires an implementation of the xFunc ** callback only; NULL pointers must be passed as the xStep and xFinal ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL, ** then it is destructor for the application data pointer. ** The destructor is invoked when the function is deleted, either by being ** overloaded or when the database connection closes.)^ ** ^The destructor is also invoked if the call to |
︙ | ︙ | |||
4415 4416 4417 4418 4419 4420 4421 | ** ^The eTextRep argument determines the encoding of strings passed ** to the collating function callback, xCallback. ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep ** force strings to be UTF16 with native byte order. ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin ** on an even byte address. ** | | | | 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 | ** ^The eTextRep argument determines the encoding of strings passed ** to the collating function callback, xCallback. ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep ** force strings to be UTF16 with native byte order. ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin ** on an even byte address. ** ** ^The fourth argument, pArg, is an application data pointer that is passed ** through as the first argument to the collating function callback. ** ** ^The fifth argument, xCallback, is a pointer to the collating function. ** ^Multiple collating functions can be registered using the same name but ** with different eTextRep parameters and SQLite will use whichever ** function requires the least amount of data transformation. ** ^If the xCallback argument is NULL then the collating function is ** deleted. ^When all collating functions having the same name are deleted, ** that collation is no longer usable. ** ** ^The collating function callback is invoked with a copy of the pArg ** application data pointer and with two strings in the encoding specified ** by the eTextRep argument. The collating function must return an ** integer that is negative, zero, or positive ** if the first string is less than, equal to, or greater than the second, ** respectively. A collating function must always return the same answer ** given the same inputs. If two or more collating functions are registered ** to the same collation name (using different eTextRep values) then all ** must give an equivalent answer when invoked with equivalent strings. ** The collating function must obey the following properties for all ** strings A, B, and C: ** ** <ol> |
︙ | ︙ | |||
4843 4844 4845 4846 4847 4848 4849 | ** if one or more of following conditions are true: ** ** <ul> ** <li> The soft heap limit is set to zero. ** <li> Memory accounting is disabled using a combination of the ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. | | | 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 | ** if one or more of following conditions are true: ** ** <ul> ** <li> The soft heap limit is set to zero. ** <li> Memory accounting is disabled using a combination of the ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. ** <li> An alternative page cache implementation is specified using ** [sqlite3_config]([SQLITE_CONFIG_PCACHE],...). ** <li> The page cache allocates from its own memory pool supplied ** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than ** from the heap. ** </ul>)^ ** ** Beginning with SQLite version 3.7.3, the soft heap limit is enforced |
︙ | ︙ | |||
5064 5065 5066 5067 5068 5069 5070 | typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* ** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} ** | | | 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 | typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* ** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} ** ** This structure, sometimes called a "virtual table module", ** defines the implementation of a [virtual tables]. ** This structure consists mostly of methods for the module. ** ** ^A virtual table module is created by filling in a persistent ** instance of this structure and passing a pointer to that instance ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. ** ^The registration remains valid until it is replaced by a different |
︙ | ︙ | |||
5376 5377 5378 5379 5380 5381 5382 | ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for | | | 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 | ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for ** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. ** ^(Changes written into a BLOB prior to the BLOB expiring are not ** rolled back by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion.)^ ** ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. ^The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a |
︙ | ︙ | |||
6078 6079 6080 6081 6082 6083 6084 | ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd>)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt> ** <dd>This parameter returns the number malloc attempts that were ** satisfied using lookaside memory. Only the high-water value is meaningful; | | < | < | < | 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 | ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd>)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt> ** <dd>This parameter returns the number malloc attempts that were ** satisfied using lookaside memory. Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt> ** <dd>This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to the amount of ** memory requested being larger than the lookaside slot size. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt> ** <dd>This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to all lookaside ** memory already being in use. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt> ** <dd>This parameter returns the approximate number of of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** ** ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt> |
︙ | ︙ | |||
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 | ** connection D. ^If the database connection D is not in ** [WAL | write-ahead log mode] then this interface is a harmless no-op. ** ** ^The [wal_checkpoint pragma] can be used to invoke this interface ** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] can be used to cause this interface to be ** run whenever the WAL reaches a certain size threshold. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 | ** connection D. ^If the database connection D is not in ** [WAL | write-ahead log mode] then this interface is a harmless no-op. ** ** ^The [wal_checkpoint pragma] can be used to invoke this interface ** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] can be used to cause this interface to be ** run whenever the WAL reaches a certain size threshold. ** ** See also: [sqlite3_wal_checkpoint_v2()] */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** ** Run a checkpoint operation on WAL database zDb attached to database ** handle db. The specific operation is determined by the value of the ** eMode parameter: ** ** <dl> ** <dt>SQLITE_CHECKPOINT_PASSIVE<dd> ** Checkpoint as many frames as possible without waiting for any database ** readers or writers to finish. Sync the db file if all frames in the log ** are checkpointed. This mode is the same as calling ** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked. ** ** <dt>SQLITE_CHECKPOINT_FULL<dd> ** This mode blocks (calls the busy-handler callback) until there is no ** database writer and all readers are reading from the most recent database ** snapshot. It then checkpoints all frames in the log file and syncs the ** database file. This call blocks database writers while it is running, ** but not database readers. ** ** <dt>SQLITE_CHECKPOINT_RESTART<dd> ** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after ** checkpointing the log file it blocks (calls the busy-handler callback) ** until all readers are reading from the database file only. This ensures ** that the next client to write to the database file restarts the log file ** from the beginning. This call blocks database writers while it is running, ** but not database readers. ** </dl> ** ** If pnLog is not NULL, then *pnLog is set to the total number of frames in ** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to ** the total number of checkpointed frames (including any that were already ** checkpointed when this function is called). *pnLog and *pnCkpt may be ** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. ** If no values are available because of an error, they are both set to -1 ** before returning to communicate this to the caller. ** ** All calls obtain an exclusive "checkpoint" lock on the database file. If ** any other process is running a checkpoint operation at the same time, the ** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a ** busy-handler configured, it will not be invoked in this case. ** ** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive ** "writer" lock on the database file. If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the writer ** lock retried until either the busy-handler returns 0 or the lock is ** successfully obtained. The busy-handler is also invoked while waiting for ** database readers as described above. If the busy-handler returns 0 before ** the writer lock is obtained or while waiting for database readers, the ** checkpoint operation proceeds from that point in the same way as ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible ** without blocking any further. SQLITE_BUSY is returned in this case. ** ** If parameter zDb is NULL or points to a zero length string, then the ** specified operation is attempted on all WAL databases. In this case the ** values written to output parameters *pnLog and *pnCkpt are undefined. If ** an SQLITE_BUSY error is encountered when processing one or more of the ** attached WAL databases, the operation is still attempted on any remaining ** attached databases and SQLITE_BUSY is returned to the caller. If any other ** error occurs while processing an attached database, processing is abandoned ** and the error code returned to the caller immediately. If no error ** (SQLITE_BUSY or otherwise) is encountered while processing the attached ** databases, SQLITE_OK is returned. ** ** If database zDb is the name of an attached database that is not in WAL ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If ** zDb is not NULL (or a zero length string) and is not the name of any ** attached database, SQLITE_ERROR is returned to the caller. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ); /* ** CAPI3REF: Checkpoint operation parameters ** ** These constants can be used as the 3rd parameter to ** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] ** documentation for additional information about the meaning and use of ** each of these values. */ #define SQLITE_CHECKPOINT_PASSIVE 0 #define SQLITE_CHECKPOINT_FULL 1 #define SQLITE_CHECKPOINT_RESTART 2 /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double |
︙ | ︙ | |||
7515 7516 7517 7518 7519 7520 7521 | /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; typedef struct BtShared BtShared; | < < < < < < < < < < < < | 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 | /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; typedef struct BtShared BtShared; SQLITE_PRIVATE int sqlite3BtreeOpen( const char *zFilename, /* Name of database file to open */ sqlite3 *db, /* Associated database connection */ Btree **ppBtree, /* Return open Btree* here */ int flags, /* Flags */ |
︙ | ︙ | |||
7563 7564 7565 7566 7567 7568 7569 | SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*); SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); | | | 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 | SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*); SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int); SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*); SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags); SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*); SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*); SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); |
︙ | ︙ | |||
7683 7684 7685 7686 7687 7688 7689 | #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); #endif #ifndef SQLITE_OMIT_WAL | | > < < < > > < < < > | 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 | #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); #endif #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif /* ** If we are not using shared cache, then there is no need to ** use mutexes to access the BtShared structures. So make the ** Enter and Leave procedures no-ops. */ #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); #else # define sqlite3BtreeEnter(X) # define sqlite3BtreeEnterAll(X) #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*); SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); #ifndef NDEBUG /* These routines are used inside assert() statements only. */ SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); #endif #else # define sqlite3BtreeSharable(X) 0 # define sqlite3BtreeLeave(X) # define sqlite3BtreeEnterCursor(X) # define sqlite3BtreeLeaveCursor(X) # define sqlite3BtreeLeaveAll(X) # define sqlite3BtreeHoldsMutex(X) 1 # define sqlite3BtreeHoldsAllMutexes(X) 1 # define sqlite3SchemaMutexHeld(X,Y,Z) 1 #endif #endif /* _BTREE_H_ */ /************** End of btree.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ |
︙ | ︙ | |||
7842 7843 7844 7845 7846 7847 7848 | #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ #define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ #define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ #define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ #define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ | | | 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 | #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ #define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ #define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ #define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ #define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ #define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ |
︙ | ︙ | |||
8293 8294 8295 8296 8297 8298 8299 | SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); | | | 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 | SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*); SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager); /* Functions used to query pager state and configuration. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); |
︙ | ︙ | |||
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 | u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u8 safety_level; /* How aggressive at syncing data to disk */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. */ struct Schema { int schema_cookie; /* Database schema version number for this file */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ | > > > > > > > > > > > > > > > | 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 | u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u8 safety_level; /* How aggressive at syncing data to disk */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** ** Most Schema objects are associated with a Btree. The exception is ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. ** In shared cache mode, a single Schema object can be shared by multiple ** Btrees that refer to the same underlying BtShared object. ** ** Schema objects are automatically deallocated when the last Btree that ** references them is destroyed. The TEMP Schema is manually freed by ** sqlite3_close(). * ** A thread must be holding a mutex on the corresponding Btree in order ** to access Schema content. This implies that the thread must also be ** holding a mutex on the sqlite3 connection pointer that owns the Btree. ** For a TEMP Schema, on the connection mutex is required. */ struct Schema { int schema_cookie; /* Database schema version number for this file */ int iGeneration; /* Generation counter. Incremented with each change */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ |
︙ | ︙ | |||
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 | #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ /* ** Bits of the sqlite3.flags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. ** These must be the low-order bits of the flags field. */ #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ | > | 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 | #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ /* ** Bits of the sqlite3.flags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. ** These must be the low-order bits of the flags field. */ #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ |
︙ | ︙ | |||
9391 9392 9393 9394 9395 9396 9397 | ** schema. This is because each database connection requires its own unique ** instance of the sqlite3_vtab* handle used to access the virtual table ** implementation. sqlite3_vtab* handles can not be shared between ** database connections, even when the rest of the in-memory database ** schema is shared, as the implementation often stores the database ** connection handle passed to it via the xConnect() or xCreate() method ** during initialization internally. This database connection handle may | | | 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 | ** schema. This is because each database connection requires its own unique ** instance of the sqlite3_vtab* handle used to access the virtual table ** implementation. sqlite3_vtab* handles can not be shared between ** database connections, even when the rest of the in-memory database ** schema is shared, as the implementation often stores the database ** connection handle passed to it via the xConnect() or xCreate() method ** during initialization internally. This database connection handle may ** then be used by the virtual table implementation to access real tables ** within the database. So that they appear as part of the callers ** transaction, these accesses need to be made via the same database ** connection as that used to execute SQL operations on the virtual table. ** ** All VTable objects that correspond to a single table in a shared ** database schema are initially stored in a linked-list pointed to by ** the Table.pVTable member variable of the corresponding Table object. |
︙ | ︙ | |||
9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 | int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ }; | > | 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 | int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ u8 bUnordered; /* Use this index for == or IN queries only */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ }; |
︙ | ︙ | |||
9832 9833 9834 9835 9836 9837 9838 | */ struct Expr { u8 op; /* Operation performed by this node */ char affinity; /* The affinity of the column or 0 if not a column */ u16 flags; /* Various flags. EP_* See below */ union { char *zToken; /* Token value. Zero terminated and dequoted */ | | | 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 | */ struct Expr { u8 op; /* Operation performed by this node */ char affinity; /* The affinity of the column or 0 if not a column */ u16 flags; /* Various flags. EP_* See below */ union { char *zToken; /* Token value. Zero terminated and dequoted */ int iValue; /* Non-negative integer value if EP_IntValue */ } u; /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ |
︙ | ︙ | |||
10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 | Trigger *pTrigger; /* Trigger this program was coded from */ int orconf; /* Default ON CONFLICT policy */ SubProgram *pProgram; /* Program implementing pTrigger/orconf */ u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ }; /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. ** ** The structure is divided into two parts. When the parser and code ** generate call themselves recursively, the first part of the structure | > > > > > > > > > | 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 | Trigger *pTrigger; /* Trigger this program was coded from */ int orconf; /* Default ON CONFLICT policy */ SubProgram *pProgram; /* Program implementing pTrigger/orconf */ u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ }; /* ** The yDbMask datatype for the bitmask of all attached databases. */ #if SQLITE_MAX_ATTACHED>30 typedef sqlite3_uint64 yDbMask; #else typedef unsigned int yDbMask; #endif /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. ** ** The structure is divided into two parts. When the parser and code ** generate call themselves recursively, the first part of the structure |
︙ | ︙ | |||
10380 10381 10382 10383 10384 10385 10386 | int iTable; /* Table cursor number */ int iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ | | | | 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 | int iTable; /* Table cursor number */ int iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ |
︙ | ︙ | |||
10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 | SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); SQLITE_PRIVATE void sqlite3PrngResetState(void); SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*); SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*); SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); | > | 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 | SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); SQLITE_PRIVATE void sqlite3PrngResetState(void); SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*); SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*); SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); |
︙ | ︙ | |||
11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 | SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Expr*, CollSeq*); SQLITE_PRIVATE Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *); SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int); SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); | > > > > | 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 | SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Expr*, CollSeq*); SQLITE_PRIVATE Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *); SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int); SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64); SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64); SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64); SQLITE_PRIVATE int sqlite3AbsInt32(int); SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); |
︙ | ︙ | |||
11136 11137 11138 11139 11140 11141 11142 | SQLITE_PRIVATE const Token sqlite3IntTokens[]; SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; #ifndef SQLITE_OMIT_WSD SQLITE_PRIVATE int sqlite3PendingByte; #endif #endif | | | 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 | SQLITE_PRIVATE const Token sqlite3IntTokens[]; SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; #ifndef SQLITE_OMIT_WSD SQLITE_PRIVATE int sqlite3PendingByte; #endif #endif SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int); SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int); |
︙ | ︙ | |||
11163 11164 11165 11166 11167 11168 11169 | SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*); SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int); | | | 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 | SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*); SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int); SQLITE_PRIVATE void sqlite3SchemaClear(void *); SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), FuncDestructor *pDestructor |
︙ | ︙ | |||
11250 11251 11252 11253 11254 11255 11256 | SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*); SQLITE_PRIVATE const char *sqlite3JournalModename(int); | | | 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 | SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*); SQLITE_PRIVATE const char *sqlite3JournalModename(int); SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); /* Declarations for functions in fkey.c. All of these are replaced by ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign ** key functionality is available. If OMIT_TRIGGER is defined but ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In ** this case foreign keys are parsed, but no other functionality is |
︙ | ︙ | |||
12339 12340 12341 12342 12343 12344 12345 | u8 runOnlyOnce; /* Automatically expire on reset */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 inVtabMethod; /* See comments above */ u8 usesStmtJournal; /* True if uses a statement journal */ u8 readOnly; /* True for read-only statements */ u8 isPrepareV2; /* True if prepared with prepare_v2() */ int nChange; /* Number of db changes made since last reset */ | | > < | 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 | u8 runOnlyOnce; /* Automatically expire on reset */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 inVtabMethod; /* See comments above */ u8 usesStmtJournal; /* True if uses a statement journal */ u8 readOnly; /* True for read-only statements */ u8 isPrepareV2; /* True if prepared with prepare_v2() */ int nChange; /* Number of db changes made since last reset */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ int iStatement; /* Statement number (or 0 if has not opened stmt) */ int aCounter[3]; /* Counters used by sqlite3_stmt_status() */ #ifndef SQLITE_OMIT_TRACE i64 startTime; /* Time when query started - used for profiling */ #endif i64 nFkConstraint; /* Number of imm. FK constraints this VM */ i64 nStmtDefCons; /* Number of def. constraints when stmt started */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ |
︙ | ︙ | |||
12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 | SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeMemPrepareToChange(Vdbe*,Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif | > > > > > > > > < < < < < < | 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 | SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem); #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeEnter(X) # define sqlite3VdbeLeave(X) #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeMemPrepareToChange(Vdbe*,Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf); #endif SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem); |
︙ | ︙ | |||
12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 | ** to store the schema for all databases (main, temp, and any ATTACHed ** databases. *pHighwater is set to zero. */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; for(i=0; i<db->nDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( | > | 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 | ** to store the schema for all databases (main, temp, and any ATTACHed ** databases. *pHighwater is set to zero. */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ sqlite3BtreeEnterAll(db); db->pnBytesFreed = &nByte; for(i=0; i<db->nDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( |
︙ | ︙ | |||
12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 | } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; *pHighwater = 0; *pCurrent = nByte; break; } /* | > | 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 | } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; sqlite3BtreeLeaveAll(db); *pHighwater = 0; *pCurrent = nByte; break; } /* |
︙ | ︙ | |||
15743 15744 15745 15746 15747 15748 15749 | /* ** Space for tracking which blocks are checked out and the size ** of each block. One byte per block. */ u8 *aCtrl; | | | 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 | /* ** Space for tracking which blocks are checked out and the size ** of each block. One byte per block. */ u8 *aCtrl; } mem5; /* ** Access the static variable through a macro for SQLITE_OMIT_WSD */ #define mem5 GLOBAL(struct Mem5Global, mem5) /* |
︙ | ︙ | |||
16058 16059 16060 16061 16062 16063 16064 | ** memsys5Log(4) -> 2 ** memsys5Log(5) -> 3 ** memsys5Log(8) -> 3 ** memsys5Log(9) -> 4 */ static int memsys5Log(int iValue){ int iLog; | | | 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 | ** memsys5Log(4) -> 2 ** memsys5Log(5) -> 3 ** memsys5Log(8) -> 3 ** memsys5Log(9) -> 4 */ static int memsys5Log(int iValue){ int iLog; for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); return iLog; } /* ** Initialize the memory allocator. ** ** This routine is not threadsafe. The caller must be holding a mutex |
︙ | ︙ | |||
16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 | */ assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); nByte = sqlite3GlobalConfig.nHeap; zByte = (u8*)sqlite3GlobalConfig.pHeap; assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); mem5.szAtom = (1<<nMinLog); while( (int)sizeof(Mem5Link)>mem5.szAtom ){ mem5.szAtom = mem5.szAtom << 1; } mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); | > | 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 | */ assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); nByte = sqlite3GlobalConfig.nHeap; zByte = (u8*)sqlite3GlobalConfig.pHeap; assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); mem5.szAtom = (1<<nMinLog); while( (int)sizeof(Mem5Link)>mem5.szAtom ){ mem5.szAtom = mem5.szAtom << 1; } mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); |
︙ | ︙ | |||
16592 16593 16594 16595 16596 16597 16598 | /* ** The mutex object ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { HMTX mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ | | | > > > > | > | | | | | > > > | | 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 | /* ** The mutex object ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { HMTX mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ #ifdef SQLITE_DEBUG int trace; /* True to trace changes */ #endif }; #ifdef SQLITE_DEBUG #define SQLITE3_MUTEX_INITIALIZER { 0, 0, 0 } #else #define SQLITE3_MUTEX_INITIALIZER { 0, 0 } #endif /* ** Initialize and deinitialize the mutex subsystem. */ static int os2MutexInit(void){ return SQLITE_OK; } static int os2MutexEnd(void){ return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. ** SQLite will unwind its stack and return an error. The argument ** to sqlite3_mutex_alloc() is one of these integer constants: ** ** <ul> ** <li> SQLITE_MUTEX_FAST ** <li> SQLITE_MUTEX_RECURSIVE ** <li> SQLITE_MUTEX_STATIC_MASTER ** <li> SQLITE_MUTEX_STATIC_MEM ** <li> SQLITE_MUTEX_STATIC_MEM2 ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_LRU2 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST |
︙ | ︙ | |||
16660 16661 16662 16663 16664 16665 16666 | p = NULL; } } break; } default: { static volatile int isInit = 0; | | | | | | | | | 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 | p = NULL; } } break; } default: { static volatile int isInit = 0; static sqlite3_mutex staticMutexes[6] = { SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, }; if ( !isInit ){ APIRET rc; PTIB ptib; PPIB ppib; HMTX mutex; char name[32]; |
︙ | ︙ | |||
16712 16713 16714 16715 16716 16717 16718 | /* ** This routine deallocates a previously allocated mutex. ** SQLite is careful to deallocate every mutex that it allocates. */ static void os2MutexFree(sqlite3_mutex *p){ | > > | > > | > < | > | | | < < < | > | | | | > | > > > > < < < < > | < | | < < < < | < < < < | > > < < < < < | < < < < > > > > > > | 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 | /* ** This routine deallocates a previously allocated mutex. ** SQLite is careful to deallocate every mutex that it allocates. */ static void os2MutexFree(sqlite3_mutex *p){ #ifdef SQLITE_DEBUG TID tid; PID pid; ULONG ulCount; DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); assert( ulCount==0 ); assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); #endif DosCloseMutexSem( p->mutex ); sqlite3_free( p ); } #ifdef SQLITE_DEBUG /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use inside assert() statements. */ static int os2MutexHeld(sqlite3_mutex *p){ TID tid; PID pid; ULONG ulCount; PTIB ptib; DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); if( ulCount==0 || ( ulCount>1 && p->id!=SQLITE_MUTEX_RECURSIVE ) ) return 0; DosGetInfoBlocks(&ptib, NULL); return tid==ptib->tib_ptib2->tib2_ultid; } static int os2MutexNotheld(sqlite3_mutex *p){ TID tid; PID pid; ULONG ulCount; PTIB ptib; DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); if( ulCount==0 ) return 1; DosGetInfoBlocks(&ptib, NULL); return tid!=ptib->tib_ptib2->tib2_ultid; } static void os2MutexTrace(sqlite3_mutex *p, char *pAction){ TID tid; PID pid; ULONG ulCount; DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); printf("%s mutex %p (%d) with nRef=%ld\n", pAction, (void*)p, p->trace, ulCount); } #endif /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void os2MutexEnter(sqlite3_mutex *p){ assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) ); DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT); #ifdef SQLITE_DEBUG if( p->trace ) os2MutexTrace(p, "enter"); #endif } static int os2MutexTry(sqlite3_mutex *p){ int rc = SQLITE_BUSY; assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) ); if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR ) { rc = SQLITE_OK; #ifdef SQLITE_DEBUG if( p->trace ) os2MutexTrace(p, "try"); #endif } return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void os2MutexLeave(sqlite3_mutex *p){ assert( os2MutexHeld(p) ); DosReleaseMutexSem(p->mutex); #ifdef SQLITE_DEBUG if( p->trace ) os2MutexTrace(p, "leave"); #endif } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ static const sqlite3_mutex_methods sMutex = { os2MutexInit, os2MutexEnd, os2MutexAlloc, os2MutexFree, os2MutexEnter, os2MutexTry, os2MutexLeave, #ifdef SQLITE_DEBUG os2MutexHeld, os2MutexNotheld #else 0, 0 #endif }; return &sMutex; } #endif /* SQLITE_MUTEX_OS2 */ |
︙ | ︙ | |||
17467 17468 17469 17470 17471 17472 17473 | rc = SQLITE_OK; } #else UNUSED_PARAMETER(p); #endif #ifdef SQLITE_DEBUG if( rc==SQLITE_OK && p->trace ){ | | | 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 | rc = SQLITE_OK; } #else UNUSED_PARAMETER(p); #endif #ifdef SQLITE_DEBUG if( rc==SQLITE_OK && p->trace ){ printf("try mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was |
︙ | ︙ | |||
17924 17925 17926 17927 17928 17929 17930 | /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ ScratchFreeslot *pSlot; pSlot = (ScratchFreeslot*)p; sqlite3_mutex_enter(mem0.mutex); pSlot->pNext = mem0.pScratchFree; mem0.pScratchFree = pSlot; mem0.nScratchFree++; | | | 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 | /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ ScratchFreeslot *pSlot; pSlot = (ScratchFreeslot*)p; sqlite3_mutex_enter(mem0.mutex); pSlot->pNext = mem0.pScratchFree; mem0.pScratchFree = pSlot; mem0.nScratchFree++; assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); sqlite3_mutex_leave(mem0.mutex); }else{ /* Release memory back to the heap */ assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
︙ | ︙ | |||
18698 18699 18700 18701 18702 18703 18704 | v = va_arg(ap,i64); }else if( flag_long ){ v = va_arg(ap,long int); }else{ v = va_arg(ap,int); } if( v<0 ){ | > > > | > | 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 | v = va_arg(ap,i64); }else if( flag_long ){ v = va_arg(ap,long int); }else{ v = va_arg(ap,int); } if( v<0 ){ if( v==SMALLEST_INT64 ){ longvalue = ((u64)1)<<63; }else{ longvalue = -v; } prefix = '-'; }else{ longvalue = v; if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } |
︙ | ︙ | |||
19637 19638 19639 19640 19641 19642 19643 | || (c&0xFFFFF800)==0xD800 \ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ } SQLITE_PRIVATE int sqlite3Utf8Read( const unsigned char *zIn, /* First byte of UTF-8 character */ const unsigned char **pzNext /* Write first byte past UTF-8 char here */ ){ | | | 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 | || (c&0xFFFFF800)==0xD800 \ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ } SQLITE_PRIVATE int sqlite3Utf8Read( const unsigned char *zIn, /* First byte of UTF-8 character */ const unsigned char **pzNext /* Write first byte past UTF-8 char here */ ){ unsigned int c; /* Same as READ_UTF8() above but without the zTerm parameter. ** For this routine, we assume the UTF8 string is always zero-terminated. */ c = *(zIn++); if( c>=0xc0 ){ c = sqlite3Utf8Trans1[c-0xc0]; |
︙ | ︙ | |||
19880 19881 19882 19883 19884 19885 19886 | #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Translate UTF-8 to UTF-8. ** ** This has the effect of making sure that the string is well-formed ** UTF-8. Miscoded characters are removed. ** | | | | | 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 | #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Translate UTF-8 to UTF-8. ** ** This has the effect of making sure that the string is well-formed ** UTF-8. Miscoded characters are removed. ** ** The translation is done in-place and aborted if the output ** overruns the input. */ SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){ unsigned char *zOut = zIn; unsigned char *zStart = zIn; u32 c; while( zIn[0] && zOut<=zIn ){ c = sqlite3Utf8Read(zIn, (const u8**)&zIn); if( c!=0xfffd ){ WRITE_UTF8(zOut, c); } } *zOut = 0; return (int)(zOut - zStart); |
︙ | ︙ | |||
20057 20058 20059 20060 20061 20062 20063 | #endif /* ** Routine needed to support the testcase() macro. */ #ifdef SQLITE_COVERAGE_TEST SQLITE_PRIVATE void sqlite3Coverage(int x){ | | | | 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 | #endif /* ** Routine needed to support the testcase() macro. */ #ifdef SQLITE_COVERAGE_TEST SQLITE_PRIVATE void sqlite3Coverage(int x){ static unsigned dummy = 0; dummy += (unsigned)x; } #endif #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Return true if the floating point value is Not a Number (NaN). ** |
︙ | ︙ | |||
20472 20473 20474 20475 20476 20477 20478 | testcase( c==(+1) ); } return c; } /* | | > > | > | | > | | < | | | | | | | | | < > | > > > > > | > > < | < | > | > | > > > > > > > > > > | 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 | testcase( c==(+1) ); } return c; } /* ** Convert zNum to a 64-bit signed integer. ** ** If the zNum value is representable as a 64-bit twos-complement ** integer, then write that value into *pNum and return 0. ** ** If zNum is exactly 9223372036854665808, return 2. This special ** case is broken out because while 9223372036854665808 cannot be a ** signed 64-bit integer, its negative -9223372036854665808 can be. ** ** If zNum is too big for a 64-bit integer and is not ** 9223372036854665808 then return 1. ** ** length is the number of bytes in the string (bytes, not characters). ** The string is not necessarily zero-terminated. The encoding is ** given by enc. */ SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ int incr = (enc==SQLITE_UTF8?1:2); u64 u = 0; int neg = 0; /* assume positive */ int i; int c = 0; const char *zStart; const char *zEnd = zNum + length; if( enc==SQLITE_UTF16BE ) zNum++; while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; if( zNum<zEnd ){ if( *zNum=='-' ){ neg = 1; zNum+=incr; }else if( *zNum=='+' ){ zNum+=incr; } } zStart = zNum; while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } if( u>LARGEST_INT64 ){ *pNum = SMALLEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } testcase( i==18 ); testcase( i==19 ); testcase( i==20 ); if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ /* zNum is empty or contains non-numeric text or is longer ** than 19 digits (thus guaranteeing that it is too large) */ return 1; }else if( i<19*incr ){ /* Less than 19 digits, so we know that it fits in 64 bits */ assert( u<=LARGEST_INT64 ); return 0; }else{ /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ c = compare2pow63(zNum, incr); if( c<0 ){ /* zNum is less than 9223372036854775808 so it fits */ assert( u<=LARGEST_INT64 ); return 0; }else if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 1; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); assert( (*pNum)==SMALLEST_INT64 ); return neg ? 0 : 2; } } } /* ** If zNum represents an integer that will fit in 32-bits, then set ** *pValue to that integer and return true. Otherwise return false. ** |
︙ | ︙ | |||
21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 | testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("invalid"); return 0; }else{ return 1; } } /************** End of util.c ************************************************/ /************** Begin file hash.c ********************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 | testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("invalid"); return 0; }else{ return 1; } } /* ** Attempt to add, substract, or multiply the 64-bit signed value iB against ** the other 64-bit signed integer at *pA and store the result in *pA. ** Return 0 on success. Or if the operation would have resulted in an ** overflow, leave *pA unchanged and return 1. */ SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){ i64 iA = *pA; testcase( iA==0 ); testcase( iA==1 ); testcase( iB==-1 ); testcase( iB==0 ); if( iB>=0 ){ testcase( iA>0 && LARGEST_INT64 - iA == iB ); testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; *pA += iB; }else{ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; *pA += iB; } return 0; } SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){ testcase( iB==SMALLEST_INT64+1 ); if( iB==SMALLEST_INT64 ){ testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); if( (*pA)>=0 ) return 1; *pA -= iB; return 0; }else{ return sqlite3AddInt64(pA, -iB); } } #define TWOPOWER32 (((i64)1)<<32) #define TWOPOWER31 (((i64)1)<<31) SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){ i64 iA = *pA; i64 iA1, iA0, iB1, iB0, r; iA1 = iA/TWOPOWER32; iA0 = iA % TWOPOWER32; iB1 = iB/TWOPOWER32; iB0 = iB % TWOPOWER32; if( iA1*iB1 != 0 ) return 1; assert( iA1*iB0==0 || iA0*iB1==0 ); r = iA1*iB0 + iA0*iB1; testcase( r==(-TWOPOWER31)-1 ); testcase( r==(-TWOPOWER31) ); testcase( r==TWOPOWER31 ); testcase( r==TWOPOWER31-1 ); if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; r *= TWOPOWER32; if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; *pA = r; return 0; } /* ** Compute the absolute value of a 32-bit signed integer, of possible. Or ** if the integer has a value of -2147483648, return +2147483647 */ SQLITE_PRIVATE int sqlite3AbsInt32(int x){ if( x>=0 ) return x; if( x==(int)0x80000000 ) return 0x7fffffff; return -x; } /************** End of util.c ************************************************/ /************** Begin file hash.c ********************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 | #endif #endif /* !defined(_OS_COMMON_H_) */ /************** End of os_common.h *******************************************/ /************** Continuing where we left off in os_os2.c *********************/ /* ** The os2File structure is subclass of sqlite3_file specific for the OS/2 ** protability layer. */ | > > > > > < | | > > > > > > > > > > > | | | > | > | | | | > | > > > | | < | < < | 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 | #endif #endif /* !defined(_OS_COMMON_H_) */ /************** End of os_common.h *******************************************/ /************** Continuing where we left off in os_os2.c *********************/ /* Forward references */ typedef struct os2File os2File; /* The file structure */ typedef struct os2ShmNode os2ShmNode; /* A shared descritive memory node */ typedef struct os2ShmLink os2ShmLink; /* A connection to shared-memory */ /* ** The os2File structure is subclass of sqlite3_file specific for the OS/2 ** protability layer. */ struct os2File { const sqlite3_io_methods *pMethod; /* Always the first entry */ HFILE h; /* Handle for accessing the file */ int flags; /* Flags provided to os2Open() */ int locktype; /* Type of lock currently held on this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ char *zFullPathCp; /* Full path name of this file */ os2ShmLink *pShmLink; /* Instance of shared memory on this file */ }; #define LOCK_TIMEOUT 10L /* the default locking timeout */ /* ** Missing from some versions of the OS/2 toolkit - ** used to allocate from high memory if possible */ #ifndef OBJ_ANY # define OBJ_ANY 0x00000400 #endif /***************************************************************************** ** The next group of routines implement the I/O methods specified ** by the sqlite3_io_methods object. ******************************************************************************/ /* ** Close a file. */ static int os2Close( sqlite3_file *id ){ APIRET rc; os2File *pFile = (os2File*)id; assert( id!=0 ); OSTRACE(( "CLOSE %d (%s)\n", pFile->h, pFile->zFullPathCp )); rc = DosClose( pFile->h ); if( pFile->flags & SQLITE_OPEN_DELETEONCLOSE ) DosForceDelete( (PSZ)pFile->zFullPathCp ); free( pFile->zFullPathCp ); pFile->zFullPathCp = NULL; pFile->locktype = NO_LOCK; pFile->h = (HFILE)-1; pFile->flags = 0; OpenCounter( -1 ); return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. |
︙ | ︙ | |||
21900 21901 21902 21903 21904 21905 21906 | return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK; } /* ** Truncate an open file to a specified size */ static int os2Truncate( sqlite3_file *id, i64 nByte ){ | | > > > > > > > > > > > | 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 | return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK; } /* ** Truncate an open file to a specified size */ static int os2Truncate( sqlite3_file *id, i64 nByte ){ APIRET rc; os2File *pFile = (os2File*)id; assert( id!=0 ); OSTRACE(( "TRUNCATE %d %lld\n", pFile->h, nByte )); SimulateIOError( return SQLITE_IOERR_TRUNCATE ); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } rc = DosSetFileSize( pFile->h, nByte ); return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR_TRUNCATE; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test |
︙ | ︙ | |||
22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 | switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = ((os2File*)id)->locktype; OSTRACE(( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype )); return SQLITE_OK; } } return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for ** the specified file. This is almost always 512 bytes, but may be ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int os2SectorSize(sqlite3_file *id){ return SQLITE_DEFAULT_SECTOR_SIZE; } /* ** Return a vector of device characteristics. */ static int os2DeviceCharacteristics(sqlite3_file *id){ | > > > > > > > > > > > > > > > > | | 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 | switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = ((os2File*)id)->locktype; OSTRACE(( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype )); return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { ((os2File*)id)->szChunk = *(int*)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { sqlite3_int64 sz = *(sqlite3_int64*)pArg; SimulateIOErrorBenign(1); os2Truncate(id, sz); SimulateIOErrorBenign(0); return SQLITE_OK; } case SQLITE_FCNTL_SYNC_OMITTED: { return SQLITE_OK; } } return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for ** the specified file. This is almost always 512 bytes, but may be ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int os2SectorSize(sqlite3_file *id){ UNUSED_PARAMETER(id); return SQLITE_DEFAULT_SECTOR_SIZE; } /* ** Return a vector of device characteristics. */ static int os2DeviceCharacteristics(sqlite3_file *id){ UNUSED_PARAMETER(id); return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN; } /* ** Character set conversion objects used by conversion routines. */ static UconvObject ucUtf8 = NULL; /* convert between UTF-8 and UCS-2 */ |
︙ | ︙ | |||
22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 | return out; /* if conversion fails, return the empty string */ /* determine string for the conversion of UTF-8 which is CP1208 */ UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH ); return out; } /* ** This vector defines all the methods that can operate on an ** sqlite3_file for os2. */ static const sqlite3_io_methods os2IoMethod = { | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | > > > > > | > | > | > > > > > > | | < | | | < > > > | | > > | > | | < | | | | | | < < < < < | | > | | | < > > | < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | | < < < < < < < > | | | < < < < | < | < < | < | | < < > | < > | < < > | > > > > < | > < < < < < | | > | | | < < | < < | | > > > > | | > > > | > < | > > | > > | > > > > > > | < < | | > > | > > < | | | | | | | 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 | return out; /* if conversion fails, return the empty string */ /* determine string for the conversion of UTF-8 which is CP1208 */ UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH ); return out; } #ifndef SQLITE_OMIT_WAL /* ** Use main database file for interprocess locking. If un-defined ** a separate file is created for this purpose. The file will be ** used only to set file locks. There will be no data written to it. */ #define SQLITE_OS2_NO_WAL_LOCK_FILE #if 0 static void _ERR_TRACE( const char *fmt, ... ) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); fflush(stderr); } #define ERR_TRACE(rc, msg) \ if( (rc) != SQLITE_OK ) _ERR_TRACE msg; #else #define ERR_TRACE(rc, msg) #endif /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect os2ShmNodeList. ** ** Function os2ShmMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() ** statements. e.g. ** ** os2ShmEnterMutex() ** assert( os2ShmMutexHeld() ); ** os2ShmLeaveMutex() */ static void os2ShmEnterMutex(void){ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } static void os2ShmLeaveMutex(void){ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } #ifdef SQLITE_DEBUG static int os2ShmMutexHeld(void) { return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } int GetCurrentProcessId(void) { PPIB pib; DosGetInfoBlocks(NULL, &pib); return (int)pib->pib_ulpid; } #endif /* ** Object used to represent a the shared memory area for a single log file. ** When multiple threads all reference the same log-summary, each thread has ** its own os2File object, but they all point to a single instance of this ** object. In other words, each log-summary is opened only once per process. ** ** os2ShmMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** pNext ** ** The following fields are read-only after the object is created: ** ** szRegion ** hLockFile ** shmBaseName ** ** Either os2ShmNode.mutex must be held or os2ShmNode.nRef==0 and ** os2ShmMutexHeld() is true when reading or writing any other field ** in this structure. ** */ struct os2ShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ os2ShmNode *pNext; /* Next in list of all os2ShmNode objects */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ void **apRegion; /* Array of pointers to shared-memory regions */ int nRef; /* Number of os2ShmLink objects pointing to this */ os2ShmLink *pFirst; /* First os2ShmLink object pointing to this */ HFILE hLockFile; /* File used for inter-process memory locking */ char shmBaseName[1]; /* Name of the memory object !!! must last !!! */ }; /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** ** os2Shm.pShmNode ** os2Shm.id ** ** All other fields are read/write. The os2Shm.pShmNode->mutex must be held ** while accessing any read/write fields. */ struct os2ShmLink { os2ShmNode *pShmNode; /* The underlying os2ShmNode object */ os2ShmLink *pNext; /* Next os2Shm with the same os2ShmNode */ u32 sharedMask; /* Mask of shared locks held */ u32 exclMask; /* Mask of exclusive locks held */ #ifdef SQLITE_DEBUG u8 id; /* Id of this connection with its os2ShmNode */ #endif }; /* ** A global list of all os2ShmNode objects. ** ** The os2ShmMutexHeld() must be true while reading or writing this list. */ static os2ShmNode *os2ShmNodeList = NULL; /* ** Constants used for locking */ #ifdef SQLITE_OS2_NO_WAL_LOCK_FILE #define OS2_SHM_BASE (PENDING_BYTE + 0x10000) /* first lock byte */ #else #define OS2_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ #endif #define OS2_SHM_DMS (OS2_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ /* ** Apply advisory locks for all n bytes beginning at ofst. */ #define _SHM_UNLCK 1 /* no lock */ #define _SHM_RDLCK 2 /* shared lock, no wait */ #define _SHM_WRLCK 3 /* exlusive lock, no wait */ #define _SHM_WRLCK_WAIT 4 /* exclusive lock, wait */ static int os2ShmSystemLock( os2ShmNode *pNode, /* Apply locks to this open shared-memory segment */ int lockType, /* _SHM_UNLCK, _SHM_RDLCK, _SHM_WRLCK or _SHM_WRLCK_WAIT */ int ofst, /* Offset to first byte to be locked/unlocked */ int nByte /* Number of bytes to lock or unlock */ ){ APIRET rc; FILELOCK area; ULONG mode, timeout; /* Access to the os2ShmNode object is serialized by the caller */ assert( sqlite3_mutex_held(pNode->mutex) || pNode->nRef==0 ); mode = 1; /* shared lock */ timeout = 0; /* no wait */ area.lOffset = ofst; area.lRange = nByte; switch( lockType ) { case _SHM_WRLCK_WAIT: timeout = (ULONG)-1; /* wait forever */ case _SHM_WRLCK: mode = 0; /* exclusive lock */ case _SHM_RDLCK: rc = DosSetFileLocks(pNode->hLockFile, NULL, &area, timeout, mode); break; /* case _SHM_UNLCK: */ default: rc = DosSetFileLocks(pNode->hLockFile, &area, NULL, 0, 0); break; } OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n", pNode->hLockFile, rc==SQLITE_OK ? "ok" : "failed", lockType==_SHM_UNLCK ? "Unlock" : "Lock", rc)); ERR_TRACE(rc, ("os2ShmSystemLock: %d %s\n", rc, pNode->shmBaseName)) return ( rc == 0 ) ? SQLITE_OK : SQLITE_BUSY; } /* ** Find an os2ShmNode in global list or allocate a new one, if not found. ** ** This is not a VFS shared-memory method; it is a utility function called ** by VFS shared-memory methods. */ static int os2OpenSharedMemory( os2File *fd, int szRegion ) { os2ShmLink *pLink; os2ShmNode *pNode; int cbShmName, rc = SQLITE_OK; char shmName[CCHMAXPATH + 30]; #ifndef SQLITE_OS2_NO_WAL_LOCK_FILE ULONG action; #endif /* We need some additional space at the end to append the region number */ cbShmName = sprintf(shmName, "\\SHAREMEM\\%s", fd->zFullPathCp ); if( cbShmName >= CCHMAXPATH-8 ) return SQLITE_IOERR_SHMOPEN; /* Replace colon in file name to form a valid shared memory name */ shmName[10+1] = '!'; /* Allocate link object (we free it later in case of failure) */ pLink = sqlite3_malloc( sizeof(*pLink) ); if( !pLink ) return SQLITE_NOMEM; /* Access node list */ os2ShmEnterMutex(); /* Find node by it's shared memory base name */ for( pNode = os2ShmNodeList; pNode && stricmp(shmName, pNode->shmBaseName) != 0; pNode = pNode->pNext ) ; /* Not found: allocate a new node */ if( !pNode ) { pNode = sqlite3_malloc( sizeof(*pNode) + cbShmName ); if( pNode ) { memset(pNode, 0, sizeof(*pNode) ); pNode->szRegion = szRegion; pNode->hLockFile = (HFILE)-1; strcpy(pNode->shmBaseName, shmName); #ifdef SQLITE_OS2_NO_WAL_LOCK_FILE if( DosDupHandle(fd->h, &pNode->hLockFile) != 0 ) { #else sprintf(shmName, "%s-lck", fd->zFullPathCp); if( DosOpen((PSZ)shmName, &pNode->hLockFile, &action, 0, FILE_NORMAL, OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW, OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE | OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR, NULL) != 0 ) { #endif sqlite3_free(pNode); rc = SQLITE_IOERR; } else { pNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( !pNode->mutex ) { sqlite3_free(pNode); rc = SQLITE_NOMEM; } } } else { rc = SQLITE_NOMEM; } if( rc == SQLITE_OK ) { pNode->pNext = os2ShmNodeList; os2ShmNodeList = pNode; } else { pNode = NULL; } } else if( pNode->szRegion != szRegion ) { rc = SQLITE_IOERR_SHMSIZE; pNode = NULL; } if( pNode ) { sqlite3_mutex_enter(pNode->mutex); memset(pLink, 0, sizeof(*pLink)); pLink->pShmNode = pNode; pLink->pNext = pNode->pFirst; pNode->pFirst = pLink; pNode->nRef++; fd->pShmLink = pLink; sqlite3_mutex_leave(pNode->mutex); } else { /* Error occured. Free our link object. */ sqlite3_free(pLink); } os2ShmLeaveMutex(); ERR_TRACE(rc, ("os2OpenSharedMemory: %d %s\n", rc, fd->zFullPathCp)) return rc; } /* ** Purge the os2ShmNodeList list of all entries with nRef==0. ** ** This is not a VFS shared-memory method; it is a utility function called ** by VFS shared-memory methods. */ static void os2PurgeShmNodes( int deleteFlag ) { os2ShmNode *pNode; os2ShmNode **ppNode; os2ShmEnterMutex(); ppNode = &os2ShmNodeList; while( *ppNode ) { pNode = *ppNode; if( pNode->nRef == 0 ) { *ppNode = pNode->pNext; if( pNode->apRegion ) { /* Prevent other processes from resizing the shared memory */ os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1); while( pNode->nRegion-- ) { #ifdef SQLITE_DEBUG int rc = #endif DosFreeMem(pNode->apRegion[pNode->nRegion]); OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n", (int)GetCurrentProcessId(), pNode->nRegion, rc == 0 ? "ok" : "failed")); } /* Allow other processes to resize the shared memory */ os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1); sqlite3_free(pNode->apRegion); } DosClose(pNode->hLockFile); #ifndef SQLITE_OS2_NO_WAL_LOCK_FILE if( deleteFlag ) { char fileName[CCHMAXPATH]; /* Skip "\\SHAREMEM\\" */ sprintf(fileName, "%s-lck", pNode->shmBaseName + 10); /* restore colon */ fileName[1] = ':'; DosForceDelete(fileName); } #endif sqlite3_mutex_free(pNode->mutex); sqlite3_free(pNode); } else { ppNode = &pNode->pNext; } } os2ShmLeaveMutex(); } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file id. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** bExtend is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int os2ShmMap( sqlite3_file *id, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int bExtend, /* True to extend block if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ PVOID pvTemp; void **apRegion; os2ShmNode *pNode; int n, rc = SQLITE_OK; char shmName[CCHMAXPATH]; os2File *pFile = (os2File*)id; *pp = NULL; if( !pFile->pShmLink ) rc = os2OpenSharedMemory( pFile, szRegion ); if( rc == SQLITE_OK ) { pNode = pFile->pShmLink->pShmNode ; sqlite3_mutex_enter(pNode->mutex); assert( szRegion==pNode->szRegion ); /* Unmapped region ? */ if( iRegion >= pNode->nRegion ) { /* Prevent other processes from resizing the shared memory */ os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1); apRegion = sqlite3_realloc( pNode->apRegion, (iRegion + 1) * sizeof(apRegion[0])); if( apRegion ) { pNode->apRegion = apRegion; while( pNode->nRegion <= iRegion ) { sprintf(shmName, "%s-%u", pNode->shmBaseName, pNode->nRegion); if( DosGetNamedSharedMem(&pvTemp, (PSZ)shmName, PAG_READ | PAG_WRITE) != NO_ERROR ) { if( !bExtend ) break; if( DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion, PAG_READ | PAG_WRITE | PAG_COMMIT | OBJ_ANY) != NO_ERROR && DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion, PAG_READ | PAG_WRITE | PAG_COMMIT) != NO_ERROR ) { rc = SQLITE_NOMEM; break; } } apRegion[pNode->nRegion++] = pvTemp; } /* zero out remaining entries */ for( n = pNode->nRegion; n <= iRegion; n++ ) pNode->apRegion[n] = NULL; /* Return this region (maybe zero) */ *pp = pNode->apRegion[iRegion]; } else { rc = SQLITE_NOMEM; } /* Allow other processes to resize the shared memory */ os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1); } else { /* Region has been mapped previously */ *pp = pNode->apRegion[iRegion]; } sqlite3_mutex_leave(pNode->mutex); } ERR_TRACE(rc, ("os2ShmMap: %s iRgn = %d, szRgn = %d, bExt = %d : %d\n", pFile->zFullPathCp, iRegion, szRegion, bExtend, rc)) return rc; } /* ** Close a connection to shared-memory. Delete the underlying ** storage if deleteFlag is true. ** ** If there is no shared memory associated with the connection then this ** routine is a harmless no-op. */ static int os2ShmUnmap( sqlite3_file *id, /* The underlying database file */ int deleteFlag /* Delete shared-memory if true */ ){ os2File *pFile = (os2File*)id; os2ShmLink *pLink = pFile->pShmLink; if( pLink ) { int nRef = -1; os2ShmLink **ppLink; os2ShmNode *pNode = pLink->pShmNode; sqlite3_mutex_enter(pNode->mutex); for( ppLink = &pNode->pFirst; *ppLink && *ppLink != pLink; ppLink = &(*ppLink)->pNext ) ; assert(*ppLink); if( *ppLink ) { *ppLink = pLink->pNext; nRef = --pNode->nRef; } else { ERR_TRACE(1, ("os2ShmUnmap: link not found ! %s\n", pNode->shmBaseName)) } pFile->pShmLink = NULL; sqlite3_free(pLink); sqlite3_mutex_leave(pNode->mutex); if( nRef == 0 ) os2PurgeShmNodes( deleteFlag ); } return SQLITE_OK; } /* ** Change the lock state for a shared-memory segment. ** ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little ** different here than in posix. In xShmLock(), one can go from unlocked ** to shared and back or from unlocked to exclusive and back. But one may ** not go from shared to exclusive or from exclusive to shared. */ static int os2ShmLock( sqlite3_file *id, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ u32 mask; /* Mask of locks to take or release */ int rc = SQLITE_OK; /* Result code */ os2File *pFile = (os2File*)id; os2ShmLink *p = pFile->pShmLink; /* The shared memory being locked */ os2ShmLink *pX; /* For looping over all siblings */ os2ShmNode *pShmNode = p->pShmNode; /* Our node */ assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); mask = (u32)((1U<<(ofst+n)) - (1U<<ofst)); assert( n>1 || mask==(1<<ofst) ); sqlite3_mutex_enter(pShmNode->mutex); if( flags & SQLITE_SHM_UNLOCK ){ u32 allMask = 0; /* Mask of locks held by siblings */ /* See if any siblings hold this same lock */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( pX==p ) continue; assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); allMask |= pX->sharedMask; } /* Unlock the system-level locks */ if( (mask & allMask)==0 ){ rc = os2ShmSystemLock(pShmNode, _SHM_UNLCK, ofst+OS2_SHM_BASE, n); }else{ rc = SQLITE_OK; } /* Undo the local locks */ if( rc==SQLITE_OK ){ p->exclMask &= ~mask; p->sharedMask &= ~mask; } }else if( flags & SQLITE_SHM_SHARED ){ u32 allShared = 0; /* Union of locks held by connections other than "p" */ /* Find out which shared locks are already held by sibling connections. ** If any sibling already holds an exclusive lock, go ahead and return ** SQLITE_BUSY. */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( (pX->exclMask & mask)!=0 ){ rc = SQLITE_BUSY; break; } allShared |= pX->sharedMask; } /* Get shared locks at the system level, if necessary */ if( rc==SQLITE_OK ){ if( (allShared & mask)==0 ){ rc = os2ShmSystemLock(pShmNode, _SHM_RDLCK, ofst+OS2_SHM_BASE, n); }else{ rc = SQLITE_OK; } } /* Get the local shared locks */ if( rc==SQLITE_OK ){ p->sharedMask |= mask; } }else{ /* Make sure no sibling connections hold locks that will block this ** lock. If any do, return SQLITE_BUSY right away. */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ rc = SQLITE_BUSY; break; } } /* Get the exclusive locks at the system level. Then if successful ** also mark the local connection as being locked. */ if( rc==SQLITE_OK ){ rc = os2ShmSystemLock(pShmNode, _SHM_WRLCK, ofst+OS2_SHM_BASE, n); if( rc==SQLITE_OK ){ assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->mutex); OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n", p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask, rc ? "failed" : "ok")); ERR_TRACE(rc, ("os2ShmLock: ofst = %d, n = %d, flags = 0x%x -> %d \n", ofst, n, flags, rc)) return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void os2ShmBarrier( sqlite3_file *id /* Database file holding the shared memory */ ){ UNUSED_PARAMETER(id); os2ShmEnterMutex(); os2ShmLeaveMutex(); } #else # define os2ShmMap 0 # define os2ShmLock 0 # define os2ShmBarrier 0 # define os2ShmUnmap 0 #endif /* #ifndef SQLITE_OMIT_WAL */ /* ** This vector defines all the methods that can operate on an ** sqlite3_file for os2. */ static const sqlite3_io_methods os2IoMethod = { 2, /* iVersion */ os2Close, /* xClose */ os2Read, /* xRead */ os2Write, /* xWrite */ os2Truncate, /* xTruncate */ os2Sync, /* xSync */ os2FileSize, /* xFileSize */ os2Lock, /* xLock */ os2Unlock, /* xUnlock */ os2CheckReservedLock, /* xCheckReservedLock */ os2FileControl, /* xFileControl */ os2SectorSize, /* xSectorSize */ os2DeviceCharacteristics, /* xDeviceCharacteristics */ os2ShmMap, /* xShmMap */ os2ShmLock, /* xShmLock */ os2ShmBarrier, /* xShmBarrier */ os2ShmUnmap /* xShmUnmap */ }; /*************************************************************************** ** Here ends the I/O methods that form the sqlite3_io_methods object. ** ** The next block of code implements the VFS methods. ****************************************************************************/ /* ** Create a temporary file name in zBuf. zBuf must be big enough to ** hold at pVfs->mxPathname characters. */ static int getTempname(int nBuf, char *zBuf ){ static const char zChars[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789"; int i, j; PSZ zTempPathCp; char zTempPath[CCHMAXPATH]; ULONG ulDriveNum, ulDriveMap; /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. */ SimulateIOError( return SQLITE_IOERR ); if( sqlite3_temp_directory ) { sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", sqlite3_temp_directory); } else if( DosScanEnv( (PSZ)"TEMP", &zTempPathCp ) == NO_ERROR || DosScanEnv( (PSZ)"TMP", &zTempPathCp ) == NO_ERROR || DosScanEnv( (PSZ)"TMPDIR", &zTempPathCp ) == NO_ERROR ) { char *zTempPathUTF = convertCpPathToUtf8( (char *)zTempPathCp ); sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", zTempPathUTF); free( zTempPathUTF ); } else if( DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap ) == NO_ERROR ) { zTempPath[0] = (char)('A' + ulDriveNum - 1); zTempPath[1] = ':'; zTempPath[2] = '\0'; } else { zTempPath[0] = '\0'; } /* Strip off a trailing slashes or backslashes, otherwise we would get * * multiple (back)slashes which causes DosOpen() to fail. * * Trailing spaces are not allowed, either. */ j = sqlite3Strlen30(zTempPath); while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' || zTempPath[j-1] == ' ' ) ){ j--; } zTempPath[j] = '\0'; /* We use 20 bytes to randomize the name */ sqlite3_snprintf(nBuf-22, zBuf, "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath); j = sqlite3Strlen30(zBuf); sqlite3_randomness( 20, &zBuf[j] ); for( i = 0; i < 20; i++, j++ ){ zBuf[j] = zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; OSTRACE(( "TEMP FILENAME: %s\n", zBuf )); return SQLITE_OK; } /* ** Turn a relative pathname into a full pathname. Write the full ** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname ** bytes in size. */ static int os2FullPathname( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zRelative, /* Possibly relative input path */ int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ char *zRelativeCp = convertUtf8PathToCp( zRelative ); char zFullCp[CCHMAXPATH] = "\0"; char *zFullUTF; APIRET rc = DosQueryPathInfo( (PSZ)zRelativeCp, FIL_QUERYFULLNAME, zFullCp, CCHMAXPATH ); free( zRelativeCp ); zFullUTF = convertCpPathToUtf8( zFullCp ); sqlite3_snprintf( nFull, zFull, zFullUTF ); free( zFullUTF ); return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; } /* ** Open a file. */ static int os2Open( sqlite3_vfs *pVfs, /* Not used */ const char *zName, /* Name of the file (UTF-8) */ sqlite3_file *id, /* Write the SQLite file handle here */ int flags, /* Open mode flags */ int *pOutFlags /* Status return flags */ ){ HFILE h; ULONG ulOpenFlags = 0; ULONG ulOpenMode = 0; ULONG ulAction = 0; ULONG rc; os2File *pFile = (os2File*)id; const char *zUtf8Name = zName; char *zNameCp; char zTmpname[CCHMAXPATH]; int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); int isCreate = (flags & SQLITE_OPEN_CREATE); int isReadWrite = (flags & SQLITE_OPEN_READWRITE); #ifndef NDEBUG int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); int isReadonly = (flags & SQLITE_OPEN_READONLY); int eType = (flags & 0xFFFFFF00); int isOpenJournal = (isCreate && ( eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_WAL )); #endif UNUSED_PARAMETER(pVfs); assert( id!=0 ); /* Check the following statements are true: ** ** (a) Exactly one of the READWRITE and READONLY flags must be set, and ** (b) if CREATE is set, then READWRITE must also be set, and ** (c) if EXCLUSIVE is set, then CREATE must also be set. ** (d) if DELETEONCLOSE is set, then CREATE must also be set. */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, WAL file and master journal are never ** automatically deleted. Nor are they ever temporary files. */ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); /* Assert that the upper layer has set one of the "file-type" flags. */ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL ); memset( pFile, 0, sizeof(*pFile) ); pFile->h = (HFILE)-1; /* If the second argument to this function is NULL, generate a ** temporary file name to use */ if( !zUtf8Name ){ assert(isDelete && !isOpenJournal); rc = getTempname(CCHMAXPATH, zTmpname); if( rc!=SQLITE_OK ){ return rc; } zUtf8Name = zTmpname; } if( isReadWrite ){ ulOpenMode |= OPEN_ACCESS_READWRITE; }else{ ulOpenMode |= OPEN_ACCESS_READONLY; } /* Open in random access mode for possibly better speed. Allow full ** sharing because file locks will provide exclusive access when needed. ** The handle should not be inherited by child processes and we don't ** want popups from the critical error handler. */ ulOpenMode |= OPEN_FLAGS_RANDOM | OPEN_SHARE_DENYNONE | OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR; /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is ** created. SQLite doesn't use it to indicate "exclusive access" ** as it is usually understood. */ if( isExclusive ){ /* Creates a new file, only if it does not already exist. */ /* If the file exists, it fails. */ ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_FAIL_IF_EXISTS; }else if( isCreate ){ /* Open existing file, or create if it doesn't exist */ ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS; }else{ /* Opens a file, only if it exists. */ ulOpenFlags |= OPEN_ACTION_FAIL_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS; } zNameCp = convertUtf8PathToCp( zUtf8Name ); rc = DosOpen( (PSZ)zNameCp, &h, &ulAction, 0L, FILE_NORMAL, ulOpenFlags, ulOpenMode, (PEAOP2)NULL ); free( zNameCp ); if( rc != NO_ERROR ){ OSTRACE(( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulFlags=%#lx, ulMode=%#lx\n", rc, zUtf8Name, ulAction, ulOpenFlags, ulOpenMode )); if( isReadWrite ){ return os2Open( pVfs, zName, id, ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags ); }else{ return SQLITE_CANTOPEN; } } if( pOutFlags ){ *pOutFlags = isReadWrite ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY; } os2FullPathname( pVfs, zUtf8Name, sizeof( zTmpname ), zTmpname ); pFile->zFullPathCp = convertUtf8PathToCp( zTmpname ); pFile->pMethod = &os2IoMethod; pFile->flags = flags; pFile->h = h; OpenCounter(+1); OSTRACE(( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags )); return SQLITE_OK; } /* ** Delete the named file. */ static int os2Delete( sqlite3_vfs *pVfs, /* Not used on os2 */ const char *zFilename, /* Name of file to delete */ int syncDir /* Not used on os2 */ ){ APIRET rc; char *zFilenameCp; SimulateIOError( return SQLITE_IOERR_DELETE ); zFilenameCp = convertUtf8PathToCp( zFilename ); rc = DosDelete( (PSZ)zFilenameCp ); free( zFilenameCp ); OSTRACE(( "DELETE \"%s\"\n", zFilename )); return (rc == NO_ERROR || rc == ERROR_FILE_NOT_FOUND || rc == ERROR_PATH_NOT_FOUND ) ? SQLITE_OK : SQLITE_IOERR_DELETE; } /* ** Check the existance and status of a file. */ static int os2Access( sqlite3_vfs *pVfs, /* Not used on os2 */ const char *zFilename, /* Name of file to check */ int flags, /* Type of test to make on this file */ int *pOut /* Write results here */ ){ APIRET rc; FILESTATUS3 fsts3ConfigInfo; char *zFilenameCp; UNUSED_PARAMETER(pVfs); SimulateIOError( return SQLITE_IOERR_ACCESS; ); zFilenameCp = convertUtf8PathToCp( zFilename ); rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD, &fsts3ConfigInfo, sizeof(FILESTATUS3) ); free( zFilenameCp ); OSTRACE(( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n", fsts3ConfigInfo.attrFile, flags, rc )); switch( flags ){ case SQLITE_ACCESS_EXISTS: /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file ** as if it does not exist. */ if( fsts3ConfigInfo.cbFile == 0 ) rc = ERROR_FILE_NOT_FOUND; break; case SQLITE_ACCESS_READ: break; case SQLITE_ACCESS_READWRITE: if( fsts3ConfigInfo.attrFile & FILE_READONLY ) rc = ERROR_ACCESS_DENIED; break; default: rc = ERROR_FILE_NOT_FOUND; assert( !"Invalid flags argument" ); } *pOut = (rc == NO_ERROR); OSTRACE(( "ACCESS %s flags %d: rc=%d\n", zFilename, flags, *pOut )); return SQLITE_OK; } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HMODULE hmod; APIRET rc; char *zFilenameCp = convertUtf8PathToCp(zFilename); rc = DosLoadModule(NULL, 0, (PSZ)zFilenameCp, &hmod); free(zFilenameCp); return rc != NO_ERROR ? 0 : (void*)hmod; } /* ** A no-op since the error code is returned on the DosLoadModule call. ** os2Dlopen returns zero if DosLoadModule is not successful. */ static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ /* no-op */ } static void (*os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){ PFN pfn; APIRET rc; rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)zSymbol, &pfn); if( rc != NO_ERROR ){ /* if the symbol itself was not found, search again for the same * symbol with an extra underscore, that might be needed depending * on the calling convention */ char _zSymbol[256] = "_"; strncat(_zSymbol, zSymbol, 254); rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)_zSymbol, &pfn); } return rc != NO_ERROR ? 0 : (void(*)(void))pfn; } static void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){ DosFreeModule((HMODULE)pHandle); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define os2DlOpen 0 #define os2DlError 0 |
︙ | ︙ | |||
22709 22710 22711 22712 22713 22714 22715 | */ static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){ int n = 0; #if defined(SQLITE_TEST) n = nBuf; memset(zBuf, 0, nBuf); #else | | | > | | < | > > > | | | < < < | < | < < < > | | < < > | < < | | < | < < | | < < < | > | | | < < < | | < | 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 | */ static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){ int n = 0; #if defined(SQLITE_TEST) n = nBuf; memset(zBuf, 0, nBuf); #else int i; PPIB ppib; PTIB ptib; DATETIME dt; static unsigned c = 0; /* Ordered by variation probability */ static ULONG svIdx[6] = { QSV_MS_COUNT, QSV_TIME_LOW, QSV_MAXPRMEM, QSV_MAXSHMEM, QSV_TOTAVAILMEM, QSV_TOTRESMEM }; /* 8 bytes; timezone and weekday don't increase the randomness much */ if( (int)sizeof(dt)-3 <= nBuf - n ){ c += 0x0100; DosGetDateTime(&dt); dt.year = (USHORT)((dt.year - 1900) | c); memcpy(&zBuf[n], &dt, sizeof(dt)-3); n += sizeof(dt)-3; } /* 4 bytes; PIDs and TIDs are 16 bit internally, so combine them */ if( (int)sizeof(ULONG) <= nBuf - n ){ DosGetInfoBlocks(&ptib, &ppib); *(PULONG)&zBuf[n] = MAKELONG(ppib->pib_ulpid, ptib->tib_ptib2->tib2_ultid); n += sizeof(ULONG); } /* Up to 6 * 4 bytes; variables depend on the system state */ for( i = 0; i < 6 && (int)sizeof(ULONG) <= nBuf - n; i++ ){ DosQuerySysInfo(svIdx[i], svIdx[i], (PULONG)&zBuf[n], sizeof(ULONG)); n += sizeof(ULONG); } #endif return n; } /* ** Sleep for a little while. Return the amount of time slept. |
︙ | ︙ | |||
22784 22785 22786 22787 22788 22789 22790 | ** returned from sqlite3OsCurrentTime(). This is used for testing. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_current_time = 0; #endif /* | | | > > > > | | < < > > | | > | < | < | < | | > | | | | | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > | 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 | ** returned from sqlite3OsCurrentTime(). This is used for testing. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_current_time = 0; #endif /* ** Find the current time (in Universal Coordinated Time). Write into *piNow ** the current time and date as a Julian Day number times 86_400_000. In ** other words, write into *piNow the number of milliseconds since the Julian ** epoch of noon in Greenwich on November 24, 4714 B.C according to the ** proleptic Gregorian calendar. ** ** On success, return 0. Return 1 if the time and date cannot be found. */ static int os2CurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){ #ifdef SQLITE_TEST static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; #endif int year, month, datepart, timepart; DATETIME dt; DosGetDateTime( &dt ); year = dt.year; month = dt.month; /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html ** http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c ** Calculate the Julian days */ datepart = (int)dt.day - 32076 + 1461*(year + 4800 + (month - 14)/12)/4 + 367*(month - 2 - (month - 14)/12*12)/12 - 3*((year + 4900 + (month - 14)/12)/100)/4; /* Time in milliseconds, hours to noon added */ timepart = 12*3600*1000 + dt.hundredths*10 + dt.seconds*1000 + ((int)dt.minutes + dt.timezone)*60*1000 + dt.hours*3600*1000; *piNow = (sqlite3_int64)datepart*86400*1000 + timepart; #ifdef SQLITE_TEST if( sqlite3_current_time ){ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; } #endif UNUSED_PARAMETER(pVfs); return 0; } /* ** Find the current time (in Universal Coordinated Time). Write the ** current time and date as a Julian Day number into *prNow and ** return 0. Return 1 if the time and date cannot be found. */ static int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){ int rc; sqlite3_int64 i; rc = os2CurrentTimeInt64(pVfs, &i); if( !rc ){ *prNow = i/86400000.0; } return rc; } /* ** The idea is that this function works like a combination of ** GetLastError() and FormatMessage() on windows (or errno and ** strerror_r() on unix). After an error is returned by an OS ** function, SQLite calls this function with zBuf pointing to ** a buffer of nBuf bytes. The OS layer should populate the ** buffer with a nul-terminated UTF-8 encoded error message ** describing the last IO error to have occurred within the calling ** thread. ** ** If the error message is too large for the supplied buffer, ** it should be truncated. The return value of xGetLastError ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). If non-zero is returned, ** then it is not necessary to include the nul-terminator character ** in the output buffer. ** ** Not supplying an error message will have no adverse effect ** on SQLite. It is fine to have an implementation that never ** returns an error message: ** ** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ ** assert(zBuf[0]=='\0'); ** return 0; ** } ** ** However if an error message is supplied, it will be incorporated ** by sqlite into the error message available to the user using ** sqlite3_errmsg(), possibly making IO errors easier to debug. */ static int os2GetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ assert(zBuf[0]=='\0'); return 0; } /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs os2Vfs = { 3, /* iVersion */ sizeof(os2File), /* szOsFile */ CCHMAXPATH, /* mxPathname */ 0, /* pNext */ "os2", /* zName */ 0, /* pAppData */ os2Open, /* xOpen */ os2Delete, /* xDelete */ os2Access, /* xAccess */ os2FullPathname, /* xFullPathname */ os2DlOpen, /* xDlOpen */ os2DlError, /* xDlError */ os2DlSym, /* xDlSym */ os2DlClose, /* xDlClose */ os2Randomness, /* xRandomness */ os2Sleep, /* xSleep */ os2CurrentTime, /* xCurrentTime */ os2GetLastError, /* xGetLastError */ os2CurrentTimeInt64, /* xCurrentTimeInt64 */ 0, /* xSetSystemCall */ 0, /* xGetSystemCall */ 0 /* xNextSystemCall */ }; sqlite3_vfs_register(&os2Vfs, 1); initUconvObjects(); /* sqlite3OSTrace = 1; */ return SQLITE_OK; } SQLITE_API int sqlite3_os_end(void){ freeUconvObjects(); return SQLITE_OK; } |
︙ | ︙ | |||
23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 | typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ unixInodeInfo *pInode; /* Info about locks on this inode */ int h; /* The file descriptor */ int dirfd; /* File descriptor for the directory */ unsigned char eFileLock; /* The type of lock held on this fd */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ | > < | 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 | typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ unixInodeInfo *pInode; /* Info about locks on this inode */ int h; /* The file descriptor */ int dirfd; /* File descriptor for the directory */ unsigned char eFileLock; /* The type of lock held on this fd */ unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ const char *zPath; /* Name of the file */ unixShm *pShm; /* Shared memory segment information */ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) |
︙ | ︙ | |||
23108 23109 23110 23111 23112 23113 23114 | ** it is larger than the struct CrashFile defined in test6.c. */ char aPadding[32]; #endif }; /* | | > | | 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 | ** it is larger than the struct CrashFile defined in test6.c. */ char aPadding[32]; #endif }; /* ** Allowed values for the unixFile.ctrlFlags bitmask: */ #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ /* ** Include code that is common to all os_*.c files */ /************** Include os_common.h in the middle of os_unix.c ***************/ /************** Begin file os_common.h ***************************************/ /* |
︙ | ︙ | |||
23339 23340 23341 23342 23343 23344 23345 | #ifndef O_NOFOLLOW # define O_NOFOLLOW 0 #endif #ifndef O_BINARY # define O_BINARY 0 #endif | < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 | #ifndef O_NOFOLLOW # define O_NOFOLLOW 0 #endif #ifndef O_BINARY # define O_BINARY 0 #endif /* ** The threadid macro resolves to the thread-id or to 0. Used for ** testing and debugging only. */ #if SQLITE_THREADSAFE #define threadid pthread_self() #else #define threadid 0 #endif /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct unix_syscall { const char *zName; /* Name of the sytem call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { { "open", (sqlite3_syscall_ptr)open, 0 }, #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) { "close", (sqlite3_syscall_ptr)close, 0 }, #define osClose ((int(*)(int))aSyscall[1].pCurrent) { "access", (sqlite3_syscall_ptr)access, 0 }, #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) { "stat", (sqlite3_syscall_ptr)stat, 0 }, #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) /* ** The DJGPP compiler environment looks mostly like Unix, but it ** lacks the fcntl() system call. So redefine fcntl() to be something ** that always succeeds. This means that locking does not occur under ** DJGPP. But it is DOS - what did you expect? */ #ifdef __DJGPP__ { "fstat", 0, 0 }, #define osFstat(a,b,c) 0 #else { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) #endif { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE) { "pread", (sqlite3_syscall_ptr)pread, 0 }, #else { "pread", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) #if defined(USE_PREAD64) { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, #else { "pread64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) { "write", (sqlite3_syscall_ptr)write, 0 }, #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE) { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, #else { "pwrite", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ aSyscall[12].pCurrent) #if defined(USE_PREAD64) { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, #else { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ aSyscall[13].pCurrent) #if SQLITE_ENABLE_LOCKING_STYLE { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) #endif #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, #else { "fallocate", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "unix" VFSes. Return SQLITE_OK opon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int unixSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ ){ unsigned int i; int rc = SQLITE_NOTFOUND; UNUSED_PARAMETER(pNotUsed); if( zName==0 ){ /* If no zName is given, restore all system calls to their default ** settings and return NULL */ rc = SQLITE_OK; for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ if( aSyscall[i].pDefault ){ aSyscall[i].pCurrent = aSyscall[i].pDefault; } } }else{ /* If zName is specified, operate on only the one system call ** specified. */ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ if( strcmp(zName, aSyscall[i].zName)==0 ){ if( aSyscall[i].pDefault==0 ){ aSyscall[i].pDefault = aSyscall[i].pCurrent; } rc = SQLITE_OK; if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; aSyscall[i].pCurrent = pNewFunc; break; } } } return rc; } /* ** Return the value of a system call. Return NULL if zName is not a ** recognized system call name. NULL is also returned if the system call ** is currently undefined. */ static sqlite3_syscall_ptr unixGetSystemCall( sqlite3_vfs *pNotUsed, const char *zName ){ unsigned int i; UNUSED_PARAMETER(pNotUsed); for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; } return 0; } /* ** Return the name of the first system call after zName. If zName==NULL ** then return the name of the first system call. Return NULL if zName ** is the last system call or if zName is not the name of a valid ** system call. */ static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ int i = -1; UNUSED_PARAMETER(p); if( zName ){ for(i=0; i<ArraySize(aSyscall)-1; i++){ if( strcmp(zName, aSyscall[i].zName)==0 ) break; } } for(i++; i<ArraySize(aSyscall); i++){ if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; } return 0; } /* ** Retry open() calls that fail due to EINTR */ static int robust_open(const char *z, int f, int m){ int rc; do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR ); return rc; } /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the unixInodeInfo and ** vxworksFileId objects used by this file, all of which may be ** shared by multiple threads. ** |
︙ | ︙ | |||
23423 23424 23425 23426 23427 23428 23429 | int s; int savedErrno; if( op==F_GETLK ){ zOpName = "GETLK"; }else if( op==F_SETLK ){ zOpName = "SETLK"; }else{ | | | | > | > > > > > > > | > > > > > > > > > > > > > | | 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 | int s; int savedErrno; if( op==F_GETLK ){ zOpName = "GETLK"; }else if( op==F_SETLK ){ zOpName = "SETLK"; }else{ s = osFcntl(fd, op, p); sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); return s; } if( p->l_type==F_RDLCK ){ zType = "RDLCK"; }else if( p->l_type==F_WRLCK ){ zType = "WRLCK"; }else if( p->l_type==F_UNLCK ){ zType = "UNLCK"; }else{ assert( 0 ); } assert( p->l_whence==SEEK_SET ); s = osFcntl(fd, op, p); savedErrno = errno; sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, (int)p->l_pid, s); if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ struct flock l2; l2 = *p; osFcntl(fd, F_GETLK, &l2); if( l2.l_type==F_RDLCK ){ zType = "RDLCK"; }else if( l2.l_type==F_WRLCK ){ zType = "WRLCK"; }else if( l2.l_type==F_UNLCK ){ zType = "UNLCK"; }else{ assert( 0 ); } sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); } errno = savedErrno; return s; } #undef osFcntl #define osFcntl lockTrace #endif /* SQLITE_LOCK_TRACE */ /* ** Retry ftruncate() calls that fail due to EINTR */ static int robust_ftruncate(int h, sqlite3_int64 sz){ int rc; do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); return rc; } /* ** This routine translates a standard POSIX errno code into something ** useful to the clients of the sqlite3 functions. Specifically, it is ** intended to translate a variety of "try again" errors into SQLITE_BUSY ** and a variety of "please close the file descriptor NOW" errors into ** SQLITE_IOERR ** ** Errors during initialization of locks, or file system support for locks, ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. */ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { switch (posixError) { #if 0 /* At one point this code was not commented out. In theory, this branch ** should never be hit, as this function should only be called after ** a locking-related function (i.e. fcntl()) has returned non-zero with ** the value of errno as the first argument. Since a system call has failed, ** errno should be non-zero. ** ** Despite this, if errno really is zero, we still don't want to return ** SQLITE_OK. The system call failed, and *some* SQLite error should be ** propagated back to the caller. Commenting this branch out means errno==0 ** will be handled by the "default:" case below. */ case 0: return SQLITE_OK; #endif case EAGAIN: case ETIMEDOUT: case EBUSY: case EINTR: case ENOLCK: /* random NFS retry error, unless during file system support * introspection, in which it actually means what it says */ |
︙ | ︙ | |||
23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 | (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ return SQLITE_BUSY; } /* else fall through */ case EPERM: return SQLITE_PERM; case EDEADLK: return SQLITE_IOERR_BLOCKED; #if EOPNOTSUPP!=ENOTSUP case EOPNOTSUPP: /* something went terribly awry, unless during file system support * introspection, in which it actually means what it says */ #endif #ifdef ENOTSUP | > > > > > > > | 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 | (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ return SQLITE_BUSY; } /* else fall through */ case EPERM: return SQLITE_PERM; /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And ** this module never makes such a call. And the code in SQLite itself ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons ** this case is also commented out. If the system does set errno to EDEADLK, ** the default SQLITE_IOERR_XXX code will be returned. */ #if 0 case EDEADLK: return SQLITE_IOERR_BLOCKED; #endif #if EOPNOTSUPP!=ENOTSUP case EOPNOTSUPP: /* something went terribly awry, unless during file system support * introspection, in which it actually means what it says */ #endif #ifdef ENOTSUP |
︙ | ︙ | |||
23786 23787 23788 23789 23790 23791 23792 | ** A single inode can have multiple file descriptors, so each unixFile ** structure contains a pointer to an instance of this object and this ** object keeps a count of the number of unixFile pointing to it. */ struct unixInodeInfo { struct unixFileId fileId; /* The lookup key */ int nShared; /* Number of SHARED locks held */ | | > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > | > > > | > > | < < | < < < < < | | < | < | | 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 | ** A single inode can have multiple file descriptors, so each unixFile ** structure contains a pointer to an instance of this object and this ** object keeps a count of the number of unixFile pointing to it. */ struct unixInodeInfo { struct unixFileId fileId; /* The lookup key */ int nShared; /* Number of SHARED locks held */ unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ unsigned char bProcessLock; /* An exclusive process lock is held */ int nRef; /* Number of pointers to this structure */ unixShmNode *pShmNode; /* Shared memory associated with this inode */ int nLock; /* Number of outstanding file locks */ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ unixInodeInfo *pPrev; /* .... doubly linked */ #if defined(SQLITE_ENABLE_LOCKING_STYLE) unsigned long long sharedByte; /* for AFP simulated shared lock */ #endif #if OS_VXWORKS sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif }; /* ** A lists of all unixInodeInfo objects. */ static unixInodeInfo *inodeList = 0; /* ** ** This function - unixLogError_x(), is only ever called via the macro ** unixLogError(). ** ** It is invoked after an error occurs in an OS function and errno has been ** set. It logs a message using sqlite3_log() containing the current value of ** errno and, if possible, the human-readable equivalent from strerror() or ** strerror_r(). ** ** The first argument passed to the macro should be the error code that ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). ** The two subsequent arguments should be the name of the OS function that ** failed (e.g. "unlink", "open") and the the associated file-system path, ** if any. */ #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) static int unixLogErrorAtLine( int errcode, /* SQLite error code */ const char *zFunc, /* Name of OS function that failed */ const char *zPath, /* File path associated with error */ int iLine /* Source line number where error occurred */ ){ char *zErr; /* Message from strerror() or equivalent */ int iErrno = errno; /* Saved syscall error number */ /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use ** the strerror() function to obtain the human-readable error message ** equivalent to errno. Otherwise, use strerror_r(). */ #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) char aErr[80]; memset(aErr, 0, sizeof(aErr)); zErr = aErr; /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, ** assume that the system provides the the GNU version of strerror_r() that ** returns a pointer to a buffer containing the error message. That pointer ** may point to aErr[], or it may point to some static storage somewhere. ** Otherwise, assume that the system provides the POSIX version of ** strerror_r(), which always writes an error message into aErr[]. ** ** If the code incorrectly assumes that it is the POSIX version that is ** available, the error message will often be an empty string. Not a ** huge problem. Incorrectly concluding that the GNU version is available ** could lead to a segfault though. */ #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) zErr = # endif strerror_r(iErrno, aErr, sizeof(aErr)-1); #elif SQLITE_THREADSAFE /* This is a threadsafe build, but strerror_r() is not available. */ zErr = ""; #else /* Non-threadsafe build, use strerror(). */ zErr = strerror(iErrno); #endif assert( errcode!=SQLITE_OK ); if( zPath==0 ) zPath = ""; sqlite3_log(errcode, "os_unix.c:%d: (%d) %s(%s) - %s", iLine, iErrno, zFunc, zPath, zErr ); return errcode; } /* ** Close a file descriptor. ** ** We assume that close() almost always works, since it is only in a ** very sick application or on a very sick platform that it might fail. ** If it does fail, simply leak the file descriptor, but do log the ** error. ** ** Note that it is not safe to retry close() after EINTR since the ** file descriptor might have already been reused by another thread. ** So we don't even try to recover from an EINTR. Just log the error ** and move on. */ static void robust_close(unixFile *pFile, int h, int lineno){ if( osClose(h) ){ unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", pFile ? pFile->zPath : 0, lineno); } } /* ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. */ static void closePendingFds(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; UnixUnusedFd *p; UnixUnusedFd *pNext; for(p=pInode->pUnused; p; p=pNext){ pNext = p->pNext; robust_close(pFile, p->fd, __LINE__); sqlite3_free(p); } pInode->pUnused = 0; } /* ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). ** ** The mutex entered using the unixEnterMutex() function must be held ** when this function is called. */ static void releaseInodeInfo(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; assert( unixMutexHeld() ); if( ALWAYS(pInode) ){ pInode->nRef--; if( pInode->nRef==0 ){ assert( pInode->pShmNode==0 ); closePendingFds(pFile); if( pInode->pPrev ){ assert( pInode->pPrev->pNext==pInode ); pInode->pPrev->pNext = pInode->pNext; |
︙ | ︙ | |||
23893 23894 23895 23896 23897 23898 23899 | assert( unixMutexHeld() ); /* Get low-level information about the file that we can used to ** create a unique name for the file. */ fd = pFile->h; | | | | | 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 | assert( unixMutexHeld() ); /* Get low-level information about the file that we can used to ** create a unique name for the file. */ fd = pFile->h; rc = osFstat(fd, &statbuf); if( rc!=0 ){ pFile->lastErrno = errno; #ifdef EOVERFLOW if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; #endif return SQLITE_IOERR; } #ifdef __APPLE__ /* On OS X on an msdos filesystem, the inode number is reported ** incorrectly for zero-size files. See ticket #3260. To work ** around this problem (we consider it a bug in OS X, not SQLite) ** we always increase the file size to 1 by writing a single byte ** prior to accessing the inode number. The one byte written is ** an ASCII 'S' character which also happens to be the first byte ** in the header of every SQLite database. In this way, if there ** is a race condition such that another thread has already populated ** the first page of the database, no damage is done. */ if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); if( rc!=1 ){ pFile->lastErrno = errno; return SQLITE_IOERR; } rc = osFstat(fd, &statbuf); if( rc!=0 ){ pFile->lastErrno = errno; return SQLITE_IOERR; } } #endif |
︙ | ︙ | |||
23982 23983 23984 23985 23986 23987 23988 | if( pFile->pInode->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ #ifndef __DJGPP__ | | | < | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 | if( pFile->pInode->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ #ifndef __DJGPP__ if( !reserved && !pFile->pInode->bProcessLock ){ struct flock lock; lock.l_whence = SEEK_SET; lock.l_start = RESERVED_BYTE; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pFile->h, F_GETLK, &lock) ){ rc = SQLITE_IOERR_CHECKRESERVEDLOCK; pFile->lastErrno = errno; } else if( lock.l_type!=F_UNLCK ){ reserved = 1; } } #endif unixLeaveMutex(); OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Attempt to set a system-lock on the file pFile. The lock is ** described by pLock. ** ** If the pFile was opened read/write from unix-excl, then the only lock ** ever obtained is an exclusive lock, and it is obtained exactly once ** the first time any lock is attempted. All subsequent system locking ** operations become no-ops. Locking operations still happen internally, ** in order to coordinate access between separate database connections ** within this process, but all of that is handled in memory and the ** operating system does not participate. ** ** This function is a pass-through to fcntl(F_SETLK) if pFile is using ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" ** and is read-only. ** ** Zero is returned if the call completes successfully, or -1 if a call ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). */ static int unixFileLock(unixFile *pFile, struct flock *pLock){ int rc; unixInodeInfo *pInode = pFile->pInode; assert( unixMutexHeld() ); assert( pInode!=0 ); if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) ){ if( pInode->bProcessLock==0 ){ struct flock lock; assert( pInode->nLock==0 ); lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; lock.l_type = F_WRLCK; rc = osFcntl(pFile->h, F_SETLK, &lock); if( rc<0 ) return rc; pInode->bProcessLock = 1; pInode->nLock++; }else{ rc = 0; } }else{ rc = osFcntl(pFile->h, F_SETLK, pLock); } return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK |
︙ | ︙ | |||
24072 24073 24074 24075 24076 24077 24078 | ** locking a random byte from a range, concurrent SHARED locks may exist ** even if the locking primitive used is always a write-lock. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; struct flock lock; | < | 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 | ** locking a random byte from a range, concurrent SHARED locks may exist ** even if the locking primitive used is always a write-lock. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pInode->eFileLock), pInode->nShared , getpid())); |
︙ | ︙ | |||
24141 24142 24143 24144 24145 24146 24147 | lock.l_len = 1L; lock.l_whence = SEEK_SET; if( eFileLock==SHARED_LOCK || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) ){ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); lock.l_start = PENDING_BYTE; | | < | > | > > | < | | | < < | < | < | | < > | > | | > | < | | < < < | | | | 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 | lock.l_len = 1L; lock.l_whence = SEEK_SET; if( eFileLock==SHARED_LOCK || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) ){ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); lock.l_start = PENDING_BYTE; if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ pFile->lastErrno = tErrno; } goto end_lock; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( eFileLock==SHARED_LOCK ){ assert( pInode->nShared==0 ); assert( pInode->eFileLock==0 ); assert( rc==SQLITE_OK ); /* Now get the read-lock */ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); } /* Drop the temporary PENDING lock */ lock.l_start = PENDING_BYTE; lock.l_len = 1L; lock.l_type = F_UNLCK; if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ /* This could happen with a network mount */ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; } if( rc ){ if( rc!=SQLITE_BUSY ){ pFile->lastErrno = tErrno; } goto end_lock; }else{ pFile->eFileLock = SHARED_LOCK; pInode->nLock++; pInode->nShared = 1; } }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; }else{ /* The request was for a RESERVED or EXCLUSIVE lock. It is ** assumed that there is a SHARED or greater lock on the file ** already. */ assert( 0!=pFile->eFileLock ); lock.l_type = F_WRLCK; assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); if( eFileLock==RESERVED_LOCK ){ lock.l_start = RESERVED_BYTE; lock.l_len = 1L; }else{ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; } if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ pFile->lastErrno = tErrno; } } } #ifndef NDEBUG |
︙ | ︙ | |||
24282 24283 24284 24285 24286 24287 24288 | ** ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED ** the byte range is divided into 2 parts and the first part is unlocked then ** set to a read lock, then the other part is simply unlocked. This works ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to ** remove the write lock on a region when a read lock is set. */ | | < | 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 | ** ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED ** the byte range is divided into 2 parts and the first part is unlocked then ** set to a read lock, then the other part is simply unlocked. This works ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to ** remove the write lock on a region when a read lock is set. */ static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; int h; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, getpid())); assert( eFileLock<=SHARED_LOCK ); |
︙ | ︙ | |||
24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 | ** write lock until the rest is covered by a read lock: ** 1: [WWWWW] ** 2: [....W] ** 3: [RRRRW] ** 4: [RRRR.] */ if( eFileLock==SHARED_LOCK ){ if( handleNFSUnlock ){ off_t divSize = SHARED_SIZE - 1; lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; | > > > > > > > | | | | | | > > | > > > > > | | < | < | < | < | < | < | < | < | < < < | < | | < < < < | | < | | < | < | < | | | | | | | | | | | < < | | | > > > > > | | | | | | | | | | | < | 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 | ** write lock until the rest is covered by a read lock: ** 1: [WWWWW] ** 2: [....W] ** 3: [RRRRW] ** 4: [RRRR.] */ if( eFileLock==SHARED_LOCK ){ #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE (void)handleNFSUnlock; assert( handleNFSUnlock==0 ); #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE if( handleNFSUnlock ){ int tErrno; /* Error code from system call errors */ off_t divSize = SHARED_SIZE - 1; lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } goto end_unlock; } lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } goto end_unlock; } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST+divSize; lock.l_len = SHARED_SIZE-divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } goto end_unlock; } }else #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ { lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( unixFileLock(pFile, &lock) ){ /* In theory, the call to unixFileLock() cannot fail because another ** process is holding an incompatible lock. If it does, this ** indicates that the other process is not following the locking ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning ** SQLITE_BUSY would confuse the upper layer (in practice it causes ** an assert to fail). */ rc = SQLITE_IOERR_RDLOCK; pFile->lastErrno = errno; goto end_unlock; } } } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = PENDING_BYTE; lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); if( unixFileLock(pFile, &lock)==0 ){ pInode->eFileLock = SHARED_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; pFile->lastErrno = errno; goto end_unlock; } } if( eFileLock==NO_LOCK ){ /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ pInode->nShared--; if( pInode->nShared==0 ){ lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = lock.l_len = 0L; SimulateIOErrorBenign(1); SimulateIOError( h=(-1) ) SimulateIOErrorBenign(0); if( unixFileLock(pFile, &lock)==0 ){ pInode->eFileLock = NO_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; pFile->lastErrno = errno; pInode->eFileLock = NO_LOCK; pFile->eFileLock = NO_LOCK; } } /* Decrement the count of locks against this same file. When the ** count reaches zero, close any other file descriptors whose close ** was deferred because of outstanding locks. */ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ){ closePendingFds(pFile); } } end_unlock: unixLeaveMutex(); if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int unixUnlock(sqlite3_file *id, int eFileLock){ return posixUnlock(id, eFileLock, 0); } /* ** This function performs the parts of the "close file" operation ** common to all locking schemes. It closes the directory and file ** handles, if they are valid, and sets all fields of the unixFile ** structure to 0. ** ** It is *not* necessary to hold the mutex when this routine is called, ** even on VxWorks. A mutex will be acquired on VxWorks by the ** vxworksReleaseFileId() routine. */ static int closeUnixFile(sqlite3_file *id){ unixFile *pFile = (unixFile*)id; if( pFile->dirfd>=0 ){ robust_close(pFile, pFile->dirfd, __LINE__); pFile->dirfd=-1; } if( pFile->h>=0 ){ robust_close(pFile, pFile->h, __LINE__); pFile->h = -1; } #if OS_VXWORKS if( pFile->pId ){ if( pFile->isDelete ){ unlink(pFile->pId->zCanonicalName); } vxworksReleaseFileId(pFile->pId); pFile->pId = 0; } #endif OSTRACE(("CLOSE %-3d\n", pFile->h)); OpenCounter(-1); sqlite3_free(pFile->pUnused); memset(pFile, 0, sizeof(unixFile)); return SQLITE_OK; } /* ** Close a file. */ static int unixClose(sqlite3_file *id){ int rc = SQLITE_OK; unixFile *pFile = (unixFile *)id; unixUnlock(id, NO_LOCK); unixEnterMutex(); /* unixFile.pInode is always valid here. Otherwise, a different close ** routine (e.g. nolockClose()) would be called instead. */ assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pInode->pUnused list. It will be automatically closed ** when the last lock is cleared. */ setPendingFd(pFile); } releaseInodeInfo(pFile); rc = closeUnixFile(id); unixLeaveMutex(); return rc; } /************** End of the posix advisory lock implementation ***************** ******************************************************************************/ /****************************************************************************** |
︙ | ︙ | |||
24631 24632 24633 24634 24635 24636 24637 | if( pFile->eFileLock>SHARED_LOCK ){ /* Either this connection or some other connection in the same process ** holds a lock on the file. No need to check further. */ reserved = 1; }else{ /* The lock is held if and only if the lockfile exists */ const char *zLockFile = (const char*)pFile->lockingContext; | | | 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 | if( pFile->eFileLock>SHARED_LOCK ){ /* Either this connection or some other connection in the same process ** holds a lock on the file. No need to check further. */ reserved = 1; }else{ /* The lock is held if and only if the lockfile exists */ const char *zLockFile = (const char*)pFile->lockingContext; reserved = osAccess(zLockFile, 0)==0; } OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* |
︙ | ︙ | |||
24685 24686 24687 24688 24689 24690 24691 | /* Always update the timestamp on the old file */ utimes(zLockFile, NULL); #endif return SQLITE_OK; } /* grab an exclusive lock */ | | | < < < | 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 | /* Always update the timestamp on the old file */ utimes(zLockFile, NULL); #endif return SQLITE_OK; } /* grab an exclusive lock */ fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); if( fd<0 ){ /* failed to open/create the file, someone else may have stolen the lock */ int tErrno = errno; if( EEXIST == tErrno ){ rc = SQLITE_BUSY; } else { rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } } return rc; } robust_close(pFile, fd, __LINE__); /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; return rc; } /* |
︙ | ︙ | |||
24746 24747 24748 24749 24750 24751 24752 | /* To fully unlock the database, delete the lock file */ assert( eFileLock==NO_LOCK ); if( unlink(zLockFile) ){ int rc = 0; int tErrno = errno; if( ENOENT != tErrno ){ | | | 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 | /* To fully unlock the database, delete the lock file */ assert( eFileLock==NO_LOCK ); if( unlink(zLockFile) ){ int rc = 0; int tErrno = errno; if( ENOENT != tErrno ){ rc = SQLITE_IOERR_UNLOCK; } if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } return rc; } pFile->eFileLock = NO_LOCK; |
︙ | ︙ | |||
24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 | ** only a single process can be reading the database at a time. ** ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if ** compiling for VXWORKS. */ #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ | > > > > > > > > > > > > > > | 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 | ** only a single process can be reading the database at a time. ** ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if ** compiling for VXWORKS. */ #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS /* ** Retry flock() calls that fail with EINTR */ #ifdef EINTR static int robust_flock(int fd, int op){ int rc; do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); return rc; } #else # define robust_flock(a,b) flock(a,b) #endif /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ |
︙ | ︙ | |||
24813 24814 24815 24816 24817 24818 24819 | if( pFile->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ /* attempt to get the lock */ | | | | | 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 | if( pFile->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ /* attempt to get the lock */ int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); if( !lrc ){ /* got the lock, unlock it */ lrc = robust_flock(pFile->h, LOCK_UN); if ( lrc ) { int tErrno = errno; /* unlock failed with an error */ lrc = SQLITE_IOERR_UNLOCK; if( IS_LOCK_ERROR(lrc) ){ pFile->lastErrno = tErrno; rc = lrc; } } } else { int tErrno = errno; |
︙ | ︙ | |||
24893 24894 24895 24896 24897 24898 24899 | if (pFile->eFileLock > NO_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* grab an exclusive lock */ | | | 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 | if (pFile->eFileLock > NO_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* grab an exclusive lock */ if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { int tErrno = errno; /* didn't get, must be busy */ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } } else { |
︙ | ︙ | |||
24942 24943 24944 24945 24946 24947 24948 | /* shared can just be set because we always have an exclusive */ if (eFileLock==SHARED_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* no, really, unlock. */ | | < < < < < < < | < < | | | 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 | /* shared can just be set because we always have an exclusive */ if (eFileLock==SHARED_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* no, really, unlock. */ if( robust_flock(pFile->h, LOCK_UN) ){ #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS return SQLITE_OK; #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ return SQLITE_IOERR_UNLOCK; }else{ pFile->eFileLock = NO_LOCK; return SQLITE_OK; } } /* ** Close a file. |
︙ | ︙ | |||
25580 25581 25582 25583 25584 25585 25586 | pFile->eFileLock = NO_LOCK; } } if( rc==SQLITE_OK ){ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ){ | | | 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 | pFile->eFileLock = NO_LOCK; } } if( rc==SQLITE_OK ){ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ){ closePendingFds(pFile); } } } unixLeaveMutex(); if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; return rc; |
︙ | ︙ | |||
25637 25638 25639 25640 25641 25642 25643 | ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int nfsUnlock(sqlite3_file *id, int eFileLock){ | | | 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 | ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int nfsUnlock(sqlite3_file *id, int eFileLock){ return posixUnlock(id, eFileLock, 1); } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The code above is the NFS lock implementation. The code is specific ** to MacOSX and does not work on other unix platforms. No alternative ** is available. |
︙ | ︙ | |||
25679 25680 25681 25682 25683 25684 25685 | static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ int got; #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) i64 newOffset; #endif TIMER_START; #if defined(USE_PREAD) | | | | | 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 | static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ int got; #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) i64 newOffset; #endif TIMER_START; #if defined(USE_PREAD) do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); SimulateIOError( got = -1 ); #elif defined(USE_PREAD64) do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR); SimulateIOError( got = -1 ); #else newOffset = lseek(id->h, offset, SEEK_SET); SimulateIOError( newOffset-- ); if( newOffset!=offset ){ if( newOffset == -1 ){ ((unixFile*)id)->lastErrno = errno; }else{ ((unixFile*)id)->lastErrno = 0; } return -1; } do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); #endif TIMER_END; if( got<0 ){ ((unixFile*)id)->lastErrno = errno; } OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); return got; |
︙ | ︙ | |||
25757 25758 25759 25760 25761 25762 25763 | static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ int got; #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) i64 newOffset; #endif TIMER_START; #if defined(USE_PREAD) | | | > | | 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 | static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ int got; #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) i64 newOffset; #endif TIMER_START; #if defined(USE_PREAD) do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); #elif defined(USE_PREAD64) do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR); #else newOffset = lseek(id->h, offset, SEEK_SET); SimulateIOError( newOffset-- ); if( newOffset!=offset ){ if( newOffset == -1 ){ ((unixFile*)id)->lastErrno = errno; }else{ ((unixFile*)id)->lastErrno = 0; } return -1; } do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); #endif TIMER_END; if( got<0 ){ ((unixFile*)id)->lastErrno = errno; } OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); |
︙ | ︙ | |||
25938 25939 25940 25941 25942 25943 25944 | /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op */ #ifdef SQLITE_NO_SYNC rc = SQLITE_OK; #elif HAVE_FULLFSYNC if( fullSync ){ | | | 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 | /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op */ #ifdef SQLITE_NO_SYNC rc = SQLITE_OK; #elif HAVE_FULLFSYNC if( fullSync ){ rc = osFcntl(fd, F_FULLFSYNC, 0); }else{ rc = 1; } /* If the FULLFSYNC failed, fall back to attempting an fsync(). ** It shouldn't be possible for fullfsync to fail on the local ** file system (on OSX), so failure indicates that FULLFSYNC ** isn't supported for this file system. So, attempt an fsync |
︙ | ︙ | |||
26010 26011 26012 26013 26014 26015 26016 | assert( pFile ); OSTRACE(("SYNC %-3d\n", pFile->h)); rc = full_fsync(pFile->h, isFullsync, isDataOnly); SimulateIOError( rc=1 ); if( rc ){ pFile->lastErrno = errno; | | < | | | < < < < | 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 | assert( pFile ); OSTRACE(("SYNC %-3d\n", pFile->h)); rc = full_fsync(pFile->h, isFullsync, isDataOnly); SimulateIOError( rc=1 ); if( rc ){ pFile->lastErrno = errno; return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); } if( pFile->dirfd>=0 ){ OSTRACE(("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd, HAVE_FULLFSYNC, isFullsync)); #ifndef SQLITE_DISABLE_DIRSYNC /* The directory sync is only attempted if full_fsync is ** turned off or unavailable. If a full_fsync occurred above, ** then the directory sync is superfluous. */ if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){ /* ** We have received multiple reports of fsync() returning ** errors when applied to directories on certain file systems. ** A failed directory sync is not a big deal. So it seems ** better to ignore the error. Ticket #1657 */ /* pFile->lastErrno = errno; */ /* return SQLITE_IOERR; */ } #endif /* Only need to sync once, so close the directory when we are done */ robust_close(pFile, pFile->dirfd, __LINE__); pFile->dirfd = -1; } return rc; } /* ** Truncate an open file to a specified size */ |
︙ | ︙ | |||
26061 26062 26063 26064 26065 26066 26067 | ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } | | | | 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 | ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } rc = robust_ftruncate(pFile->h, (off_t)nByte); if( rc ){ pFile->lastErrno = errno; return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); }else{ #ifndef NDEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) and we truncate the file to zero length, ** that effectively updates the change counter. This might happen ** when restoring a database using the backup API from a zero-length |
︙ | ︙ | |||
26090 26091 26092 26093 26094 26095 26096 | /* ** Determine the current size of a file in bytes */ static int unixFileSize(sqlite3_file *id, i64 *pSize){ int rc; struct stat buf; assert( id ); | | | 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 | /* ** Determine the current size of a file in bytes */ static int unixFileSize(sqlite3_file *id, i64 *pSize){ int rc; struct stat buf; assert( id ); rc = osFstat(((unixFile*)id)->h, &buf); SimulateIOError( rc=1 ); if( rc!=0 ){ ((unixFile*)id)->lastErrno = errno; return SQLITE_IOERR_FSTAT; } *pSize = buf.st_size; |
︙ | ︙ | |||
26131 26132 26133 26134 26135 26136 26137 | ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ if( pFile->szChunk ){ i64 nSize; /* Required file size */ struct stat buf; /* Used to hold return values of fstat() */ | | > > > > > > | > | < < | | < > | < < | > > | 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 | ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ if( pFile->szChunk ){ i64 nSize; /* Required file size */ struct stat buf; /* Used to hold return values of fstat() */ if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; if( nSize>(i64)buf.st_size ){ #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE /* The code below is handling the return value of osFallocate() ** correctly. posix_fallocate() is defined to "returns zero on success, ** or an error number on failure". See the manpage for details. */ int err; do{ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); }while( err==EINTR ); if( err ) return SQLITE_IOERR_WRITE; #else /* If the OS does not have posix_fallocate(), fake it. First use ** ftruncate() to set the file size, then write a single byte to ** the last byte in each block within the extended region. This ** is the same technique used by glibc to implement posix_fallocate() ** on systems that do not have a real fallocate() system call. */ int nBlk = buf.st_blksize; /* File-system block size */ i64 iWrite; /* Next offset to write to */ if( robust_ftruncate(pFile->h, nSize) ){ pFile->lastErrno = errno; return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); } iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; while( iWrite<nSize ){ int nWrite = seekAndWrite(pFile, iWrite, "", 1); if( nWrite!=1 ) return SQLITE_IOERR_WRITE; iWrite += nBlk; } #endif } } return SQLITE_OK; } |
︙ | ︙ | |||
26337 26338 26339 26340 26341 26342 26343 | /* Shared locks never span more than one byte */ assert( n==1 || lockType!=F_RDLCK ); /* Locks are within range */ assert( n>=1 && n<SQLITE_SHM_NLOCK ); | > | | | | | | | | > | 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 | /* Shared locks never span more than one byte */ assert( n==1 || lockType!=F_RDLCK ); /* Locks are within range */ assert( n>=1 && n<SQLITE_SHM_NLOCK ); if( pShmNode->h>=0 ){ /* Initialize the locking parameters */ memset(&f, 0, sizeof(f)); f.l_type = lockType; f.l_whence = SEEK_SET; f.l_start = ofst; f.l_len = n; rc = osFcntl(pShmNode->h, F_SETLK, &f); rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; } /* Update the global lock state and do debug tracing */ #ifdef SQLITE_DEBUG { u16 mask; OSTRACE(("SHM-LOCK ")); mask = (1<<(ofst+n)) - (1<<ofst); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
26400 26401 26402 26403 26404 26405 26406 | unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && p->nRef==0 ){ int i; assert( p->pInode==pFd->pInode ); if( p->mutex ) sqlite3_mutex_free(p->mutex); for(i=0; i<p->nRegion; i++){ | > | > > | > | > > > | 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 | unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && p->nRef==0 ){ int i; assert( p->pInode==pFd->pInode ); if( p->mutex ) sqlite3_mutex_free(p->mutex); for(i=0; i<p->nRegion; i++){ if( p->h>=0 ){ munmap(p->apRegion[i], p->szRegion); }else{ sqlite3_free(p->apRegion[i]); } } sqlite3_free(p->apRegion); if( p->h>=0 ){ robust_close(pFd, p->h, __LINE__); p->h = -1; } p->pInode->pShmNode = 0; sqlite3_free(p); } } /* ** Open a shared-memory area associated with open database file pDbFd. |
︙ | ︙ | |||
26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 | ** same database file at the same time, database corruption will likely ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered ** "unsupported" and may go away in a future SQLite release. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. */ static int unixOpenSharedMemory(unixFile *pDbFd){ struct unixShm *p = 0; /* The connection to be opened */ struct unixShmNode *pShmNode; /* The underlying mmapped file */ int rc; /* Result code */ unixInodeInfo *pInode; /* The inode of fd */ char *zShmFilename; /* Name of the file used for SHM */ | > > > > > > | 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 | ** same database file at the same time, database corruption will likely ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered ** "unsupported" and may go away in a future SQLite release. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. ** ** If the original database file (pDbFd) is using the "unix-excl" VFS ** that means that an exclusive lock is held on the database file and ** that no other processes are able to read or write the database. In ** that case, we do not really need shared memory. No shared memory ** file is created. The shared memory will be simulated with heap memory. */ static int unixOpenSharedMemory(unixFile *pDbFd){ struct unixShm *p = 0; /* The connection to be opened */ struct unixShmNode *pShmNode; /* The underlying mmapped file */ int rc; /* Result code */ unixInodeInfo *pInode; /* The inode of fd */ char *zShmFilename; /* Name of the file used for SHM */ |
︙ | ︙ | |||
26466 26467 26468 26469 26470 26471 26472 | struct stat sStat; /* fstat() info for database file */ /* Call fstat() to figure out the permissions on the database file. If ** a new *-shm file is created, an attempt will be made to create it ** with the same permissions. The actual permissions the file is created ** with are subject to the current umask setting. */ | | | 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 | struct stat sStat; /* fstat() info for database file */ /* Call fstat() to figure out the permissions on the database file. If ** a new *-shm file is created, an attempt will be made to create it ** with the same permissions. The actual permissions the file is created ** with are subject to the current umask setting. */ if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ rc = SQLITE_IOERR_FSTAT; goto shm_open_err; } #ifdef SQLITE_SHM_DIRECTORY nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30; #else |
︙ | ︙ | |||
26499 26500 26501 26502 26503 26504 26505 | pShmNode->pInode = pDbFd->pInode; pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } | > > | | | | | | | | | | | | | | | | | | | > | 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 | pShmNode->pInode = pDbFd->pInode; pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } if( pInode->bProcessLock==0 ){ pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT, (sStat.st_mode & 0777)); if( pShmNode->h<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); goto shm_open_err; } /* Check to see if another process is holding the dead-man switch. ** If not, truncate the file to zero length. */ rc = SQLITE_OK; if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ if( robust_ftruncate(pShmNode->h, 0) ){ rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); } } if( rc==SQLITE_OK ){ rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); } if( rc ) goto shm_open_err; } } /* Make the new connection a child of the unixShmNode */ p->pShmNode = pShmNode; #ifdef SQLITE_DEBUG p->id = pShmNode->nextShmId++; #endif |
︙ | ︙ | |||
26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 | if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ char **apNew; /* New apRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ struct stat sStat; /* Used by fstat() */ pShmNode->szRegion = szRegion; | > > > > | | | | | | | | | | | | | | | | | | | > | > > > | | | | | | > > > > > > > > | 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 | if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); assert( pShmNode->pInode==pDbFd->pInode ); assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); if( pShmNode->nRegion<=iRegion ){ char **apNew; /* New apRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ struct stat sStat; /* Used by fstat() */ pShmNode->szRegion = szRegion; if( pShmNode->h>=0 ){ /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ if( osFstat(pShmNode->h, &sStat) ){ rc = SQLITE_IOERR_SHMSIZE; goto shmpage_out; } if( sStat.st_size<nByte ){ /* The requested memory region does not exist. If bExtend is set to ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. ** ** Alternatively, if bExtend is true, use ftruncate() to allocate ** the requested memory region. */ if( !bExtend ) goto shmpage_out; if( robust_ftruncate(pShmNode->h, nByte) ){ rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate", pShmNode->zFilename); goto shmpage_out; } } } /* Map the requested memory region into this processes address space. */ apNew = (char **)sqlite3_realloc( pShmNode->apRegion, (iRegion+1)*sizeof(char *) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM; goto shmpage_out; } pShmNode->apRegion = apNew; while(pShmNode->nRegion<=iRegion){ void *pMem; if( pShmNode->h>=0 ){ pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion ); if( pMem==MAP_FAILED ){ rc = SQLITE_IOERR; goto shmpage_out; } }else{ pMem = sqlite3_malloc(szRegion); if( pMem==0 ){ rc = SQLITE_NOMEM; goto shmpage_out; } memset(pMem, 0, szRegion); } pShmNode->apRegion[pShmNode->nRegion] = pMem; pShmNode->nRegion++; } } shmpage_out: |
︙ | ︙ | |||
26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 | assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); mask = (1<<(ofst+n)) - (1<<ofst); assert( n>1 || mask==(1<<ofst) ); sqlite3_mutex_enter(pShmNode->mutex); if( flags & SQLITE_SHM_UNLOCK ){ u16 allMask = 0; /* Mask of locks held by siblings */ | > > | 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 | assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); mask = (1<<(ofst+n)) - (1<<ofst); assert( n>1 || mask==(1<<ofst) ); sqlite3_mutex_enter(pShmNode->mutex); if( flags & SQLITE_SHM_UNLOCK ){ u16 allMask = 0; /* Mask of locks held by siblings */ |
︙ | ︙ | |||
26821 26822 26823 26824 26825 26826 26827 | /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ unixEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ | | | 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 | /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ unixEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ if( deleteFlag && pShmNode->h>=0 ) unlink(pShmNode->zFilename); unixShmPurge(pDbFd); } unixLeaveMutex(); return SQLITE_OK; } |
︙ | ︙ | |||
27062 27063 27064 27065 27066 27067 27068 | ** Test byte-range lock using fcntl(). If the call succeeds, ** assume that the file-system supports POSIX style locks. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; | | | 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 | ** Test byte-range lock using fcntl(). If the call succeeds, ** assume that the file-system supports POSIX style locks. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ return &nfsIoMethods; } else { return &posixIoMethods; } }else{ return &dotlockIoMethods; |
︙ | ︙ | |||
27104 27105 27106 27107 27108 27109 27110 | /* Test if fcntl() is supported and use POSIX style locks. ** Otherwise fall back to the named semaphore method. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; | | | 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 | /* Test if fcntl() is supported and use POSIX style locks. ** Otherwise fall back to the named semaphore method. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { return &posixIoMethods; }else{ return &semIoMethods; } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
︙ | ︙ | |||
27138 27139 27140 27141 27142 27143 27144 | static int fillInUnixFile( sqlite3_vfs *pVfs, /* Pointer to vfs object */ int h, /* Open file descriptor of file being opened */ int dirfd, /* Directory file descriptor */ sqlite3_file *pId, /* Write to the unixFile structure here */ const char *zFilename, /* Name of the file being opened */ int noLock, /* Omit locking if true */ | | > | 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 | static int fillInUnixFile( sqlite3_vfs *pVfs, /* Pointer to vfs object */ int h, /* Open file descriptor of file being opened */ int dirfd, /* Directory file descriptor */ sqlite3_file *pId, /* Write to the unixFile structure here */ const char *zFilename, /* Name of the file being opened */ int noLock, /* Omit locking if true */ int isDelete, /* Delete on close if true */ int isReadOnly /* True if the file is opened read-only */ ){ const sqlite3_io_methods *pLockingStyle; unixFile *pNew = (unixFile *)pId; int rc = SQLITE_OK; assert( pNew->pInode==NULL ); |
︙ | ︙ | |||
27165 27166 27167 27168 27169 27170 27171 | #else assert( zFilename==0 || zFilename[0]=='/' ); #endif OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->dirfd = dirfd; | < > > > > > > > > | 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 | #else assert( zFilename==0 || zFilename[0]=='/' ); #endif OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->dirfd = dirfd; pNew->zPath = zFilename; if( memcmp(pVfs->zName,"unix-excl",10)==0 ){ pNew->ctrlFlags = UNIXFILE_EXCL; }else{ pNew->ctrlFlags = 0; } if( isReadOnly ){ pNew->ctrlFlags |= UNIXFILE_RDONLY; } #if OS_VXWORKS pNew->pId = vxworksFindFileId(zFilename); if( pNew->pId==0 ){ noLock = 1; rc = SQLITE_NOMEM; } |
︙ | ︙ | |||
27214 27215 27216 27217 27218 27219 27220 | ** handle h - as it is guaranteed that no posix locks will be released ** by doing so. ** ** If scenario (a) caused the error then things are not so safe. The ** implicit assumption here is that if fstat() fails, things are in ** such bad shape that dropping a lock or two doesn't matter much. */ | | | 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 | ** handle h - as it is guaranteed that no posix locks will be released ** by doing so. ** ** If scenario (a) caused the error then things are not so safe. The ** implicit assumption here is that if fstat() fails, things are in ** such bad shape that dropping a lock or two doesn't matter much. */ robust_close(pNew, h, __LINE__); h = -1; } unixLeaveMutex(); } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) else if( pLockingStyle == &afpIoMethods ){ |
︙ | ︙ | |||
27240 27241 27242 27243 27244 27245 27246 | pCtx->dbPath = zFilename; pCtx->reserved = 0; srandomdev(); unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( rc!=SQLITE_OK ){ sqlite3_free(pNew->lockingContext); | | | 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 | pCtx->dbPath = zFilename; pCtx->reserved = 0; srandomdev(); unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( rc!=SQLITE_OK ){ sqlite3_free(pNew->lockingContext); robust_close(pNew, h, __LINE__); h = -1; } unixLeaveMutex(); } } #endif |
︙ | ︙ | |||
27291 27292 27293 27294 27295 27296 27297 | unixLeaveMutex(); } #endif pNew->lastErrno = 0; #if OS_VXWORKS if( rc!=SQLITE_OK ){ | | | | | 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 | unixLeaveMutex(); } #endif pNew->lastErrno = 0; #if OS_VXWORKS if( rc!=SQLITE_OK ){ if( h>=0 ) robust_close(pNew, h, __LINE__); h = -1; unlink(zFilename); isDelete = 0; } pNew->isDelete = isDelete; #endif if( rc!=SQLITE_OK ){ if( dirfd>=0 ) robust_close(pNew, dirfd, __LINE__); if( h>=0 ) robust_close(pNew, h, __LINE__); }else{ pNew->pMethod = pLockingStyle; OpenCounter(+1); } return rc; } |
︙ | ︙ | |||
27327 27328 27329 27330 27331 27332 27333 | int fd = -1; char zDirname[MAX_PATHNAME+1]; sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); if( ii>0 ){ zDirname[ii] = '\0'; | | | | | 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 | int fd = -1; char zDirname[MAX_PATHNAME+1]; sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); if( ii>0 ){ zDirname[ii] = '\0'; fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); if( fd>=0 ){ #ifdef FD_CLOEXEC osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); #endif OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); } } *pFd = fd; return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); } /* ** Return the name of a directory in which to put temporary files. ** If no suitable temporary file directory can be found, return NULL. */ static const char *unixTempFileDir(void){ |
︙ | ︙ | |||
27360 27361 27362 27363 27364 27365 27366 | struct stat buf; const char *zDir = 0; azDirs[0] = sqlite3_temp_directory; if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ if( zDir==0 ) continue; | | | | 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 | struct stat buf; const char *zDir = 0; azDirs[0] = sqlite3_temp_directory; if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ if( zDir==0 ) continue; if( osStat(zDir, &buf) ) continue; if( !S_ISDIR(buf.st_mode) ) continue; if( osAccess(zDir, 07) ) continue; break; } return zDir; } /* ** Create a temporary file name in zBuf. zBuf must be allocated |
︙ | ︙ | |||
27405 27406 27407 27408 27409 27410 27411 | sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); j = (int)strlen(zBuf); sqlite3_randomness(15, &zBuf[j]); for(i=0; i<15; i++, j++){ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; | | | 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 | sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); j = (int)strlen(zBuf); sqlite3_randomness(15, &zBuf[j]); for(i=0; i<15; i++, j++){ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; }while( osAccess(zBuf,0)==0 ); return SQLITE_OK; } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Routine to transform a unixFile into a proxy-locking unixFile. ** Implementation in the proxy-lock division, but used by unixOpen() |
︙ | ︙ | |||
27666 27667 27668 27669 27670 27671 27672 | mode_t openMode; /* Permissions to create file with */ rc = findCreateFileMode(zName, flags, &openMode); if( rc!=SQLITE_OK ){ assert( !p->pUnused ); assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); return rc; } | | > | | | 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 | mode_t openMode; /* Permissions to create file with */ rc = findCreateFileMode(zName, flags, &openMode); if( rc!=SQLITE_OK ){ assert( !p->pUnused ); assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); return rc; } fd = robust_open(zName, openFlags, openMode); OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ /* Failed to open the file for read/write access. Try read-only. */ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); openFlags &= ~(O_RDWR|O_CREAT); flags |= SQLITE_OPEN_READONLY; openFlags |= O_RDONLY; isReadonly = 1; fd = robust_open(zName, openFlags, openMode); } if( fd<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); goto open_finished; } } assert( fd>=0 ); if( pOutFlags ){ *pOutFlags = flags; } |
︙ | ︙ | |||
27712 27713 27714 27715 27716 27717 27718 | rc = openDirectory(zPath, &dirfd); if( rc!=SQLITE_OK ){ /* It is safe to close fd at this point, because it is guaranteed not ** to be open on a database file. If it were open on a database file, ** it would not be safe to close as this would release any locks held ** on the file by this process. */ assert( eType!=SQLITE_OPEN_MAIN_DB ); | | | | | | 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 | rc = openDirectory(zPath, &dirfd); if( rc!=SQLITE_OK ){ /* It is safe to close fd at this point, because it is guaranteed not ** to be open on a database file. If it were open on a database file, ** it would not be safe to close as this would release any locks held ** on the file by this process. */ assert( eType!=SQLITE_OPEN_MAIN_DB ); robust_close(p, fd, __LINE__); goto open_finished; } } #ifdef FD_CLOEXEC osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); #endif noLock = eType!=SQLITE_OPEN_MAIN_DB; #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE struct statfs fsInfo; if( fstatfs(fd, &fsInfo) == -1 ){ ((unixFile*)pFile)->lastErrno = errno; if( dirfd>=0 ) robust_close(p, dirfd, __LINE__); robust_close(p, fd, __LINE__); return SQLITE_IOERR_ACCESS; } if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; } #endif |
︙ | ︙ | |||
27761 27762 27763 27764 27765 27766 27767 | ** on that file that are currently holding advisory locks on it, ** then the call to close() will cancel those locks. In practice, ** we're assuming that statfs() doesn't fail very often. At least ** not while other file descriptors opened by the same process on ** the same file are working. */ p->lastErrno = errno; if( dirfd>=0 ){ | | | | > | > | 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 | ** on that file that are currently holding advisory locks on it, ** then the call to close() will cancel those locks. In practice, ** we're assuming that statfs() doesn't fail very often. At least ** not while other file descriptors opened by the same process on ** the same file are working. */ p->lastErrno = errno; if( dirfd>=0 ){ robust_close(p, dirfd, __LINE__); } robust_close(p, fd, __LINE__); rc = SQLITE_IOERR_ACCESS; goto open_finished; } useProxy = !(fsInfo.f_flags&MNT_LOCAL); } if( useProxy ){ rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete, isReadonly); if( rc==SQLITE_OK ){ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); if( rc!=SQLITE_OK ){ /* Use unixClose to clean up the resources added in fillInUnixFile ** and clear all the structure's references. Specifically, ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op */ unixClose(pFile); return rc; } } goto open_finished; } } #endif rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete, isReadonly); open_finished: if( rc!=SQLITE_OK ){ sqlite3_free(p->pUnused); } return rc; } |
︙ | ︙ | |||
27809 27810 27811 27812 27813 27814 27815 | const char *zPath, /* Name of file to be deleted */ int dirSync /* If true, fsync() directory after deleting file */ ){ int rc = SQLITE_OK; UNUSED_PARAMETER(NotUsed); SimulateIOError(return SQLITE_IOERR_DELETE); if( unlink(zPath)==(-1) && errno!=ENOENT ){ | | | | < < | 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 | const char *zPath, /* Name of file to be deleted */ int dirSync /* If true, fsync() directory after deleting file */ ){ int rc = SQLITE_OK; UNUSED_PARAMETER(NotUsed); SimulateIOError(return SQLITE_IOERR_DELETE); if( unlink(zPath)==(-1) && errno!=ENOENT ){ return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); } #ifndef SQLITE_DISABLE_DIRSYNC if( dirSync ){ int fd; rc = openDirectory(zPath, &fd); if( rc==SQLITE_OK ){ #if OS_VXWORKS if( fsync(fd)==-1 ) #else if( fsync(fd) ) #endif { rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); } robust_close(0, fd, __LINE__); } } #endif return rc; } /* |
︙ | ︙ | |||
27866 27867 27868 27869 27870 27871 27872 | case SQLITE_ACCESS_READ: amode = R_OK; break; default: assert(!"Invalid flags argument"); } | | | 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 | case SQLITE_ACCESS_READ: amode = R_OK; break; default: assert(!"Invalid flags argument"); } *pResOut = (osAccess(zPath, amode)==0); if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ struct stat buf; if( 0==stat(zPath, &buf) && buf.st_size==0 ){ *pResOut = 0; } } return SQLITE_OK; |
︙ | ︙ | |||
27908 27909 27910 27911 27912 27913 27914 | UNUSED_PARAMETER(pVfs); zOut[nOut-1] = '\0'; if( zPath[0]=='/' ){ sqlite3_snprintf(nOut, zOut, "%s", zPath); }else{ int nCwd; | | | | 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 | UNUSED_PARAMETER(pVfs); zOut[nOut-1] = '\0'; if( zPath[0]=='/' ){ sqlite3_snprintf(nOut, zOut, "%s", zPath); }else{ int nCwd; if( osGetcwd(zOut, nOut-1)==0 ){ return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); } nCwd = (int)strlen(zOut); sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); } return SQLITE_OK; } |
︙ | ︙ | |||
28003 28004 28005 28006 28007 28008 28009 | ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); #if !defined(SQLITE_TEST) { int pid, fd; | | | | | 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 | ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); #if !defined(SQLITE_TEST) { int pid, fd; fd = robust_open("/dev/urandom", O_RDONLY, 0); if( fd<0 ){ time_t t; time(&t); memcpy(zBuf, &t, sizeof(t)); pid = getpid(); memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf ); nBuf = sizeof(t) + sizeof(pid); }else{ do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR ); robust_close(0, fd, __LINE__); } } #endif return nBuf; } |
︙ | ︙ | |||
28412 28413 28414 28415 28416 28417 28418 | }else{ pUnused = sqlite3_malloc(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM; } } if( fd<0 ){ | | | | | 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 | }else{ pUnused = sqlite3_malloc(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM; } } if( fd<0 ){ fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); terrno = errno; if( fd<0 && errno==ENOENT && islockfile ){ if( proxyCreateLockPath(path) == SQLITE_OK ){ fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); } } } if( fd<0 ){ openFlags = O_RDONLY; fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); terrno = errno; } if( fd<0 ){ if( islockfile ){ return SQLITE_BUSY; } switch (terrno) { |
︙ | ︙ | |||
28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 | pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); if( pNew==NULL ){ rc = SQLITE_NOMEM; goto end_create_proxy; } memset(pNew, 0, sizeof(unixFile)); pNew->openFlags = openFlags; dummyVfs.pAppData = (void*)&autolockIoFinder; pUnused->fd = fd; pUnused->flags = openFlags; pNew->pUnused = pUnused; | > > | | | 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 | pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); if( pNew==NULL ){ rc = SQLITE_NOMEM; goto end_create_proxy; } memset(pNew, 0, sizeof(unixFile)); pNew->openFlags = openFlags; memset(&dummyVfs, 0, sizeof(dummyVfs)); dummyVfs.pAppData = (void*)&autolockIoFinder; dummyVfs.zName = "dummy"; pUnused->fd = fd; pUnused->flags = openFlags; pNew->pUnused = pUnused; rc = fillInUnixFile(&dummyVfs, fd, dirfd, (sqlite3_file*)pNew, path, 0, 0, 0); if( rc==SQLITE_OK ){ *ppFile = pNew; return SQLITE_OK; } end_create_proxy: robust_close(pNew, fd, __LINE__); sqlite3_free(pNew); sqlite3_free(pUnused); return rc; } #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ |
︙ | ︙ | |||
28536 28537 28538 28539 28540 28541 28542 | pathLen = strlcpy(tPath, cPath, MAXPATHLEN); if( pathLen>MAXPATHLEN || pathLen<6 || (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); goto end_breaklock; } /* read the conch content */ | | > | | | | | 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 | pathLen = strlcpy(tPath, cPath, MAXPATHLEN); if( pathLen>MAXPATHLEN || pathLen<6 || (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); goto end_breaklock; } /* read the conch content */ readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); if( readLen<PROXY_PATHINDEX ){ sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); goto end_breaklock; } /* write it out to the temporary break file */ fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), SQLITE_DEFAULT_FILE_PERMISSIONS); if( fd<0 ){ sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); goto end_breaklock; } if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); goto end_breaklock; } if( rename(tPath, cPath) ){ sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); goto end_breaklock; } rc = 0; fprintf(stderr, "broke stale lock on %s\n", cPath); robust_close(pFile, conchFile->h, __LINE__); conchFile->h = fd; conchFile->openFlags = O_RDWR | O_CREAT; end_breaklock: if( rc ){ if( fd>=0 ){ unlink(tPath); robust_close(pFile, fd, __LINE__); } fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); } return rc; } /* Take the requested lock on the conch file and break a stale lock if the |
︙ | ︙ | |||
28593 28594 28595 28596 28597 28598 28599 | /* If the lock failed (busy): * 1st try: get the mod time of the conch, wait 0.5s and try again. * 2nd try: fail if the mod time changed or host id is different, wait * 10 sec and try again * 3rd try: break the lock unless the mod time has changed. */ struct stat buf; | | | | 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 | /* If the lock failed (busy): * 1st try: get the mod time of the conch, wait 0.5s and try again. * 2nd try: fail if the mod time changed or host id is different, wait * 10 sec and try again * 3rd try: break the lock unless the mod time has changed. */ struct stat buf; if( osFstat(conchFile->h, &buf) ){ pFile->lastErrno = errno; return SQLITE_IOERR_LOCK; } if( nTries==1 ){ conchModTime = buf.st_mtimespec; usleep(500000); /* wait 0.5 sec and try the lock again*/ continue; } assert( nTries>1 ); if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ return SQLITE_BUSY; } if( nTries==2 ){ char tBuf[PROXY_MAXCONCHLEN]; int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); if( len<0 ){ pFile->lastErrno = errno; return SQLITE_IOERR_LOCK; } if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ /* don't break the lock if the host id doesn't match */ if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ |
︙ | ︙ | |||
28774 28775 28776 28777 28778 28779 28780 | memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); if( pCtx->lockProxyPath!=NULL ){ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); }else{ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); } writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); | | | | > | > > < | < < | < < < < | | 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 | memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); if( pCtx->lockProxyPath!=NULL ){ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); }else{ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); } writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); robust_ftruncate(conchFile->h, writeSize); rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); fsync(conchFile->h); /* If we created a new conch file (not just updated the contents of a ** valid conch file), try to match the permissions of the database */ if( rc==SQLITE_OK && createConch ){ struct stat buf; int err = osFstat(pFile->h, &buf); if( err==0 ){ mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | S_IROTH|S_IWOTH); /* try to match the database file R/W permissions, ignore failure */ #ifndef SQLITE_PROXY_DEBUG osFchmod(conchFile->h, cmode); #else do{ rc = osFchmod(conchFile->h, cmode); }while( rc==(-1) && errno==EINTR ); if( rc!=0 ){ int code = errno; fprintf(stderr, "fchmod %o FAILED with %d %s\n", cmode, code, strerror(code)); } else { fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); } }else{ int code = errno; fprintf(stderr, "STAT FAILED[%d] with %d %s\n", err, code, strerror(code)); #endif } } } conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); end_takeconch: OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); if( rc==SQLITE_OK && pFile->openFlags ){ if( pFile->h>=0 ){ robust_close(pFile, pFile->h, __LINE__); } pFile->h = -1; int fd = robust_open(pCtx->dbPath, pFile->openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); if( fd>=0 ){ pFile->h = fd; }else{ rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called during locking */ |
︙ | ︙ | |||
29047 29048 29049 29050 29051 29052 29053 | ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts ** that openFlags will have only one of O_RDONLY or O_RDWR. */ struct statfs fsInfo; struct stat conchInfo; int goLockless = 0; | | | 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 | ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts ** that openFlags will have only one of O_RDONLY or O_RDWR. */ struct statfs fsInfo; struct stat conchInfo; int goLockless = 0; if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { int err = errno; if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; } } if( goLockless ){ pCtx->conchHeld = -1; /* read only FS/ lockless */ |
︙ | ︙ | |||
29332 29333 29334 29335 29336 29337 29338 | ** Most finders simply return a pointer to a fixed sqlite3_io_methods ** object. But the "autolockIoFinder" available on MacOSX does a little ** more than that; it looks at the filesystem type that hosts the ** database file and tries to choose an locking method appropriate for ** that filesystem time. */ #define UNIXVFS(VFSNAME, FINDER) { \ | | > > > > | 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 | ** Most finders simply return a pointer to a fixed sqlite3_io_methods ** object. But the "autolockIoFinder" available on MacOSX does a little ** more than that; it looks at the filesystem type that hosts the ** database file and tries to choose an locking method appropriate for ** that filesystem time. */ #define UNIXVFS(VFSNAME, FINDER) { \ 3, /* iVersion */ \ sizeof(unixFile), /* szOsFile */ \ MAX_PATHNAME, /* mxPathname */ \ 0, /* pNext */ \ VFSNAME, /* zName */ \ (void*)&FINDER, /* pAppData */ \ unixOpen, /* xOpen */ \ unixDelete, /* xDelete */ \ unixAccess, /* xAccess */ \ unixFullPathname, /* xFullPathname */ \ unixDlOpen, /* xDlOpen */ \ unixDlError, /* xDlError */ \ unixDlSym, /* xDlSym */ \ unixDlClose, /* xDlClose */ \ unixRandomness, /* xRandomness */ \ unixSleep, /* xSleep */ \ unixCurrentTime, /* xCurrentTime */ \ unixGetLastError, /* xGetLastError */ \ unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ unixSetSystemCall, /* xSetSystemCall */ \ unixGetSystemCall, /* xGetSystemCall */ \ unixNextSystemCall, /* xNextSystemCall */ \ } /* ** All default VFSes for unix are contained in the following array. ** ** Note that the sqlite3_vfs.pNext field of the VFS object is modified ** by the SQLite core when the VFS is registered. So the following ** array cannot be const. */ static sqlite3_vfs aVfs[] = { #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) UNIXVFS("unix", autolockIoFinder ), #else UNIXVFS("unix", posixIoFinder ), #endif UNIXVFS("unix-none", nolockIoFinder ), UNIXVFS("unix-dotfile", dotlockIoFinder ), UNIXVFS("unix-excl", posixIoFinder ), #if OS_VXWORKS UNIXVFS("unix-namedsem", semIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE UNIXVFS("unix-posix", posixIoFinder ), #if !OS_VXWORKS UNIXVFS("unix-flock", flockIoFinder ), |
︙ | ︙ | |||
32358 32359 32360 32361 32362 32363 32364 | /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs winVfs = { | | > > > | 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 | /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs winVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ MAX_PATH, /* mxPathname */ 0, /* pNext */ "win32", /* zName */ 0, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ 0, /* xSetSystemCall */ 0, /* xGetSystemCall */ 0, /* xNextSystemCall */ }; #ifndef SQLITE_OMIT_WAL /* get memory map allocation granularity */ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); GetSystemInfo(&winSysInfo); assert(winSysInfo.dwAllocationGranularity > 0); |
︙ | ︙ | |||
34831 34832 34833 34834 34835 34836 34837 | */ #ifndef _WAL_H_ #define _WAL_H_ #ifdef SQLITE_OMIT_WAL | | | | | | | | | | | | | | | | 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 | */ #ifndef _WAL_H_ #define _WAL_H_ #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalClose(w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalRead(v,w,x,y,z) 0 # define sqlite3WalDbsize(y) 0 # define sqlite3WalBeginWriteTransaction(y) 0 # define sqlite3WalEndWriteTransaction(x) 0 # define sqlite3WalUndo(x,y,z) 0 # define sqlite3WalSavepoint(y,z) # define sqlite3WalSavepointUndo(y,z) 0 # define sqlite3WalFrames(u,v,w,x,y,z) 0 # define sqlite3WalCheckpoint(r,s,t,u,v,w,x,y,z) 0 # define sqlite3WalCallback(z) 0 # define sqlite3WalExclusiveMode(y,z) 0 # define sqlite3WalHeapMemory(z) 0 #else #define WAL_SAVEPOINT_NDATA 4 /* Connection to a write-ahead log (WAL) file. ** There is one object of this type for each pager. */ |
︙ | ︙ | |||
34897 34898 34899 34900 34901 34902 34903 34904 34905 | /* Write a frame or frames to the log. */ SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int); /* Copy pages from the log to the database file */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Write-ahead log connection */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of buffer nBuf */ | > > > | > > | 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 | /* Write a frame or frames to the log. */ SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int); /* Copy pages from the log to the database file */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Write-ahead log connection */ int eMode, /* One of PASSIVE, FULL and RESTART */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of buffer nBuf */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ ); /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ |
︙ | ︙ | |||
37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 | PAGER_INCR(pPager->nRead); IOTRACE(("PGIN %p %d\n", pPager, pgno)); PAGERTRACE(("FETCH %d page %d hash(%08x)\n", PAGERID(pPager), pgno, pager_pagehash(pPg))); return rc; } #ifndef SQLITE_OMIT_WAL /* ** This function is invoked once for each page that has already been ** written into the log file when a WAL transaction is rolled back. ** Parameter iPg is the page number of said page. The pCtx argument ** is actually a pointer to the Pager structure. | > > > > > > > > > > > > > > > > > > > > > > | 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 | PAGER_INCR(pPager->nRead); IOTRACE(("PGIN %p %d\n", pPager, pgno)); PAGERTRACE(("FETCH %d page %d hash(%08x)\n", PAGERID(pPager), pgno, pager_pagehash(pPg))); return rc; } /* ** Update the value of the change-counter at offsets 24 and 92 in ** the header and the sqlite version number at offset 96. ** ** This is an unconditional update. See also the pager_incr_changecounter() ** routine which only updates the change-counter if the update is actually ** needed, as determined by the pPager->changeCountDone state variable. */ static void pager_write_changecounter(PgHdr *pPg){ u32 change_counter; /* Increment the value just read and write it back to byte 24. */ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; put32bits(((char*)pPg->pData)+24, change_counter); /* Also store the SQLite version number in bytes 96..99 and in ** bytes 92..95 store the change counter for which the version number ** is valid. */ put32bits(((char*)pPg->pData)+92, change_counter); put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); } #ifndef SQLITE_OMIT_WAL /* ** This function is invoked once for each page that has already been ** written into the log file when a WAL transaction is rolled back. ** Parameter iPg is the page number of said page. The pCtx argument ** is actually a pointer to the Pager structure. |
︙ | ︙ | |||
37825 37826 37827 37828 37829 37830 37831 | rc = pagerUndoCallback((void *)pPager, pList->pgno); pList = pNext; } return rc; } | < < < < < < < < < < < < < < < < < < < < < < < | | 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 | rc = pagerUndoCallback((void *)pPager, pList->pgno); pList = pNext; } return rc; } /* ** This function is a wrapper around sqlite3WalFrames(). As well as logging ** the contents of the list of pages headed by pList (connected by pDirty), ** this function notifies any active backup processes that the pages have ** changed. ** ** The list of pages passed into this routine is always sorted by page number. ** Hence, if page 1 appears anywhere on the list, it will be the first page. */ static int pagerWalFrames( Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ |
︙ | ︙ | |||
37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 | assert( pPager->pWal ); #ifdef SQLITE_DEBUG /* Verify that the page list is in accending order */ for(p=pList; p && p->pDirty; p=p->pDirty){ assert( p->pgno < p->pDirty->pgno ); } #endif if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, pPager->pageSize, pList, nTruncate, isCommit, syncFlags ); if( rc==SQLITE_OK && pPager->pBackup ){ PgHdr *p; for(p=pList; p; p=p->pDirty){ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); } } #ifdef SQLITE_CHECK_PAGES for(p=pList; p; p=p->pDirty){ pager_set_pagehash(p); } #endif return rc; } | > > > > > > > > > > > > > > | 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 | assert( pPager->pWal ); #ifdef SQLITE_DEBUG /* Verify that the page list is in accending order */ for(p=pList; p && p->pDirty; p=p->pDirty){ assert( p->pgno < p->pDirty->pgno ); } #endif if( isCommit ){ /* If a WAL transaction is being committed, there is no point in writing ** any pages with page numbers greater than nTruncate into the WAL file. ** They will never be read by any client. So remove them from the pDirty ** list here. */ PgHdr *p; PgHdr **ppNext = &pList; for(p=pList; (*ppNext = p); p=p->pDirty){ if( p->pgno<=nTruncate ) ppNext = &p->pDirty; } assert( pList ); } if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, pPager->pageSize, pList, nTruncate, isCommit, syncFlags ); if( rc==SQLITE_OK && pPager->pBackup ){ PgHdr *p; for(p=pList; p; p=p->pDirty){ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); } } #ifdef SQLITE_CHECK_PAGES pList = sqlite3PcacheDirtyList(pPager->pPCache); for(p=pList; p; p=p->pDirty){ pager_set_pagehash(p); } #endif return rc; } |
︙ | ︙ | |||
41504 41505 41506 41507 41508 41509 41510 | */ SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ return &pPager->pBackup; } #ifndef SQLITE_OMIT_WAL /* | | > > > > | < | | > > > | 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 | */ SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ return &pPager->pBackup; } #ifndef SQLITE_OMIT_WAL /* ** This function is called when the user invokes "PRAGMA wal_checkpoint", ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() ** or wal_blocking_checkpoint() API functions. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; if( pPager->pWal ){ rc = sqlite3WalCheckpoint(pPager->pWal, eMode, pPager->xBusyHandler, pPager->pBusyHandlerArg, pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, pnLog, pnCkpt ); } return rc; } SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){ return sqlite3WalCallback(pPager->pWal); } |
︙ | ︙ | |||
41539 41540 41541 41542 41543 41544 41545 | */ static int pagerExclusiveLock(Pager *pPager){ int rc; /* Return code */ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ | | | | 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 | */ static int pagerExclusiveLock(Pager *pPager){ int rc; /* Return code */ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ /* If the attempt to grab the exclusive lock failed, release the ** pending lock that may have been obtained instead. */ pagerUnlockDb(pPager, SHARED_LOCK); } return rc; } /* |
︙ | ︙ | |||
43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 | if( rc!=SQLITE_OK ){ walIteratorFree(p); } *pp = p; return rc; } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 | if( rc!=SQLITE_OK ){ walIteratorFree(p); } *pp = p; return rc; } /* ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and ** n. If the attempt fails and parameter xBusy is not NULL, then it is a ** busy-handler function. Invoke it and retry the lock until either the ** lock is successfully obtained or the busy-handler returns 0. */ static int walBusyLock( Wal *pWal, /* WAL connection */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int lockIdx, /* Offset of first byte to lock */ int n /* Number of bytes to lock */ ){ int rc; do { rc = walLockExclusive(pWal, lockIdx, n); }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); return rc; } /* ** The cache of the wal-index header must be valid to call this function. ** Return the page-size in bytes used by the database. */ static int walPagesize(Wal *pWal){ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page |
︙ | ︙ | |||
43284 43285 43286 43287 43288 43289 43290 43291 | ** ** The caller must be holding sufficient locks to ensure that no other ** checkpoint is running (in any other thread or process) at the same ** time. */ static int walCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags for OsSync() (or 0) */ | > > > < > | < < | < < | | > | | 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 | ** ** The caller must be holding sufficient locks to ensure that no other ** checkpoint is running (in any other thread or process) at the same ** time. */ static int walCheckpoint( Wal *pWal, /* Wal connection */ int eMode, /* One of PASSIVE, FULL or RESTART */ int (*xBusyCall)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags for OsSync() (or 0) */ u8 *zBuf /* Temporary buffer to use */ ){ int rc; /* Return code */ int szPage; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */ szPage = walPagesize(pWal); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pInfo = walCkptInfo(pWal); if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK; /* Allocate the iterator */ rc = walIteratorInit(pWal, &pIter); if( rc!=SQLITE_OK ){ return rc; } assert( pIter ); if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall; /* Compute in mxSafeFrame the index of the last frame of the WAL that is ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; i<WAL_NREADER; i++){ u32 y = pInfo->aReadMark[i]; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ pInfo->aReadMark[i] = READMARK_NOT_USED; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc==SQLITE_BUSY ){ mxSafeFrame = y; xBusy = 0; }else{ goto walcheckpoint_out; } } } if( pInfo->nBackfill<mxSafeFrame && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK ){ i64 nSize; /* Current size of database file */ u32 nBackfill = pInfo->nBackfill; /* Sync the WAL to disk */ if( sync_flags ){ rc = sqlite3OsSync(pWal->pWalFd, sync_flags); |
︙ | ︙ | |||
43394 43395 43396 43397 43398 43399 43400 | if( rc==SQLITE_OK ){ pInfo->nBackfill = mxSafeFrame; } } /* Release the reader lock held while backfilling */ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); | > > | | > > > > > > > | > > > | > > > > > | > > | 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 | if( rc==SQLITE_OK ){ pInfo->nBackfill = mxSafeFrame; } } /* Release the reader lock held while backfilling */ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); } if( rc==SQLITE_BUSY ){ /* Reset the return code so as not to report a checkpoint failure ** just because there are active readers. */ rc = SQLITE_OK; } /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal ** file has been copied into the database file, then block until all ** readers have finished using the wal file. This ensures that the next ** process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); if( pInfo->nBackfill<pWal->hdr.mxFrame ){ rc = SQLITE_BUSY; }else if( eMode==SQLITE_CHECKPOINT_RESTART ){ assert( mxSafeFrame==pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } } walcheckpoint_out: walIteratorFree(pIter); return rc; } /* |
︙ | ︙ | |||
43432 43433 43434 43435 43436 43437 43438 | ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } | | > > | 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 | ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = sqlite3WalCheckpoint( pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); if( rc==SQLITE_OK ){ isDelete = 1; } } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); |
︙ | ︙ | |||
43644 43645 43646 43647 43648 43649 43650 | u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ assert( pWal->readLock<0 ); /* Not currently locked */ | | > > > > > > > > > > > > > > > > > | > > > > | | 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 | u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ assert( pWal->readLock<0 ); /* Not currently locked */ /* Take steps to avoid spinning forever if there is a protocol error. ** ** Circumstances that cause a RETRY should only last for the briefest ** instances of time. No I/O or other system calls are done while the ** locks are held, so the locks should not be held for very long. But ** if we are unlucky, another process that is holding a lock might get ** paged out or take a page-fault that is time-consuming to resolve, ** during the few nanoseconds that it is holding the lock. In that case, ** it might take longer than normal for the lock to free. ** ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this ** is more of a scheduler yield than an actual delay. But on the 10th ** an subsequent retries, the delays start becoming longer and longer, ** so that on the 100th (and last) RETRY we delay for 21 milliseconds. ** The total delay time before giving up is less than 1 second. */ if( cnt>5 ){ int nDelay = 1; /* Pause time in microseconds */ if( cnt>100 ){ VVA_ONLY( pWal->lockError = 1; ) return SQLITE_PROTOCOL; } if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */ sqlite3OsSleep(pWal->pVfs, nDelay); } if( !useWal ){ rc = walIndexReadHdr(pWal, pChanged); if( rc==SQLITE_BUSY ){ /* If there is not a recovery running in another thread or process ** then convert BUSY errors to WAL_RETRY. If recovery is known to |
︙ | ︙ | |||
43729 43730 43731 43732 43733 43734 43735 | u32 thisMark = pInfo->aReadMark[i]; if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ assert( thisMark!=READMARK_NOT_USED ); mxReadMark = thisMark; mxI = i; } } | | < < < < < < < < < < < < < < > | > > > > | 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 | u32 thisMark = pInfo->aReadMark[i]; if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ assert( thisMark!=READMARK_NOT_USED ); mxReadMark = thisMark; mxI = i; } } /* There was once an "if" here. The extra "{" is to preserve indentation. */ { if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){ for(i=1; i<WAL_NREADER; i++){ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; mxI = i; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); break; }else if( rc!=SQLITE_BUSY ){ return rc; } } } if( mxI==0 ){ assert( rc==SQLITE_BUSY ); return WAL_RETRY; } rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); if( rc ){ return rc==SQLITE_BUSY ? WAL_RETRY : rc; } /* Now that the read-lock has been obtained, check that neither the ** value in the aReadMark[] array or the contents of the wal-index |
︙ | ︙ | |||
43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 | SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ do{ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); }while( rc==WAL_RETRY ); return rc; } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ | > > > > | 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 | SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ do{ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); }while( rc==WAL_RETRY ); testcase( (rc&0xff)==SQLITE_BUSY ); testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); return rc; } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ |
︙ | ︙ | |||
44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 | int rc = SQLITE_OK; int cnt; if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ /* If all readers are using WAL_READ_LOCK(0) (in other words if no ** readers are currently using the WAL), then the transactions ** frames will overwrite the start of the existing log. Update the ** wal-index header to reflect this. ** ** In theory it would be Ok to update the cache of the header only ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() ** to handle if this transaction is rolled back. */ int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); | > > | > > > > | 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 | int rc = SQLITE_OK; int cnt; if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ u32 salt1; sqlite3_randomness(4, &salt1); rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ /* If all readers are using WAL_READ_LOCK(0) (in other words if no ** readers are currently using the WAL), then the transactions ** frames will overwrite the start of the existing log. Update the ** wal-index header to reflect this. ** ** In theory it would be Ok to update the cache of the header only ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() ** to handle if this transaction is rolled back. */ int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); aSalt[1] = salt1; walIndexWriteHdr(pWal); pInfo->nBackfill = 0; for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; assert( pInfo->aReadMark[0]==0 ); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); }else if( rc!=SQLITE_BUSY ){ return rc; } } walUnlockShared(pWal, WAL_READ_LOCK(0)); pWal->readLock = -1; cnt = 0; do{ int notUsed; rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); }while( rc==WAL_RETRY ); assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); } return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). |
︙ | ︙ | |||
44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 | /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > > > | | > > > > > > > > > | | 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 | /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. ** ** If parameter xBusy is not NULL, it is a pointer to a busy-handler ** callback. In this case this function runs a blocking checkpoint. */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ int eMode, /* PASSIVE, FULL or RESTART */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ ){ int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ assert( pWal->ckptLock==0 ); assert( pWal->writeLock==0 ); WALTRACE(("WAL%p: checkpoint begins\n", pWal)); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc ){ /* Usually this is SQLITE_BUSY meaning that another thread or process ** is already running a checkpoint, or maybe a recovery. But it might ** also be SQLITE_IOERR. */ return rc; } pWal->ckptLock = 1; /* If this is a blocking-checkpoint, then obtain the write-lock as well ** to prevent any writers from running while the checkpoint is underway. ** This has to be done before the call to walIndexReadHdr() below. ** ** If the writer lock cannot be obtained, then a passive checkpoint is ** run instead. Since the checkpointer is not holding the writer lock, ** there is no point in blocking waiting for any readers. Assuming no ** other error occurs, this function will return SQLITE_BUSY to the caller. */ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; }else if( rc==SQLITE_BUSY ){ eMode2 = SQLITE_CHECKPOINT_PASSIVE; rc = SQLITE_OK; } } /* Read the wal-index header. */ if( rc==SQLITE_OK ){ rc = walIndexReadHdr(pWal, &isChanged); } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf); } /* If no error occurred, set the output variables. */ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); } } if( isChanged ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } /* Release the locks. */ sqlite3WalEndWriteTransaction(pWal); walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); pWal->ckptLock = 0; WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); } /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ |
︙ | ︙ | |||
44717 44718 44719 44720 44721 44722 44723 | ** * zero or more pages numbers of leaves */ /* The following value is the maximum cell size assuming a maximum page ** size give above. */ | | | 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 | ** * zero or more pages numbers of leaves */ /* The following value is the maximum cell size assuming a maximum page ** size give above. */ #define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8)) /* The maximum number of cells on a single page of the database. This ** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself ** plus 2 bytes for the index to the cell in the page header). Such ** small cells will be rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/6) |
︙ | ︙ | |||
44835 44836 44837 44838 44839 44840 44841 | ** points to the same BtShared object. The database cache and the ** schema associated with the database file are all contained within ** the BtShared object. ** ** All fields in this structure are accessed under sqlite3.mutex. ** The pBt pointer itself may not be changed while there exists cursors ** in the referenced BtShared that point back to this Btree since those | | | 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 | ** points to the same BtShared object. The database cache and the ** schema associated with the database file are all contained within ** the BtShared object. ** ** All fields in this structure are accessed under sqlite3.mutex. ** The pBt pointer itself may not be changed while there exists cursors ** in the referenced BtShared that point back to this Btree since those ** cursors have to go through this Btree to find their BtShared and ** they often do so without holding sqlite3.mutex. */ struct Btree { sqlite3 *db; /* The database connection holding this btree */ BtShared *pBt; /* Sharable content of this btree */ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ u8 sharable; /* True if we can share pBt with another db */ |
︙ | ︙ | |||
44925 44926 44927 44928 44929 44930 44931 | u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ u32 pageSize; /* Total number of bytes on a page */ u32 usableSize; /* Number of usable bytes on each page */ int nTransaction; /* Number of open transactions (read + write) */ u32 nPage; /* Number of pages in the database */ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ | | | 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 | u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ u32 pageSize; /* Total number of bytes on a page */ u32 usableSize; /* Number of usable bytes on each page */ int nTransaction; /* Number of open transactions (read + write) */ u32 nPage; /* Number of pages in the database */ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ #ifndef SQLITE_OMIT_SHARED_CACHE int nRef; /* Number of references to this structure */ BtShared *pNext; /* Next on a list of sharable BtShared structs */ BtLock *pLock; /* List of locks held on this shared-btree struct */ Btree *pWriter; /* Btree with currently open write transaction */ u8 isExclusive; /* True if pWriter has an EXCLUSIVE lock on the db */ |
︙ | ︙ | |||
45166 45167 45168 45169 45170 45171 45172 45173 | } /* ** Release the BtShared mutex associated with B-Tree handle p and ** clear the p->locked boolean. */ static void unlockBtreeMutex(Btree *p){ assert( p->locked==1 ); | > | | | | 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 | } /* ** Release the BtShared mutex associated with B-Tree handle p and ** clear the p->locked boolean. */ static void unlockBtreeMutex(Btree *p){ BtShared *pBt = p->pBt; assert( p->locked==1 ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3_mutex_held(p->db->mutex) ); assert( p->db==pBt->db ); sqlite3_mutex_leave(pBt->mutex); p->locked = 0; } /* ** Enter a mutex on the given BTree object. ** ** If the object is not sharable, then no mutex is ever required |
︙ | ︙ | |||
45312 45313 45314 45315 45316 45317 45318 | ** Enter the mutexes in accending order by BtShared pointer address ** to avoid the possibility of deadlock when two threads with ** two or more btrees in common both try to lock all their btrees ** at the same instant. */ SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ int i; | | < < < < < < < < < < < < < < | < < < < < | < < < < | | | > > > > > > | 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 | ** Enter the mutexes in accending order by BtShared pointer address ** to avoid the possibility of deadlock when two threads with ** two or more btrees in common both try to lock all their btrees ** at the same instant. */ SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ int i; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; i<db->nDb; i++){ p = db->aDb[i].pBt; if( p ) sqlite3BtreeEnter(p); } } SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){ int i; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; i<db->nDb; i++){ p = db->aDb[i].pBt; if( p ) sqlite3BtreeLeave(p); } } /* ** Return true if a particular Btree requires a lock. Return FALSE if ** no lock is ever required since it is not sharable. */ SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){ return p->sharable; } #ifndef NDEBUG /* ** Return true if the current thread holds the database connection ** mutex and all required BtShared mutexes. ** |
︙ | ︙ | |||
45378 45379 45380 45381 45382 45383 45384 | return 0; } } return 1; } #endif /* NDEBUG */ | < < < < < < < < < < < < < < < < < < > | | < < < < < | < < < < < < < > | < < < < < | | < > | < | < < | < | > > > > > | > | > < < < < < | < < < < < < < > > > | | < < < | < < < < | < < | < < < | < < < < | 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 | return 0; } } return 1; } #endif /* NDEBUG */ #ifndef NDEBUG /* ** Return true if the correct mutexes are held for accessing the ** db->aDb[iDb].pSchema structure. The mutexes required for schema ** access are: ** ** (1) The mutex on db ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. ** ** If pSchema is not NULL, then iDb is computed from pSchema and ** db using sqlite3SchemaToIndex(). */ SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ Btree *p; assert( db!=0 ); if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); assert( iDb>=0 && iDb<db->nDb ); if( !sqlite3_mutex_held(db->mutex) ) return 0; if( iDb==1 ) return 1; p = db->aDb[iDb].pBt; assert( p!=0 ); return p->sharable==0 || p->locked==1; } #endif /* NDEBUG */ #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ /* ** The following are special cases for mutex enter routines for use ** in single threaded applications that use shared cache. Except for ** these two routines, all mutex operations are no-ops in that case and ** are null #defines in btree.h. ** ** If shared cache is disabled, then all btree mutex routines, including ** the ones below, are no-ops and are null #defines in btree.h. */ SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ p->pBt->db = p->db; } SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ int i; for(i=0; i<db->nDb; i++){ Btree *p = db->aDb[i].pBt; |
︙ | ︙ | |||
46715 46716 46717 46718 46719 46720 46721 | ** and the cell content area. The btreeInitPage() call has already ** validated the freelist. Given that the freelist is valid, there ** is no way that the allocation can extend off the end of the page. ** The assert() below verifies the previous sentence. */ top -= nByte; put2byte(&data[hdr+5], top); | | | | 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 | ** and the cell content area. The btreeInitPage() call has already ** validated the freelist. Given that the freelist is valid, there ** is no way that the allocation can extend off the end of the page. ** The assert() below verifies the previous sentence. */ top -= nByte; put2byte(&data[hdr+5], top); assert( top+nByte <= (int)pPage->pBt->usableSize ); *pIdx = top; return SQLITE_OK; } /* ** Return a section of the pPage->aData to the freelist. ** The first byte of the new free block is pPage->aDisk[start] ** and the size of the block is "size" bytes. ** ** Most of the effort here is involved in coalesing adjacent ** free blocks into a single big free block. */ static int freeSpace(MemPage *pPage, int start, int size){ int addr, pbegin, hdr; int iLast; /* Largest possible freeblock offset */ unsigned char *data = pPage->aData; assert( pPage->pBt!=0 ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( start>=pPage->hdrOffset+6+pPage->childPtrSize ); assert( (start + size) <= (int)pPage->pBt->usableSize ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( size>=0 ); /* Minimum cell size is 4 */ if( pPage->pBt->secureDelete ){ /* Overwrite deleted information with zeros when the secure_delete ** option is enabled */ memset(&data[start], 0, size); |
︙ | ︙ | |||
46779 46780 46781 46782 46783 46784 46785 | pPage->nFree = pPage->nFree + (u16)size; /* Coalesce adjacent free blocks */ addr = hdr + 1; while( (pbegin = get2byte(&data[addr]))>0 ){ int pnext, psize, x; assert( pbegin>addr ); | | | 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 | pPage->nFree = pPage->nFree + (u16)size; /* Coalesce adjacent free blocks */ addr = hdr + 1; while( (pbegin = get2byte(&data[addr]))>0 ){ int pnext, psize, x; assert( pbegin>addr ); assert( pbegin <= (int)pPage->pBt->usableSize-4 ); pnext = get2byte(&data[pbegin]); psize = get2byte(&data[pbegin+2]); if( pbegin + psize + 3 >= pnext && pnext>0 ){ int frag = pnext - (pbegin+psize); if( (frag<0) || (frag>(int)data[hdr+7]) ){ return SQLITE_CORRUPT_BKPT; } |
︙ | ︙ | |||
47614 47615 47616 47617 47618 47619 47620 | sqlite3BtreeEnter(p); assert( pBt && pBt->pPager ); rc = sqlite3PagerNosync(pBt->pPager); sqlite3BtreeLeave(p); return rc; } | < | 49101 49102 49103 49104 49105 49106 49107 49108 49109 49110 49111 49112 49113 49114 | sqlite3BtreeEnter(p); assert( pBt && pBt->pPager ); rc = sqlite3PagerNosync(pBt->pPager); sqlite3BtreeLeave(p); return rc; } /* ** Change the default pages size and the number of reserved bytes per page. ** Or, if the page size has already been fixed, return SQLITE_READONLY ** without changing anything. ** ** The page size must be a power of 2 between 512 and 65536. If the page ** size supplied does not meet this constraint then the page size is not |
︙ | ︙ | |||
47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 | /* ** Return the currently defined page size */ SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ return p->pBt->pageSize; } /* ** Return the number of bytes of space at the end of every page that ** are intentually left unused. This is the "reserved" space that is ** sometimes used by extensions. */ SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){ int n; | > | 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 49167 49168 49169 | /* ** Return the currently defined page size */ SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ return p->pBt->pageSize; } #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) /* ** Return the number of bytes of space at the end of every page that ** are intentually left unused. This is the "reserved" space that is ** sometimes used by extensions. */ SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){ int n; |
︙ | ︙ | |||
47868 47869 47870 47871 47872 47873 47874 | pBt->usableSize = usableSize; pBt->pageSize = pageSize; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } | | | 49355 49356 49357 49358 49359 49360 49361 49362 49363 49364 49365 49366 49367 49368 49369 | pBt->usableSize = usableSize; pBt->pageSize = pageSize; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; } if( usableSize<480 ){ goto page1_init_failed; } pBt->pageSize = pageSize; |
︙ | ︙ | |||
48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 | ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() ** routine did all the work of writing information out to disk and flushing the ** contents so that they are written onto the disk platter. All this ** routine has to do is delete or truncate or zero the header in the ** the rollback journal (which causes the transaction to commit) and ** drop locks. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ | > > > > > > > > > > > | | | | 50133 50134 50135 50136 50137 50138 50139 50140 50141 50142 50143 50144 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 50160 50161 50162 50163 50164 50165 50166 50167 50168 50169 50170 50171 50172 50173 50174 50175 50176 50177 50178 50179 50180 50181 50182 50183 50184 50185 50186 50187 50188 50189 50190 50191 50192 50193 50194 50195 50196 50197 | ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() ** routine did all the work of writing information out to disk and flushing the ** contents so that they are written onto the disk platter. All this ** routine has to do is delete or truncate or zero the header in the ** the rollback journal (which causes the transaction to commit) and ** drop locks. ** ** Normally, if an error occurs while the pager layer is attempting to ** finalize the underlying journal file, this function returns an error and ** the upper layer will attempt a rollback. However, if the second argument ** is non-zero then this b-tree transaction is part of a multi-file ** transaction. In this case, the transaction has already been committed ** (by deleting a master journal file) and the caller will ignore this ** functions return code. So, even if an error occurs in the pager layer, ** reset the b-tree objects internal state to indicate that the write ** transaction has been closed. This is quite safe, as the pager will have ** transitioned to the error state. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ if( p->inTrans==TRANS_NONE ) return SQLITE_OK; sqlite3BtreeEnter(p); btreeIntegrity(p); /* If the handle has a write-transaction open, commit the shared-btrees ** transaction and set the shared state to TRANS_READ. */ if( p->inTrans==TRANS_WRITE ){ int rc; BtShared *pBt = p->pBt; assert( pBt->inTransaction==TRANS_WRITE ); assert( pBt->nTransaction>0 ); rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); if( rc!=SQLITE_OK && bCleanup==0 ){ sqlite3BtreeLeave(p); return rc; } pBt->inTransaction = TRANS_READ; } btreeEndTransaction(p); sqlite3BtreeLeave(p); return SQLITE_OK; } /* ** Do both phases of a commit. */ SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){ int rc; sqlite3BtreeEnter(p); rc = sqlite3BtreeCommitPhaseOne(p, 0); if( rc==SQLITE_OK ){ rc = sqlite3BtreeCommitPhaseTwo(p, 0); } sqlite3BtreeLeave(p); return rc; } #ifndef NDEBUG /* |
︙ | ︙ | |||
50295 50296 50297 50298 50299 50300 50301 | rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } | | | 51793 51794 51795 51796 51797 51798 51799 51800 51801 51802 51803 51804 51805 51806 51807 | rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */ if( k==0 && !searchList ){ /* The trunk has no leaves and the list is not being searched. ** So extract the trunk page itself and use it as the newly ** allocated page */ assert( pPrevTrunk==0 ); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ){ |
︙ | ︙ | |||
50380 50381 50382 50383 50384 50385 50386 | TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); #endif }else if( k>0 ){ /* Extract a leaf from the trunk */ u32 closest; Pgno iPage; unsigned char *aData = pTrunk->aData; | < < < < | < | < | 51878 51879 51880 51881 51882 51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893 51894 51895 51896 51897 51898 | TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); #endif }else if( k>0 ){ /* Extract a leaf from the trunk */ u32 closest; Pgno iPage; unsigned char *aData = pTrunk->aData; if( nearby>0 ){ u32 i; int dist; closest = 0; dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); for(i=1; i<k; i++){ int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); if( d2<dist ){ closest = i; dist = d2; } } }else{ closest = 0; |
︙ | ︙ | |||
50415 50416 50417 50418 50419 50420 50421 50422 50423 50424 50425 | testcase( iPage==mxPage ); if( !searchList || iPage==nearby ){ int noContent; *pPgno = iPage; TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" ": %d more free pages\n", *pPgno, closest+1, k, pTrunk->pgno, n-1)); if( closest<k-1 ){ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); } put4byte(&aData[4], k-1); | > > < | 51907 51908 51909 51910 51911 51912 51913 51914 51915 51916 51917 51918 51919 51920 51921 51922 51923 51924 51925 51926 | testcase( iPage==mxPage ); if( !searchList || iPage==nearby ){ int noContent; *pPgno = iPage; TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" ": %d more free pages\n", *pPgno, closest+1, k, pTrunk->pgno, n-1)); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ) goto end_allocate_page; if( closest<k-1 ){ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); } put4byte(&aData[4], k-1); noContent = !btreeGetHasContent(pBt, *pPgno); rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); } |
︙ | ︙ | |||
50488 50489 50490 50491 50492 50493 50494 50495 50496 50497 50498 50499 50500 50501 | releasePage(*ppPage); return SQLITE_CORRUPT_BKPT; } (*ppPage)->isInit = 0; }else{ *ppPage = 0; } return rc; } /* ** This function is used to add page iPage to the database file free-list. ** It is assumed that the page is not already a part of the free-list. ** | > | 51981 51982 51983 51984 51985 51986 51987 51988 51989 51990 51991 51992 51993 51994 51995 | releasePage(*ppPage); return SQLITE_CORRUPT_BKPT; } (*ppPage)->isInit = 0; }else{ *ppPage = 0; } assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); return rc; } /* ** This function is used to add page iPage to the database file free-list. ** It is assumed that the page is not already a part of the free-list. ** |
︙ | ︙ | |||
50977 50978 50979 50980 50981 50982 50983 | end = cellOffset + 2*pPage->nCell; ins = cellOffset + 2*i; rc = allocateSpace(pPage, sz, &idx); if( rc ){ *pRC = rc; return; } /* The allocateSpace() routine guarantees the following two properties ** if it returns success */ assert( idx >= end+2 ); | | | 52471 52472 52473 52474 52475 52476 52477 52478 52479 52480 52481 52482 52483 52484 52485 | end = cellOffset + 2*pPage->nCell; ins = cellOffset + 2*i; rc = allocateSpace(pPage, sz, &idx); if( rc ){ *pRC = rc; return; } /* The allocateSpace() routine guarantees the following two properties ** if it returns success */ assert( idx >= end+2 ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nCell++; pPage->nFree -= (u16)(2 + sz); memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); if( iChild ){ put4byte(&data[idx], iChild); } for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){ |
︙ | ︙ | |||
51020 51021 51022 51023 51024 51025 51026 | int cellbody; /* Address of next cell body */ u8 * const data = pPage->aData; /* Pointer to data for pPage */ const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | | > | 52514 52515 52516 52517 52518 52519 52520 52521 52522 52523 52524 52525 52526 52527 52528 52529 | int cellbody; /* Address of next cell body */ u8 * const data = pPage->aData; /* Pointer to data for pPage */ const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt) && (int)MX_CELL(pPage->pBt)<=10921); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); /* Check that the page has just been zeroed by zeroPage() */ assert( pPage->nCell==0 ); assert( get2byteNotZero(&data[hdr+5])==nUsable ); pCellptr = &data[pPage->cellOffset + nCell*2]; |
︙ | ︙ | |||
51234 51235 51236 51237 51238 51239 51240 | int const iToHdr = ((pTo->pgno==1) ? 100 : 0); int rc; int iData; assert( pFrom->isInit ); assert( pFrom->nFree>=iToHdr ); | | | 52729 52730 52731 52732 52733 52734 52735 52736 52737 52738 52739 52740 52741 52742 52743 | int const iToHdr = ((pTo->pgno==1) ? 100 : 0); int rc; int iData; assert( pFrom->isInit ); assert( pFrom->nFree>=iToHdr ); assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); /* Copy the b-tree node content from page pFrom to page pTo. */ iData = get2byte(&aFrom[iFromHdr+5]); memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); /* Reinitialize page pTo so that the contents of the MemPage structure |
︙ | ︙ | |||
51501 51502 51503 51504 51505 51506 51507 | u16 sz = (u16)szNew[i]; u8 *pTemp; assert( nCell<nMaxCells ); szCell[nCell] = sz; pTemp = &aSpace1[iSpace1]; iSpace1 += sz; assert( sz<=pBt->maxLocal+23 ); | | | 52996 52997 52998 52999 53000 53001 53002 53003 53004 53005 53006 53007 53008 53009 53010 | u16 sz = (u16)szNew[i]; u8 *pTemp; assert( nCell<nMaxCells ); szCell[nCell] = sz; pTemp = &aSpace1[iSpace1]; iSpace1 += sz; assert( sz<=pBt->maxLocal+23 ); assert( iSpace1 <= (int)pBt->pageSize ); memcpy(pTemp, apDiv[i], sz); apCell[nCell] = pTemp+leafCorrection; assert( leafCorrection==0 || leafCorrection==4 ); szCell[nCell] = szCell[nCell] - leafCorrection; if( !pOld->leaf ){ assert( leafCorrection==0 ); assert( pOld->hdrOffset==0 ); |
︙ | ︙ | |||
51666 51667 51668 51669 51670 51671 51672 | for(j=i+1; j<k; j++){ if( apNew[j]->pgno<(unsigned)minV ){ minI = j; minV = apNew[j]->pgno; } } if( minI>i ){ | < < | 53161 53162 53163 53164 53165 53166 53167 53168 53169 53170 53171 53172 53173 53174 53175 | for(j=i+1; j<k; j++){ if( apNew[j]->pgno<(unsigned)minV ){ minI = j; minV = apNew[j]->pgno; } } if( minI>i ){ MemPage *pT; pT = apNew[i]; apNew[i] = apNew[minI]; apNew[minI] = pT; } } TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", apNew[0]->pgno, szNew[0], |
︙ | ︙ | |||
51747 51748 51749 51750 51751 51752 51753 | if( szCell[j]==4 ){ assert(leafCorrection==4); sz = cellSizePtr(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); | | | 53240 53241 53242 53243 53244 53245 53246 53247 53248 53249 53250 53251 53252 53253 53254 | if( szCell[j]==4 ){ assert(leafCorrection==4); sz = cellSizePtr(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc); if( rc!=SQLITE_OK ) goto balance_cleanup; assert( sqlite3PagerIswriteable(pParent->pDbPage) ); j++; nxDiv++; } |
︙ | ︙ | |||
52192 52193 52194 52195 52196 52197 52198 | assert( pPage->isInit ); allocateTempSpace(pBt); newCell = pBt->pTmpSpace; if( newCell==0 ) return SQLITE_NOMEM; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); if( rc ) goto end_insert; assert( szNew==cellSizePtr(pPage, newCell) ); | | | 53685 53686 53687 53688 53689 53690 53691 53692 53693 53694 53695 53696 53697 53698 53699 | assert( pPage->isInit ); allocateTempSpace(pBt); newCell = pBt->pTmpSpace; if( newCell==0 ) return SQLITE_NOMEM; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); if( rc ) goto end_insert; assert( szNew==cellSizePtr(pPage, newCell) ); assert( szNew <= MX_CELL_SIZE(pBt) ); idx = pCur->aiIdx[pCur->iPage]; if( loc==0 ){ u16 szOld; assert( idx<pPage->nCell ); rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ){ goto end_insert; |
︙ | ︙ | |||
52332 52333 52334 52335 52336 52337 52338 | MemPage *pLeaf = pCur->apPage[pCur->iPage]; int nCell; Pgno n = pCur->apPage[iCellDepth+1]->pgno; unsigned char *pTmp; pCell = findCell(pLeaf, pLeaf->nCell-1); nCell = cellSizePtr(pLeaf, pCell); | | | 53825 53826 53827 53828 53829 53830 53831 53832 53833 53834 53835 53836 53837 53838 53839 | MemPage *pLeaf = pCur->apPage[pCur->iPage]; int nCell; Pgno n = pCur->apPage[iCellDepth+1]->pgno; unsigned char *pTmp; pCell = findCell(pLeaf, pLeaf->nCell-1); nCell = cellSizePtr(pLeaf, pCell); assert( MX_CELL_SIZE(pBt) >= nCell ); allocateTempSpace(pBt); pTmp = pBt->pTmpSpace; rc = sqlite3PagerWrite(pLeaf->pDbPage); insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
︙ | ︙ | |||
53419 53420 53421 53422 53423 53424 53425 53426 | #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on the Btree passed as the first argument. ** ** Return SQLITE_LOCKED if this or any other connection has an open ** transaction on the shared-cache the argument Btree is connected to. */ | > > | | | 54912 54913 54914 54915 54916 54917 54918 54919 54920 54921 54922 54923 54924 54925 54926 54927 54928 54929 54930 54931 54932 54933 54934 54935 54936 54937 | #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on the Btree passed as the first argument. ** ** Return SQLITE_LOCKED if this or any other connection has an open ** transaction on the shared-cache the argument Btree is connected to. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; if( p ){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( pBt->inTransaction!=TRANS_NONE ){ rc = SQLITE_LOCKED; }else{ rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); } sqlite3BtreeLeave(p); } return rc; } #endif |
︙ | ︙ | |||
53468 53469 53470 53471 53472 53473 53474 | ** ** If the nBytes parameter is 0 and the blob of memory has not yet been ** allocated, a null pointer is returned. If the blob has already been ** allocated, it is returned as normal. ** ** Just before the shared-btree is closed, the function passed as the ** xFree argument when the memory allocation was made is invoked on the | | | 54963 54964 54965 54966 54967 54968 54969 54970 54971 54972 54973 54974 54975 54976 54977 | ** ** If the nBytes parameter is 0 and the blob of memory has not yet been ** allocated, a null pointer is returned. If the blob has already been ** allocated, it is returned as normal. ** ** Just before the shared-btree is closed, the function passed as the ** xFree argument when the memory allocation was made is invoked on the ** blob of allocated memory. The xFree function should not call sqlite3_free() ** on the memory, the btree layer does that. */ SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
︙ | ︙ | |||
53842 53843 53844 53845 53846 53847 53848 53849 53850 53851 53852 53853 53854 53855 53856 53857 53858 53859 53860 53861 53862 53863 53864 53865 53866 | */ static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){ Pager * const pDestPager = sqlite3BtreePager(p->pDest); const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); const int nCopy = MIN(nSrcPgsz, nDestPgsz); const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; int rc = SQLITE_OK; i64 iOff; assert( p->bDestLocked ); assert( !isFatalError(p->rc) ); assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); assert( zSrcData ); /* Catch the case where the destination is an in-memory database and the ** page sizes of the source and destination differ. */ if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){ rc = SQLITE_READONLY; } #ifdef SQLITE_HAS_CODEC /* Backup is not possible if the page size of the destination is changing | > > > > | > > > > > > > > > > > | 55337 55338 55339 55340 55341 55342 55343 55344 55345 55346 55347 55348 55349 55350 55351 55352 55353 55354 55355 55356 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 55372 55373 55374 55375 55376 55377 55378 55379 55380 55381 55382 55383 55384 55385 55386 55387 55388 | */ static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){ Pager * const pDestPager = sqlite3BtreePager(p->pDest); const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); const int nCopy = MIN(nSrcPgsz, nDestPgsz); const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; #ifdef SQLITE_HAS_CODEC int nSrcReserve = sqlite3BtreeGetReserve(p->pSrc); int nDestReserve = sqlite3BtreeGetReserve(p->pDest); #endif int rc = SQLITE_OK; i64 iOff; assert( p->bDestLocked ); assert( !isFatalError(p->rc) ); assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); assert( zSrcData ); /* Catch the case where the destination is an in-memory database and the ** page sizes of the source and destination differ. */ if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){ rc = SQLITE_READONLY; } #ifdef SQLITE_HAS_CODEC /* Backup is not possible if the page size of the destination is changing ** and a codec is in use. */ if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){ rc = SQLITE_READONLY; } /* Backup is not possible if the number of bytes of reserve space differ ** between source and destination. If there is a difference, try to ** fix the destination to agree with the source. If that is not possible, ** then the backup cannot proceed. */ if( nSrcReserve!=nDestReserve ){ u32 newPgsz = nSrcPgsz; rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve); if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY; } #endif /* This loop runs once for each destination page spanned by the source ** page. For each iteration, variable iOff is set to the byte offset ** of the destination page. */ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){ |
︙ | ︙ | |||
54024 54025 54026 54027 54028 54029 54030 | */ if( rc==SQLITE_DONE && (rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1))==SQLITE_OK ){ int nDestTruncate; if( p->pDestDb ){ | | | 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 | */ if( rc==SQLITE_DONE && (rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1))==SQLITE_OK ){ int nDestTruncate; if( p->pDestDb ){ sqlite3ResetInternalSchema(p->pDestDb, -1); } /* Set nDestTruncate to the final number of pages in the destination ** database. The complication here is that the destination page ** size may be different to the source page size. ** ** If the source page size is smaller than the destination page size, |
︙ | ︙ | |||
54111 54112 54113 54114 54115 54116 54117 | } }else{ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0); } /* Finish committing the transaction to the destination database. */ if( SQLITE_OK==rc | | | | 55621 55622 55623 55624 55625 55626 55627 55628 55629 55630 55631 55632 55633 55634 55635 55636 55637 55638 55639 55640 55641 55642 55643 55644 55645 55646 55647 55648 55649 | } }else{ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0); } /* Finish committing the transaction to the destination database. */ if( SQLITE_OK==rc && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0)) ){ rc = SQLITE_DONE; } } /* If bCloseTrans is true, then this function opened a read transaction ** on the source database. Close the read transaction here. There is ** no need to check the return values of the btree methods here, as ** "committing" a read-only transaction cannot fail. */ if( bCloseTrans ){ TESTONLY( int rc2 ); TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); assert( rc2==SQLITE_OK ); } if( rc==SQLITE_IOERR_NOMEM ){ rc = SQLITE_NOMEM; } p->rc = rc; |
︙ | ︙ | |||
54230 54231 54232 54233 54234 54235 54236 | for(p=pBackup; p; p=p->pNext){ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); if( !isFatalError(p->rc) && iPage<p->iNext ){ /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ | > > > | > | 55740 55741 55742 55743 55744 55745 55746 55747 55748 55749 55750 55751 55752 55753 55754 55755 55756 55757 55758 | for(p=pBackup; p; p=p->pNext){ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); if( !isFatalError(p->rc) && iPage<p->iNext ){ /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ int rc; assert( p->pDestDb ); sqlite3_mutex_enter(p->pDestDb->mutex); rc = backupOnePage(p, iPage, aData); sqlite3_mutex_leave(p->pDestDb->mutex); assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); if( rc!=SQLITE_OK ){ p->rc = rc; } } } } |
︙ | ︙ | |||
54673 54674 54675 54676 54677 54678 54679 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & MEM_Int ){ return pMem->u.i; }else if( flags & MEM_Real ){ return doubleToInt64(pMem->r); }else if( flags & (MEM_Str|MEM_Blob) ){ | | | 56187 56188 56189 56190 56191 56192 56193 56194 56195 56196 56197 56198 56199 56200 56201 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & MEM_Int ){ return pMem->u.i; }else if( flags & MEM_Real ){ return doubleToInt64(pMem->r); }else if( flags & (MEM_Str|MEM_Blob) ){ i64 value = 0; assert( pMem->z || pMem->n==0 ); testcase( pMem->z==0 ); sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); return value; }else{ return 0; } |
︙ | ︙ | |||
55383 55384 55385 55386 55387 55388 55389 | if( enc!=SQLITE_UTF8 ){ sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ sqlite3VdbeMemNumerify(pVal); | > > > > > | < > | > > > | 56897 56898 56899 56900 56901 56902 56903 56904 56905 56906 56907 56908 56909 56910 56911 56912 56913 56914 56915 56916 56917 56918 56919 56920 56921 56922 56923 | if( enc!=SQLITE_UTF8 ){ sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ sqlite3VdbeMemNumerify(pVal); if( pVal->u.i==SMALLEST_INT64 ){ pVal->flags &= MEM_Int; pVal->flags |= MEM_Real; pVal->r = (double)LARGEST_INT64; }else{ pVal->u.i = -pVal->u.i; } pVal->r = -pVal->r; sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_NULL ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); pVal = sqlite3ValueNew(db); |
︙ | ︙ | |||
55615 55616 55617 55618 55619 55620 55621 55622 55623 55624 55625 55626 55627 55628 | pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; p->expired = 0; #ifdef SQLITE_DEBUG pOp->zComment = 0; if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; | > > > > > > | 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57153 57154 57155 57156 | pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; p->expired = 0; if( op==OP_ParseSchema ){ /* Any program that uses the OP_ParseSchema opcode needs to lock ** all btrees. */ int j; for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); } #ifdef SQLITE_DEBUG pOp->zComment = 0; if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; |
︙ | ︙ | |||
55915 55916 55917 55918 55919 55920 55921 | ** returned program. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ | | | 57443 57444 57445 57446 57447 57448 57449 57450 57451 57452 57453 57454 57455 57456 57457 | ** returned program. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ assert( p->btreeMask==0 ); resolveP2Values(p, pnMaxArg); *pnOp = p->nOp; p->aOp = 0; return aOp; } |
︙ | ︙ | |||
56017 56018 56019 56020 56021 56022 56023 56024 56025 56026 56027 56028 56029 56030 | } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. | > | 57545 57546 57547 57548 57549 57550 57551 57552 57553 57554 57555 57556 57557 57558 57559 | } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ assert( addr>=0 ); sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. |
︙ | ︙ | |||
56402 56403 56404 56405 56406 56407 56408 | return zP4; } #endif /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** | | | | < < | < < | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > | 57931 57932 57933 57934 57935 57936 57937 57938 57939 57940 57941 57942 57943 57944 57945 57946 57947 57948 57949 57950 57951 57952 57953 57954 57955 57956 57957 57958 57959 57960 57961 57962 57963 57964 57965 57966 57967 57968 57969 57970 57971 57972 57973 57974 57975 57976 57977 57978 57979 57980 57981 57982 57983 57984 57985 57986 57987 57988 57989 57990 57991 57992 57993 57994 57995 57996 57997 57998 57999 58000 58001 58002 58003 58004 58005 58006 58007 58008 58009 58010 58011 58012 58013 58014 58015 58016 58017 58018 | return zP4; } #endif /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** ** The prepared statements need to know in advance the complete set of ** attached databases that they will be using. A mask of these databases ** is maintained in p->btreeMask and is used for locking and other purposes. */ SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){ assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); assert( i<(int)sizeof(p->btreeMask)*8 ); p->btreeMask |= ((yDbMask)1)<<i; if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ p->lockMask |= ((yDbMask)1)<<i; } } #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** If SQLite is compiled to support shared-cache mode and to be threadsafe, ** this routine obtains the mutex associated with each BtShared structure ** that may be accessed by the VM passed as an argument. In doing so it also ** sets the BtShared.db member of each of the BtShared structures, ensuring ** that the correct busy-handler callback is invoked if required. ** ** If SQLite is not threadsafe but does support shared-cache mode, then ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables ** of all of BtShared structures accessible via the database handle ** associated with the VM. ** ** If SQLite is not threadsafe and does not support shared-cache mode, this ** function is a no-op. ** ** The p->btreeMask field is a bitmask of all btrees that the prepared ** statement p will ever use. Let N be the number of bits in p->btreeMask ** corresponding to btrees that use shared cache. Then the runtime of ** this routine is N*N. But as N is rarely more than 1, this should not ** be a problem. */ SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){ int i; yDbMask mask; sqlite3 *db; Db *aDb; int nDb; if( p->lockMask==0 ) return; /* The common case */ db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0, mask=1; i<nDb; i++, mask += mask){ if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeEnter(aDb[i].pBt); } } } #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){ int i; yDbMask mask; sqlite3 *db; Db *aDb; int nDb; if( p->lockMask==0 ) return; /* The common case */ db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0, mask=1; i<nDb; i++, mask += mask){ if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeLeave(aDb[i].pBt); } } } #endif #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Print a single opcode. This routine is used for debugging only. */ SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ char *zP4; |
︙ | ︙ | |||
56975 56976 56977 56978 56979 56980 56981 | ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ | | | 58562 58563 58564 58565 58566 58567 58568 58569 58570 58571 58572 58573 58574 58575 58576 | ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); } p->pFrame = 0; p->nFrame = 0; if( p->apCsr ){ |
︙ | ︙ | |||
57161 57162 57163 57164 57165 57166 57167 | ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ | | | 58748 58749 58750 58751 58752 58753 58754 58755 58756 58757 58758 58759 58760 58761 58762 | ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); } } if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } |
︙ | ︙ | |||
57293 57294 57295 57296 57297 57298 57299 | ** may be lying around. Returning an error code won't help matters. */ disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ | | | 58880 58881 58882 58883 58884 58885 58886 58887 58888 58889 58890 58891 58892 58893 58894 | ** may be lying around. Returning an error code won't help matters. */ disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommitPhaseTwo(pBt, 1); } } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); sqlite3VtabCommit(db); } |
︙ | ︙ | |||
57416 57417 57418 57419 57420 57421 57422 | if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; } } return rc; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < | 59003 59004 59005 59006 59007 59008 59009 59010 59011 59012 59013 59014 59015 59016 | if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; } } return rc; } /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns |
︙ | ︙ | |||
57515 57516 57517 57518 57519 57520 57521 | /* No commit or rollback needed if the program never started */ if( p->pc>=0 ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ | | | 59075 59076 59077 59078 59079 59080 59081 59082 59083 59084 59085 59086 59087 59088 59089 | /* No commit or rollback needed if the program never started */ if( p->pc>=0 ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeEnter(p); /* Check for one of the special errors */ mrc = p->rc & 0xff; assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; if( isSpecialError ){ |
︙ | ︙ | |||
57566 57567 57568 57569 57570 57571 57572 | ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->writeVdbeCnt==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ | | > > | | | > > | | | | | > | | | 59126 59127 59128 59129 59130 59131 59132 59133 59134 59135 59136 59137 59138 59139 59140 59141 59142 59143 59144 59145 59146 59147 59148 59149 59150 59151 59152 59153 59154 59155 | ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->writeVdbeCnt==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ rc = sqlite3VdbeCheckFk(p, 1); if( rc!=SQLITE_OK ){ if( NEVER(p->readOnly) ){ sqlite3VdbeLeave(p); return SQLITE_ERROR; } rc = SQLITE_CONSTRAINT; }else{ /* The auto-commit flag is true, the vdbe program was successful ** or hit an 'OR FAIL' constraint and there are no deferred foreign ** key constraints to hold up the transaction. This means a commit ** is required. */ rc = vdbeCommit(db, p); } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db); }else{ db->nDeferredCons = 0; sqlite3CommitInternalChanges(db); |
︙ | ︙ | |||
57643 57644 57645 57646 57647 57648 57649 | sqlite3VdbeSetChanges(db, 0); } p->nChange = 0; } /* Rollback or commit any schema changes that occurred. */ if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ | | | | 59208 59209 59210 59211 59212 59213 59214 59215 59216 59217 59218 59219 59220 59221 59222 59223 59224 59225 59226 59227 | sqlite3VdbeSetChanges(db, 0); } p->nChange = 0; } /* Rollback or commit any schema changes that occurred. */ if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ sqlite3ResetInternalSchema(db, -1); db->flags = (db->flags | SQLITE_InternChanges); } /* Release the locks */ sqlite3VdbeLeave(p); } /* We have successfully halted and closed the VM. Record this fact. */ if( p->pc>=0 ){ db->activeVdbeCnt--; if( !p->readOnly ){ db->writeVdbeCnt--; |
︙ | ︙ | |||
57674 57675 57676 57677 57678 57679 57680 | ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); | | | 59239 59240 59241 59242 59243 59244 59245 59246 59247 59248 59249 59250 59251 59252 59253 | ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. */ |
︙ | ︙ | |||
57950 57951 57952 57953 57954 57955 57956 | /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; if( file_format>=4 && (i&1)==i ){ return 8+(u32)i; } | > > > > > | > | 59515 59516 59517 59518 59519 59520 59521 59522 59523 59524 59525 59526 59527 59528 59529 59530 59531 59532 59533 59534 59535 | /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; if( file_format>=4 && (i&1)==i ){ return 8+(u32)i; } if( i<0 ){ if( i<(-MAX_6BYTE) ) return 6; /* Previous test prevents: u = -(-9223372036854775808) */ u = -i; }else{ u = i; } if( u<=127 ) return 1; if( u<=32767 ) return 2; if( u<=8388607 ) return 3; if( u<=2147483647 ) return 4; if( u<=MAX_6BYTE ) return 5; return 6; } |
︙ | ︙ | |||
59300 59301 59302 59303 59304 59305 59306 | ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm; | < < | > > > > | 60871 60872 60873 60874 60875 60876 60877 60878 60879 60880 60881 60882 60883 60884 60885 60886 60887 60888 60889 60890 60891 60892 60893 60894 60895 60896 60897 60898 60899 60900 60901 60902 60903 60904 60905 60906 60907 60908 60909 60910 60911 | ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm; Mem *pOut; pVm = (Vdbe *)pStmt; if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ sqlite3_mutex_enter(pVm->db->mutex); pOut = &pVm->pResultSet[i]; }else{ /* If the value passed as the second argument is out of range, return ** a pointer to the following static Mem object which contains the ** value SQL NULL. Even though the Mem structure contains an element ** of type i64, on certain architecture (x86) with certain compiler ** switches (-Os), gcc may align this Mem object on a 4-byte boundary ** instead of an 8-byte one. This all works fine, except that when ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s ** that a Mem structure is located on an 8-byte boundary. To prevent ** this assert() from failing, when building with SQLITE_DEBUG defined ** using gcc, force nullMem to be 8-byte aligned using the magical ** __attribute__((aligned(8))) macro. */ static const Mem nullMem #if defined(SQLITE_DEBUG) && defined(__GNUC__) __attribute__((aligned(8))) #endif = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, #ifdef SQLITE_DEBUG 0, 0, /* pScopyFrom, pFiller */ #endif 0, 0 }; if( pVm && ALWAYS(pVm->db) ){ sqlite3_mutex_enter(pVm->db->mutex); sqlite3Error(pVm->db, SQLITE_RANGE, 0); } pOut = (Mem*)&nullMem; } |
︙ | ︙ | |||
60028 60029 60030 60031 60032 60033 60034 | db->aLimit[SQLITE_LIMIT_LENGTH]); out.db = db; if( db->vdbeExecCnt>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3StrAccumAppend(&out, "-- ", 3); | | | 61601 61602 61603 61604 61605 61606 61607 61608 61609 61610 61611 61612 61613 61614 61615 | db->aLimit[SQLITE_LIMIT_LENGTH]); out.db = db; if( db->vdbeExecCnt>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3StrAccumAppend(&out, "-- ", 3); sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart)); } }else{ while( zRawSql[0] ){ n = findNextHostParameter(zRawSql, &nToken); assert( n>0 ); sqlite3StrAccumAppend(&out, zRawSql, n); zRawSql += n; |
︙ | ︙ | |||
60738 60739 60740 60741 60742 60743 60744 | Vdbe *p /* The VDBE */ ){ int pc=0; /* The program counter */ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ | | | 62311 62312 62313 62314 62315 62316 62317 62318 62319 62320 62321 62322 62323 62324 62325 | Vdbe *p /* The VDBE */ ){ int pc=0; /* The program counter */ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int checkProgress; /* True if progress callbacks are enabled */ int nProgressOps = 0; /* Opcodes executed since progress callback. */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ |
︙ | ︙ | |||
60798 60799 60800 60801 60802 60803 60804 | int i; Mem *pArg; sqlite3_context ctx; sqlite3_value **apVal; int n; } ag; struct OP_ShiftRight_stack_vars { | | > | > | 62371 62372 62373 62374 62375 62376 62377 62378 62379 62380 62381 62382 62383 62384 62385 62386 62387 62388 | int i; Mem *pArg; sqlite3_context ctx; sqlite3_value **apVal; int n; } ag; struct OP_ShiftRight_stack_vars { i64 iA; u64 uA; i64 iB; u8 op; } ah; struct OP_Ge_stack_vars { int res; /* Result of the comparison of pIn1 against pIn3 */ char affinity; /* Affinity to use for comparison */ u16 flags1; /* Copy of initial value of pIn1->flags */ u16 flags3; /* Copy of initial value of pIn3->flags */ } ai; |
︙ | ︙ | |||
60901 60902 60903 60904 60905 60906 60907 60908 60909 60910 60911 60912 60913 60914 | int iCookie; } at; struct OP_SetCookie_stack_vars { Db *pDb; } au; struct OP_VerifyCookie_stack_vars { int iMeta; Btree *pBt; } av; struct OP_OpenWrite_stack_vars { int nField; KeyInfo *pKeyInfo; int p2; int iDb; | > | 62476 62477 62478 62479 62480 62481 62482 62483 62484 62485 62486 62487 62488 62489 62490 | int iCookie; } at; struct OP_SetCookie_stack_vars { Db *pDb; } au; struct OP_VerifyCookie_stack_vars { int iMeta; int iGen; Btree *pBt; } av; struct OP_OpenWrite_stack_vars { int nField; KeyInfo *pKeyInfo; int p2; int iDb; |
︙ | ︙ | |||
61092 61093 61094 61095 61096 61097 61098 61099 61100 61101 61102 61103 61104 | Mem *pRec; sqlite3_context ctx; sqlite3_value **apVal; } cb; struct OP_AggFinal_stack_vars { Mem *pMem; } cc; struct OP_JournalMode_stack_vars { Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ const char *zFilename; /* Name of database file for pPager */ | > > > > > | | | | | | | | | | | | 62668 62669 62670 62671 62672 62673 62674 62675 62676 62677 62678 62679 62680 62681 62682 62683 62684 62685 62686 62687 62688 62689 62690 62691 62692 62693 62694 62695 62696 62697 62698 62699 62700 62701 62702 62703 62704 62705 62706 62707 62708 62709 62710 62711 62712 62713 62714 62715 62716 62717 62718 62719 62720 62721 62722 62723 62724 62725 62726 62727 62728 62729 62730 62731 62732 62733 62734 62735 62736 62737 62738 62739 62740 62741 62742 62743 62744 62745 62746 62747 62748 62749 62750 62751 62752 | Mem *pRec; sqlite3_context ctx; sqlite3_value **apVal; } cb; struct OP_AggFinal_stack_vars { Mem *pMem; } cc; struct OP_Checkpoint_stack_vars { int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ } cd; struct OP_JournalMode_stack_vars { Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ const char *zFilename; /* Name of database file for pPager */ } ce; struct OP_IncrVacuum_stack_vars { Btree *pBt; } cf; struct OP_VBegin_stack_vars { VTable *pVTab; } cg; struct OP_VOpen_stack_vars { VdbeCursor *pCur; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; sqlite3_module *pModule; } ch; struct OP_VFilter_stack_vars { int nArg; int iQuery; const sqlite3_module *pModule; Mem *pQuery; Mem *pArgc; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; VdbeCursor *pCur; int res; int i; Mem **apArg; } ci; struct OP_VColumn_stack_vars { sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; sqlite3_context sContext; } cj; struct OP_VNext_stack_vars { sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res; VdbeCursor *pCur; } ck; struct OP_VRename_stack_vars { sqlite3_vtab *pVtab; Mem *pName; } cl; struct OP_VUpdate_stack_vars { sqlite3_vtab *pVtab; sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; } cm; struct OP_Trace_stack_vars { char *zTrace; } cn; } u; /* End automatically generated code ********************************************************************/ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ sqlite3VdbeEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); p->rc = SQLITE_OK; |
︙ | ︙ | |||
61844 61845 61846 61847 61848 61849 61850 | pOut = &aMem[pOp->p3]; u.af.flags = pIn1->flags | pIn2->flags; if( (u.af.flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ u.af.iA = pIn1->u.i; u.af.iB = pIn2->u.i; switch( pOp->opcode ){ | | | | < < < < < < < | > | 63425 63426 63427 63428 63429 63430 63431 63432 63433 63434 63435 63436 63437 63438 63439 63440 63441 63442 63443 63444 63445 63446 63447 63448 63449 63450 63451 63452 63453 63454 63455 63456 63457 63458 | pOut = &aMem[pOp->p3]; u.af.flags = pIn1->flags | pIn2->flags; if( (u.af.flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ u.af.iA = pIn1->u.i; u.af.iB = pIn2->u.i; switch( pOp->opcode ){ case OP_Add: if( sqlite3AddInt64(&u.af.iB,u.af.iA) ) goto fp_math; break; case OP_Subtract: if( sqlite3SubInt64(&u.af.iB,u.af.iA) ) goto fp_math; break; case OP_Multiply: if( sqlite3MulInt64(&u.af.iB,u.af.iA) ) goto fp_math; break; case OP_Divide: { if( u.af.iA==0 ) goto arithmetic_result_is_null; if( u.af.iA==-1 && u.af.iB==SMALLEST_INT64 ) goto fp_math; u.af.iB /= u.af.iA; break; } default: { if( u.af.iA==0 ) goto arithmetic_result_is_null; if( u.af.iA==-1 ) u.af.iA = 1; u.af.iB %= u.af.iA; break; } } pOut->u.i = u.af.iB; MemSetTypeFlag(pOut, MEM_Int); }else{ fp_math: u.af.rA = sqlite3VdbeRealValue(pIn1); u.af.rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: u.af.rB += u.af.rA; break; case OP_Subtract: u.af.rB -= u.af.rA; break; case OP_Multiply: u.af.rB *= u.af.rA; break; case OP_Divide: { |
︙ | ︙ | |||
62031 62032 62033 62034 62035 62036 62037 62038 62039 62040 62041 62042 62043 62044 | /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&u.ag.ctx.s, encoding); sqlite3VdbeMemMove(pOut, &u.ag.ctx.s); if( sqlite3VdbeMemTooBig(pOut) ){ goto too_big; } REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** | > > > > > > > > > | 63606 63607 63608 63609 63610 63611 63612 63613 63614 63615 63616 63617 63618 63619 63620 63621 63622 63623 63624 63625 63626 63627 63628 | /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&u.ag.ctx.s, encoding); sqlite3VdbeMemMove(pOut, &u.ag.ctx.s); if( sqlite3VdbeMemTooBig(pOut) ){ goto too_big; } #if 0 /* The app-defined function has done something that as caused this ** statement to expire. (Perhaps the function called sqlite3_exec() ** with a CREATE TABLE statement.) */ if( p->expired ) rc = SQLITE_ABORT; #endif REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** |
︙ | ︙ | |||
62067 62068 62069 62070 62071 62072 62073 | ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ #if 0 /* local variables moved into u.ah */ | | > | > | | | > | > | > > | > > > > > > | > > > > > > > | > > | > > > | | 63651 63652 63653 63654 63655 63656 63657 63658 63659 63660 63661 63662 63663 63664 63665 63666 63667 63668 63669 63670 63671 63672 63673 63674 63675 63676 63677 63678 63679 63680 63681 63682 63683 63684 63685 63686 63687 63688 63689 63690 63691 63692 63693 63694 63695 63696 63697 63698 63699 63700 63701 63702 63703 63704 63705 63706 63707 63708 63709 | ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ #if 0 /* local variables moved into u.ah */ i64 iA; u64 uA; i64 iB; u8 op; #endif /* local variables moved into u.ah */ pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } u.ah.iA = sqlite3VdbeIntValue(pIn2); u.ah.iB = sqlite3VdbeIntValue(pIn1); u.ah.op = pOp->opcode; if( u.ah.op==OP_BitAnd ){ u.ah.iA &= u.ah.iB; }else if( u.ah.op==OP_BitOr ){ u.ah.iA |= u.ah.iB; }else if( u.ah.iB!=0 ){ assert( u.ah.op==OP_ShiftRight || u.ah.op==OP_ShiftLeft ); /* If shifting by a negative amount, shift in the other direction */ if( u.ah.iB<0 ){ assert( OP_ShiftRight==OP_ShiftLeft+1 ); u.ah.op = 2*OP_ShiftLeft + 1 - u.ah.op; u.ah.iB = u.ah.iB>(-64) ? -u.ah.iB : 64; } if( u.ah.iB>=64 ){ u.ah.iA = (u.ah.iA>=0 || u.ah.op==OP_ShiftLeft) ? 0 : -1; }else{ memcpy(&u.ah.uA, &u.ah.iA, sizeof(u.ah.uA)); if( u.ah.op==OP_ShiftLeft ){ u.ah.uA <<= u.ah.iB; }else{ u.ah.uA >>= u.ah.iB; /* Sign-extend on a right shift of a negative number */ if( u.ah.iA<0 ) u.ah.uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-u.ah.iB); } memcpy(&u.ah.iA, &u.ah.uA, sizeof(u.ah.iA)); } } pOut->u.i = u.ah.iA; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: AddImm P1 P2 * * * ** ** Add the constant P2 to the value in register P1. |
︙ | ︙ | |||
63027 63028 63029 63030 63031 63032 63033 | ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ u.ao.nData = 0; /* Number of bytes of data space */ u.ao.nHdr = 0; /* Number of bytes of header space */ | < | 64635 64636 64637 64638 64639 64640 64641 64642 64643 64644 64645 64646 64647 64648 | ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ u.ao.nData = 0; /* Number of bytes of data space */ u.ao.nHdr = 0; /* Number of bytes of header space */ u.ao.nZero = 0; /* Number of zero bytes at the end of the record */ u.ao.nField = pOp->p1; u.ao.zAffinity = pOp->p4.z; assert( u.ao.nField>0 && pOp->p2>0 && pOp->p2+u.ao.nField<=p->nMem+1 ); u.ao.pData0 = &aMem[u.ao.nField]; u.ao.nField = pOp->p2; u.ao.pLast = &u.ao.pData0[u.ao.nField-1]; |
︙ | ︙ | |||
63252 63253 63254 63255 63256 63257 63258 | rc = sqlite3BtreeSavepoint(db->aDb[u.aq.ii].pBt, u.aq.p1, u.aq.iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ sqlite3ExpirePreparedStatements(db); | | | 64859 64860 64861 64862 64863 64864 64865 64866 64867 64868 64869 64870 64871 64872 64873 | rc = sqlite3BtreeSavepoint(db->aDb[u.aq.ii].pBt, u.aq.p1, u.aq.iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, -1); db->flags = (db->flags | SQLITE_InternChanges); } } /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all ** savepoints nested inside of the savepoint being operated on. */ while( db->pSavepoint!=u.aq.pSavepoint ){ |
︙ | ︙ | |||
63396 63397 63398 63399 63400 63401 63402 | */ case OP_Transaction: { #if 0 /* local variables moved into u.as */ Btree *pBt; #endif /* local variables moved into u.as */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); | | | 65003 65004 65005 65006 65007 65008 65009 65010 65011 65012 65013 65014 65015 65016 65017 | */ case OP_Transaction: { #if 0 /* local variables moved into u.as */ Btree *pBt; #endif /* local variables moved into u.as */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.as.pBt = db->aDb[pOp->p1].pBt; if( u.as.pBt ){ rc = sqlite3BtreeBeginTrans(u.as.pBt, pOp->p2); if( rc==SQLITE_BUSY ){ p->pc = pc; p->rc = rc = SQLITE_BUSY; |
︙ | ︙ | |||
63454 63455 63456 63457 63458 63459 63460 | #endif /* local variables moved into u.at */ u.at.iDb = pOp->p1; u.at.iCookie = pOp->p3; assert( pOp->p3<SQLITE_N_BTREE_META ); assert( u.at.iDb>=0 && u.at.iDb<db->nDb ); assert( db->aDb[u.at.iDb].pBt!=0 ); | | | 65061 65062 65063 65064 65065 65066 65067 65068 65069 65070 65071 65072 65073 65074 65075 | #endif /* local variables moved into u.at */ u.at.iDb = pOp->p1; u.at.iCookie = pOp->p3; assert( pOp->p3<SQLITE_N_BTREE_META ); assert( u.at.iDb>=0 && u.at.iDb<db->nDb ); assert( db->aDb[u.at.iDb].pBt!=0 ); assert( (p->btreeMask & (((yDbMask)1)<<u.at.iDb))!=0 ); sqlite3BtreeGetMeta(db->aDb[u.at.iDb].pBt, u.at.iCookie, (u32 *)&u.at.iMeta); pOut->u.i = u.at.iMeta; break; } /* Opcode: SetCookie P1 P2 P3 * * |
︙ | ︙ | |||
63477 63478 63479 63480 63481 63482 63483 | */ case OP_SetCookie: { /* in3 */ #if 0 /* local variables moved into u.au */ Db *pDb; #endif /* local variables moved into u.au */ assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); | | > | 65084 65085 65086 65087 65088 65089 65090 65091 65092 65093 65094 65095 65096 65097 65098 65099 65100 65101 | */ case OP_SetCookie: { /* in3 */ #if 0 /* local variables moved into u.au */ Db *pDb; #endif /* local variables moved into u.au */ assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.au.pDb = &db->aDb[pOp->p1]; assert( u.au.pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); pIn3 = &aMem[pOp->p3]; sqlite3VdbeMemIntegerify(pIn3); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(u.au.pDb->pBt, pOp->p2, (int)pIn3->u.i); if( pOp->p2==BTREE_SCHEMA_VERSION ){ /* When the schema cookie changes, record the new cookie internally */ u.au.pDb->pSchema->schema_cookie = (int)pIn3->u.i; |
︙ | ︙ | |||
63501 63502 63503 63504 63505 63506 63507 | ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); p->expired = 0; } break; } | | | > > > > | > > | | | | 65109 65110 65111 65112 65113 65114 65115 65116 65117 65118 65119 65120 65121 65122 65123 65124 65125 65126 65127 65128 65129 65130 65131 65132 65133 65134 65135 65136 65137 65138 65139 65140 65141 65142 65143 65144 65145 65146 65147 65148 65149 65150 65151 65152 65153 65154 65155 65156 65157 65158 65159 65160 65161 65162 65163 65164 65165 65166 65167 65168 65169 65170 65171 65172 65173 65174 65175 65176 65177 65178 | ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); p->expired = 0; } break; } /* Opcode: VerifyCookie P1 P2 P3 * * ** ** Check the value of global database parameter number 0 (the ** schema version) and make sure it is equal to P2 and that the ** generation counter on the local schema parse equals P3. ** ** P1 is the database number which is 0 for the main database file ** and 1 for the file holding temporary tables and some higher number ** for auxiliary databases. ** ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. ** ** Either a transaction needs to have been started or an OP_Open needs ** to be executed (to establish a read lock) before this opcode is ** invoked. */ case OP_VerifyCookie: { #if 0 /* local variables moved into u.av */ int iMeta; int iGen; Btree *pBt; #endif /* local variables moved into u.av */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); u.av.pBt = db->aDb[pOp->p1].pBt; if( u.av.pBt ){ sqlite3BtreeGetMeta(u.av.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.av.iMeta); u.av.iGen = db->aDb[pOp->p1].pSchema->iGeneration; }else{ u.av.iGen = u.av.iMeta = 0; } if( u.av.iMeta!=pOp->p2 || u.av.iGen!=pOp->p3 ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do ** not reload the schema from the database file. ** ** If virtual-tables are in use, this is not just an optimization. ** Often, v-tables store their data in other SQLite tables, which ** are queried from within xNext() and other v-table methods using ** prepared queries. If such a query is out-of-date, we do not want to ** discard the database schema, as the user code implementing the ** v-table would have to be ready for the sqlite3_vtab structure itself ** to be invalidated whenever sqlite3_step() is called from within ** a v-table method. */ if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.av.iMeta ){ sqlite3ResetInternalSchema(db, pOp->p1); } p->expired = 1; rc = SQLITE_SCHEMA; } break; } /* Opcode: OpenRead P1 P2 P3 P4 P5 ** |
︙ | ︙ | |||
63628 63629 63630 63631 63632 63633 63634 | } u.aw.nField = 0; u.aw.pKeyInfo = 0; u.aw.p2 = pOp->p2; u.aw.iDb = pOp->p3; assert( u.aw.iDb>=0 && u.aw.iDb<db->nDb ); | | > | 65242 65243 65244 65245 65246 65247 65248 65249 65250 65251 65252 65253 65254 65255 65256 65257 65258 65259 65260 65261 65262 | } u.aw.nField = 0; u.aw.pKeyInfo = 0; u.aw.p2 = pOp->p2; u.aw.iDb = pOp->p3; assert( u.aw.iDb>=0 && u.aw.iDb<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<u.aw.iDb))!=0 ); u.aw.pDb = &db->aDb[u.aw.iDb]; u.aw.pX = u.aw.pDb->pBt; assert( u.aw.pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ u.aw.wrFlag = 1; assert( sqlite3SchemaMutexHeld(db, u.aw.iDb, 0) ); if( u.aw.pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = u.aw.pDb->pSchema->file_format; } }else{ u.aw.wrFlag = 0; } if( pOp->p5 ){ |
︙ | ︙ | |||
64333 64334 64335 64336 64337 64338 64339 | ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 100 times. */ assert( u.be.pC->isTable ); | < | 65948 65949 65950 65951 65952 65953 65954 65955 65956 65957 65958 65959 65960 65961 | ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 100 times. */ assert( u.be.pC->isTable ); #ifdef SQLITE_32BIT_ROWID # define MAX_ROWID 0x7fffffff #else /* Some compilers complain about constants of the form 0x7fffffffffffffff. ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. |
︙ | ︙ | |||
65166 65167 65168 65169 65170 65171 65172 | pOut->flags = MEM_Null; if( u.br.iCnt>1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ u.br.iDb = pOp->p3; assert( u.br.iCnt==1 ); | | | > > | | 66780 66781 66782 66783 66784 66785 66786 66787 66788 66789 66790 66791 66792 66793 66794 66795 66796 66797 66798 66799 66800 66801 66802 66803 | pOut->flags = MEM_Null; if( u.br.iCnt>1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ u.br.iDb = pOp->p3; assert( u.br.iCnt==1 ); assert( (p->btreeMask & (((yDbMask)1)<<u.br.iDb))!=0 ); rc = sqlite3BtreeDropTable(db->aDb[u.br.iDb].pBt, pOp->p1, &u.br.iMoved); pOut->flags = MEM_Int; pOut->u.i = u.br.iMoved; #ifndef SQLITE_OMIT_AUTOVACUUM if( rc==SQLITE_OK && u.br.iMoved!=0 ){ sqlite3RootPageMoved(db, u.br.iDb, u.br.iMoved, pOp->p1); /* All OP_Destroy operations occur on the same btree */ assert( resetSchemaOnFault==0 || resetSchemaOnFault==u.br.iDb+1 ); resetSchemaOnFault = u.br.iDb+1; } #endif } break; } /* Opcode: Clear P1 P2 P3 |
︙ | ︙ | |||
65204 65205 65206 65207 65208 65209 65210 | */ case OP_Clear: { #if 0 /* local variables moved into u.bs */ int nChange; #endif /* local variables moved into u.bs */ u.bs.nChange = 0; | | | 66820 66821 66822 66823 66824 66825 66826 66827 66828 66829 66830 66831 66832 66833 66834 | */ case OP_Clear: { #if 0 /* local variables moved into u.bs */ int nChange; #endif /* local variables moved into u.bs */ u.bs.nChange = 0; assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bs.nChange : 0) ); if( pOp->p3 ){ p->nChange += u.bs.nChange; if( pOp->p3>0 ){ assert( memIsValid(&aMem[pOp->p3]) ); |
︙ | ︙ | |||
65251 65252 65253 65254 65255 65256 65257 | int pgno; int flags; Db *pDb; #endif /* local variables moved into u.bt */ u.bt.pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); | | | | < < < < < < | < < < < < < < < < < < | < | < < < < < < > > | > > | > > | > < | 66867 66868 66869 66870 66871 66872 66873 66874 66875 66876 66877 66878 66879 66880 66881 66882 66883 66884 66885 66886 66887 66888 66889 66890 66891 66892 66893 66894 66895 66896 66897 66898 66899 66900 66901 66902 66903 66904 66905 66906 66907 66908 66909 66910 66911 66912 66913 66914 66915 66916 66917 66918 66919 66920 66921 66922 66923 66924 66925 66926 66927 66928 66929 66930 66931 66932 66933 66934 66935 66936 66937 66938 66939 66940 66941 66942 66943 66944 | int pgno; int flags; Db *pDb; #endif /* local variables moved into u.bt */ u.bt.pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.bt.pDb = &db->aDb[pOp->p1]; assert( u.bt.pDb->pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ /* u.bt.flags = BTREE_INTKEY; */ u.bt.flags = BTREE_INTKEY; }else{ u.bt.flags = BTREE_BLOBKEY; } rc = sqlite3BtreeCreateTable(u.bt.pDb->pBt, &u.bt.pgno, u.bt.flags); pOut->u.i = u.bt.pgno; break; } /* Opcode: ParseSchema P1 * * P4 * ** ** Read and parse all entries from the SQLITE_MASTER table of database P1 ** that match the WHERE clause P4. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { #if 0 /* local variables moved into u.bu */ int iDb; const char *zMaster; char *zSql; InitData initData; #endif /* local variables moved into u.bu */ /* Any prepared statement that invokes this opcode will hold mutexes ** on every btree. This is a prerequisite for invoking ** sqlite3InitCallback(). */ #ifdef SQLITE_DEBUG for(u.bu.iDb=0; u.bu.iDb<db->nDb; u.bu.iDb++){ assert( u.bu.iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[u.bu.iDb].pBt) ); } #endif u.bu.iDb = pOp->p1; assert( u.bu.iDb>=0 && u.bu.iDb<db->nDb ); assert( DbHasProperty(db, u.bu.iDb, DB_SchemaLoaded) ); /* Used to be a conditional */ { u.bu.zMaster = SCHEMA_TABLE(u.bu.iDb); u.bu.initData.db = db; u.bu.initData.iDb = pOp->p1; u.bu.initData.pzErrMsg = &p->zErrMsg; u.bu.zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", db->aDb[u.bu.iDb].zName, u.bu.zMaster, pOp->p4.z); if( u.bu.zSql==0 ){ rc = SQLITE_NOMEM; }else{ assert( db->init.busy==0 ); db->init.busy = 1; u.bu.initData.rc = SQLITE_OK; assert( !db->mallocFailed ); rc = sqlite3_exec(db, u.bu.zSql, sqlite3InitCallback, &u.bu.initData, 0); if( rc==SQLITE_OK ) rc = u.bu.initData.rc; sqlite3DbFree(db, u.bu.zSql); db->init.busy = 0; } } if( rc==SQLITE_NOMEM ){ goto no_mem; } break; } #if !defined(SQLITE_OMIT_ANALYZE) |
︙ | ︙ | |||
65435 65436 65437 65438 65439 65440 65441 | assert( (u.bv.pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &aMem[pOp->p1]; for(u.bv.j=0; u.bv.j<u.bv.nRoot; u.bv.j++){ u.bv.aRoot[u.bv.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bv.j]); } u.bv.aRoot[u.bv.j] = 0; assert( pOp->p5<db->nDb ); | | | 67033 67034 67035 67036 67037 67038 67039 67040 67041 67042 67043 67044 67045 67046 67047 | assert( (u.bv.pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &aMem[pOp->p1]; for(u.bv.j=0; u.bv.j<u.bv.nRoot; u.bv.j++){ u.bv.aRoot[u.bv.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bv.j]); } u.bv.aRoot[u.bv.j] = 0; assert( pOp->p5<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); u.bv.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.bv.aRoot, u.bv.nRoot, (int)u.bv.pnErr->u.i, &u.bv.nErr); sqlite3DbFree(db, u.bv.aRoot); u.bv.pnErr->u.i -= u.bv.nErr; sqlite3VdbeMemSetNull(pIn1); if( u.bv.nErr==0 ){ assert( u.bv.z==0 ); |
︙ | ︙ | |||
65875 65876 65877 65878 65879 65880 65881 65882 65883 65884 65885 65886 65887 65888 65889 | u.cb.ctx.pColl = pOp[-1].p4.pColl; } (u.cb.ctx.pFunc->xStep)(&u.cb.ctx, u.cb.n, u.cb.apVal); /* IMP: R-24505-23230 */ if( u.cb.ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.cb.ctx.s)); rc = u.cb.ctx.isError; } sqlite3VdbeMemRelease(&u.cb.ctx.s); break; } /* Opcode: AggFinal P1 P2 * P4 * ** ** Execute the finalizer function for an aggregate. P1 is ** the memory location that is the accumulator for the aggregate. | > > | 67473 67474 67475 67476 67477 67478 67479 67480 67481 67482 67483 67484 67485 67486 67487 67488 67489 | u.cb.ctx.pColl = pOp[-1].p4.pColl; } (u.cb.ctx.pFunc->xStep)(&u.cb.ctx, u.cb.n, u.cb.apVal); /* IMP: R-24505-23230 */ if( u.cb.ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.cb.ctx.s)); rc = u.cb.ctx.isError; } sqlite3VdbeMemRelease(&u.cb.ctx.s); break; } /* Opcode: AggFinal P1 P2 * P4 * ** ** Execute the finalizer function for an aggregate. P1 is ** the memory location that is the accumulator for the aggregate. |
︙ | ︙ | |||
65911 65912 65913 65914 65915 65916 65917 | if( sqlite3VdbeMemTooBig(u.cc.pMem) ){ goto too_big; } break; } #ifndef SQLITE_OMIT_WAL | | | > > > > > > > > > > > > > > > > > > | > > > > > > > | | | | | | | | | | < < < < < < < < < < < < < < < < < < < | | | | | | | | | | | | | | | | | | | | | | | | 67511 67512 67513 67514 67515 67516 67517 67518 67519 67520 67521 67522 67523 67524 67525 67526 67527 67528 67529 67530 67531 67532 67533 67534 67535 67536 67537 67538 67539 67540 67541 67542 67543 67544 67545 67546 67547 67548 67549 67550 67551 67552 67553 67554 67555 67556 67557 67558 67559 67560 67561 67562 67563 67564 67565 67566 67567 67568 67569 67570 67571 67572 67573 67574 67575 67576 67577 67578 67579 67580 67581 67582 67583 67584 67585 67586 67587 67588 67589 67590 67591 67592 67593 67594 67595 67596 67597 67598 67599 67600 67601 67602 67603 67604 67605 67606 67607 67608 67609 67610 67611 67612 67613 67614 67615 67616 67617 67618 67619 67620 67621 67622 67623 67624 67625 67626 67627 67628 67629 67630 67631 67632 67633 67634 67635 67636 67637 67638 67639 67640 67641 67642 67643 67644 67645 67646 67647 67648 67649 67650 67651 67652 67653 67654 67655 67656 67657 67658 | if( sqlite3VdbeMemTooBig(u.cc.pMem) ){ goto too_big; } break; } #ifndef SQLITE_OMIT_WAL /* Opcode: Checkpoint P1 P2 P3 * * ** ** Checkpoint database P1. This is a no-op if P1 is not currently in ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns ** SQLITE_BUSY or not, respectively. Write the number of pages in the ** WAL after the checkpoint into mem[P3+1] and the number of pages ** in the WAL that have been checkpointed after the checkpoint ** completes into mem[P3+2]. However on an error, mem[P3+1] and ** mem[P3+2] are initialized to -1. */ case OP_Checkpoint: { #if 0 /* local variables moved into u.cd */ int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ #endif /* local variables moved into u.cd */ u.cd.aRes[0] = 0; u.cd.aRes[1] = u.cd.aRes[2] = -1; assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE || pOp->p2==SQLITE_CHECKPOINT_FULL || pOp->p2==SQLITE_CHECKPOINT_RESTART ); rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &u.cd.aRes[1], &u.cd.aRes[2]); if( rc==SQLITE_BUSY ){ rc = SQLITE_OK; u.cd.aRes[0] = 1; } for(u.cd.i=0, u.cd.pMem = &aMem[pOp->p3]; u.cd.i<3; u.cd.i++, u.cd.pMem++){ sqlite3VdbeMemSetInt64(u.cd.pMem, (i64)u.cd.aRes[u.cd.i]); } break; }; #endif #ifndef SQLITE_OMIT_PRAGMA /* Opcode: JournalMode P1 P2 P3 * P5 ** ** Change the journal mode of database P1 to P3. P3 must be one of the ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. ** ** Write a string containing the final journal-mode to register P2. */ case OP_JournalMode: { /* out2-prerelease */ #if 0 /* local variables moved into u.ce */ Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ const char *zFilename; /* Name of database file for pPager */ #endif /* local variables moved into u.ce */ u.ce.eNew = pOp->p3; assert( u.ce.eNew==PAGER_JOURNALMODE_DELETE || u.ce.eNew==PAGER_JOURNALMODE_TRUNCATE || u.ce.eNew==PAGER_JOURNALMODE_PERSIST || u.ce.eNew==PAGER_JOURNALMODE_OFF || u.ce.eNew==PAGER_JOURNALMODE_MEMORY || u.ce.eNew==PAGER_JOURNALMODE_WAL || u.ce.eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); u.ce.pBt = db->aDb[pOp->p1].pBt; u.ce.pPager = sqlite3BtreePager(u.ce.pBt); u.ce.eOld = sqlite3PagerGetJournalMode(u.ce.pPager); if( u.ce.eNew==PAGER_JOURNALMODE_QUERY ) u.ce.eNew = u.ce.eOld; if( !sqlite3PagerOkToChangeJournalMode(u.ce.pPager) ) u.ce.eNew = u.ce.eOld; #ifndef SQLITE_OMIT_WAL u.ce.zFilename = sqlite3PagerFilename(u.ce.pPager); /* Do not allow a transition to journal_mode=WAL for a database ** in temporary storage or if the VFS does not support shared memory */ if( u.ce.eNew==PAGER_JOURNALMODE_WAL && (u.ce.zFilename[0]==0 /* Temp file */ || !sqlite3PagerWalSupported(u.ce.pPager)) /* No shared-memory support */ ){ u.ce.eNew = u.ce.eOld; } if( (u.ce.eNew!=u.ce.eOld) && (u.ce.eOld==PAGER_JOURNALMODE_WAL || u.ce.eNew==PAGER_JOURNALMODE_WAL) ){ if( !db->autoCommit || db->activeVdbeCnt>1 ){ rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "cannot change %s wal mode from within a transaction", (u.ce.eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") ); break; }else{ if( u.ce.eOld==PAGER_JOURNALMODE_WAL ){ /* If leaving WAL mode, close the log file. If successful, the call ** to PagerCloseWal() checkpoints and deletes the write-ahead-log ** file. An EXCLUSIVE lock may still be held on the database file ** after a successful return. */ rc = sqlite3PagerCloseWal(u.ce.pPager); if( rc==SQLITE_OK ){ sqlite3PagerSetJournalMode(u.ce.pPager, u.ce.eNew); } }else if( u.ce.eOld==PAGER_JOURNALMODE_MEMORY ){ /* Cannot transition directly from MEMORY to WAL. Use mode OFF ** as an intermediate */ sqlite3PagerSetJournalMode(u.ce.pPager, PAGER_JOURNALMODE_OFF); } /* Open a transaction on the database file. Regardless of the journal ** mode, this transaction always uses a rollback journal. */ assert( sqlite3BtreeIsInTrans(u.ce.pBt)==0 ); if( rc==SQLITE_OK ){ rc = sqlite3BtreeSetVersion(u.ce.pBt, (u.ce.eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); } } } #endif /* ifndef SQLITE_OMIT_WAL */ if( rc ){ u.ce.eNew = u.ce.eOld; } u.ce.eNew = sqlite3PagerSetJournalMode(u.ce.pPager, u.ce.eNew); pOut = &aMem[pOp->p2]; pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = (char *)sqlite3JournalModename(u.ce.eNew); pOut->n = sqlite3Strlen30(pOut->z); pOut->enc = SQLITE_UTF8; sqlite3VdbeChangeEncoding(pOut, encoding); break; }; #endif /* SQLITE_OMIT_PRAGMA */ |
︙ | ︙ | |||
66067 66068 66069 66070 66071 66072 66073 | /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* jump */ | | | | | | | 67673 67674 67675 67676 67677 67678 67679 67680 67681 67682 67683 67684 67685 67686 67687 67688 67689 67690 67691 67692 67693 67694 | /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* jump */ #if 0 /* local variables moved into u.cf */ Btree *pBt; #endif /* local variables moved into u.cf */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.cf.pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(u.cf.pBt); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; } #endif |
︙ | ︙ | |||
66121 66122 66123 66124 66125 66126 66127 | ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { u8 isWriteLock = (u8)pOp->p3; if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ int p1 = pOp->p1; assert( p1>=0 && p1<db->nDb ); | | | 67727 67728 67729 67730 67731 67732 67733 67734 67735 67736 67737 67738 67739 67740 67741 | ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { u8 isWriteLock = (u8)pOp->p3; if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ int p1 = pOp->p1; assert( p1>=0 && p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); assert( isWriteLock==0 || isWriteLock==1 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( (rc&0xFF)==SQLITE_LOCKED ){ const char *z = pOp->p4.z; sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); } } |
︙ | ︙ | |||
66144 66145 66146 66147 66148 66149 66150 | ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { | | | | | | | 67750 67751 67752 67753 67754 67755 67756 67757 67758 67759 67760 67761 67762 67763 67764 67765 67766 67767 67768 67769 | ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { #if 0 /* local variables moved into u.cg */ VTable *pVTab; #endif /* local variables moved into u.cg */ u.cg.pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, u.cg.pVTab); if( u.cg.pVTab ) importVtabErrMsg(p, u.cg.pVTab->pVtab); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 * * P4 * ** |
︙ | ︙ | |||
66188 66189 66190 66191 66192 66193 66194 | /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { | | | | | | | | | | | | | | | | | 67794 67795 67796 67797 67798 67799 67800 67801 67802 67803 67804 67805 67806 67807 67808 67809 67810 67811 67812 67813 67814 67815 67816 67817 67818 67819 67820 67821 67822 67823 67824 67825 67826 67827 67828 67829 67830 67831 67832 67833 | /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { #if 0 /* local variables moved into u.ch */ VdbeCursor *pCur; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; sqlite3_module *pModule; #endif /* local variables moved into u.ch */ u.ch.pCur = 0; u.ch.pVtabCursor = 0; u.ch.pVtab = pOp->p4.pVtab->pVtab; u.ch.pModule = (sqlite3_module *)u.ch.pVtab->pModule; assert(u.ch.pVtab && u.ch.pModule); rc = u.ch.pModule->xOpen(u.ch.pVtab, &u.ch.pVtabCursor); importVtabErrMsg(p, u.ch.pVtab); if( SQLITE_OK==rc ){ /* Initialize sqlite3_vtab_cursor base class */ u.ch.pVtabCursor->pVtab = u.ch.pVtab; /* Initialise vdbe cursor object */ u.ch.pCur = allocateCursor(p, pOp->p1, 0, -1, 0); if( u.ch.pCur ){ u.ch.pCur->pVtabCursor = u.ch.pVtabCursor; u.ch.pCur->pModule = u.ch.pVtabCursor->pVtab->pModule; }else{ db->mallocFailed = 1; u.ch.pModule->xClose(u.ch.pVtabCursor); } } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE |
︙ | ︙ | |||
66240 66241 66242 66243 66244 66245 66246 | ** xFilter method. Registers P3+2..P3+1+argc are the argc ** additional parameters which are passed to ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump */ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 67846 67847 67848 67849 67850 67851 67852 67853 67854 67855 67856 67857 67858 67859 67860 67861 67862 67863 67864 67865 67866 67867 67868 67869 67870 67871 67872 67873 67874 67875 67876 67877 67878 67879 67880 67881 67882 67883 67884 67885 67886 67887 67888 67889 67890 67891 67892 67893 67894 67895 67896 67897 67898 67899 67900 67901 67902 67903 67904 67905 67906 67907 67908 67909 67910 67911 67912 67913 67914 67915 67916 67917 67918 67919 67920 67921 67922 67923 67924 67925 67926 67927 67928 67929 67930 67931 67932 67933 67934 67935 67936 67937 67938 67939 67940 67941 67942 67943 67944 67945 67946 67947 67948 67949 67950 67951 67952 67953 67954 67955 67956 67957 67958 67959 67960 67961 67962 67963 67964 67965 67966 67967 67968 67969 67970 67971 67972 67973 67974 67975 67976 67977 67978 67979 67980 67981 67982 67983 67984 67985 67986 67987 67988 67989 67990 67991 67992 67993 67994 67995 67996 67997 67998 67999 68000 68001 68002 68003 68004 68005 68006 68007 68008 68009 68010 68011 68012 68013 68014 68015 68016 68017 68018 68019 68020 68021 68022 68023 68024 68025 68026 68027 68028 68029 68030 68031 68032 68033 68034 68035 68036 68037 68038 68039 68040 68041 68042 | ** xFilter method. Registers P3+2..P3+1+argc are the argc ** additional parameters which are passed to ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump */ #if 0 /* local variables moved into u.ci */ int nArg; int iQuery; const sqlite3_module *pModule; Mem *pQuery; Mem *pArgc; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; VdbeCursor *pCur; int res; int i; Mem **apArg; #endif /* local variables moved into u.ci */ u.ci.pQuery = &aMem[pOp->p3]; u.ci.pArgc = &u.ci.pQuery[1]; u.ci.pCur = p->apCsr[pOp->p1]; assert( memIsValid(u.ci.pQuery) ); REGISTER_TRACE(pOp->p3, u.ci.pQuery); assert( u.ci.pCur->pVtabCursor ); u.ci.pVtabCursor = u.ci.pCur->pVtabCursor; u.ci.pVtab = u.ci.pVtabCursor->pVtab; u.ci.pModule = u.ci.pVtab->pModule; /* Grab the index number and argc parameters */ assert( (u.ci.pQuery->flags&MEM_Int)!=0 && u.ci.pArgc->flags==MEM_Int ); u.ci.nArg = (int)u.ci.pArgc->u.i; u.ci.iQuery = (int)u.ci.pQuery->u.i; /* Invoke the xFilter method */ { u.ci.res = 0; u.ci.apArg = p->apArg; for(u.ci.i = 0; u.ci.i<u.ci.nArg; u.ci.i++){ u.ci.apArg[u.ci.i] = &u.ci.pArgc[u.ci.i+1]; sqlite3VdbeMemStoreType(u.ci.apArg[u.ci.i]); } p->inVtabMethod = 1; rc = u.ci.pModule->xFilter(u.ci.pVtabCursor, u.ci.iQuery, pOp->p4.z, u.ci.nArg, u.ci.apArg); p->inVtabMethod = 0; importVtabErrMsg(p, u.ci.pVtab); if( rc==SQLITE_OK ){ u.ci.res = u.ci.pModule->xEof(u.ci.pVtabCursor); } if( u.ci.res ){ pc = pOp->p2 - 1; } } u.ci.pCur->nullRow = 0; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * * ** ** Store the value of the P2-th column of ** the row of the virtual-table that the ** P1 cursor is pointing to into register P3. */ case OP_VColumn: { #if 0 /* local variables moved into u.cj */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; sqlite3_context sContext; #endif /* local variables moved into u.cj */ VdbeCursor *pCur = p->apCsr[pOp->p1]; assert( pCur->pVtabCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); u.cj.pDest = &aMem[pOp->p3]; memAboutToChange(p, u.cj.pDest); if( pCur->nullRow ){ sqlite3VdbeMemSetNull(u.cj.pDest); break; } u.cj.pVtab = pCur->pVtabCursor->pVtab; u.cj.pModule = u.cj.pVtab->pModule; assert( u.cj.pModule->xColumn ); memset(&u.cj.sContext, 0, sizeof(u.cj.sContext)); /* The output cell may already have a buffer allocated. Move ** the current contents to u.cj.sContext.s so in case the user-function ** can use the already allocated buffer instead of allocating a ** new one. */ sqlite3VdbeMemMove(&u.cj.sContext.s, u.cj.pDest); MemSetTypeFlag(&u.cj.sContext.s, MEM_Null); rc = u.cj.pModule->xColumn(pCur->pVtabCursor, &u.cj.sContext, pOp->p2); importVtabErrMsg(p, u.cj.pVtab); if( u.cj.sContext.isError ){ rc = u.cj.sContext.isError; } /* Copy the result of the function to the P3 register. We ** do this regardless of whether or not an error occurred to ensure any ** dynamic allocation in u.cj.sContext.s (a Mem struct) is released. */ sqlite3VdbeChangeEncoding(&u.cj.sContext.s, encoding); sqlite3VdbeMemMove(u.cj.pDest, &u.cj.sContext.s); REGISTER_TRACE(pOp->p3, u.cj.pDest); UPDATE_MAX_BLOBSIZE(u.cj.pDest); if( sqlite3VdbeMemTooBig(u.cj.pDest) ){ goto too_big; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VNext P1 P2 * * * ** ** Advance virtual table P1 to the next row in its result set and ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* jump */ #if 0 /* local variables moved into u.ck */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res; VdbeCursor *pCur; #endif /* local variables moved into u.ck */ u.ck.res = 0; u.ck.pCur = p->apCsr[pOp->p1]; assert( u.ck.pCur->pVtabCursor ); if( u.ck.pCur->nullRow ){ break; } u.ck.pVtab = u.ck.pCur->pVtabCursor->pVtab; u.ck.pModule = u.ck.pVtab->pModule; assert( u.ck.pModule->xNext ); /* Invoke the xNext() method of the module. There is no way for the ** underlying implementation to return an error if one occurs during ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ p->inVtabMethod = 1; rc = u.ck.pModule->xNext(u.ck.pCur->pVtabCursor); p->inVtabMethod = 0; importVtabErrMsg(p, u.ck.pVtab); if( rc==SQLITE_OK ){ u.ck.res = u.ck.pModule->xEof(u.ck.pCur->pVtabCursor); } if( !u.ck.res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { #if 0 /* local variables moved into u.cl */ sqlite3_vtab *pVtab; Mem *pName; #endif /* local variables moved into u.cl */ u.cl.pVtab = pOp->p4.pVtab->pVtab; u.cl.pName = &aMem[pOp->p1]; assert( u.cl.pVtab->pModule->xRename ); assert( memIsValid(u.cl.pName) ); REGISTER_TRACE(pOp->p1, u.cl.pName); assert( u.cl.pName->flags & MEM_Str ); rc = u.cl.pVtab->pModule->xRename(u.cl.pVtab, u.cl.pName->z); importVtabErrMsg(p, u.cl.pVtab); p->expired = 0; break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE |
︙ | ︙ | |||
66454 66455 66456 66457 66458 66459 66460 | ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { | | | | | | | | | | | | | | | | | | | | 68060 68061 68062 68063 68064 68065 68066 68067 68068 68069 68070 68071 68072 68073 68074 68075 68076 68077 68078 68079 68080 68081 68082 68083 68084 68085 68086 68087 68088 68089 68090 68091 68092 68093 68094 68095 68096 68097 68098 68099 68100 68101 68102 | ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { #if 0 /* local variables moved into u.cm */ sqlite3_vtab *pVtab; sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; #endif /* local variables moved into u.cm */ u.cm.pVtab = pOp->p4.pVtab->pVtab; u.cm.pModule = (sqlite3_module *)u.cm.pVtab->pModule; u.cm.nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(u.cm.pModule->xUpdate) ){ u.cm.apArg = p->apArg; u.cm.pX = &aMem[pOp->p3]; for(u.cm.i=0; u.cm.i<u.cm.nArg; u.cm.i++){ assert( memIsValid(u.cm.pX) ); memAboutToChange(p, u.cm.pX); sqlite3VdbeMemStoreType(u.cm.pX); u.cm.apArg[u.cm.i] = u.cm.pX; u.cm.pX++; } rc = u.cm.pModule->xUpdate(u.cm.pVtab, u.cm.nArg, u.cm.apArg, &u.cm.rowid); importVtabErrMsg(p, u.cm.pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( u.cm.nArg>1 && u.cm.apArg[0] && (u.cm.apArg[0]->flags&MEM_Null) ); db->lastRowid = u.cm.rowid; } p->nChange++; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
︙ | ︙ | |||
66534 66535 66536 66537 66538 66539 66540 | #ifndef SQLITE_OMIT_TRACE /* Opcode: Trace * * * P4 * ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. */ case OP_Trace: { | | | | | | | | 68140 68141 68142 68143 68144 68145 68146 68147 68148 68149 68150 68151 68152 68153 68154 68155 68156 68157 68158 68159 68160 68161 68162 68163 68164 68165 68166 68167 | #ifndef SQLITE_OMIT_TRACE /* Opcode: Trace * * * P4 * ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. */ case OP_Trace: { #if 0 /* local variables moved into u.cn */ char *zTrace; #endif /* local variables moved into u.cn */ u.cn.zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( u.cn.zTrace ){ if( db->xTrace ){ char *z = sqlite3VdbeExpandSql(p, u.cn.zTrace); db->xTrace(db->pTraceArg, z); sqlite3DbFree(db, z); } #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", u.cn.zTrace); } #endif /* SQLITE_DEBUG */ } break; } #endif |
︙ | ︙ | |||
66626 66627 66628 66629 66630 66631 66632 | p->rc = rc; testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(rc, "statement aborts at %d: [%s] %s", pc, p->zSql, p->zErrMsg); sqlite3VdbeHalt(p); if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; rc = SQLITE_ERROR; | | > > | | 68232 68233 68234 68235 68236 68237 68238 68239 68240 68241 68242 68243 68244 68245 68246 68247 68248 68249 68250 68251 68252 68253 68254 | p->rc = rc; testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(rc, "statement aborts at %d: [%s] %s", pc, p->zSql, p->zErrMsg); sqlite3VdbeHalt(p); if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; rc = SQLITE_ERROR; if( resetSchemaOnFault>0 ){ sqlite3ResetInternalSchema(db, resetSchemaOnFault-1); } /* This is the only way out of this procedure. We have to ** release the mutexes on btrees that were acquired at the ** top. */ vdbe_return: sqlite3VdbeLeave(p); return rc; /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH ** is encountered. */ too_big: sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); |
︙ | ︙ | |||
66941 66942 66943 66944 66945 66946 66947 66948 66949 66950 66951 66952 66953 66954 | /* Configure the OP_Transaction */ sqlite3VdbeChangeP1(v, 0, iDb); sqlite3VdbeChangeP2(v, 0, flags); /* Configure the OP_VerifyCookie */ sqlite3VdbeChangeP1(v, 1, iDb); sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie); /* Make sure a mutex is held on the table to be accessed */ sqlite3VdbeUsesBtree(v, iDb); /* Configure the OP_TableLock instruction */ #ifdef SQLITE_OMIT_SHARED_CACHE sqlite3VdbeChangeToNoop(v, 2, 1); | > | 68549 68550 68551 68552 68553 68554 68555 68556 68557 68558 68559 68560 68561 68562 68563 | /* Configure the OP_Transaction */ sqlite3VdbeChangeP1(v, 0, iDb); sqlite3VdbeChangeP2(v, 0, flags); /* Configure the OP_VerifyCookie */ sqlite3VdbeChangeP1(v, 1, iDb); sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie); sqlite3VdbeChangeP3(v, 1, pTab->pSchema->iGeneration); /* Make sure a mutex is held on the table to be accessed */ sqlite3VdbeUsesBtree(v, iDb); /* Configure the OP_TableLock instruction */ #ifdef SQLITE_OMIT_SHARED_CACHE sqlite3VdbeChangeToNoop(v, 2, 1); |
︙ | ︙ | |||
69075 69076 69077 69078 69079 69080 69081 | /* ** Return the default collation sequence for the expression pExpr. If ** there is no default collation type, return 0. */ SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ CollSeq *pColl = 0; Expr *p = pExpr; | | | 70684 70685 70686 70687 70688 70689 70690 70691 70692 70693 70694 70695 70696 70697 70698 | /* ** Return the default collation sequence for the expression pExpr. If ** there is no default collation type, return 0. */ SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ CollSeq *pColl = 0; Expr *p = pExpr; while( p ){ int op; pColl = p->pColl; if( pColl ) break; op = p->op; if( p->pTab!=0 && ( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER )){ |
︙ | ︙ | |||
69372 69373 69374 69375 69376 69377 69378 69379 69380 69381 69382 69383 69384 69385 | int nExtra = 0; int iValue = 0; if( pToken ){ if( op!=TK_INTEGER || pToken->z==0 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ nExtra = pToken->n+1; } } pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); if( pNew ){ pNew->op = (u8)op; pNew->iAgg = -1; if( pToken ){ | > | 70981 70982 70983 70984 70985 70986 70987 70988 70989 70990 70991 70992 70993 70994 70995 | int nExtra = 0; int iValue = 0; if( pToken ){ if( op!=TK_INTEGER || pToken->z==0 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ nExtra = pToken->n+1; assert( iValue>=0 ); } } pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); if( pNew ){ pNew->op = (u8)op; pNew->iAgg = -1; if( pToken ){ |
︙ | ︙ | |||
69597 69598 69599 69600 69601 69602 69603 69604 69605 69606 69607 69608 69609 69610 | } /* ** Recursively delete an expression tree. */ SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p==0 ) return; if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ sqlite3ExprDelete(db, p->pLeft); sqlite3ExprDelete(db, p->pRight); if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ sqlite3DbFree(db, p->u.zToken); } if( ExprHasProperty(p, EP_xIsSelect) ){ | > > | 71207 71208 71209 71210 71211 71212 71213 71214 71215 71216 71217 71218 71219 71220 71221 71222 | } /* ** Recursively delete an expression tree. */ SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p==0 ) return; /* Sanity check: Assert that the IntValue is non-negative if it exists */ assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ sqlite3ExprDelete(db, p->pLeft); sqlite3ExprDelete(db, p->pRight); if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ sqlite3DbFree(db, p->u.zToken); } if( ExprHasProperty(p, EP_xIsSelect) ){ |
︙ | ︙ | |||
70181 70182 70183 70184 70185 70186 70187 70188 70189 70190 70191 70192 | ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){ int rc = 0; if( p->flags & EP_IntValue ){ *pValue = p->u.iValue; return 1; } switch( p->op ){ | > > > > > > < < < < < < < < < < < < | 71793 71794 71795 71796 71797 71798 71799 71800 71801 71802 71803 71804 71805 71806 71807 71808 71809 71810 71811 71812 71813 71814 71815 71816 71817 71818 71819 71820 71821 71822 71823 71824 71825 71826 71827 71828 71829 71830 71831 | ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){ int rc = 0; /* If an expression is an integer literal that fits in a signed 32-bit ** integer, then the EP_IntValue flag will have already been set */ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); if( p->flags & EP_IntValue ){ *pValue = p->u.iValue; return 1; } switch( p->op ){ case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ *pValue = -v; rc = 1; } break; } default: break; } return rc; } /* ** Return FALSE if there is no chance that the expression can be NULL. ** ** If the expression might be NULL or if the expression is too complex |
︙ | ︙ | |||
70936 70937 70938 70939 70940 70941 70942 70943 70944 70945 70946 70947 70948 70949 70950 70951 70952 | ** ** Expr.u.zToken is always UTF8 and zero-terminated. */ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ Vdbe *v = pParse->pVdbe; if( pExpr->flags & EP_IntValue ){ int i = pExpr->u.iValue; if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); if( c==0 || (c==2 && negFlag) ){ char *zV; | > | | 72542 72543 72544 72545 72546 72547 72548 72549 72550 72551 72552 72553 72554 72555 72556 72557 72558 72559 72560 72561 72562 72563 72564 72565 72566 72567 | ** ** Expr.u.zToken is always UTF8 and zero-terminated. */ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ Vdbe *v = pParse->pVdbe; if( pExpr->flags & EP_IntValue ){ int i = pExpr->u.iValue; assert( i>=0 ); if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); if( c==0 || (c==2 && negFlag) ){ char *zV; if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } zV = dup8bytes(v, (char*)&value); sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); }else{ #ifdef SQLITE_OMIT_FLOATING_POINT sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); #else codeReal(v, z, negFlag, iMem); |
︙ | ︙ | |||
71330 71331 71332 71333 71334 71335 71336 | #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ | | | 72937 72938 72939 72940 72941 72942 72943 72944 72945 72946 72947 72948 72949 72950 72951 | #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT); } break; } case TK_REGISTER: { inReg = pExpr->iTable; break; } |
︙ | ︙ | |||
72234 72235 72236 72237 72238 72239 72240 72241 72242 72243 72244 72245 72246 72247 72248 72249 72250 72251 72252 72253 72254 72255 | break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); break; } case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(v); int destIfNull = jumpIfNull ? dest : destIfFalse; sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); sqlite3VdbeResolveLabel(v, destIfFalse); break; } default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } | > > | 73841 73842 73843 73844 73845 73846 73847 73848 73849 73850 73851 73852 73853 73854 73855 73856 73857 73858 73859 73860 73861 73862 73863 73864 | break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(v); int destIfNull = jumpIfNull ? dest : destIfFalse; sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); sqlite3VdbeResolveLabel(v, destIfFalse); break; } #endif default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } |
︙ | ︙ | |||
72375 72376 72377 72378 72379 72380 72381 72382 72383 72384 72385 72386 72387 72388 72389 72390 72391 72392 72393 72394 72395 72396 72397 72398 | break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); break; } case TK_IN: { if( jumpIfNull ){ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); }else{ int destIfNull = sqlite3VdbeMakeLabel(v); sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); sqlite3VdbeResolveLabel(v, destIfNull); } break; } default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } | > > | 73984 73985 73986 73987 73988 73989 73990 73991 73992 73993 73994 73995 73996 73997 73998 73999 74000 74001 74002 74003 74004 74005 74006 74007 74008 74009 | break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { if( jumpIfNull ){ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); }else{ int destIfNull = sqlite3VdbeMakeLabel(v); sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); sqlite3VdbeResolveLabel(v, destIfNull); } break; } #endif default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } |
︙ | ︙ | |||
73107 73108 73109 73110 73111 73112 73113 73114 73115 73116 73117 73118 73119 73120 | ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. */ if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC); } #endif } /* ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" ** command. */ SQLITE_PRIVATE void sqlite3AlterRenameTable( Parse *pParse, /* Parser context. */ | > > > > > > > > > > > > > > > > | 74718 74719 74720 74721 74722 74723 74724 74725 74726 74727 74728 74729 74730 74731 74732 74733 74734 74735 74736 74737 74738 74739 74740 74741 74742 74743 74744 74745 74746 74747 | ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. */ if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC); } #endif } /* ** Parameter zName is the name of a table that is about to be altered ** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN). ** If the table is a system table, this function leaves an error message ** in pParse->zErr (system tables may not be altered) and returns non-zero. ** ** Or, if zName is not a system table, zero is returned. */ static int isSystemTable(Parse *pParse, const char *zName){ if( sqlite3Strlen30(zName)>6 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ sqlite3ErrorMsg(pParse, "table %s may not be altered", zName); return 1; } return 0; } /* ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" ** command. */ SQLITE_PRIVATE void sqlite3AlterRenameTable( Parse *pParse, /* Parser context. */ |
︙ | ︙ | |||
73158 73159 73160 73161 73162 73163 73164 | "there is already another table or index with this name: %s", zName); goto exit_rename_table; } /* Make sure it is not a system table being altered, or a reserved name ** that the table is being renamed to. */ | < < < | | | | 74785 74786 74787 74788 74789 74790 74791 74792 74793 74794 74795 74796 74797 74798 74799 74800 74801 74802 74803 | "there is already another table or index with this name: %s", zName); goto exit_rename_table; } /* Make sure it is not a system table being altered, or a reserved name ** that the table is being renamed to. */ if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){ goto exit_rename_table; } if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto exit_rename_table; } #ifndef SQLITE_OMIT_VIEW if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName); goto exit_rename_table; } |
︙ | ︙ | |||
73497 73498 73499 73500 73501 73502 73503 73504 73505 73506 73507 73508 73509 73510 | #endif /* Make sure this is not an attempt to ALTER a view. */ if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); goto exit_begin_add_column; } assert( pTab->addColOffset>0 ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); /* Put a copy of the Table struct in Parse.pNewTable for the ** sqlite3AddColumn() function and friends to modify. But modify ** the name by adding an "sqlite_altertab_" prefix. By adding this | > > > | 75121 75122 75123 75124 75125 75126 75127 75128 75129 75130 75131 75132 75133 75134 75135 75136 75137 | #endif /* Make sure this is not an attempt to ALTER a view. */ if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); goto exit_begin_add_column; } if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){ goto exit_begin_add_column; } assert( pTab->addColOffset>0 ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); /* Put a copy of the Table struct in Parse.pNewTable for the ** sqlite3AddColumn() function and friends to modify. But modify ** the name by adding an "sqlite_altertab_" prefix. By adding this |
︙ | ︙ | |||
73584 73585 73586 73587 73588 73589 73590 | ** with the named table are deleted. If zWhere==0, then code is generated ** to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ | > | | 75211 75212 75213 75214 75215 75216 75217 75218 75219 75220 75221 75222 75223 75224 75225 75226 | ** with the named table are deleted. If zWhere==0, then code is generated ** to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ const char *zWhere, /* Delete entries for this table or index */ const char *zWhereType /* Either "tbl" or "idx" */ ){ static const struct { const char *zName; const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, #ifdef SQLITE_ENABLE_STAT2 |
︙ | ︙ | |||
73629 73630 73631 73632 73633 73634 73635 | /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, | | | 75257 75258 75259 75260 75261 75262 75263 75264 75265 75266 75267 75268 75269 75270 75271 | /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere ); }else{ /* The sqlite_stat[12] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); } } } |
︙ | ︙ | |||
73653 73654 73655 73656 73657 73658 73659 73660 73661 73662 73663 73664 73665 73666 73667 73668 73669 | /* ** Generate code to do an analysis of all indices associated with ** a single table. */ static void analyzeOneTable( Parse *pParse, /* Parser context */ Table *pTab, /* Table whose indices are to be analyzed */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ int iMem /* Available memory locations begin here */ ){ sqlite3 *db = pParse->db; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ | > < | > | 75281 75282 75283 75284 75285 75286 75287 75288 75289 75290 75291 75292 75293 75294 75295 75296 75297 75298 75299 75300 75301 75302 75303 75304 75305 75306 75307 75308 75309 75310 75311 75312 75313 75314 75315 75316 75317 | /* ** Generate code to do an analysis of all indices associated with ** a single table. */ static void analyzeOneTable( Parse *pParse, /* Parser context */ Table *pTab, /* Table whose indices are to be analyzed */ Index *pOnlyIdx, /* If not NULL, only analyze this one index */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ int iMem /* Available memory locations begin here */ ){ sqlite3 *db = pParse->db; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regSampleno = iMem++; /* Register containing next sample number */ int regCol = iMem++; /* Content of a column analyzed table */ int regRec = iMem++; /* Register holding completed record */ int regTemp = iMem++; /* Temporary use register */ int regRowid = iMem++; /* Rowid for the inserted record */ #ifdef SQLITE_ENABLE_STAT2 int addr = 0; /* Instruction address */ int regTemp2 = iMem++; /* Temporary use register */ int regSamplerecno = iMem++; /* Index of next sample to record */ int regRecno = iMem++; /* Current sample index */ int regLast = iMem++; /* Index of last sample to record */ int regFirst = iMem++; /* Index of first sample to record */ #endif |
︙ | ︙ | |||
73697 73698 73699 73700 73701 73702 73703 73704 73705 73706 73707 73708 73709 73710 73711 73712 73713 73714 73715 73716 | if( memcmp(pTab->zName, "sqlite_", 7)==0 ){ /* Do not gather statistics on system tables */ return; } assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, db->aDb[iDb].zName ) ){ return; } #endif /* Establish a read-lock on the table at the shared-cache level. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iIdxCur = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | > | | > > > | 75326 75327 75328 75329 75330 75331 75332 75333 75334 75335 75336 75337 75338 75339 75340 75341 75342 75343 75344 75345 75346 75347 75348 75349 75350 75351 75352 75353 75354 75355 75356 75357 75358 75359 | if( memcmp(pTab->zName, "sqlite_", 7)==0 ){ /* Do not gather statistics on system tables */ return; } assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, db->aDb[iDb].zName ) ){ return; } #endif /* Establish a read-lock on the table at the shared-cache level. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iIdxCur = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; KeyInfo *pKey; if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; nCol = pIdx->nColumn; pKey = sqlite3IndexKeyinfo(pParse, pIdx); if( iMem+1+(nCol*2)>pParse->nMem ){ pParse->nMem = iMem+1+(nCol*2); } /* Open a cursor to the index to be analyzed. */ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, |
︙ | ︙ | |||
73869 73870 73871 73872 73873 73874 73875 | ** I = (K+D-1)/D ** ** If K==0 then no entry is made into the sqlite_stat1 table. ** If K>0 then it is always the case the D>0 so division by zero ** is never possible. */ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno); | | | 75502 75503 75504 75505 75506 75507 75508 75509 75510 75511 75512 75513 75514 75515 75516 | ** I = (K+D-1)/D ** ** If K==0 then no entry is made into the sqlite_stat1 table. ** If K>0 then it is always the case the D>0 so division by zero ** is never possible. */ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno); if( jZeroRows<0 ){ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); } for(i=0; i<nCol; i++){ sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); |
︙ | ︙ | |||
73895 73896 73897 73898 73899 73900 73901 73902 | ** containing NULL as the index name and the row count as the content. */ if( pTab->pIndex==0 ){ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); VdbeComment((v, "%s", pTab->zName)); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno); sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); }else{ | > | | < < | < | 75528 75529 75530 75531 75532 75533 75534 75535 75536 75537 75538 75539 75540 75541 75542 75543 75544 75545 75546 75547 75548 75549 75550 75551 75552 75553 | ** containing NULL as the index name and the row count as the content. */ if( pTab->pIndex==0 ){ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); VdbeComment((v, "%s", pTab->zName)); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno); sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno); }else{ sqlite3VdbeJumpHere(v, jZeroRows); jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto); } sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); if( pParse->nMem<regRec ) pParse->nMem = regRec; sqlite3VdbeJumpHere(v, jZeroRows); } /* ** Generate code that will cause the most recent index analysis to ** be loaded into internal hash tables where is can be used. */ static void loadAnalysis(Parse *pParse, int iDb){ |
︙ | ︙ | |||
73935 73936 73937 73938 73939 73940 73941 | HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; | | > | | > | > | > > > | | 75566 75567 75568 75569 75570 75571 75572 75573 75574 75575 75576 75577 75578 75579 75580 75581 75582 75583 75584 75585 75586 75587 75588 75589 75590 75591 75592 75593 75594 75595 75596 75597 75598 75599 75600 75601 75602 75603 75604 75605 75606 75607 75608 75609 75610 | HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, 0, 0); iMem = pParse->nMem+1; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, 0, iStatCur, iMem); } loadAnalysis(pParse, iDb); } /* ** Generate code that will do an analysis of a single table in ** a database. If pOnlyIdx is not NULL then it is a single index ** in pTab that should be analyzed. */ static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; if( pOnlyIdx ){ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); }else{ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); } analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1); loadAnalysis(pParse, iDb); } /* ** Generate code for the ANALYZE command. The parser calls this routine ** when it recognizes an ANALYZE command. ** |
︙ | ︙ | |||
73981 73982 73983 73984 73985 73986 73987 73988 73989 73990 73991 73992 73993 73994 | */ SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ sqlite3 *db = pParse->db; int iDb; int i; char *z, *zDb; Table *pTab; Token *pTableName; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; | > | 75618 75619 75620 75621 75622 75623 75624 75625 75626 75627 75628 75629 75630 75631 75632 | */ SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ sqlite3 *db = pParse->db; int iDb; int i; char *z, *zDb; Table *pTab; Index *pIdx; Token *pTableName; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; |
︙ | ︙ | |||
74005 74006 74007 74008 74009 74010 74011 | /* Form 2: Analyze the database or table named */ iDb = sqlite3FindDb(db, pName1); if( iDb>=0 ){ analyzeDatabase(pParse, iDb); }else{ z = sqlite3NameFromToken(db, pName1); if( z ){ | > > | < < | > > > | < < | > | 75643 75644 75645 75646 75647 75648 75649 75650 75651 75652 75653 75654 75655 75656 75657 75658 75659 75660 75661 75662 75663 75664 75665 75666 75667 75668 75669 75670 75671 75672 75673 75674 75675 75676 75677 | /* Form 2: Analyze the database or table named */ iDb = sqlite3FindDb(db, pName1); if( iDb>=0 ){ analyzeDatabase(pParse, iDb); }else{ z = sqlite3NameFromToken(db, pName1); if( z ){ if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ analyzeTable(pParse, pTab, 0); } sqlite3DbFree(db, z); } } }else{ /* Form 3: Analyze the fully qualified table name */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); if( iDb>=0 ){ zDb = db->aDb[iDb].zName; z = sqlite3NameFromToken(db, pTableName); if( z ){ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ analyzeTable(pParse, pTab, 0); } sqlite3DbFree(db, z); } } } } /* ** Used to pass information from the analyzer reader through to the |
︙ | ︙ | |||
74085 74086 74087 74088 74089 74090 74091 74092 74093 74094 74095 74096 74097 74098 | v = v*10 + c - '0'; z++; } if( i==0 ) pTable->nRowEst = v; if( pIndex==0 ) break; pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. | > > > > | 75725 75726 75727 75728 75729 75730 75731 75732 75733 75734 75735 75736 75737 75738 75739 75740 75741 75742 | v = v*10 + c - '0'; z++; } if( i==0 ) pTable->nRowEst = v; if( pIndex==0 ) break; pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; if( memcmp(z, "unordered", 10)==0 ){ pIndex->bUnordered = 1; break; } } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. |
︙ | ︙ | |||
74139 74140 74141 74142 74143 74144 74145 | analysisInfo sInfo; HashElem *i; char *zSql; int rc; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); | < > | 75783 75784 75785 75786 75787 75788 75789 75790 75791 75792 75793 75794 75795 75796 75797 75798 75799 | analysisInfo sInfo; HashElem *i; char *zSql; int rc; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); /* Clear any prior statistics */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; } |
︙ | ︙ | |||
74430 74431 74432 74433 74434 74435 74436 | zKey = (char *)sqlite3_value_blob(argv[2]); rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); break; case SQLITE_NULL: /* No key specified. Use the key from the main database */ sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); | > | > | 76074 76075 76076 76077 76078 76079 76080 76081 76082 76083 76084 76085 76086 76087 76088 76089 76090 | zKey = (char *)sqlite3_value_blob(argv[2]); rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); break; case SQLITE_NULL: /* No key specified. Use the key from the main database */ sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); if( nKey>0 || sqlite3BtreeGetReserve(db->aDb[0].pBt)>0 ){ rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); } break; } } #endif /* If the file was opened successfully, read the schema for the new database. ** If this fails, or if opening the file failed, then close the file and |
︙ | ︙ | |||
74454 74455 74456 74457 74458 74459 74460 | int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; } | | | 76100 76101 76102 76103 76104 76105 76106 76107 76108 76109 76110 76111 76112 76113 76114 | int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; } sqlite3ResetInternalSchema(db, -1); db->nDb = iDb; if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ db->mallocFailed = 1; sqlite3DbFree(db, zErrDyn); zErrDyn = sqlite3MPrintf(db, "out of memory"); }else if( zErrDyn==0 ){ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile); |
︙ | ︙ | |||
74526 74527 74528 74529 74530 74531 74532 | sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); goto detach_error; } sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; | | | 76172 76173 76174 76175 76176 76177 76178 76179 76180 76181 76182 76183 76184 76185 76186 | sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); goto detach_error; } sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; sqlite3ResetInternalSchema(db, -1); return; detach_error: sqlite3_result_error(context, zErr, -1); } /* |
︙ | ︙ | |||
74566 74567 74568 74569 74570 74571 74572 | ){ pParse->nErr++; goto attach_end; } #ifndef SQLITE_OMIT_AUTHORIZATION if( pAuthArg ){ | > > | > | < | 76212 76213 76214 76215 76216 76217 76218 76219 76220 76221 76222 76223 76224 76225 76226 76227 76228 76229 76230 | ){ pParse->nErr++; goto attach_end; } #ifndef SQLITE_OMIT_AUTHORIZATION if( pAuthArg ){ char *zAuthArg; if( pAuthArg->op==TK_STRING ){ zAuthArg = pAuthArg->u.zToken; }else{ zAuthArg = 0; } rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0); if(rc!=SQLITE_OK ){ goto attach_end; } } #endif /* SQLITE_OMIT_AUTHORIZATION */ |
︙ | ︙ | |||
75194 75195 75196 75197 75198 75199 75200 | /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ if( pParse->cookieGoto>0 ){ | | > > | > | 76842 76843 76844 76845 76846 76847 76848 76849 76850 76851 76852 76853 76854 76855 76856 76857 76858 76859 76860 76861 76862 76863 76864 76865 76866 76867 | /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ if( pParse->cookieGoto>0 ){ yDbMask mask; int iDb; sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ if( (mask & pParse->cookieMask)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); if( db->init.busy==0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); sqlite3VdbeAddOp3(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb], db->aDb[iDb].pSchema->iGeneration); } } #ifndef SQLITE_OMIT_VIRTUALTABLE { int i; for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); |
︙ | ︙ | |||
75315 75316 75317 75318 75319 75320 75321 75322 75323 75324 75325 75326 75327 75328 75329 75330 75331 | */ SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; int nName; assert( zName!=0 ); nName = sqlite3Strlen30(zName); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); if( p ) break; } return p; } /* | > > > | 76966 76967 76968 76969 76970 76971 76972 76973 76974 76975 76976 76977 76978 76979 76980 76981 76982 76983 76984 76985 | */ SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; int nName; assert( zName!=0 ); nName = sqlite3Strlen30(zName); /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); if( p ) break; } return p; } /* |
︙ | ︙ | |||
75377 75378 75379 75380 75381 75382 75383 75384 75385 75386 75387 75388 75389 75390 75391 75392 75393 75394 75395 | ** TEMP first, then MAIN, then any auxiliary databases added ** using the ATTACH command. */ SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; int nName = sqlite3Strlen30(zName); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ Schema *pSchema = db->aDb[j].pSchema; assert( pSchema ); if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; p = sqlite3HashFind(&pSchema->idxHash, zName, nName); if( p ) break; } return p; } /* | > > > | 77031 77032 77033 77034 77035 77036 77037 77038 77039 77040 77041 77042 77043 77044 77045 77046 77047 77048 77049 77050 77051 77052 | ** TEMP first, then MAIN, then any auxiliary databases added ** using the ATTACH command. */ SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; int nName = sqlite3Strlen30(zName); /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ Schema *pSchema = db->aDb[j].pSchema; assert( pSchema ); if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&pSchema->idxHash, zName, nName); if( p ) break; } return p; } /* |
︙ | ︙ | |||
75408 75409 75410 75411 75412 75413 75414 | ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; int len; | | > > | | 77065 77066 77067 77068 77069 77070 77071 77072 77073 77074 77075 77076 77077 77078 77079 77080 77081 77082 77083 77084 77085 | ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; int len; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &db->aDb[iDb].pSchema->idxHash; len = sqlite3Strlen30(zIdxName); pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); if( ALWAYS(pIndex) ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; /* Justification of ALWAYS(); The index must be on the list of ** indices. */ p = pIndex->pTable->pIndex; |
︙ | ︙ | |||
75437 75438 75439 75440 75441 75442 75443 | /* ** Erase all schema information from the in-memory hash tables of ** a single database. This routine is called to reclaim memory ** before the database closes. It is also called during a rollback ** if there were schema changes during the transaction or if a ** schema-cookie mismatch occurs. ** | | | | | > > > > | | > > > > | | | < | | > > | > > > > > > > | 77096 77097 77098 77099 77100 77101 77102 77103 77104 77105 77106 77107 77108 77109 77110 77111 77112 77113 77114 77115 77116 77117 77118 77119 77120 77121 77122 77123 77124 77125 77126 77127 77128 77129 77130 77131 77132 77133 77134 77135 77136 77137 77138 77139 77140 77141 77142 77143 77144 77145 | /* ** Erase all schema information from the in-memory hash tables of ** a single database. This routine is called to reclaim memory ** before the database closes. It is also called during a rollback ** if there were schema changes during the transaction or if a ** schema-cookie mismatch occurs. ** ** If iDb<0 then reset the internal schema tables for all database ** files. If iDb>=0 then reset the internal schema for only the ** single file indicated. */ SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ int i, j; assert( iDb<db->nDb ); if( iDb>=0 ){ /* Case 1: Reset the single schema identified by iDb */ Db *pDb = &db->aDb[iDb]; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); assert( pDb->pSchema!=0 ); sqlite3SchemaClear(pDb->pSchema); /* If any database other than TEMP is reset, then also reset TEMP ** since TEMP might be holding triggers that reference tables in the ** other database. */ if( iDb!=1 ){ pDb = &db->aDb[1]; assert( pDb->pSchema!=0 ); sqlite3SchemaClear(pDb->pSchema); } return; } /* Case 2 (from here to the end): Reset all schemas for all attached ** databases. */ assert( iDb<0 ); sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ sqlite3SchemaClear(pDb->pSchema); } } db->flags &= ~SQLITE_InternChanges; sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); /* If one or more of the auxiliary database files has been closed, ** then remove them from the auxiliary database list. We take the ** opportunity to do this here since we have just deleted all of the |
︙ | ︙ | |||
75542 75543 75544 75545 75546 75547 75548 75549 75550 75551 75552 75553 75554 75555 | pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema ); if( !db || db->pnBytesFreed==0 ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 ); assert( pOld==pIndex || pOld==0 ); } freeIndex(db, pIndex); } /* Delete any foreign keys attached to this table. */ sqlite3FkDelete(db, pTable); | > | 77217 77218 77219 77220 77221 77222 77223 77224 77225 77226 77227 77228 77229 77230 77231 | pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema ); if( !db || db->pnBytesFreed==0 ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 ); assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); assert( pOld==pIndex || pOld==0 ); } freeIndex(db, pIndex); } /* Delete any foreign keys attached to this table. */ sqlite3FkDelete(db, pTable); |
︙ | ︙ | |||
75576 75577 75578 75579 75580 75581 75582 75583 75584 75585 75586 75587 75588 75589 | SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDb<db->nDb ); assert( zTabName ); testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, sqlite3Strlen30(zTabName),0); sqlite3DeleteTable(db, p); db->flags |= SQLITE_InternChanges; } | > | 77252 77253 77254 77255 77256 77257 77258 77259 77260 77261 77262 77263 77264 77265 77266 | SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDb<db->nDb ); assert( zTabName ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, sqlite3Strlen30(zTabName),0); sqlite3DeleteTable(db, p); db->flags |= SQLITE_InternChanges; } |
︙ | ︙ | |||
75830 75831 75832 75833 75834 75835 75836 75837 75838 75839 75840 75841 75842 75843 | if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "table %T already exists", pName); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, zDb)!=0 ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; } | > > > | 77507 77508 77509 77510 77511 77512 77513 77514 77515 77516 77517 77518 77519 77520 77521 77522 77523 | if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "table %T already exists", pName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, zDb)!=0 ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; } |
︙ | ︙ | |||
75860 75861 75862 75863 75864 75865 75866 75867 75868 75869 75870 75871 75872 75873 | /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ #ifndef SQLITE_OMIT_AUTOINCREMENT if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ pTable->pSchema->pSeqTab = pTable; } #endif /* Begin generating the code that will insert the table record into ** the SQLITE_MASTER table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any | > | 77540 77541 77542 77543 77544 77545 77546 77547 77548 77549 77550 77551 77552 77553 77554 | /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ #ifndef SQLITE_OMIT_AUTOINCREMENT if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pTable->pSchema->pSeqTab = pTable; } #endif /* Begin generating the code that will insert the table record into ** the SQLITE_MASTER table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any |
︙ | ︙ | |||
76320 76321 76322 76323 76324 76325 76326 76327 76328 76329 76330 76331 76332 76333 | ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){ int r1 = sqlite3GetTempReg(pParse); sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); sqlite3ReleaseTempReg(pParse, r1); } /* ** Measure the number of characters needed to output the given | > | 78001 78002 78003 78004 78005 78006 78007 78008 78009 78010 78011 78012 78013 78014 78015 | ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){ int r1 = sqlite3GetTempReg(pParse); sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); sqlite3ReleaseTempReg(pParse, r1); } /* ** Measure the number of characters needed to output the given |
︙ | ︙ | |||
76427 76428 76429 76430 76431 76432 76433 | const char *zType; sqlite3_snprintf(n-k, &zStmt[k], zSep); k += sqlite3Strlen30(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zName); assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); | | | 78109 78110 78111 78112 78113 78114 78115 78116 78117 78118 78119 78120 78121 78122 78123 | const char *zType; sqlite3_snprintf(n-k, &zStmt[k], zSep); k += sqlite3Strlen30(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zName); assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); testcase( pCol->affinity==SQLITE_AFF_TEXT ); testcase( pCol->affinity==SQLITE_AFF_NONE ); testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); testcase( pCol->affinity==SQLITE_AFF_INTEGER ); testcase( pCol->affinity==SQLITE_AFF_REAL ); zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; |
︙ | ︙ | |||
76622 76623 76624 76625 76626 76627 76628 76629 76630 76631 76632 76633 76634 76635 76636 76637 76638 76639 76640 76641 76642 76643 76644 76645 76646 76647 76648 76649 76650 76651 76652 76653 76654 76655 | #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( p->tabFlags & TF_Autoincrement ){ Db *pDb = &db->aDb[iDb]; if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy ){ Table *pOld; Schema *pSchema = p->pSchema; pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, sqlite3Strlen30(p->zName),p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ db->mallocFailed = 1; return; } | > > | 78304 78305 78306 78307 78308 78309 78310 78311 78312 78313 78314 78315 78316 78317 78318 78319 78320 78321 78322 78323 78324 78325 78326 78327 78328 78329 78330 78331 78332 78333 78334 78335 78336 78337 78338 78339 | #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( p->tabFlags & TF_Autoincrement ){ Db *pDb = &db->aDb[iDb]; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy ){ Table *pOld; Schema *pSchema = p->pSchema; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, sqlite3Strlen30(p->zName),p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ db->mallocFailed = 1; return; } |
︙ | ︙ | |||
76826 76827 76828 76829 76830 76831 76832 76833 76834 76835 76836 76837 76838 76839 76840 76841 76842 76843 76844 76845 76846 76847 76848 76849 76850 76851 76852 76853 76854 76855 76856 76857 76858 76859 | if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); pTable->pSchema->flags |= DB_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqlite3SelectDelete(db, pSel); } else { nErr++; } #endif /* SQLITE_OMIT_VIEW */ return nErr; } #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ sqliteDeleteColumnNames(db, pTab); pTab->aCol = 0; pTab->nCol = 0; | > > | 78510 78511 78512 78513 78514 78515 78516 78517 78518 78519 78520 78521 78522 78523 78524 78525 78526 78527 78528 78529 78530 78531 78532 78533 78534 78535 78536 78537 78538 78539 78540 78541 78542 78543 78544 78545 | if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); pTable->pSchema->flags |= DB_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqlite3SelectDelete(db, pSel); } else { nErr++; } #endif /* SQLITE_OMIT_VIEW */ return nErr; } #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; assert( sqlite3SchemaMutexHeld(db, idx, 0) ); if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ sqliteDeleteColumnNames(db, pTab); pTab->aCol = 0; pTab->nCol = 0; |
︙ | ︙ | |||
76879 76880 76881 76882 76883 76884 76885 | ** because the first match might be for one of the deleted indices ** or tables and not the table/index that is actually being moved. ** We must continue looping until all tables and indices with ** rootpage==iFrom have been converted to have a rootpage of iTo ** in order to be certain that we got the right one. */ #ifndef SQLITE_OMIT_AUTOVACUUM | | > > > | 78565 78566 78567 78568 78569 78570 78571 78572 78573 78574 78575 78576 78577 78578 78579 78580 78581 78582 78583 78584 78585 | ** because the first match might be for one of the deleted indices ** or tables and not the table/index that is actually being moved. ** We must continue looping until all tables and indices with ** rootpage==iFrom have been converted to have a rootpage of iTo ** in order to be certain that we got the right one. */ #ifndef SQLITE_OMIT_AUTOVACUUM SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ HashElem *pElem; Hash *pHash; Db *pDb; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb = &db->aDb[iDb]; pHash = &pDb->pSchema->tblHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); if( pTab->tnum==iFrom ){ pTab->tnum = iTo; } } |
︙ | ︙ | |||
77008 77009 77010 77011 77012 77013 77014 77015 77016 77017 77018 77019 77020 77021 | assert( pName->nSrc==1 ); if( noErr ) db->suppressErr++; pTab = sqlite3LocateTable(pParse, isView, pName->a[0].zName, pName->a[0].zDatabase); if( noErr ) db->suppressErr--; if( pTab==0 ){ goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDb<db->nDb ); /* If pTab is a virtual table, call ViewGetColumnNames() to ensure ** it is initialized. | > | 78697 78698 78699 78700 78701 78702 78703 78704 78705 78706 78707 78708 78709 78710 78711 | assert( pName->nSrc==1 ); if( noErr ) db->suppressErr++; pTab = sqlite3LocateTable(pParse, isView, pName->a[0].zName, pName->a[0].zDatabase); if( noErr ) db->suppressErr--; if( pTab==0 ){ if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDb<db->nDb ); /* If pTab is a virtual table, call ViewGetColumnNames() to ensure ** it is initialized. |
︙ | ︙ | |||
77256 77257 77258 77259 77260 77261 77262 77263 77264 77265 77266 77267 77268 77269 | z += n+1; } } pFKey->isDeferred = 0; pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey ); if( pNextTo==pFKey ){ db->mallocFailed = 1; goto fk_end; } | > | 78946 78947 78948 78949 78950 78951 78952 78953 78954 78955 78956 78957 78958 78959 78960 | z += n+1; } } pFKey->isDeferred = 0; pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey ); if( pNextTo==pFKey ){ db->mallocFailed = 1; goto fk_end; } |
︙ | ︙ | |||
77525 77526 77527 77528 77529 77530 77531 77532 77533 77534 77535 77536 77537 77538 | sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); } goto exit_create_index; } }else{ int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} | > > > | 79216 79217 79218 79219 79220 79221 79222 79223 79224 79225 79226 79227 79228 79229 79230 79231 79232 | sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); } goto exit_create_index; } }else{ int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} |
︙ | ︙ | |||
77611 77612 77613 77614 77615 77616 77617 77618 77619 77620 77621 77622 77623 77624 | zExtra = (char *)(&pIndex->zName[nName+1]); memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = (u8)onError; pIndex->autoIndex = (u8)(pName==0); pIndex->pSchema = db->aDb[iDb].pSchema; /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ | > | 79305 79306 79307 79308 79309 79310 79311 79312 79313 79314 79315 79316 79317 79318 79319 | zExtra = (char *)(&pIndex->zName[nName+1]); memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = (u8)onError; pIndex->autoIndex = (u8)(pName==0); pIndex->pSchema = db->aDb[iDb].pSchema; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ |
︙ | ︙ | |||
77740 77741 77742 77743 77744 77745 77746 77747 77748 77749 77750 77751 77752 77753 | } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( db->init.busy ){ Index *p; p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, sqlite3Strlen30(pIndex->zName), pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ db->mallocFailed = 1; goto exit_create_index; | > | 79435 79436 79437 79438 79439 79440 79441 79442 79443 79444 79445 79446 79447 79448 79449 | } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( db->init.busy ){ Index *p; assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, sqlite3Strlen30(pIndex->zName), pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ db->mallocFailed = 1; goto exit_create_index; |
︙ | ︙ | |||
77916 77917 77918 77919 77920 77921 77922 77923 77924 77925 77926 77927 77928 77929 | if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; } pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ if( !ifExists ){ sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); } pParse->checkSchema = 1; goto exit_drop_index; } if( pIndex->autoIndex ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); | > > | 79612 79613 79614 79615 79616 79617 79618 79619 79620 79621 79622 79623 79624 79625 79626 79627 | if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; } pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ if( !ifExists ){ sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); }else{ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); } pParse->checkSchema = 1; goto exit_drop_index; } if( pIndex->autoIndex ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); |
︙ | ︙ | |||
78488 78489 78490 78491 78492 78493 78494 | if( pToplevel->cookieGoto==0 ){ Vdbe *v = sqlite3GetVdbe(pToplevel); if( v==0 ) return; /* This only happens if there was a prior error */ pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; } if( iDb>=0 ){ sqlite3 *db = pToplevel->db; | | > | > > > > > > > > > > > > > > > | | 80186 80187 80188 80189 80190 80191 80192 80193 80194 80195 80196 80197 80198 80199 80200 80201 80202 80203 80204 80205 80206 80207 80208 80209 80210 80211 80212 80213 80214 80215 80216 80217 80218 80219 80220 80221 80222 80223 80224 80225 80226 80227 80228 80229 80230 80231 80232 80233 80234 80235 80236 80237 80238 80239 80240 80241 80242 80243 80244 80245 80246 80247 80248 | if( pToplevel->cookieGoto==0 ){ Vdbe *v = sqlite3GetVdbe(pToplevel); if( v==0 ) return; /* This only happens if there was a prior error */ pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; } if( iDb>=0 ){ sqlite3 *db = pToplevel->db; yDbMask mask; assert( iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDb<SQLITE_MAX_ATTACHED+2 ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); mask = ((yDbMask)1)<<iDb; if( (pToplevel->cookieMask & mask)==0 ){ pToplevel->cookieMask |= mask; pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pToplevel); } } } } /* ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each ** attached database. Otherwise, invoke it for the database named zDb only. */ SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ sqlite3 *db = pParse->db; int i; for(i=0; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ sqlite3CodeVerifySchema(pParse, i); } } } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setStatement parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. */ SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3CodeVerifySchema(pParse, iDb); pToplevel->writeMask |= ((yDbMask)1)<<iDb; pToplevel->isMultiWrite |= setStatement; } /* ** Indicate that the statement currently under construction might write ** more than one entry (example: deleting one row then inserting another, ** inserting multiple rows in a table, or inserting a row and index entries.) |
︙ | ︙ | |||
78620 78621 78622 78623 78624 78625 78626 78627 78628 78629 78630 78631 78632 78633 | static void reindexDatabases(Parse *pParse, char const *zColl){ Db *pDb; /* A single database */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ assert( pDb!=0 ); for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, zColl); } } | > | 80334 80335 80336 80337 80338 80339 80340 80341 80342 80343 80344 80345 80346 80347 80348 | static void reindexDatabases(Parse *pParse, char const *zColl){ Db *pDb; /* A single database */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ assert( pDb!=0 ); for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, zColl); } } |
︙ | ︙ | |||
79138 79139 79140 79141 79142 79143 79144 | } return 0; } /* ** Free all resources held by the schema structure. The void* argument points ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the | | | | 80853 80854 80855 80856 80857 80858 80859 80860 80861 80862 80863 80864 80865 80866 80867 80868 80869 80870 80871 80872 | } return 0; } /* ** Free all resources held by the schema structure. The void* argument points ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the ** pointer itself, it just cleans up subsidiary resources (i.e. the contents ** of the schema hash tables). ** ** The Schema.cache_size variable is not cleared. */ SQLITE_PRIVATE void sqlite3SchemaClear(void *p){ Hash temp1; Hash temp2; HashElem *pElem; Schema *pSchema = (Schema *)p; temp1 = pSchema->tblHash; temp2 = pSchema->trigHash; |
︙ | ︙ | |||
79165 79166 79167 79168 79169 79170 79171 | for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(0, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; | > > | > | | 80880 80881 80882 80883 80884 80885 80886 80887 80888 80889 80890 80891 80892 80893 80894 80895 80896 80897 80898 80899 80900 80901 80902 80903 80904 80905 80906 80907 | for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(0, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; if( pSchema->flags & DB_SchemaLoaded ){ pSchema->iGeneration++; pSchema->flags &= ~DB_SchemaLoaded; } } /* ** Find and return the schema associated with a BTree. Create ** a new one if necessary. */ SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); }else{ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); } if( !p ){ db->mallocFailed = 1; }else if ( 0==p->file_format ){ sqlite3HashInit(&p->tblHash); |
︙ | ︙ | |||
79209 79210 79211 79212 79213 79214 79215 | ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. */ /* | > > > | | > > > > | > > | 80927 80928 80929 80930 80931 80932 80933 80934 80935 80936 80937 80938 80939 80940 80941 80942 80943 80944 80945 80946 80947 80948 80949 80950 80951 80952 | ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. */ /* ** While a SrcList can in general represent multiple tables and subqueries ** (as in the FROM clause of a SELECT statement) in this case it contains ** the name of a single table, as one might find in an INSERT, DELETE, ** or UPDATE statement. Look up that table in the symbol table and ** return a pointer. Set an error message and return NULL if the table ** name is not found or if any other error occurs. ** ** The following fields are initialized appropriate in pSrc: ** ** pSrc->a[0].pTab Pointer to the Table object ** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one ** */ SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ struct SrcList_item *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc==1 ); pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); sqlite3DeleteTable(pParse->db, pItem->pTab); |
︙ | ︙ | |||
79730 79731 79732 79733 79734 79735 79736 | /* Delete the index and table entries. Skip this step if pTab is really ** a view (in which case the only effect of the DELETE statement is to ** fire the INSTEAD OF triggers). */ if( pTab->pSelect==0 ){ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0); sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); if( count ){ | | | 81457 81458 81459 81460 81461 81462 81463 81464 81465 81466 81467 81468 81469 81470 81471 | /* Delete the index and table entries. Skip this step if pTab is really ** a view (in which case the only effect of the DELETE statement is to ** fire the INSTEAD OF triggers). */ if( pTab->pSelect==0 ){ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0); sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); if( count ){ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); } } /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just deleted. */ sqlite3FkActions(pParse, pTab, 0, iOld); |
︙ | ︙ | |||
79821 79822 79823 79824 79825 79826 79827 | }else{ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); | | | 81548 81549 81550 81551 81552 81553 81554 81555 81556 81557 81558 81559 81560 81561 81562 | }else{ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); } sqlite3ReleaseTempRange(pParse, regBase, nCol+1); return regBase; } /************** End of delete.c **********************************************/ /************** Begin file func.c ********************************************/ |
︙ | ︙ | |||
81066 81067 81068 81069 81070 81071 81072 | p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->cnt++; if( type==SQLITE_INTEGER ){ i64 v = sqlite3_value_int64(argv[0]); p->rSum += v; | | < < < < | < | 82793 82794 82795 82796 82797 82798 82799 82800 82801 82802 82803 82804 82805 82806 82807 82808 | p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->cnt++; if( type==SQLITE_INTEGER ){ i64 v = sqlite3_value_int64(argv[0]); p->rSum += v; if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ p->overflow = 1; } }else{ p->rSum += sqlite3_value_double(argv[0]); p->approx = 1; } } } |
︙ | ︙ | |||
81823 81824 81825 81826 81827 81828 81829 | int iParent = pIdx->aiColumn[i]+1+regData; sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); } sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); | | | 83545 83546 83547 83548 83549 83550 83551 83552 83553 83554 83555 83556 83557 83558 83559 | int iParent = pIdx->aiColumn[i]+1+regData; sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); } sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } |
︙ | ︙ | |||
82112 82113 82114 82115 82116 82117 82118 | SQLITE_PRIVATE void sqlite3FkCheck( Parse *pParse, /* Parse context */ Table *pTab, /* Row is being deleted from this table */ int regOld, /* Previous row data is stored here */ int regNew /* New row data is stored here */ ){ sqlite3 *db = pParse->db; /* Database handle */ | < < | 83834 83835 83836 83837 83838 83839 83840 83841 83842 83843 83844 83845 83846 83847 83848 83849 83850 83851 83852 83853 83854 83855 83856 83857 83858 | SQLITE_PRIVATE void sqlite3FkCheck( Parse *pParse, /* Parse context */ Table *pTab, /* Row is being deleted from this table */ int regOld, /* Previous row data is stored here */ int regNew /* New row data is stored here */ ){ sqlite3 *db = pParse->db; /* Database handle */ FKey *pFKey; /* Used to iterate through FKs */ int iDb; /* Index of database containing pTab */ const char *zDb; /* Name of database containing pTab */ int isIgnoreErrors = pParse->disableTriggers; /* Exactly one of regOld and regNew should be non-zero. */ assert( (regOld==0)!=(regNew==0) ); /* If foreign-keys are disabled, this function is a no-op. */ if( (db->flags&SQLITE_ForeignKeys)==0 ) return; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zDb = db->aDb[iDb].zName; /* Loop through all the foreign key constraints for which pTab is the ** child table (the table that the foreign key definition is part of). */ for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ Table *pTo; /* Parent table of foreign key pFKey */ |
︙ | ︙ | |||
82581 82582 82583 82584 82585 82586 82587 82588 82589 82590 82591 82592 82593 82594 | ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash ** hash table. */ SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ /* Remove the FK from the fkeyHash hash table. */ if( !db || db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ | > | 84301 84302 84303 84304 84305 84306 84307 84308 84309 84310 84311 84312 84313 84314 84315 | ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash ** hash table. */ SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ /* Remove the FK from the fkeyHash hash table. */ if( !db || db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ |
︙ | ︙ | |||
82740 82741 82742 82743 82744 82745 82746 | zColAff[i] = pTab->aCol[i].affinity; } zColAff[pTab->nCol] = '\0'; pTab->zColAff = zColAff; } | | | 84461 84462 84463 84464 84465 84466 84467 84468 84469 84470 84471 84472 84473 84474 84475 | zColAff[i] = pTab->aCol[i].affinity; } zColAff[pTab->nCol] = '\0'; pTab->zColAff = zColAff; } sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program beginning at location ** iStartAddr throught the end of the program. This is used to see if ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can |
︙ | ︙ | |||
82854 82855 82856 82857 82858 82859 82860 82861 82862 82863 82864 82865 82866 82867 | assert( pParse->pTriggerTab==0 ); assert( pParse==sqlite3ParseToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); | > | 84575 84576 84577 84578 84579 84580 84581 84582 84583 84584 84585 84586 84587 84588 84589 | assert( pParse->pTriggerTab==0 ); assert( pParse==sqlite3ParseToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
︙ | ︙ | |||
82904 82905 82906 82907 82908 82909 82910 82911 82912 82913 82914 82915 82916 82917 | for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; int j1, j2, j3, j4, j5; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); j2 = sqlite3VdbeAddOp0(v, OP_Rewind); j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); sqlite3VdbeAddOp2(v, OP_Next, 0, j3); sqlite3VdbeJumpHere(v, j2); | > | 84626 84627 84628 84629 84630 84631 84632 84633 84634 84635 84636 84637 84638 84639 84640 | for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; int j1, j2, j3, j4, j5; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); j2 = sqlite3VdbeAddOp0(v, OP_Rewind); j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); sqlite3VdbeAddOp2(v, OP_Next, 0, j3); sqlite3VdbeJumpHere(v, j2); |
︙ | ︙ | |||
83082 83083 83084 83085 83086 83087 83088 | /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ | < | 84805 84806 84807 84808 84809 84810 84811 84812 84813 84814 84815 84816 84817 84818 | /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int regEof = 0; /* Register recording end of SELECT data */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ |
︙ | ︙ | |||
83411 83412 83413 83414 83415 83416 83417 | addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); } /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assemblied row record. */ | < | 85133 85134 85135 85136 85137 85138 85139 85140 85141 85142 85143 85144 85145 85146 | addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); } /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assemblied row record. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; |
︙ | ︙ | |||
83805 83806 83807 83808 83809 83810 83811 | || onError==OE_Ignore || onError==OE_Replace ); switch( onError ){ case OE_Abort: sqlite3MayAbort(pParse); case OE_Rollback: case OE_Fail: { char *zMsg; | | | 85526 85527 85528 85529 85530 85531 85532 85533 85534 85535 85536 85537 85538 85539 85540 | || onError==OE_Ignore || onError==OE_Replace ); switch( onError ){ case OE_Abort: sqlite3MayAbort(pParse); case OE_Rollback: case OE_Fail: { char *zMsg; sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT, onError, regData+i); zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); break; } case OE_Ignore: { |
︙ | ︙ | |||
83945 83946 83947 83948 83949 83950 83951 | sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); | | | 85666 85667 85668 85669 85670 85671 85672 85673 85674 85675 85676 85677 85678 85679 85680 | sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); continue; /* pIdx is not a UNIQUE index */ |
︙ | ︙ | |||
84085 84086 84087 84088 84089 84090 84091 | pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); if( !pParse->nested ){ | | | 85806 85807 85808 85809 85810 85811 85812 85813 85814 85815 85816 85817 85818 85819 85820 | pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); if( !pParse->nested ){ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); } sqlite3VdbeChangeP5(v, pik_flags); } /* ** Generate code that will open cursors for a table and for all ** indices of that table. The "baseCur" parameter is the cursor number used |
︙ | ︙ | |||
85088 85089 85090 85091 85092 85093 85094 85095 85096 85097 85098 85099 85100 85101 | # define sqlite3_column_origin_name16 0 #endif #ifdef SQLITE_OMIT_COMPLETE # define sqlite3_complete 0 # define sqlite3_complete16 0 #endif #ifdef SQLITE_OMIT_PROGRESS_CALLBACK # define sqlite3_progress_handler 0 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3_create_module 0 | > > > > > | 86809 86810 86811 86812 86813 86814 86815 86816 86817 86818 86819 86820 86821 86822 86823 86824 86825 86826 86827 | # define sqlite3_column_origin_name16 0 #endif #ifdef SQLITE_OMIT_COMPLETE # define sqlite3_complete 0 # define sqlite3_complete16 0 #endif #ifdef SQLITE_OMIT_DECLTYPE # define sqlite3_column_decltype16 0 # define sqlite3_column_decltype 0 #endif #ifdef SQLITE_OMIT_PROGRESS_CALLBACK # define sqlite3_progress_handler 0 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3_create_module 0 |
︙ | ︙ | |||
85780 85781 85782 85783 85784 85785 85786 | if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " "from within a transaction"); return SQLITE_ERROR; } sqlite3BtreeClose(db->aDb[1].pBt); db->aDb[1].pBt = 0; | | | 87506 87507 87508 87509 87510 87511 87512 87513 87514 87515 87516 87517 87518 87519 87520 | if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " "from within a transaction"); return SQLITE_ERROR; } sqlite3BtreeClose(db->aDb[1].pBt); db->aDb[1].pBt = 0; sqlite3ResetInternalSchema(db, -1); } return SQLITE_OK; } #endif /* SQLITE_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* |
︙ | ︙ | |||
86049 86050 86051 86052 86053 86054 86055 | sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); pParse->nMem += 2; addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, iDb); sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE); }else{ | | < > | 87775 87776 87777 87778 87779 87780 87781 87782 87783 87784 87785 87786 87787 87788 87789 87790 87791 87792 87793 | sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); pParse->nMem += 2; addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, iDb); sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE); }else{ int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, size, 1); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } }else /* ** PRAGMA [database.]page_size |
︙ | ︙ | |||
86356 86357 86358 86359 86360 86361 86362 86363 86364 86365 | ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); }else{ | > | < | 88082 88083 88084 88085 88086 88087 88088 88089 88090 88091 88092 88093 88094 88095 88096 88097 88098 88099 88100 | ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !zRight ){ returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); }else{ int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } }else /* ** PRAGMA temp_store |
︙ | ︙ | |||
86777 86778 86779 86780 86781 86782 86783 86784 86785 86786 86787 86788 86789 86790 | sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. */ pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | > | 88503 88504 88505 88506 88507 88508 88509 88510 88511 88512 88513 88514 88515 88516 88517 | sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
︙ | ︙ | |||
86842 86843 86844 86845 86846 86847 86848 | { OP_Halt, 0, 0, 0}, }; r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0); jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); | | | 88569 88570 88571 88572 88573 88574 88575 88576 88577 88578 88579 88580 88581 88582 88583 | { OP_Halt, 0, 0, 0}, }; r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0); jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT); sqlite3VdbeJumpHere(v, addr+9); sqlite3VdbeJumpHere(v, jmp2); } sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1); sqlite3VdbeJumpHere(v, loopTop); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static const VdbeOpList cntIdx[] = { |
︙ | ︙ | |||
86872 86873 86874 86875 86876 86877 86878 | sqlite3VdbeChangeP1(v, addr+1, j+2); sqlite3VdbeChangeP2(v, addr+1, addr+4); sqlite3VdbeChangeP1(v, addr+3, j+2); sqlite3VdbeChangeP2(v, addr+3, addr+2); sqlite3VdbeJumpHere(v, addr+4); sqlite3VdbeChangeP4(v, addr+6, "wrong # of entries in index ", P4_STATIC); | | | 88599 88600 88601 88602 88603 88604 88605 88606 88607 88608 88609 88610 88611 88612 88613 | sqlite3VdbeChangeP1(v, addr+1, j+2); sqlite3VdbeChangeP2(v, addr+1, addr+4); sqlite3VdbeChangeP1(v, addr+3, j+2); sqlite3VdbeChangeP2(v, addr+3, addr+2); sqlite3VdbeJumpHere(v, addr+4); sqlite3VdbeChangeP4(v, addr+6, "wrong # of entries in index ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT); } } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); sqlite3VdbeChangeP2(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr+1); sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); |
︙ | ︙ | |||
87051 87052 87053 87054 87055 87056 87057 | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } }else #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ #ifndef SQLITE_OMIT_WAL /* | | > > > > > > > > > > > > > > > | > | 88778 88779 88780 88781 88782 88783 88784 88785 88786 88787 88788 88789 88790 88791 88792 88793 88794 88795 88796 88797 88798 88799 88800 88801 88802 88803 88804 88805 88806 88807 88808 88809 88810 88811 88812 88813 88814 | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } }else #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ #ifndef SQLITE_OMIT_WAL /* ** PRAGMA [database.]wal_checkpoint = passive|full|restart ** ** Checkpoint the database. */ if( sqlite3StrICmp(zLeft, "wal_checkpoint")==0 ){ int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); int eMode = SQLITE_CHECKPOINT_PASSIVE; if( zRight ){ if( sqlite3StrICmp(zRight, "full")==0 ){ eMode = SQLITE_CHECKPOINT_FULL; }else if( sqlite3StrICmp(zRight, "restart")==0 ){ eMode = SQLITE_CHECKPOINT_RESTART; } } if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 3); pParse->nMem = 3; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC); sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); }else /* ** PRAGMA wal_autocheckpoint ** PRAGMA wal_autocheckpoint = N ** ** Configure a database connection to automatically checkpoint a database |
︙ | ︙ | |||
87208 87209 87210 87211 87212 87213 87214 | sqlite3SetString(pData->pzErrMsg, db, "malformed database schema (%s)", zObj); if( zExtra ){ *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg, "%s - %s", *pData->pzErrMsg, zExtra); } } | | | 88951 88952 88953 88954 88955 88956 88957 88958 88959 88960 88961 88962 88963 88964 88965 | sqlite3SetString(pData->pzErrMsg, db, "malformed database schema (%s)", zObj); if( zExtra ){ *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg, "%s - %s", *pData->pzErrMsg, zExtra); } } pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT; } /* ** This is the callback routine for the code that initializes the ** database. See sqlite3Init() below for additional information. ** This routine is also called from the OP_ParseSchema opcode of the VDBE. ** |
︙ | ︙ | |||
87315 87316 87317 87318 87319 87320 87321 | int size; Table *pTab; Db *pDb; char const *azArg[4]; int meta[5]; InitData initData; char const *zMasterSchema; | | | 89058 89059 89060 89061 89062 89063 89064 89065 89066 89067 89068 89069 89070 89071 89072 | int size; Table *pTab; Db *pDb; char const *azArg[4]; int meta[5]; InitData initData; char const *zMasterSchema; char const *zMasterName; int openedTransaction = 0; /* ** The master database table has a structure like this */ static const char master_schema[] = "CREATE TABLE sqlite_master(\n" |
︙ | ︙ | |||
87452 87453 87454 87455 87456 87457 87458 | } }else{ DbSetProperty(db, iDb, DB_Empty); } pDb->pSchema->enc = ENC(db); if( pDb->pSchema->cache_size==0 ){ | | < | 89195 89196 89197 89198 89199 89200 89201 89202 89203 89204 89205 89206 89207 89208 89209 89210 | } }else{ DbSetProperty(db, iDb, DB_Empty); } pDb->pSchema->enc = ENC(db); if( pDb->pSchema->cache_size==0 ){ size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN |
︙ | ︙ | |||
87513 87514 87515 87516 87517 87518 87519 | if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif } if( db->mallocFailed ){ rc = SQLITE_NOMEM; | | | 89255 89256 89257 89258 89259 89260 89261 89262 89263 89264 89265 89266 89267 89268 89269 | if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif } if( db->mallocFailed ){ rc = SQLITE_NOMEM; sqlite3ResetInternalSchema(db, -1); } if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){ /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider ** the schema loaded, even if errors occurred. In this situation the ** current sqlite3_prepare() operation will fail, but the following one ** will attempt to compile the supplied statement against whatever subset ** of the schema was loaded before the error occurred. The primary |
︙ | ︙ | |||
87645 87646 87647 87648 87649 87650 87651 87652 87653 87654 87655 87656 87657 87658 87659 | openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ pParse->rc = SQLITE_SCHEMA; } /* Close the transaction, if one was opened. */ if( openedTransaction ){ sqlite3BtreeCommit(pBt); } | > > | 89387 89388 89389 89390 89391 89392 89393 89394 89395 89396 89397 89398 89399 89400 89401 89402 89403 | openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ sqlite3ResetInternalSchema(db, iDb); pParse->rc = SQLITE_SCHEMA; } /* Close the transaction, if one was opened. */ if( openedTransaction ){ sqlite3BtreeCommit(pBt); } |
︙ | ︙ | |||
87787 87788 87789 87790 87791 87792 87793 | if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM; } if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK; if( pParse->checkSchema ){ schemaIsValid(pParse); } | < < < | 89531 89532 89533 89534 89535 89536 89537 89538 89539 89540 89541 89542 89543 89544 | if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM; } if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK; if( pParse->checkSchema ){ schemaIsValid(pParse); } if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM; } if( pzTail ){ *pzTail = pParse->zTail; } rc = pParse->rc; |
︙ | ︙ | |||
88842 88843 88844 88845 88846 88847 88848 88849 88850 88851 88852 88853 88854 88855 | if( pParse->explain==2 ){ Vdbe *v = pParse->pVdbe; char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } } /* ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function ** is a no-op. Otherwise, it adds a single row of output to the EQP result, ** where the caption is of one of the two forms: ** ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" | > > > > > > > > > > > > > > > > | 90583 90584 90585 90586 90587 90588 90589 90590 90591 90592 90593 90594 90595 90596 90597 90598 90599 90600 90601 90602 90603 90604 90605 90606 90607 90608 90609 90610 90611 90612 | if( pParse->explain==2 ){ Vdbe *v = pParse->pVdbe; char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } } /* ** Assign expression b to lvalue a. A second, no-op, version of this macro ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code ** in sqlite3Select() to assign values to structure member variables that ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the ** code with #ifndef directives. */ # define explainSetInteger(a, b) a = b #else /* No-op versions of the explainXXX() functions and macros. */ # define explainTempTable(y,z) # define explainSetInteger(y,z) #endif #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) /* ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function ** is a no-op. Otherwise, it adds a single row of output to the EQP result, ** where the caption is of one of the two forms: ** ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" |
︙ | ︙ | |||
88873 88874 88875 88876 88877 88878 88879 | char *zMsg = sqlite3MPrintf( pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) ); sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } } | < < < < < < < < < < < < | 90630 90631 90632 90633 90634 90635 90636 90637 90638 90639 90640 90641 90642 90643 90644 90645 90646 | char *zMsg = sqlite3MPrintf( pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) ); sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } } #else /* No-op versions of the explainXXX() functions and macros. */ # define explainComposite(v,w,x,y,z) #endif /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. |
︙ | ︙ | |||
90687 90688 90689 90690 90691 90692 90693 90694 90695 90696 90697 90698 90699 90700 | ** have a WHERE clause. ** ** (20) If the sub-query is a compound select, then it must not use ** an ORDER BY clause. Ticket #3773. We could relax this constraint ** somewhat by saying that the terms of the ORDER BY clause must ** appear as unmodified result columns in the outer query. But ** have other optimizations in mind to deal with that case. ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. | > > > | 92432 92433 92434 92435 92436 92437 92438 92439 92440 92441 92442 92443 92444 92445 92446 92447 92448 | ** have a WHERE clause. ** ** (20) If the sub-query is a compound select, then it must not use ** an ORDER BY clause. Ticket #3773. We could relax this constraint ** somewhat by saying that the terms of the ORDER BY clause must ** appear as unmodified result columns in the outer query. But ** have other optimizations in mind to deal with that case. ** ** (21) The subquery does not use LIMIT or the outer query is not ** DISTINCT. (See ticket [752e1646fc]). ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. |
︙ | ︙ | |||
90756 90757 90758 90759 90760 90761 90762 90763 90764 90765 90766 90767 90768 90769 | return 0; /* Restriction (6) */ } if( p->pOrderBy && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ /* OBSOLETE COMMENT 1: ** Restriction 3: If the subquery is a join, make sure the subquery is ** not used as the right operand of an outer join. Examples of why this ** is not allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) | > > > | 92504 92505 92506 92507 92508 92509 92510 92511 92512 92513 92514 92515 92516 92517 92518 92519 92520 | return 0; /* Restriction (6) */ } if( p->pOrderBy && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ return 0; /* Restriction (21) */ } /* OBSOLETE COMMENT 1: ** Restriction 3: If the subquery is a join, make sure the subquery is ** not used as the right operand of an outer join. Examples of why this ** is not allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
︙ | ︙ | |||
91648 91649 91650 91651 91652 91653 91654 91655 91656 91657 91658 91659 91660 91661 | for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } pAggInfo->directMode = 0; sqlite3ExprCacheClear(pParse); } /* ** Generate code for the SELECT statement given in the p argument. ** ** The results are distributed in various ways depending on the ** contents of the SelectDest structure pointed to by argument pDest ** as follows: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > | 93399 93400 93401 93402 93403 93404 93405 93406 93407 93408 93409 93410 93411 93412 93413 93414 93415 93416 93417 93418 93419 93420 93421 93422 93423 93424 93425 93426 93427 93428 93429 93430 93431 93432 93433 93434 93435 93436 93437 93438 | for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } pAggInfo->directMode = 0; sqlite3ExprCacheClear(pParse); } /* ** Add a single OP_Explain instruction to the VDBE to explain a simple ** count(*) query ("SELECT count(*) FROM pTab"). */ #ifndef SQLITE_OMIT_EXPLAIN static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", pTab->zName, pIdx ? "USING COVERING INDEX " : "", pIdx ? pIdx->zName : "", pTab->nRowEst ); sqlite3VdbeAddOp4( pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC ); } } #else # define explainSimpleCount(a,b,c) #endif /* ** Generate code for the SELECT statement given in the p argument. ** ** The results are distributed in various ways depending on the ** contents of the SelectDest structure pointed to by argument pDest ** as follows: ** |
︙ | ︙ | |||
92259 92260 92261 92262 92263 92264 92265 92266 92267 92268 92269 92270 92271 92272 | /* Open a read-only cursor, execute the OP_Count, close the cursor. */ sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); if( pKeyInfo ){ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); } sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); sqlite3VdbeAddOp1(v, OP_Close, iCsr); }else #endif /* SQLITE_OMIT_BTREECOUNT */ { /* Check if the query is of one of the following forms: ** ** SELECT min(x) FROM ... ** SELECT max(x) FROM ... | > | 94036 94037 94038 94039 94040 94041 94042 94043 94044 94045 94046 94047 94048 94049 94050 | /* Open a read-only cursor, execute the OP_Count, close the cursor. */ sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); if( pKeyInfo ){ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); } sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); sqlite3VdbeAddOp1(v, OP_Close, iCsr); explainSimpleCount(pParse, pTab, pBest); }else #endif /* SQLITE_OMIT_BTREECOUNT */ { /* Check if the query is of one of the following forms: ** ** SELECT min(x) FROM ... ** SELECT max(x) FROM ... |
︙ | ︙ | |||
92717 92718 92719 92720 92721 92722 92723 92724 92725 92726 92727 92728 92729 92730 | if( pParse->disableTriggers ){ return 0; } if( pTmpSchema!=pTab->pSchema ){ HashElem *p; for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){ Trigger *pTrig = (Trigger *)sqliteHashData(p); if( pTrig->pTabSchema==pTab->pSchema && 0==sqlite3StrICmp(pTrig->table, pTab->zName) ){ pTrig->pNext = (pList ? pList : pTab->pTrigger); pList = pTrig; | > | 94495 94496 94497 94498 94499 94500 94501 94502 94503 94504 94505 94506 94507 94508 94509 | if( pParse->disableTriggers ){ return 0; } if( pTmpSchema!=pTab->pSchema ){ HashElem *p; assert( sqlite3SchemaMutexHeld(pParse->db, 0, pTmpSchema) ); for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){ Trigger *pTrig = (Trigger *)sqliteHashData(p); if( pTrig->pTabSchema==pTab->pSchema && 0==sqlite3StrICmp(pTrig->table, pTab->zName) ){ pTrig->pNext = (pList ? pList : pTab->pTrigger); pList = pTrig; |
︙ | ︙ | |||
92828 92829 92830 92831 92832 92833 92834 92835 92836 92837 92838 92839 92840 92841 92842 92843 92844 92845 | /* Check that the trigger name is not reserved and that no trigger of the ** specified name exists */ zName = sqlite3NameFromToken(db, pName); if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto trigger_cleanup; } if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName, sqlite3Strlen30(zName)) ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); } goto trigger_cleanup; } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); | > > > > | 94607 94608 94609 94610 94611 94612 94613 94614 94615 94616 94617 94618 94619 94620 94621 94622 94623 94624 94625 94626 94627 94628 | /* Check that the trigger name is not reserved and that no trigger of the ** specified name exists */ zName = sqlite3NameFromToken(db, pName); if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto trigger_cleanup; } assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName, sqlite3Strlen30(zName)) ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); } goto trigger_cleanup; } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); |
︙ | ︙ | |||
92925 92926 92927 92928 92929 92930 92931 | Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */ char *zName; /* Name of trigger */ sqlite3 *db = pParse->db; /* The database */ DbFixer sFix; /* Fixer object */ int iDb; /* Database containing the trigger */ Token nameToken; /* Trigger name for error reporting */ | < | 94708 94709 94710 94711 94712 94713 94714 94715 94716 94717 94718 94719 94720 94721 | Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */ char *zName; /* Name of trigger */ sqlite3 *db = pParse->db; /* The database */ DbFixer sFix; /* Fixer object */ int iDb; /* Database containing the trigger */ Token nameToken; /* Trigger name for error reporting */ pParse->pNewTrigger = 0; if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup; zName = pTrig->zName; iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); pTrig->step_list = pStepList; while( pStepList ){ pStepList->pTrig = pTrig; |
︙ | ︙ | |||
92968 92969 92970 92971 92972 92973 92974 92975 92976 92977 92978 92979 92980 92981 | db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC ); } if( db->init.busy ){ Trigger *pLink = pTrig; Hash *pHash = &db->aDb[iDb].pSchema->trigHash; pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig); if( pTrig ){ db->mallocFailed = 1; }else if( pLink->pSchema==pLink->pTabSchema ){ Table *pTab; int n = sqlite3Strlen30(pLink->table); pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n); | > | 94750 94751 94752 94753 94754 94755 94756 94757 94758 94759 94760 94761 94762 94763 94764 | db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC ); } if( db->init.busy ){ Trigger *pLink = pTrig; Hash *pHash = &db->aDb[iDb].pSchema->trigHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig); if( pTrig ){ db->mallocFailed = 1; }else if( pLink->pSchema==pLink->pTabSchema ){ Table *pTab; int n = sqlite3Strlen30(pLink->table); pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n); |
︙ | ︙ | |||
93149 93150 93151 93152 93153 93154 93155 93156 93157 93158 93159 93160 93161 93162 93163 93164 93165 93166 93167 93168 93169 93170 93171 | goto drop_trigger_cleanup; } assert( pName->nSrc==1 ); zDb = pName->a[0].zDatabase; zName = pName->a[0].zName; nName = sqlite3Strlen30(zName); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName); if( pTrigger ) break; } if( !pTrigger ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0); } pParse->checkSchema = 1; goto drop_trigger_cleanup; } sqlite3DropTriggerPtr(pParse, pTrigger); drop_trigger_cleanup: | > > > > | 94932 94933 94934 94935 94936 94937 94938 94939 94940 94941 94942 94943 94944 94945 94946 94947 94948 94949 94950 94951 94952 94953 94954 94955 94956 94957 94958 | goto drop_trigger_cleanup; } assert( pName->nSrc==1 ); zDb = pName->a[0].zDatabase; zName = pName->a[0].zName; nName = sqlite3Strlen30(zName); assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName); if( pTrigger ) break; } if( !pTrigger ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0); }else{ sqlite3CodeVerifyNamedSchema(pParse, zDb); } pParse->checkSchema = 1; goto drop_trigger_cleanup; } sqlite3DropTriggerPtr(pParse, pTrigger); drop_trigger_cleanup: |
︙ | ︙ | |||
93225 93226 93227 93228 93229 93230 93231 | { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); | | < > > > > | 95012 95013 95014 95015 95016 95017 95018 95019 95020 95021 95022 95023 95024 95025 95026 95027 95028 95029 95030 95031 95032 95033 95034 95035 95036 95037 95038 95039 95040 95041 95042 95043 95044 95045 | { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT); sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp2(v, OP_Close, 0, 0); sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); if( pParse->nMem<3 ){ pParse->nMem = 3; } } } /* ** Remove a trigger from the hash tables of the sqlite* pointer. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ Trigger *pTrigger; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &(db->aDb[iDb].pSchema->trigHash); pTrigger = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), 0); if( ALWAYS(pTrigger) ){ if( pTrigger->pSchema==pTrigger->pTabSchema ){ Table *pTab = tableOfTrigger(pTrigger); Trigger **pp; for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext)); *pp = (*pp)->pNext; |
︙ | ︙ | |||
93287 93288 93289 93290 93291 93292 93293 | Parse *pParse, /* Parse context */ Table *pTab, /* The table the contains the triggers */ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ ExprList *pChanges, /* Columns that change in an UPDATE statement */ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ ){ int mask = 0; | | > > > > | 95077 95078 95079 95080 95081 95082 95083 95084 95085 95086 95087 95088 95089 95090 95091 95092 95093 95094 95095 95096 | Parse *pParse, /* Parse context */ Table *pTab, /* The table the contains the triggers */ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ ExprList *pChanges, /* Columns that change in an UPDATE statement */ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ ){ int mask = 0; Trigger *pList = 0; Trigger *p; if( (pParse->db->flags & SQLITE_EnableTrigger)!=0 ){ pList = sqlite3TriggerList(pParse, pTab); } assert( pList==0 || IsVirtual(pTab)==0 ); for(p=pList; p; p=p->pNext){ if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){ mask |= p->tr_tm; } } if( pMask ){ |
︙ | ︙ | |||
93888 93889 93890 93891 93892 93893 93894 | /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid; /* The old rowid */ int regNewRowid; /* The new rowid */ int regNew; int regOld = 0; int regRowSet = 0; /* Rowset of rows to be updated */ | < | 95682 95683 95684 95685 95686 95687 95688 95689 95690 95691 95692 95693 95694 95695 | /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid; /* The old rowid */ int regNewRowid; /* The new rowid */ int regNew; int regOld = 0; int regRowSet = 0; /* Rowset of rows to be updated */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto update_cleanup; } assert( pTabList->nSrc==1 ); |
︙ | ︙ | |||
94046 94047 94048 94049 94050 94051 94052 | pParse->nMem += pTab->nCol; } if( chngRowid || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; | < | 95839 95840 95841 95842 95843 95844 95845 95846 95847 95848 95849 95850 95851 95852 | pParse->nMem += pTab->nCol; } if( chngRowid || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into |
︙ | ︙ | |||
94156 94157 94158 94159 94160 94161 94162 | ** with the required old.* column data. */ if( hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; i<pTab->nCol; i++){ | | | 95948 95949 95950 95951 95952 95953 95954 95955 95956 95957 95958 95959 95960 95961 95962 | ** with the required old.* column data. */ if( hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( aXRef[i]<0 || oldmask==0xffffffff || (i<32 && (oldmask & (1<<i))) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOld+i); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i); } } if( chngRowid==0 ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); |
︙ | ︙ | |||
94763 94764 94765 94766 94767 94768 94769 | if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } | > > | > | 96555 96556 96557 96558 96559 96560 96561 96562 96563 96564 96565 96566 96567 96568 96569 96570 96571 96572 96573 96574 96575 | if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } /* This both clears the schemas and reduces the size of the db->aDb[] ** array. */ sqlite3ResetInternalSchema(db, -1); return rc; } #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */ /************** End of vacuum.c **********************************************/ /************** Begin file vtab.c ********************************************/ /* ** 2006 June 10 ** |
︙ | ︙ | |||
94820 94821 94822 94823 94824 94825 94826 | if( pDel && pDel->xDestroy ){ pDel->xDestroy(pDel->pAux); } sqlite3DbFree(db, pDel); if( pDel==pMod ){ db->mallocFailed = 1; } | | | 96615 96616 96617 96618 96619 96620 96621 96622 96623 96624 96625 96626 96627 96628 96629 | if( pDel && pDel->xDestroy ){ pDel->xDestroy(pDel->pAux); } sqlite3DbFree(db, pDel); if( pDel==pMod ){ db->mallocFailed = 1; } sqlite3ResetInternalSchema(db, -1); }else if( xDestroy ){ xDestroy(pAux); } rc = sqlite3ApiExit(db, SQLITE_OK); sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
94917 94918 94919 94920 94921 94922 94923 | VTable *pVTable = p->pVTable; p->pVTable = 0; /* Assert that the mutex (if any) associated with the BtShared database ** that contains table p is held by the caller. See header comments ** above function sqlite3VtabUnlockList() for an explanation of why ** this makes it safe to access the sqlite3.pDisconnect list of any | | > | < < | 96712 96713 96714 96715 96716 96717 96718 96719 96720 96721 96722 96723 96724 96725 96726 96727 96728 | VTable *pVTable = p->pVTable; p->pVTable = 0; /* Assert that the mutex (if any) associated with the BtShared database ** that contains table p is held by the caller. See header comments ** above function sqlite3VtabUnlockList() for an explanation of why ** this makes it safe to access the sqlite3.pDisconnect list of any ** database connection that may have an entry in the p->pVTable list. */ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); while( pVTable ){ sqlite3 *db2 = pVTable->db; VTable *pNext = pVTable->pNext; assert( db2 ); if( db2==db ){ pRet = pVTable; |
︙ | ︙ | |||
95144 95145 95146 95147 95148 95149 95150 | ); sqlite3DbFree(db, zStmt); v = sqlite3GetVdbe(pParse); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); | | > | 96938 96939 96940 96941 96942 96943 96944 96945 96946 96947 96948 96949 96950 96951 96952 96953 96954 96955 96956 96957 96958 96959 96960 96961 96962 96963 96964 96965 96966 96967 | ); sqlite3DbFree(db, zStmt); v = sqlite3GetVdbe(pParse); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, pTab->zName, sqlite3Strlen30(pTab->zName) + 1); } /* If we are rereading the sqlite_master table create the in-memory ** record of the table. The xConnect() method is not called until ** the first time the virtual table is used in an SQL statement. This ** allows a schema that contains virtual tables to be loaded before ** the required virtual table implementations are registered. */ else { Table *pOld; Schema *pSchema = pTab->pSchema; const char *zName = pTab->zName; int nName = sqlite3Strlen30(zName); assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); if( pOld ){ db->mallocFailed = 1; assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } pParse->pNewTable = 0; |
︙ | ︙ | |||
95731 95732 95733 95734 95735 95736 95737 95738 95739 95740 95741 95742 95743 95744 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ /* ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3WhereTrace = 0; #endif | > | 97526 97527 97528 97529 97530 97531 97532 97533 97534 97535 97536 97537 97538 97539 97540 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ /* ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3WhereTrace = 0; #endif |
︙ | ︙ | |||
95831 95832 95833 95834 95835 95836 95837 95838 95839 95840 95841 95842 95843 95844 | #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ #define TERM_CODED 0x04 /* This term is already coded */ #define TERM_COPIED 0x08 /* Has a child */ #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ /* ** An instance of the following structure holds all information about a ** WHERE clause. Mostly this is a container for one or more WhereTerms. */ struct WhereClause { Parse *pParse; /* The parser context */ | > > > > > | 97627 97628 97629 97630 97631 97632 97633 97634 97635 97636 97637 97638 97639 97640 97641 97642 97643 97644 97645 | #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ #define TERM_CODED 0x04 /* This term is already coded */ #define TERM_COPIED 0x08 /* Has a child */ #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ #ifdef SQLITE_ENABLE_STAT2 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ #else # define TERM_VNULL 0x00 /* Disabled if not using stat2 */ #endif /* ** An instance of the following structure holds all information about a ** WHERE clause. Mostly this is a container for one or more WhereTerms. */ struct WhereClause { Parse *pParse; /* The parser context */ |
︙ | ︙ | |||
95924 95925 95926 95927 95928 95929 95930 95931 95932 95933 95934 95935 95936 95937 | #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_MATCH 0x040 #define WO_ISNULL 0x080 #define WO_OR 0x100 /* Two or more OR-connected terms */ #define WO_AND 0x200 /* Two or more AND-connected terms */ #define WO_ALL 0xfff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ /* ** Value for wsFlags returned by bestIndex() and stored in ** WhereLevel.wsFlags. These flags determine which search | > | 97725 97726 97727 97728 97729 97730 97731 97732 97733 97734 97735 97736 97737 97738 97739 | #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_MATCH 0x040 #define WO_ISNULL 0x080 #define WO_OR 0x100 /* Two or more OR-connected terms */ #define WO_AND 0x200 /* Two or more AND-connected terms */ #define WO_NOOP 0x800 /* This term does not restrict search space */ #define WO_ALL 0xfff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ /* ** Value for wsFlags returned by bestIndex() and stored in ** WhereLevel.wsFlags. These flags determine which search |
︙ | ︙ | |||
96106 96107 96108 96109 96110 96111 96112 | /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ int i; | | | 97908 97909 97910 97911 97912 97913 97914 97915 97916 97917 97918 97919 97920 97921 97922 | /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); for(i=0; i<pMaskSet->n; i++){ if( pMaskSet->ix[i]==iCursor ){ return ((Bitmask)1)<<i; } } return 0; } |
︙ | ︙ | |||
96774 96775 96776 96777 96778 96779 96780 | exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; pWC->a[idxNew].iParent = idxTerm; pTerm->nChild = 1; }else{ sqlite3ExprListDelete(db, pList); } | | | 98576 98577 98578 98579 98580 98581 98582 98583 98584 98585 98586 98587 98588 98589 98590 | exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; pWC->a[idxNew].iParent = idxTerm; pTerm->nChild = 1; }else{ sqlite3ExprListDelete(db, pList); } pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* |
︙ | ︙ | |||
97038 97039 97040 97041 97042 97043 97044 97045 97046 97047 97048 97049 97050 97051 | pTerm->nChild = 1; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 98840 98841 98842 98843 98844 98845 98846 98847 98848 98849 98850 98851 98852 98853 98854 98855 98856 98857 98858 98859 98860 98861 98862 98863 98864 98865 98866 98867 98868 98869 98870 98871 98872 98873 98874 98875 98876 98877 98878 98879 98880 98881 98882 98883 98884 98885 98886 98887 98888 98889 98890 98891 98892 98893 98894 | pTerm->nChild = 1; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_STAT2 /* When sqlite_stat2 histogram data is available an operator of the ** form "x IS NOT NULL" can sometimes be evaluated more efficiently ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a ** virtual term of that form. ** ** Note that the virtual term must be tagged with TERM_VNULL. This ** TERM_VNULL tag will suppress the not-null check at the beginning ** of the loop. Without the TERM_VNULL flag, the not-null check at ** the start of the loop will prevent any results from being returned. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); if( idxNew ){ pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = 0; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_GT; pNewTerm->iParent = idxTerm; pTerm = &pWC->a[idxTerm]; pTerm->nChild = 1; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_ENABLE_STAT2 */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* |
︙ | ︙ | |||
97090 97091 97092 97093 97094 97095 97096 97097 97098 97099 97100 97101 97102 97103 | static int isSortingIndex( Parse *pParse, /* Parsing context */ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ Index *pIdx, /* The index we are testing */ int base, /* Cursor number for the table to be sorted */ ExprList *pOrderBy, /* The ORDER BY clause */ int nEqCol, /* Number of index columns with == constraints */ int *pbRev /* Set to 1 if ORDER BY is DESC */ ){ int i, j; /* Loop counters */ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ int nTerm; /* Number of ORDER BY terms */ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; | > | 98933 98934 98935 98936 98937 98938 98939 98940 98941 98942 98943 98944 98945 98946 98947 | static int isSortingIndex( Parse *pParse, /* Parsing context */ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ Index *pIdx, /* The index we are testing */ int base, /* Cursor number for the table to be sorted */ ExprList *pOrderBy, /* The ORDER BY clause */ int nEqCol, /* Number of index columns with == constraints */ int wsFlags, /* Index usages flags */ int *pbRev /* Set to 1 if ORDER BY is DESC */ ){ int i, j; /* Loop counters */ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ int nTerm; /* Number of ORDER BY terms */ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; |
︙ | ︙ | |||
97195 97196 97197 97198 97199 97200 97201 97202 97203 97204 97205 | *pbRev = sortOrder!=0; if( j>=nTerm ){ /* All terms of the ORDER BY clause are covered by this index so ** this index can be used for sorting. */ return 1; } if( pIdx->onError!=OE_None && i==pIdx->nColumn && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ /* All terms of this index match some prefix of the ORDER BY clause ** and the index is UNIQUE and no terms on the tail of the ORDER BY ** clause reference other tables in a join. If this is all true then | > | > > | 99039 99040 99041 99042 99043 99044 99045 99046 99047 99048 99049 99050 99051 99052 99053 99054 99055 99056 99057 99058 99059 99060 | *pbRev = sortOrder!=0; if( j>=nTerm ){ /* All terms of the ORDER BY clause are covered by this index so ** this index can be used for sorting. */ return 1; } if( pIdx->onError!=OE_None && i==pIdx->nColumn && (wsFlags & WHERE_COLUMN_NULL)==0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ /* All terms of this index match some prefix of the ORDER BY clause ** and the index is UNIQUE and no terms on the tail of the ORDER BY ** clause reference other tables in a join. If this is all true then ** the order by clause is superfluous. Not that if the matching ** condition is IS NULL then the result is not necessarily unique ** even on a UNIQUE index, so disallow those cases. */ return 1; } return 0; } /* ** Prepare a crude estimate of the logarithm of the input value. |
︙ | ︙ | |||
97436 97437 97438 97439 97440 97441 97442 | return; } /* Search for any equality comparison term */ pWCEnd = &pWC->a[pWC->nTerm]; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | | | 99283 99284 99285 99286 99287 99288 99289 99290 99291 99292 99293 99294 99295 99296 99297 | return; } /* Search for any equality comparison term */ pWCEnd = &pWC->a[pWC->nTerm]; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", pCost->rCost, costTempIdx)); pCost->rCost = costTempIdx; pCost->plan.nRow = logN + 1; pCost->plan.wsFlags = WHERE_TEMP_INDEX; pCost->used = pTerm->prereqRight; break; } |
︙ | ︙ | |||
97557 97558 97559 97560 97561 97562 97563 | int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.leftColumn; pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | | | 99404 99405 99406 99407 99408 99409 99410 99411 99412 99413 99414 99415 99416 99417 99418 | int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.leftColumn; pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; n++; } } } assert( (u32)n==pLevel->plan.nEq ); /* Add additional columns needed to make the automatic index into |
︙ | ︙ | |||
97915 97916 97917 97918 97919 97920 97921 | bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Argument pIdx is a pointer to an index structure that has an array of ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column | | | | > > | > | > > > > > > | > > > > > > > > > > | 99762 99763 99764 99765 99766 99767 99768 99769 99770 99771 99772 99773 99774 99775 99776 99777 99778 99779 99780 99781 99782 99783 99784 99785 99786 99787 99788 99789 99790 99791 99792 99793 99794 99795 99796 99797 99798 99799 99800 99801 99802 99803 99804 99805 99806 99807 99808 99809 99810 99811 99812 99813 99814 99815 99816 99817 99818 99819 99820 99821 99822 99823 | bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Argument pIdx is a pointer to an index structure that has an array of ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column ** stored in Index.aSample. These samples divide the domain of values stored ** the index into (SQLITE_INDEX_SAMPLES+1) regions. ** Region 0 contains all values less than the first sample value. Region ** 1 contains values between the first and second samples. Region 2 contains ** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES ** contains values larger than the last sample. ** ** If the index contains many duplicates of a single value, then it is ** possible that two or more adjacent samples can hold the same value. ** When that is the case, the smallest possible region code is returned ** when roundUp is false and the largest possible region code is returned ** when roundUp is true. ** ** If successful, this function determines which of the regions value ** pVal lies in, sets *piRegion to the region index (a value between 0 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. ** Or, if an OOM occurs while converting text values between encodings, ** SQLITE_NOMEM is returned and *piRegion is undefined. */ #ifdef SQLITE_ENABLE_STAT2 static int whereRangeRegion( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ sqlite3_value *pVal, /* Value to consider */ int roundUp, /* Return largest valid region if true */ int *piRegion /* OUT: Region of domain in which value lies */ ){ assert( roundUp==0 || roundUp==1 ); if( ALWAYS(pVal) ){ IndexSample *aSample = pIdx->aSample; int i = 0; int eType = sqlite3_value_type(pVal); if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ double r = sqlite3_value_double(pVal); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ if( aSample[i].eType==SQLITE_NULL ) continue; if( aSample[i].eType>=SQLITE_TEXT ) break; if( roundUp ){ if( aSample[i].u.r>r ) break; }else{ if( aSample[i].u.r>=r ) break; } } }else if( eType==SQLITE_NULL ){ i = 0; if( roundUp ){ while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++; } }else{ sqlite3 *db = pParse->db; CollSeq *pColl; const u8 *z; int n; |
︙ | ︙ | |||
97974 97975 97976 97977 97978 97979 97980 | return SQLITE_NOMEM; } assert( z && pColl && pColl->xCmp ); } n = sqlite3ValueBytes(pVal, pColl->enc); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ | | | | | | 99840 99841 99842 99843 99844 99845 99846 99847 99848 99849 99850 99851 99852 99853 99854 99855 99856 99857 99858 99859 99860 99861 99862 99863 99864 99865 99866 99867 99868 99869 99870 99871 99872 99873 99874 99875 | return SQLITE_NOMEM; } assert( z && pColl && pColl->xCmp ); } n = sqlite3ValueBytes(pVal, pColl->enc); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ int c; int eSampletype = aSample[i].eType; if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; if( (eSampletype!=eType) ) break; #ifndef SQLITE_OMIT_UTF16 if( pColl->enc!=SQLITE_UTF8 ){ int nSample; char *zSample = sqlite3Utf8to16( db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample ); if( !zSample ){ assert( db->mallocFailed ); return SQLITE_NOMEM; } c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); sqlite3DbFree(db, zSample); }else #endif { c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); } if( c-roundUp>=0 ) break; } } assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); *piRegion = i; } return SQLITE_OK; |
︙ | ︙ | |||
98078 98079 98080 98081 98082 98083 98084 | ** value of 1 indicates that the proposed range scan is expected to visit ** approximately 1/100th (1%) of the rows selected by the nEq equality ** constraints (if any). A return value of 100 indicates that it is expected ** that the range scan will visit every row (100%) selected by the equality ** constraints. ** ** In the absence of sqlite_stat2 ANALYZE data, each range inequality | | | | > > > > > > | | | | > | | > | < > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | 99944 99945 99946 99947 99948 99949 99950 99951 99952 99953 99954 99955 99956 99957 99958 99959 99960 99961 99962 99963 99964 99965 99966 99967 99968 99969 99970 99971 99972 99973 99974 99975 99976 99977 99978 99979 99980 99981 99982 99983 99984 99985 99986 99987 99988 99989 99990 99991 99992 99993 99994 99995 99996 99997 99998 99999 100000 100001 100002 100003 100004 100005 100006 100007 100008 100009 100010 100011 100012 100013 100014 100015 100016 100017 100018 100019 100020 100021 100022 100023 100024 100025 100026 100027 100028 100029 100030 100031 100032 100033 100034 100035 100036 100037 100038 100039 100040 100041 100042 100043 100044 100045 100046 100047 100048 100049 100050 100051 100052 100053 100054 100055 100056 100057 100058 100059 100060 100061 100062 100063 100064 100065 100066 100067 100068 100069 100070 100071 100072 100073 100074 100075 100076 100077 100078 100079 100080 100081 100082 100083 100084 100085 100086 100087 100088 100089 100090 100091 100092 100093 100094 100095 100096 100097 100098 100099 100100 100101 100102 100103 100104 100105 100106 100107 100108 100109 100110 100111 100112 100113 100114 100115 100116 100117 100118 100119 100120 100121 100122 100123 100124 100125 100126 100127 100128 100129 100130 100131 100132 100133 100134 100135 100136 100137 100138 100139 100140 100141 100142 100143 100144 100145 100146 100147 100148 100149 100150 100151 100152 100153 100154 100155 100156 100157 100158 100159 100160 100161 100162 100163 100164 100165 100166 100167 100168 100169 100170 100171 100172 100173 100174 100175 100176 100177 100178 100179 100180 100181 100182 100183 100184 100185 100186 100187 100188 100189 100190 100191 100192 100193 100194 100195 100196 100197 100198 100199 100200 100201 100202 | ** value of 1 indicates that the proposed range scan is expected to visit ** approximately 1/100th (1%) of the rows selected by the nEq equality ** constraints (if any). A return value of 100 indicates that it is expected ** that the range scan will visit every row (100%) selected by the equality ** constraints. ** ** In the absence of sqlite_stat2 ANALYZE data, each range inequality ** reduces the search space by 3/4ths. Hence a single constraint (x>?) ** results in a return of 25 and a range constraint (x>? AND x<?) results ** in a return of 6. */ static int whereRangeScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index containing the range-compared column; "x" */ int nEq, /* index into p->aCol[] of the range-compared column */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ int *piEst /* OUT: Return value */ ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_STAT2 if( nEq==0 && p->aSample ){ sqlite3_value *pLowerVal = 0; sqlite3_value *pUpperVal = 0; int iEst; int iLower = 0; int iUpper = SQLITE_INDEX_SAMPLES; int roundUpUpper = 0; int roundUpLower = 0; u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pLower ){ Expr *pExpr = pLower->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE ); roundUpLower = (pLower->eOperator==WO_GT) ?1:0; } if( rc==SQLITE_OK && pUpper ){ Expr *pExpr = pUpper->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE ); roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0; } if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ sqlite3ValueFree(pLowerVal); sqlite3ValueFree(pUpperVal); goto range_est_fallback; }else if( pLowerVal==0 ){ rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); if( pLower ) iLower = iUpper/2; }else if( pUpperVal==0 ){ rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; }else{ rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); if( rc==SQLITE_OK ){ rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); } } WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper)); iEst = iUpper - iLower; testcase( iEst==SQLITE_INDEX_SAMPLES ); assert( iEst<=SQLITE_INDEX_SAMPLES ); if( iEst<1 ){ *piEst = 50/SQLITE_INDEX_SAMPLES; }else{ *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES; } sqlite3ValueFree(pLowerVal); sqlite3ValueFree(pUpperVal); return rc; } range_est_fallback: #else UNUSED_PARAMETER(pParse); UNUSED_PARAMETER(p); UNUSED_PARAMETER(nEq); #endif assert( pLower || pUpper ); *piEst = 100; if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4; if( pUpper ) *piEst /= 4; return rc; } #ifdef SQLITE_ENABLE_STAT2 /* ** Estimate the number of rows that will be returned based on ** an equality constraint x=VALUE and where that VALUE occurs in ** the histogram data. This only works when x is the left-most ** column of an index and sqlite_stat2 histogram data is available ** for that index. When pExpr==NULL that means the constraint is ** "x IS NULL" instead of "x=VALUE". ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index whose left-most column is pTerm */ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ double *pnRow /* Write the revised row estimate here */ ){ sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */ int iLower, iUpper; /* Range of histogram regions containing pRhs */ u8 aff; /* Column affinity */ int rc; /* Subfunction return code */ double nRowEst; /* New estimate of the number of rows */ assert( p->aSample!=0 ); aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pExpr ){ rc = valueFromExpr(pParse, pExpr, aff, &pRhs); if( rc ) goto whereEqualScanEst_cancel; }else{ pRhs = sqlite3ValueNew(pParse->db); } if( pRhs==0 ) return SQLITE_NOTFOUND; rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower); if( rc ) goto whereEqualScanEst_cancel; rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper); if( rc ) goto whereEqualScanEst_cancel; WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper)); if( iLower>=iUpper ){ nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2); if( nRowEst<*pnRow ) *pnRow = nRowEst; }else{ nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES; *pnRow = nRowEst; } whereEqualScanEst_cancel: sqlite3ValueFree(pRhs); return rc; } #endif /* defined(SQLITE_ENABLE_STAT2) */ #ifdef SQLITE_ENABLE_STAT2 /* ** Estimate the number of rows that will be returned based on ** an IN constraint where the right-hand side of the IN operator ** is a list of values. Example: ** ** WHERE x IN (1,2,3,4) ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index whose left-most column is pTerm */ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ double *pnRow /* Write the revised row estimate here */ ){ sqlite3_value *pVal = 0; /* One value from list */ int iLower, iUpper; /* Range of histogram regions containing pRhs */ u8 aff; /* Column affinity */ int rc = SQLITE_OK; /* Subfunction return code */ double nRowEst; /* New estimate of the number of rows */ int nSpan = 0; /* Number of histogram regions spanned */ int nSingle = 0; /* Histogram regions hit by a single value */ int nNotFound = 0; /* Count of values that are not constants */ int i; /* Loop counter */ u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */ u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */ assert( p->aSample!=0 ); aff = p->pTable->aCol[p->aiColumn[0]].affinity; memset(aSpan, 0, sizeof(aSpan)); memset(aSingle, 0, sizeof(aSingle)); for(i=0; i<pList->nExpr; i++){ sqlite3ValueFree(pVal); rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal); if( rc ) break; if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){ nNotFound++; continue; } rc = whereRangeRegion(pParse, p, pVal, 0, &iLower); if( rc ) break; rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper); if( rc ) break; if( iLower>=iUpper ){ aSingle[iLower] = 1; }else{ assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES ); while( iLower<iUpper ) aSpan[iLower++] = 1; } } if( rc==SQLITE_OK ){ for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){ if( aSpan[i] ){ nSpan++; }else if( aSingle[i] ){ nSingle++; } } nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES) + nNotFound*p->aiRowEst[1]; if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; *pnRow = nRowEst; WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n", nSpan, nSingle, nNotFound, nRowEst)); } sqlite3ValueFree(pVal); return rc; } #endif /* defined(SQLITE_ENABLE_STAT2) */ /* ** Find the best query plan for accessing a particular table. Write the ** best query plan and its cost into the WhereCost object supplied as the ** last parameter. ** ** The lowest cost plan wins. The cost is an estimate of the amount of ** CPU and disk I/O needed to process the requested result. ** Factors that influence cost include: ** ** * The estimated number of rows that will be retrieved. (The ** fewer the better.) ** ** * Whether or not sorting must occur. ** ** * Whether or not there must be separate lookups in the ** index and in the main table. ** ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in ** the SQL statement, then this function only considers plans using the ** named index. If no such plan is found, then the returned cost is ** SQLITE_BIG_DBL. If a plan is found that uses the named index, ** then the cost is calculated in the usual way. ** ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table ** in the SELECT statement, then no indexes are considered. However, the ** selected plan may still take advantage of the built-in rowid primary key ** index. */ static void bestBtreeIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ struct SrcList_item *pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for indexing */ |
︙ | ︙ | |||
98224 98225 98226 98227 98228 98229 98230 | if( pSrc->pIndex ){ /* An INDEXED BY clause specifies a particular index to use */ pIdx = pProbe = pSrc->pIndex; wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); eqTermMask = idxEqTermMask; }else{ | | | > > | > > > | > > | 100231 100232 100233 100234 100235 100236 100237 100238 100239 100240 100241 100242 100243 100244 100245 100246 100247 100248 100249 100250 100251 100252 100253 100254 100255 100256 100257 100258 100259 100260 100261 100262 100263 100264 100265 100266 100267 100268 100269 100270 100271 100272 100273 100274 100275 100276 100277 100278 100279 100280 100281 100282 100283 100284 100285 100286 100287 100288 100289 100290 | if( pSrc->pIndex ){ /* An INDEXED BY clause specifies a particular index to use */ pIdx = pProbe = pSrc->pIndex; wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); eqTermMask = idxEqTermMask; }else{ /* There is no INDEXED BY clause. Create a fake Index object in local ** variable sPk to represent the rowid primary key index. Make this ** fake index the first in a chain of Index objects with all of the real ** indices to follow */ Index *pFirst; /* First of real indices on the table */ memset(&sPk, 0, sizeof(Index)); sPk.nColumn = 1; sPk.aiColumn = &aiColumnPk; sPk.aiRowEst = aiRowEstPk; sPk.onError = OE_Replace; sPk.pTable = pSrc->pTab; aiRowEstPk[0] = pSrc->pTab->nRowEst; aiRowEstPk[1] = 1; pFirst = pSrc->pTab->pIndex; if( pSrc->notIndexed==0 ){ /* The real indices of the table are only considered if the ** NOT INDEXED qualifier is omitted from the FROM clause */ sPk.pNext = pFirst; } pProbe = &sPk; wsFlagMask = ~( WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE ); eqTermMask = WO_EQ|WO_IN; pIdx = 0; } /* Loop over all indices looking for the best one to use */ for(; pProbe; pIdx=pProbe=pProbe->pNext){ const unsigned int * const aiRowEst = pProbe->aiRowEst; double cost; /* Cost of using pProbe */ double nRow; /* Estimated number of rows in result set */ double log10N; /* base-10 logarithm of nRow (inexact) */ int rev; /* True to scan in reverse order */ int wsFlags = 0; Bitmask used = 0; /* The following variables are populated based on the properties of ** index being evaluated. They are then used to determine the expected ** cost and number of rows returned. ** ** nEq: ** Number of equality terms that can be implemented using the index. ** In other words, the number of initial fields in the index that ** are used in == or IN or NOT NULL constraints of the WHERE clause. ** ** nInMul: ** The "in-multiplier". This is an estimate of how many seek operations ** SQLite must perform on the index in question. For example, if the ** WHERE clause is: ** ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) |
︙ | ︙ | |||
98286 98287 98288 98289 98290 98291 98292 | ** ** If there exists a WHERE term of the form "x IN (SELECT ...)", then ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used | | > > | | | > | | | | | > > | | | | | | | | > > > > | > | > > > | | 100300 100301 100302 100303 100304 100305 100306 100307 100308 100309 100310 100311 100312 100313 100314 100315 100316 100317 100318 100319 100320 100321 100322 100323 100324 100325 100326 100327 100328 100329 100330 100331 100332 100333 100334 100335 100336 100337 100338 100339 100340 100341 100342 100343 100344 100345 100346 100347 100348 100349 100350 100351 100352 100353 100354 100355 100356 100357 100358 100359 100360 100361 100362 100363 100364 100365 100366 100367 100368 100369 100370 100371 100372 100373 100374 100375 100376 100377 100378 100379 100380 100381 100382 100383 100384 100385 100386 | ** ** If there exists a WHERE term of the form "x IN (SELECT ...)", then ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used ** in determining the value of nInMul. Note that the RHS of the ** IN operator must be a SELECT, not a value list, for this variable ** to be true. ** ** estBound: ** An estimate on the amount of the table that must be searched. A ** value of 100 means the entire table is searched. Range constraints ** might reduce this to a value less than 100 to indicate that only ** a fraction of the table needs searching. In the absence of ** sqlite_stat2 ANALYZE data, a single inequality reduces the search ** space to 1/4rd its original size. So an x>? constraint reduces ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6. ** ** bSort: ** Boolean. True if there is an ORDER BY clause that will require an ** external sort (i.e. scanning the index being evaluated will not ** correctly order records). ** ** bLookup: ** Boolean. True if a table lookup is required for each index entry ** visited. In other words, true if this is not a covering index. ** This is always false for the rowid primary key index of a table. ** For other indexes, it is true unless all the columns of the table ** used by the SELECT statement are present in the index (such an ** index is sometimes described as a covering index). ** For example, given the index on (a, b), the second of the following ** two queries requires table b-tree lookups in order to find the value ** of column c, but the first does not because columns a and b are ** both available in the index. ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; /* Number of == or IN terms matching index */ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ int nInMul = 1; /* Number of distinct equalities to lookup */ int estBound = 100; /* Estimated reduction in search space */ int nBound = 0; /* Number of range constraints seen */ int bSort = 0; /* True if external sort required */ int bLookup = 0; /* True if not a covering index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ #ifdef SQLITE_ENABLE_STAT2 WhereTerm *pFirstTerm = 0; /* First term matching the index */ #endif /* Determine the values of nEq and nInMul */ for(nEq=0; nEq<pProbe->nColumn; nEq++){ int j = pProbe->aiColumn[nEq]; pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); if( pTerm==0 ) break; wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); if( pTerm->eOperator & WO_IN ){ Expr *pExpr = pTerm->pExpr; wsFlags |= WHERE_COLUMN_IN; if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ nInMul *= 25; bInEst = 1; }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ /* "x IN (value, value, ...)" */ nInMul *= pExpr->x.pList->nExpr; } }else if( pTerm->eOperator & WO_ISNULL ){ wsFlags |= WHERE_COLUMN_NULL; } #ifdef SQLITE_ENABLE_STAT2 if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; #endif used |= pTerm->prereqRight; } /* Determine the value of estBound. */ if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){ int j = pProbe->aiColumn[nEq]; if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); if( pTop ){ nBound = 1; |
︙ | ︙ | |||
98376 98377 98378 98379 98380 98381 98382 | } /* If there is an ORDER BY clause and the index being considered will ** naturally scan rows in the required order, set the appropriate flags ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index ** will scan rows in a different order, set the bSort variable. */ if( pOrderBy ){ | | > | > | 100403 100404 100405 100406 100407 100408 100409 100410 100411 100412 100413 100414 100415 100416 100417 100418 100419 100420 | } /* If there is an ORDER BY clause and the index being considered will ** naturally scan rows in the required order, set the appropriate flags ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index ** will scan rows in a different order, set the bSort variable. */ if( pOrderBy ){ if( (wsFlags & WHERE_COLUMN_IN)==0 && pProbe->bUnordered==0 && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev) ){ wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; wsFlags |= (rev ? WHERE_REVERSE : 0); }else{ bSort = 1; } } |
︙ | ︙ | |||
98408 98409 98410 98411 98412 98413 98414 | wsFlags |= WHERE_IDX_ONLY; }else{ bLookup = 1; } } /* | | | > | > | < > | > > > > > > | > > > | | > > > > > > > > > > > > > > > | > > > > > > | > > > > > | > > > > > > > > > > > | | > > > > > > | > | > > | > | | | > | 100437 100438 100439 100440 100441 100442 100443 100444 100445 100446 100447 100448 100449 100450 100451 100452 100453 100454 100455 100456 100457 100458 100459 100460 100461 100462 100463 100464 100465 100466 100467 100468 100469 100470 100471 100472 100473 100474 100475 100476 100477 100478 100479 100480 100481 100482 100483 100484 100485 100486 100487 100488 100489 100490 100491 100492 100493 100494 100495 100496 100497 100498 100499 100500 100501 100502 100503 100504 100505 100506 100507 100508 100509 100510 100511 100512 100513 100514 100515 100516 100517 100518 100519 100520 100521 100522 100523 100524 100525 100526 100527 100528 100529 100530 100531 100532 100533 100534 100535 100536 100537 100538 100539 100540 100541 100542 100543 | wsFlags |= WHERE_IDX_ONLY; }else{ bLookup = 1; } } /* ** Estimate the number of rows of output. For an "x IN (SELECT...)" ** constraint, do not let the estimate exceed half the rows in the table. */ nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = (int)(nRow / aiRowEst[nEq]); } #ifdef SQLITE_ENABLE_STAT2 /* If the constraint is of the form x=VALUE and histogram ** data is available for column x, then it might be possible ** to get a better estimate on the number of rows based on ** VALUE and how common that value is according to the histogram. */ if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){ if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ testcase( pFirstTerm->eOperator==WO_EQ ); testcase( pFirstTerm->eOperator==WO_ISNULL ); whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow); }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){ whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow); } } #endif /* SQLITE_ENABLE_STAT2 */ /* Adjust the number of output rows and downward to reflect rows ** that are excluded by range constraints. */ nRow = (nRow * (double)estBound) / (double)100; if( nRow<1 ) nRow = 1; /* Experiments run on real SQLite databases show that the time needed ** to do a binary search to locate a row in a table or index is roughly ** log10(N) times the time to move from one row to the next row within ** a table or index. The actual times can vary, with the size of ** records being an important factor. Both moves and searches are ** slower with larger records, presumably because fewer records fit ** on one page and hence more pages have to be fetched. ** ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do ** not give us data on the relative sizes of table and index records. ** So this computation assumes table records are about twice as big ** as index records */ if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){ /* The cost of a full table scan is a number of move operations equal ** to the number of rows in the table. ** ** We add an additional 4x penalty to full table scans. This causes ** the cost function to err on the side of choosing an index over ** choosing a full scan. This 4x full-scan penalty is an arguable ** decision and one which we expect to revisit in the future. But ** it seems to be working well enough at the moment. */ cost = aiRowEst[0]*4; }else{ log10N = estLog(aiRowEst[0]); cost = nRow; if( pIdx ){ if( bLookup ){ /* For an index lookup followed by a table lookup: ** nInMul index searches to find the start of each index range ** + nRow steps through the index ** + nRow table searches to lookup the table entry using the rowid */ cost += (nInMul + nRow)*log10N; }else{ /* For a covering index: ** nInMul index searches to find the initial entry ** + nRow steps through the index */ cost += nInMul*log10N; } }else{ /* For a rowid primary key lookup: ** nInMult table searches to find the initial entry for each range ** + nRow steps through the table */ cost += nInMul*log10N; } } /* Add in the estimated cost of sorting the result. Actual experimental ** measurements of sorting performance in SQLite show that sorting time ** adds C*N*log10(N) to the cost, where N is the number of rows to be ** sorted and C is a factor between 1.95 and 4.3. We will split the ** difference and select C of 3.0. */ if( bSort ){ cost += nRow*estLog(nRow)*3; } /**** Cost of using this index has now been computed ****/ /* If there are additional constraints on this table that cannot ** be used with the current index, but which might lower the number ** of output rows, adjust the nRow value accordingly. This only ** matters if the current index is the least costly, so do not bother ** with this step if we already know this index will not be chosen. |
︙ | ︙ | |||
98482 98483 98484 98485 98486 98487 98488 | }else{ /* Assume each additional equality match reduces the result ** set size by a factor of 10 */ nRow /= 10; } }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ if( nSkipRange ){ | | | > > > > | | | | 100570 100571 100572 100573 100574 100575 100576 100577 100578 100579 100580 100581 100582 100583 100584 100585 100586 100587 100588 100589 100590 100591 100592 100593 100594 100595 100596 100597 100598 100599 100600 100601 100602 100603 100604 100605 100606 100607 100608 100609 100610 | }else{ /* Assume each additional equality match reduces the result ** set size by a factor of 10 */ nRow /= 10; } }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ if( nSkipRange ){ /* Ignore the first nSkipRange range constraints since the index ** has already accounted for these */ nSkipRange--; }else{ /* Assume each additional range constraint reduces the result ** set size by a factor of 3. Indexed range constraints reduce ** the search space by a larger factor: 4. We make indexed range ** more selective intentionally because of the subjective ** observation that indexed range constraints really are more ** selective in practice, on average. */ nRow /= 3; } }else if( pTerm->eOperator!=WO_NOOP ){ /* Any other expression lowers the output row count by half */ nRow /= 2; } } if( nRow<2 ) nRow = 2; } WHERETRACE(( "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n", pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), nEq, nInMul, estBound, bSort, bLookup, wsFlags, notReady, log10N, nRow, cost, used )); /* If this index is the best we have seen so far, then record this ** index and its cost in the pCost structure. */ if( (!pIdx || wsFlags) && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow)) |
︙ | ︙ | |||
99328 99329 99330 99331 99332 99333 99334 | start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); | > | > | 101420 101421 101422 101423 101424 101425 101426 101427 101428 101429 101430 101431 101432 101433 101434 101435 101436 | start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); } if( zStartAff ){ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zStartAff[nEq] = SQLITE_AFF_NONE; } |
︙ | ︙ | |||
99367 99368 99369 99370 99371 99372 99373 | ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); | > | > | 101461 101462 101463 101464 101465 101466 101467 101468 101469 101470 101471 101472 101473 101474 101475 101476 101477 | ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); } if( zEndAff ){ if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zEndAff[nEq] = SQLITE_AFF_NONE; } |
︙ | ︙ | |||
99425 99426 99427 99428 99429 99430 99431 | sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ | > | > > > > > | 101521 101522 101523 101524 101525 101526 101527 101528 101529 101530 101531 101532 101533 101534 101535 101536 101537 101538 101539 101540 101541 | sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ /* Case 4: Two or more separately indexed terms connected by OR ** |
︙ | ︙ | |||
99471 99472 99473 99474 99475 99476 99477 | ** ** Return 2 # Jump back to the Gosub ** ** B: <after the loop> ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ | < < | 101573 101574 101575 101576 101577 101578 101579 101580 101581 101582 101583 101584 101585 101586 101587 101588 101589 101590 101591 101592 101593 101594 101595 101596 101597 101598 101599 101600 101601 | ** ** Return 2 # Jump back to the Gosub ** ** B: <after the loop> ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ int regRowset = 0; /* Register for RowSet object */ int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; pTerm = pLevel->plan.u.pTerm; assert( pTerm!=0 ); assert( pTerm->eOperator==WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList ni pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ |
︙ | ︙ | |||
99596 99597 99598 99599 99600 99601 99602 | /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through ** the use of indices become tests that are evaluated against each row of ** the relevant input tables. */ | < < | 101696 101697 101698 101699 101700 101701 101702 101703 101704 101705 101706 101707 101708 101709 101710 101711 101712 101713 101714 101715 101716 101717 101718 101719 101720 101721 101722 101723 101724 101725 101726 | /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through ** the use of indices become tests that are evaluated against each row of ** the relevant input tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ continue; } sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ |
︙ | ︙ | |||
99922 99923 99924 99925 99926 99927 99928 | ** pWInfo->a[].iIdxCur The VDBE cursor for the index ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term ** ** This loop also figures out the nesting order of tables in the FROM ** clause. */ notReady = ~(Bitmask)0; | < < | 102020 102021 102022 102023 102024 102025 102026 102027 102028 102029 102030 102031 102032 102033 | ** pWInfo->a[].iIdxCur The VDBE cursor for the index ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term ** ** This loop also figures out the nesting order of tables in the FROM ** clause. */ notReady = ~(Bitmask)0; andFlags = ~0; WHERETRACE(("*** Optimizer Start ***\n")); for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ |
︙ | ︙ | |||
100034 100035 100036 100037 100038 100039 100040 | } /* Conditions under which this table becomes the best so far: ** ** (1) The table must not depend on other tables that have not ** yet run. ** | | | > | 102130 102131 102132 102133 102134 102135 102136 102137 102138 102139 102140 102141 102142 102143 102144 102145 102146 102147 102148 102149 102150 102151 102152 102153 102154 102155 102156 102157 102158 102159 102160 102161 | } /* Conditions under which this table becomes the best so far: ** ** (1) The table must not depend on other tables that have not ** yet run. ** ** (2) A full-table-scan plan cannot supercede indexed plan unless ** the full-table-scan is an "optimal" plan as defined above. ** ** (3) All tables have an INDEXED BY clause or this table lacks an ** INDEXED BY clause or this table uses the specific ** index specified by its INDEXED BY clause. This rule ensures ** that a best-so-far is always selected even if an impossible ** combination of INDEXED BY clauses are given. The error ** will be detected and relayed back to the application later. ** The NEVER() comes about because rule (2) above prevents ** An indexable full-table-scan from reaching rule (3). ** ** (4) The plan cost must be lower than prior plans or else the ** cost must be the same and the number of rows must be lower. */ if( (sCost.used¬Ready)==0 /* (1) */ && (bestJ<0 || (notIndexed&m)!=0 /* (2) */ || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0) && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */ || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */ || (sCost.rCost<=bestPlan.rCost && sCost.plan.nRow<bestPlan.plan.nRow)) ){ |
︙ | ︙ | |||
105377 105378 105379 105380 105381 105382 105383 105384 105385 105386 105387 105388 105389 105390 | #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* Designate a buffer for heap memory space */ sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sqlite3GlobalConfig.nHeap = va_arg(ap, int); sqlite3GlobalConfig.mnReq = va_arg(ap, int); if( sqlite3GlobalConfig.pHeap==0 ){ /* If the heap pointer is NULL, then restore the malloc implementation ** back to NULL pointers too. This will cause the malloc to go ** back to its default implementation when sqlite3_initialize() is ** run. */ | > > > > > > > | 107474 107475 107476 107477 107478 107479 107480 107481 107482 107483 107484 107485 107486 107487 107488 107489 107490 107491 107492 107493 107494 | #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* Designate a buffer for heap memory space */ sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sqlite3GlobalConfig.nHeap = va_arg(ap, int); sqlite3GlobalConfig.mnReq = va_arg(ap, int); if( sqlite3GlobalConfig.mnReq<1 ){ sqlite3GlobalConfig.mnReq = 1; }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ /* cap min request size at 2^12 */ sqlite3GlobalConfig.mnReq = (1<<12); } if( sqlite3GlobalConfig.pHeap==0 ){ /* If the heap pointer is NULL, then restore the malloc implementation ** back to NULL pointers too. This will cause the malloc to go ** back to its default implementation when sqlite3_initialize() is ** run. */ |
︙ | ︙ | |||
105511 105512 105513 105514 105515 105516 105517 | */ SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){ va_list ap; int rc; va_start(ap, op); switch( op ){ case SQLITE_DBCONFIG_LOOKASIDE: { | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 107615 107616 107617 107618 107619 107620 107621 107622 107623 107624 107625 107626 107627 107628 107629 107630 107631 107632 107633 107634 107635 107636 107637 107638 107639 107640 107641 107642 107643 107644 107645 107646 107647 107648 107649 107650 107651 107652 107653 107654 107655 107656 107657 107658 107659 107660 107661 107662 107663 107664 | */ SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){ va_list ap; int rc; va_start(ap, op); switch( op ){ case SQLITE_DBCONFIG_LOOKASIDE: { void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ rc = setupLookaside(db, pBuf, sz, cnt); break; } default: { static const struct { int op; /* The opcode */ u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ } aFlagOp[] = { { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; i<ArraySize(aFlagOp); i++){ if( aFlagOp[i].op==op ){ int onoff = va_arg(ap, int); int *pRes = va_arg(ap, int*); int oldFlags = db->flags; if( onoff>0 ){ db->flags |= aFlagOp[i].mask; }else if( onoff==0 ){ db->flags &= ~aFlagOp[i].mask; } if( oldFlags!=db->flags ){ sqlite3ExpirePreparedStatements(db); } if( pRes ){ *pRes = (db->flags & aFlagOp[i].mask)!=0; } rc = SQLITE_OK; break; } } break; } } va_end(ap); return rc; } |
︙ | ︙ | |||
105655 105656 105657 105658 105659 105660 105661 | return SQLITE_OK; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); | > | | 107787 107788 107789 107790 107791 107792 107793 107794 107795 107796 107797 107798 107799 107800 107801 107802 | return SQLITE_OK; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); /* Force xDestroy calls on all virtual tables */ sqlite3ResetInternalSchema(db, -1); /* If a transaction is open, the ResetInternalSchema() call above ** will not have called the xDisconnect() method on any virtual ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() ** call will do so. We need to do this before the check for active ** SQL statements below, as the v-table implementation may be storing ** some prepared statements internally. |
︙ | ︙ | |||
105698 105699 105700 105701 105702 105703 105704 | sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } | | | 107831 107832 107833 107834 107835 107836 107837 107838 107839 107840 107841 107842 107843 107844 107845 | sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } sqlite3ResetInternalSchema(db, -1); /* Tell the code in notify.c that the connection no longer holds any ** locks and does not require any further unlock-notify callbacks. */ sqlite3ConnectionClosed(db); assert( db->nDb<=2 ); |
︙ | ︙ | |||
105789 105790 105791 105792 105793 105794 105795 | } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( db->flags&SQLITE_InternChanges ){ sqlite3ExpirePreparedStatements(db); | | | 107922 107923 107924 107925 107926 107927 107928 107929 107930 107931 107932 107933 107934 107935 107936 | } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( db->flags&SQLITE_InternChanges ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, -1); } /* Any deferred constraint violations have now been resolved. */ db->nDeferredCons = 0; /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ |
︙ | ︙ | |||
105858 105859 105860 105861 105862 105863 105864 | int count /* Number of times table has been busy */ ){ #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) static const u8 delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; static const u8 totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; | | | 107991 107992 107993 107994 107995 107996 107997 107998 107999 108000 108001 108002 108003 108004 108005 | int count /* Number of times table has been busy */ ){ #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) static const u8 delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; static const u8 totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; # define NDELAY ArraySize(delays) sqlite3 *db = (sqlite3 *)ptr; int timeout = db->busyTimeout; int delay, prior; assert( count>=0 ); if( count < NDELAY ){ delay = delays[count]; |
︙ | ︙ | |||
106343 106344 106345 106346 106347 106348 106349 | sqlite3_mutex_leave(db->mutex); return pRet; #else return 0; #endif } | < | < < | > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > | > > > | > > > > > > | | 108476 108477 108478 108479 108480 108481 108482 108483 108484 108485 108486 108487 108488 108489 108490 108491 108492 108493 108494 108495 108496 108497 108498 108499 108500 108501 108502 108503 108504 108505 108506 108507 108508 108509 108510 108511 108512 108513 108514 108515 108516 108517 108518 108519 108520 108521 108522 108523 108524 108525 108526 108527 108528 108529 108530 108531 108532 108533 108534 108535 108536 108537 108538 108539 108540 108541 108542 108543 108544 108545 108546 108547 108548 108549 108550 108551 108552 108553 108554 108555 108556 108557 108558 108559 108560 108561 108562 108563 108564 108565 108566 108567 108568 108569 108570 108571 108572 108573 108574 108575 108576 108577 108578 108579 108580 108581 108582 108583 108584 108585 | sqlite3_mutex_leave(db->mutex); return pRet; #else return 0; #endif } /* ** Checkpoint database zDb. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ){ #ifdef SQLITE_OMIT_WAL return SQLITE_OK; #else int rc; /* Return code */ int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ /* Initialize the output variables to -1 in case an error occurs. */ if( pnLog ) *pnLog = -1; if( pnCkpt ) *pnCkpt = -1; assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); if( zDb && zDb[0] ){ iDb = sqlite3FindDbName(db, zDb); } if( iDb<0 ){ rc = SQLITE_ERROR; sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); }else{ rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); sqlite3Error(db, rc, 0); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; #endif } /* ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points ** to contains a zero-length string, all attached databases are ** checkpointed. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); } #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on database iDb. This is a no-op if database iDb is ** not currently open in WAL mode. ** ** If a transaction is open on the database being checkpointed, this ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If ** an error occurs while running the checkpoint, an SQLite error code is ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. ** ** The mutex on database handle db should be held by the caller. The mutex ** associated with the specific b-tree being checkpointed is taken by ** this function while the checkpoint is running. ** ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are ** checkpointed. If an error is encountered it is returned immediately - ** no attempt is made to checkpoint any remaining databases. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterate through attached dbs */ int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ assert( sqlite3_mutex_held(db->mutex) ); assert( !pnLog || *pnLog==-1 ); assert( !pnCkpt || *pnCkpt==-1 ); for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); pnLog = 0; pnCkpt = 0; if( rc==SQLITE_BUSY ){ bBusy = 1; rc = SQLITE_OK; } } } return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; } #endif /* SQLITE_OMIT_WAL */ /* ** This function returns true if main-memory should be used instead of ** a temporary file for transient pager files and statement journals. ** The value returned depends on the value of db->temp_store (runtime |
︙ | ︙ | |||
106656 106657 106658 106659 106660 106661 106662 | #endif #if SQLITE_MAX_VDBE_OP<40 # error SQLITE_MAX_VDBE_OP must be at least 40 #endif #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 #endif | | | | 108824 108825 108826 108827 108828 108829 108830 108831 108832 108833 108834 108835 108836 108837 108838 108839 | #endif #if SQLITE_MAX_VDBE_OP<40 # error SQLITE_MAX_VDBE_OP must be at least 40 #endif #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 #endif #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 # error SQLITE_MAX_ATTACHED must be between 0 and 62 #endif #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 #endif #if SQLITE_MAX_COLUMN>32767 # error SQLITE_MAX_COLUMN must not exceed 32767 #endif |
︙ | ︙ | |||
106776 106777 106778 106779 106780 106781 106782 | } /* Remove harmful bits from the flags parameter ** ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were ** dealt with in the previous code block. Besides these, the only ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, | | > | 108944 108945 108946 108947 108948 108949 108950 108951 108952 108953 108954 108955 108956 108957 108958 108959 | } /* Remove harmful bits from the flags parameter ** ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were ** dealt with in the previous code block. Besides these, the only ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask ** off all other flags. */ flags &= ~( SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_MAIN_DB | SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TRANSIENT_DB | |
︙ | ︙ | |||
106815 106816 106817 106818 106819 106820 106821 | db->aDb = db->aDbStatic; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->autoCommit = 1; db->nextAutovac = -1; db->nextPagesize = 0; | | | 108984 108985 108986 108987 108988 108989 108990 108991 108992 108993 108994 108995 108996 108997 108998 | db->aDb = db->aDbStatic; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->autoCommit = 1; db->nextAutovac = -1; db->nextPagesize = 0; db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS |
︙ | ︙ | |||
108616 108617 108618 108619 108620 108621 108622 | typedef struct Fts3Expr Fts3Expr; typedef struct Fts3Phrase Fts3Phrase; typedef struct Fts3PhraseToken Fts3PhraseToken; typedef struct Fts3SegFilter Fts3SegFilter; typedef struct Fts3DeferredToken Fts3DeferredToken; typedef struct Fts3SegReader Fts3SegReader; | | | 110785 110786 110787 110788 110789 110790 110791 110792 110793 110794 110795 110796 110797 110798 110799 | typedef struct Fts3Expr Fts3Expr; typedef struct Fts3Phrase Fts3Phrase; typedef struct Fts3PhraseToken Fts3PhraseToken; typedef struct Fts3SegFilter Fts3SegFilter; typedef struct Fts3DeferredToken Fts3DeferredToken; typedef struct Fts3SegReader Fts3SegReader; typedef struct Fts3SegReaderCursor Fts3SegReaderCursor; /* ** A connection to a fulltext index is an instance of the following ** structure. The xCreate and xConnect methods create an instance ** of this structure and xDestroy and xDisconnect free that instance. ** All other methods receive a pointer to the structure as one of their ** arguments. |
︙ | ︙ | |||
108639 108640 108641 108642 108643 108644 108645 108646 108647 108648 108649 108650 108651 108652 | sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ /* Precompiled statements used by the implementation. Each of these ** statements is run and reset within a single virtual table API call. */ sqlite3_stmt *aStmt[24]; int nNodeSize; /* Soft limit for node size */ u8 bHasStat; /* True if %_stat table exists */ u8 bHasDocsize; /* True if %_docsize table exists */ int nPgsz; /* Page size for host database */ char *zSegmentsTbl; /* Name of %_segments table */ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ | > > > | 110808 110809 110810 110811 110812 110813 110814 110815 110816 110817 110818 110819 110820 110821 110822 110823 110824 | sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ /* Precompiled statements used by the implementation. Each of these ** statements is run and reset within a single virtual table API call. */ sqlite3_stmt *aStmt[24]; char *zReadExprlist; char *zWriteExprlist; int nNodeSize; /* Soft limit for node size */ u8 bHasStat; /* True if %_stat table exists */ u8 bHasDocsize; /* True if %_docsize table exists */ int nPgsz; /* Page size for host database */ char *zSegmentsTbl; /* Name of %_segments table */ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ |
︙ | ︙ | |||
108726 108727 108728 108729 108730 108731 108732 | ** on the assumption that the */ struct Fts3PhraseToken { char *z; /* Text of the token */ int n; /* Number of bytes in buffer z */ int isPrefix; /* True if token ends with a "*" character */ int bFulltext; /* True if full-text index was used */ | | | 110898 110899 110900 110901 110902 110903 110904 110905 110906 110907 110908 110909 110910 110911 110912 | ** on the assumption that the */ struct Fts3PhraseToken { char *z; /* Text of the token */ int n; /* Number of bytes in buffer z */ int isPrefix; /* True if token ends with a "*" character */ int bFulltext; /* True if full-text index was used */ Fts3SegReaderCursor *pSegcsr; /* Segment-reader for this token */ Fts3DeferredToken *pDeferred; /* Deferred token object for this token */ }; struct Fts3Phrase { /* Variables populated by fts3_expr.c when parsing a MATCH expression */ int nToken; /* Number of tokens in the phrase */ int iColumn; /* Index of column this phrase must match */ |
︙ | ︙ | |||
108794 108795 108796 108797 108798 108799 108800 | SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *); SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**); SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); | < < < < | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > | 110966 110967 110968 110969 110970 110971 110972 110973 110974 110975 110976 110977 110978 110979 110980 110981 110982 110983 110984 110985 110986 110987 110988 110989 110990 110991 110992 110993 110994 110995 110996 110997 110998 110999 111000 111001 111002 111003 111004 111005 111006 111007 111008 111009 111010 111011 111012 111013 111014 111015 111016 111017 111018 111019 111020 111021 111022 111023 111024 111025 111026 111027 111028 111029 111030 111031 111032 111033 111034 111035 111036 | SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *); SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**); SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); SQLITE_PRIVATE int sqlite3Fts3SegReaderCost(Fts3Cursor *, Fts3SegReader *, int *); SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*); SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); SQLITE_PRIVATE char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *); SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *); #define FTS3_SEGCURSOR_PENDING -1 #define FTS3_SEGCURSOR_ALL -2 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3SegReaderCursor*, Fts3SegFilter*); SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3SegReaderCursor *); SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3SegReaderCursor *); SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor( Fts3Table *, int, const char *, int, int, int, Fts3SegReaderCursor *); /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ #define FTS3_SEGMENT_REQUIRE_POS 0x00000001 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 #define FTS3_SEGMENT_PREFIX 0x00000008 #define FTS3_SEGMENT_SCAN 0x00000010 /* Type passed as 4th argument to SegmentReaderIterate() */ struct Fts3SegFilter { const char *zTerm; int nTerm; int iCol; int flags; }; struct Fts3SegReaderCursor { /* Used internally by sqlite3Fts3SegReaderXXX() calls */ Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */ int nSegment; /* Size of apSegment array */ int nAdvance; /* How many seg-readers to advance */ Fts3SegFilter *pFilter; /* Pointer to filter object */ char *aBuffer; /* Buffer to merge doclists in */ int nBuffer; /* Allocated size of aBuffer[] in bytes */ /* Cost of running this iterator. Used by fts3.c only. */ int nCost; /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */ char *zTerm; /* Pointer to term buffer */ int nTerm; /* Size of zTerm in bytes */ char *aDoclist; /* Pointer to doclist buffer */ int nDoclist; /* Size of aDoclist[] in bytes */ }; /* fts3.c */ SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64); SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *); SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64); SQLITE_PRIVATE void sqlite3Fts3Dequote(char *); |
︙ | ︙ | |||
108864 108865 108866 108867 108868 108869 108870 108871 108872 108873 108874 108875 108876 108877 | char **, int, int, const char *, int, Fts3Expr ** ); SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); #endif #endif /* _FTSINT_H */ /************** End of fts3Int.h *********************************************/ /************** Continuing where we left off in fts3.c ***********************/ #ifndef SQLITE_CORE | > > > | 111060 111061 111062 111063 111064 111065 111066 111067 111068 111069 111070 111071 111072 111073 111074 111075 111076 | char **, int, int, const char *, int, Fts3Expr ** ); SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); #endif /* fts3_aux.c */ SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db); #endif /* _FTSINT_H */ /************** End of fts3Int.h *********************************************/ /************** Continuing where we left off in fts3.c ***********************/ #ifndef SQLITE_CORE |
︙ | ︙ | |||
109009 109010 109011 109012 109013 109014 109015 109016 109017 109018 109019 109020 109021 109022 | assert( p->pSegments==0 ); /* Free any prepared statements held */ for(i=0; i<SizeofArray(p->aStmt); i++){ sqlite3_finalize(p->aStmt[i]); } sqlite3_free(p->zSegmentsTbl); /* Invoke the tokenizer destructor to free the tokenizer. */ p->pTokenizer->pModule->xDestroy(p->pTokenizer); sqlite3_free(p); return SQLITE_OK; } | > > | 111208 111209 111210 111211 111212 111213 111214 111215 111216 111217 111218 111219 111220 111221 111222 111223 | assert( p->pSegments==0 ); /* Free any prepared statements held */ for(i=0; i<SizeofArray(p->aStmt); i++){ sqlite3_finalize(p->aStmt[i]); } sqlite3_free(p->zSegmentsTbl); sqlite3_free(p->zReadExprlist); sqlite3_free(p->zWriteExprlist); /* Invoke the tokenizer destructor to free the tokenizer. */ p->pTokenizer->pModule->xDestroy(p->pTokenizer); sqlite3_free(p); return SQLITE_OK; } |
︙ | ︙ | |||
109225 109226 109227 109228 109229 109230 109231 109232 109233 109234 109235 109236 109237 109238 | zValue = sqlite3_mprintf("%s", &zCsr[1]); if( zValue ){ sqlite3Fts3Dequote(zValue); } *pzValue = zValue; return 1; } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the FTS3 virtual table. ** ** The argv[] array contains the following: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 111426 111427 111428 111429 111430 111431 111432 111433 111434 111435 111436 111437 111438 111439 111440 111441 111442 111443 111444 111445 111446 111447 111448 111449 111450 111451 111452 111453 111454 111455 111456 111457 111458 111459 111460 111461 111462 111463 111464 111465 111466 111467 111468 111469 111470 111471 111472 111473 111474 111475 111476 111477 111478 111479 111480 111481 111482 111483 111484 111485 111486 111487 111488 111489 111490 111491 111492 111493 111494 111495 111496 111497 111498 111499 111500 111501 111502 111503 111504 111505 111506 111507 111508 111509 111510 111511 111512 111513 111514 111515 111516 111517 111518 111519 111520 111521 111522 111523 111524 111525 111526 111527 111528 111529 111530 111531 111532 111533 111534 111535 111536 111537 111538 111539 111540 111541 111542 111543 111544 111545 111546 111547 111548 111549 111550 111551 111552 111553 111554 111555 111556 111557 111558 111559 111560 111561 111562 111563 111564 111565 111566 111567 111568 111569 111570 111571 111572 111573 111574 | zValue = sqlite3_mprintf("%s", &zCsr[1]); if( zValue ){ sqlite3Fts3Dequote(zValue); } *pzValue = zValue; return 1; } /* ** Append the output of a printf() style formatting to an existing string. */ static void fts3Appendf( int *pRc, /* IN/OUT: Error code */ char **pz, /* IN/OUT: Pointer to string buffer */ const char *zFormat, /* Printf format string to append */ ... /* Arguments for printf format string */ ){ if( *pRc==SQLITE_OK ){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); if( z && *pz ){ char *z2 = sqlite3_mprintf("%s%s", *pz, z); sqlite3_free(z); z = z2; } if( z==0 ) *pRc = SQLITE_NOMEM; sqlite3_free(*pz); *pz = z; } } /* ** Return a copy of input string zInput enclosed in double-quotes (") and ** with all double quote characters escaped. For example: ** ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" ** ** The pointer returned points to memory obtained from sqlite3_malloc(). It ** is the callers responsibility to call sqlite3_free() to release this ** memory. */ static char *fts3QuoteId(char const *zInput){ int nRet; char *zRet; nRet = 2 + strlen(zInput)*2 + 1; zRet = sqlite3_malloc(nRet); if( zRet ){ int i; char *z = zRet; *(z++) = '"'; for(i=0; zInput[i]; i++){ if( zInput[i]=='"' ) *(z++) = '"'; *(z++) = zInput[i]; } *(z++) = '"'; *(z++) = '\0'; } return zRet; } /* ** Return a list of comma separated SQL expressions that could be used ** in a SELECT statement such as the following: ** ** SELECT <list of expressions> FROM %_content AS x ... ** ** to return the docid, followed by each column of text data in order ** from left to write. If parameter zFunc is not NULL, then instead of ** being returned directly each column of text data is passed to an SQL ** function named zFunc first. For example, if zFunc is "unzip" and the ** table has the three user-defined columns "a", "b", and "c", the following ** string is returned: ** ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "docid"); for(i=0; i<p->nColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); } sqlite3_free(zFree); return zRet; } /* ** Return a list of N comma separated question marks, where N is the number ** of columns in the %_content table (one for the docid plus one for each ** user-defined text column). ** ** If argument zFunc is not NULL, then all but the first question mark ** is preceded by zFunc and an open bracket, and followed by a closed ** bracket. For example, if zFunc is "zip" and the FTS3 table has three ** user-defined text columns, the following string is returned: ** ** "?, zip(?), zip(?), zip(?)" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "?"); for(i=0; i<p->nColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); } sqlite3_free(zFree); return zRet; } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the FTS3 virtual table. ** ** The argv[] array contains the following: ** |
︙ | ︙ | |||
109262 109263 109264 109265 109266 109267 109268 109269 109270 109271 109272 109273 109274 109275 | int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ int bNoDocsize = 0; /* True to omit %_docsize table */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ assert( strlen(argv[0])==4 ); assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) ); nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; | > > > | 111598 111599 111600 111601 111602 111603 111604 111605 111606 111607 111608 111609 111610 111611 111612 111613 111614 | int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ int bNoDocsize = 0; /* True to omit %_docsize table */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ char *zCompress = 0; char *zUncompress = 0; assert( strlen(argv[0])==4 ); assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) ); nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; |
︙ | ︙ | |||
109312 109313 109314 109315 109316 109317 109318 109319 109320 109321 109322 109323 109324 109325 | if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){ if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){ bNoDocsize = 1; }else{ *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal); rc = SQLITE_ERROR; } }else{ *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z); rc = SQLITE_ERROR; } sqlite3_free(zVal); } | > > > > > > | 111651 111652 111653 111654 111655 111656 111657 111658 111659 111660 111661 111662 111663 111664 111665 111666 111667 111668 111669 111670 | if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){ if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){ bNoDocsize = 1; }else{ *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal); rc = SQLITE_ERROR; } }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){ zCompress = zVal; zVal = 0; }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){ zUncompress = zVal; zVal = 0; }else{ *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z); rc = SQLITE_ERROR; } sqlite3_free(zVal); } |
︙ | ︙ | |||
109385 109386 109387 109388 109389 109390 109391 109392 109393 109394 109395 109396 109397 109398 109399 109400 109401 109402 109403 109404 109405 109406 109407 109408 109409 | memcpy(zCsr, z, n); zCsr[n] = '\0'; sqlite3Fts3Dequote(zCsr); p->azColumn[iCol] = zCsr; zCsr += n+1; assert( zCsr <= &((char *)p)[nByte] ); } /* If this is an xCreate call, create the underlying tables in the ** database. TODO: For xConnect(), it could verify that said tables exist. */ if( isCreate ){ rc = fts3CreateTables(p); } /* Figure out the page-size for the database. This is required in order to ** estimate the cost of loading large doclists from the database (see ** function sqlite3Fts3SegReaderCost() for details). */ fts3DatabasePageSize(&rc, p); /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: | > > > > > > > > > | > | 111730 111731 111732 111733 111734 111735 111736 111737 111738 111739 111740 111741 111742 111743 111744 111745 111746 111747 111748 111749 111750 111751 111752 111753 111754 111755 111756 111757 111758 111759 111760 111761 111762 111763 111764 111765 111766 111767 111768 111769 111770 111771 111772 | memcpy(zCsr, z, n); zCsr[n] = '\0'; sqlite3Fts3Dequote(zCsr); p->azColumn[iCol] = zCsr; zCsr += n+1; assert( zCsr <= &((char *)p)[nByte] ); } if( (zCompress==0)!=(zUncompress==0) ){ char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); rc = SQLITE_ERROR; *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss); } p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); if( rc!=SQLITE_OK ) goto fts3_init_out; /* If this is an xCreate call, create the underlying tables in the ** database. TODO: For xConnect(), it could verify that said tables exist. */ if( isCreate ){ rc = fts3CreateTables(p); } /* Figure out the page-size for the database. This is required in order to ** estimate the cost of loading large doclists from the database (see ** function sqlite3Fts3SegReaderCost() for details). */ fts3DatabasePageSize(&rc, p); /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free((void *)aCol); if( rc!=SQLITE_OK ){ if( p ){ fts3DisconnectMethod((sqlite3_vtab *)p); }else if( pTokenizer ){ pTokenizer->pModule->xDestroy(pTokenizer); } |
︙ | ︙ | |||
110496 110497 110498 110499 110500 110501 110502 | if( !*ppOut ) return SQLITE_NOMEM; sqlite3Fts3PutVarint(*ppOut, docid); } return SQLITE_OK; } | < < < < | | > > | > > | > > > > > | | > > > > > > > > > | > > > | > | < | | > > | | < > | < | | > > > > > > > > > > > > | > > | > | | > > > > > | > > > > > > > | | < | < > | | | < > < < < | < < | > > > > < | > | | < < | < < < | < < < < | | < < < < < < | < < < | | < | < < < < < < < < < < < | < < < | < < < | | | < > < | < | | < < < | < > > | | 112851 112852 112853 112854 112855 112856 112857 112858 112859 112860 112861 112862 112863 112864 112865 112866 112867 112868 112869 112870 112871 112872 112873 112874 112875 112876 112877 112878 112879 112880 112881 112882 112883 112884 112885 112886 112887 112888 112889 112890 112891 112892 112893 112894 112895 112896 112897 112898 112899 112900 112901 112902 112903 112904 112905 112906 112907 112908 112909 112910 112911 112912 112913 112914 112915 112916 112917 112918 112919 112920 112921 112922 112923 112924 112925 112926 112927 112928 112929 112930 112931 112932 112933 112934 112935 112936 112937 112938 112939 112940 112941 112942 112943 112944 112945 112946 112947 112948 112949 112950 112951 112952 112953 112954 112955 112956 112957 112958 112959 112960 112961 112962 112963 112964 112965 112966 112967 112968 112969 112970 112971 112972 112973 112974 112975 112976 112977 112978 112979 112980 112981 112982 112983 112984 112985 112986 112987 112988 112989 112990 112991 | if( !*ppOut ) return SQLITE_NOMEM; sqlite3Fts3PutVarint(*ppOut, docid); } return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3SegReaderCursor *pCsr /* Cursor object to populate */ ){ int rc = SQLITE_OK; int rc2; int iAge = 0; sqlite3_stmt *pStmt = 0; Fts3SegReader *pPending = 0; assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( FTS3_SEGCURSOR_PENDING<0 ); assert( FTS3_SEGCURSOR_ALL<0 ); assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) ); assert( isPrefix==0 || isScan==0 ); memset(pCsr, 0, sizeof(Fts3SegReaderCursor)); /* If iLevel is less than 0, include a seg-reader for the pending-terms. */ assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 ); if( iLevel<0 && isScan==0 ){ rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending); if( rc==SQLITE_OK && pPending ){ int nByte = (sizeof(Fts3SegReader *) * 16); pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); if( pCsr->apSegment==0 ){ rc = SQLITE_NOMEM; }else{ pCsr->apSegment[0] = pPending; pCsr->nSegment = 1; pPending = 0; } } } if( iLevel!=FTS3_SEGCURSOR_PENDING ){ if( rc==SQLITE_OK ){ rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt); } while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ /* Read the values returned by the SELECT into local variables. */ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); int nRoot = sqlite3_column_bytes(pStmt, 4); char const *zRoot = sqlite3_column_blob(pStmt, 4); /* If nSegment is a multiple of 16 the array needs to be extended. */ if( (pCsr->nSegment%16)==0 ){ Fts3SegReader **apNew; int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte); if( !apNew ){ rc = SQLITE_NOMEM; goto finished; } pCsr->apSegment = apNew; } /* If zTerm is not NULL, and this segment is not stored entirely on its ** root node, the range of leaves scanned can be reduced. Do this. */ if( iStartBlock && zTerm ){ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); if( rc!=SQLITE_OK ) goto finished; if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; } rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock, iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment] ); if( rc!=SQLITE_OK ) goto finished; pCsr->nSegment++; iAge++; } } finished: rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_DONE ) rc = rc2; sqlite3Fts3SegReaderFree(pPending); return rc; } static int fts3TermSegReaderCursor( Fts3Cursor *pCsr, /* Virtual table cursor handle */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ Fts3SegReaderCursor **ppSegcsr /* OUT: Allocated seg-reader cursor */ ){ Fts3SegReaderCursor *pSegcsr; /* Object to allocate and return */ int rc = SQLITE_NOMEM; /* Return code */ pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor)); if( pSegcsr ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; int i; int nCost = 0; rc = sqlite3Fts3SegReaderCursor( p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr); for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){ rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost); } pSegcsr->nCost = nCost; } *ppSegcsr = pSegcsr; return rc; } static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){ sqlite3Fts3SegReaderFinish(pSegcsr); sqlite3_free(pSegcsr); } /* ** This function retreives the doclist for the specified term (or term ** prefix) from the database. ** ** The returned doclist may be in one of two formats, depending on the |
︙ | ︙ | |||
110642 110643 110644 110645 110646 110647 110648 | Fts3PhraseToken *pTok, /* Token to query for */ int iColumn, /* Column to query (or -ve for all columns) */ int isReqPos, /* True to include position lists in output */ int *pnOut, /* OUT: Size of buffer at *ppOut */ char **ppOut /* OUT: Malloced result buffer */ ){ int rc; /* Return code */ | | | | | | > > > | > | > > < | | | 113000 113001 113002 113003 113004 113005 113006 113007 113008 113009 113010 113011 113012 113013 113014 113015 113016 113017 113018 113019 113020 113021 113022 113023 113024 113025 113026 113027 113028 113029 113030 113031 113032 113033 113034 113035 113036 113037 113038 113039 113040 113041 113042 113043 113044 113045 113046 113047 113048 113049 113050 113051 113052 113053 | Fts3PhraseToken *pTok, /* Token to query for */ int iColumn, /* Column to query (or -ve for all columns) */ int isReqPos, /* True to include position lists in output */ int *pnOut, /* OUT: Size of buffer at *ppOut */ char **ppOut /* OUT: Malloced result buffer */ ){ int rc; /* Return code */ Fts3SegReaderCursor *pSegcsr; /* Seg-reader cursor for this term */ TermSelect tsc; /* Context object for fts3TermSelectCb() */ Fts3SegFilter filter; /* Segment term filter configuration */ pSegcsr = pTok->pSegcsr; memset(&tsc, 0, sizeof(TermSelect)); tsc.isReqPos = isReqPos; filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0) | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); filter.iCol = iColumn; filter.zTerm = pTok->z; filter.nTerm = pTok->n; rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); while( SQLITE_OK==rc && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) ){ rc = fts3TermSelectCb(p, (void *)&tsc, pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist ); } if( rc==SQLITE_OK ){ rc = fts3TermSelectMerge(&tsc); } if( rc==SQLITE_OK ){ *ppOut = tsc.aaOutput[0]; *pnOut = tsc.anOutput[0]; }else{ int i; for(i=0; i<SizeofArray(tsc.aaOutput); i++){ sqlite3_free(tsc.aaOutput[i]); } } fts3SegReaderCursorFree(pSegcsr); pTok->pSegcsr = 0; return rc; } /* ** This function counts the total number of docids in the doclist stored ** in buffer aList[], size nList bytes. ** |
︙ | ︙ | |||
110799 110800 110801 110802 110803 110804 110805 | /* If this is an xFilter() evaluation, create a segment-reader for each ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo ** evaluation, only create segment-readers if there are no Fts3DeferredToken ** objects attached to the phrase-tokens. */ for(ii=0; ii<pPhrase->nToken; ii++){ Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; | | | | | 113162 113163 113164 113165 113166 113167 113168 113169 113170 113171 113172 113173 113174 113175 113176 113177 113178 113179 113180 113181 113182 | /* If this is an xFilter() evaluation, create a segment-reader for each ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo ** evaluation, only create segment-readers if there are no Fts3DeferredToken ** objects attached to the phrase-tokens. */ for(ii=0; ii<pPhrase->nToken; ii++){ Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; if( pTok->pSegcsr==0 ){ if( (pCsr->eEvalmode==FTS3_EVAL_FILTER) || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0) || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext) ){ rc = fts3TermSegReaderCursor( pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr ); if( rc!=SQLITE_OK ) return rc; } } } for(ii=0; ii<pPhrase->nToken; ii++){ |
︙ | ︙ | |||
110836 110837 110838 110839 110840 110841 110842 | pTok = &pPhrase->aToken[iTok]; }else{ int nMinCost = 0x7FFFFFFF; int jj; /* Find the remaining token with the lowest cost. */ for(jj=0; jj<pPhrase->nToken; jj++){ | | | | | | | 113199 113200 113201 113202 113203 113204 113205 113206 113207 113208 113209 113210 113211 113212 113213 113214 113215 113216 113217 113218 113219 113220 113221 113222 113223 113224 113225 113226 113227 113228 113229 113230 113231 113232 113233 113234 113235 113236 113237 113238 113239 113240 | pTok = &pPhrase->aToken[iTok]; }else{ int nMinCost = 0x7FFFFFFF; int jj; /* Find the remaining token with the lowest cost. */ for(jj=0; jj<pPhrase->nToken; jj++){ Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr; if( pSegcsr && pSegcsr->nCost<nMinCost ){ iTok = jj; nMinCost = pSegcsr->nCost; } } pTok = &pPhrase->aToken[iTok]; /* This branch is taken if it is determined that loading the doclist ** for the next token would require more IO than loading all documents ** currently identified by doclist pOut/nOut. No further doclists will ** be loaded from the full-text index for this phrase. */ if( nMinCost>nDoc && ii>0 ){ rc = fts3DeferExpression(pCsr, pCsr->pExpr); break; } } if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){ rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList); }else{ if( pTok->pSegcsr ){ rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList); } pTok->bFulltext = 1; } assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 ); if( rc!=SQLITE_OK ) break; if( isFirst ){ pOut = pList; nOut = nList; if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){ nDoc = fts3DoclistCountDocids(1, pOut, nOut); |
︙ | ︙ | |||
111041 111042 111043 111044 111045 111046 111047 | if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int ii; for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){ Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; | | | | | 113404 113405 113406 113407 113408 113409 113410 113411 113412 113413 113414 113415 113416 113417 113418 113419 113420 | if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int ii; for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){ Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; if( pTok->pSegcsr==0 ){ rc = fts3TermSegReaderCursor( pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr ); } } }else{ rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr); if( rc==SQLITE_OK ){ rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr); |
︙ | ︙ | |||
111067 111068 111069 111070 111071 111072 111073 | */ static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){ if( pExpr ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase ){ int kk; for(kk=0; kk<pPhrase->nToken; kk++){ | | | | < | < | 113430 113431 113432 113433 113434 113435 113436 113437 113438 113439 113440 113441 113442 113443 113444 113445 113446 113447 113448 113449 113450 113451 113452 113453 113454 113455 113456 113457 113458 113459 113460 113461 113462 113463 113464 113465 113466 | */ static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){ if( pExpr ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase ){ int kk; for(kk=0; kk<pPhrase->nToken; kk++){ fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr); pPhrase->aToken[kk].pSegcsr = 0; } } fts3ExprFreeSegReaders(pExpr->pLeft); fts3ExprFreeSegReaders(pExpr->pRight); } } /* ** Return the sum of the costs of all tokens in the expression pExpr. This ** function must be called after Fts3SegReaderArrays have been allocated ** for all tokens using fts3ExprAllocateSegReaders(). */ static int fts3ExprCost(Fts3Expr *pExpr){ int nCost; /* Return value */ if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int ii; nCost = 0; for(ii=0; ii<pPhrase->nToken; ii++){ Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr; if( pSegcsr ) nCost += pSegcsr->nCost; } }else{ nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight); } return nCost; } |
︙ | ︙ | |||
111433 111434 111435 111436 111437 111438 111439 | sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ const char *azSql[] = { | | | | 113794 113795 113796 113797 113798 113799 113800 113801 113802 113803 113804 113805 113806 113807 113808 113809 | sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ const char *azSql[] = { "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */ "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */ }; int rc; /* Return code */ char *zSql; /* SQL statement used to access %_content */ Fts3Table *p = (Fts3Table *)pCursor->pVtab; Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; UNUSED_PARAMETER(idxStr); |
︙ | ︙ | |||
111489 111490 111491 111492 111493 111494 111495 | } /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ | | > | 113850 113851 113852 113853 113854 113855 113856 113857 113858 113859 113860 113861 113862 113863 113864 113865 | } /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH]; zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); sqlite3_free(zSql); } if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){ |
︙ | ︙ | |||
112007 112008 112009 112010 112011 112012 112013 112014 112015 112016 112017 112018 112019 112020 | const sqlite3_tokenizer_module *pPorter = 0; #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); /* Allocate and initialise the hash-table used to store tokenizers. */ pHash = sqlite3_malloc(sizeof(Fts3Hash)); if( !pHash ){ rc = SQLITE_NOMEM; | > > > | 114369 114370 114371 114372 114373 114374 114375 114376 114377 114378 114379 114380 114381 114382 114383 114384 114385 | const sqlite3_tokenizer_module *pPorter = 0; #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif rc = sqlite3Fts3InitAux(db); if( rc!=SQLITE_OK ) return rc; sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); /* Allocate and initialise the hash-table used to store tokenizers. */ pHash = sqlite3_malloc(sizeof(Fts3Hash)); if( !pHash ){ rc = SQLITE_NOMEM; |
︙ | ︙ | |||
112082 112083 112084 112085 112086 112087 112088 112089 112090 112091 112092 112093 112094 112095 | return sqlite3Fts3Init(db); } #endif #endif /************** End of fts3.c ************************************************/ /************** Begin file fts3_expr.c ***************************************/ /* ** 2008 Nov 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 114447 114448 114449 114450 114451 114452 114453 114454 114455 114456 114457 114458 114459 114460 114461 114462 114463 114464 114465 114466 114467 114468 114469 114470 114471 114472 114473 114474 114475 114476 114477 114478 114479 114480 114481 114482 114483 114484 114485 114486 114487 114488 114489 114490 114491 114492 114493 114494 114495 114496 114497 114498 114499 114500 114501 114502 114503 114504 114505 114506 114507 114508 114509 114510 114511 114512 114513 114514 114515 114516 114517 114518 114519 114520 114521 114522 114523 114524 114525 114526 114527 114528 114529 114530 114531 114532 114533 114534 114535 114536 114537 114538 114539 114540 114541 114542 114543 114544 114545 114546 114547 114548 114549 114550 114551 114552 114553 114554 114555 114556 114557 114558 114559 114560 114561 114562 114563 114564 114565 114566 114567 114568 114569 114570 114571 114572 114573 114574 114575 114576 114577 114578 114579 114580 114581 114582 114583 114584 114585 114586 114587 114588 114589 114590 114591 114592 114593 114594 114595 114596 114597 114598 114599 114600 114601 114602 114603 114604 114605 114606 114607 114608 114609 114610 114611 114612 114613 114614 114615 114616 114617 114618 114619 114620 114621 114622 114623 114624 114625 114626 114627 114628 114629 114630 114631 114632 114633 114634 114635 114636 114637 114638 114639 114640 114641 114642 114643 114644 114645 114646 114647 114648 114649 114650 114651 114652 114653 114654 114655 114656 114657 114658 114659 114660 114661 114662 114663 114664 114665 114666 114667 114668 114669 114670 114671 114672 114673 114674 114675 114676 114677 114678 114679 114680 114681 114682 114683 114684 114685 114686 114687 114688 114689 114690 114691 114692 114693 114694 114695 114696 114697 114698 114699 114700 114701 114702 114703 114704 114705 114706 114707 114708 114709 114710 114711 114712 114713 114714 114715 114716 114717 114718 114719 114720 114721 114722 114723 114724 114725 114726 114727 114728 114729 114730 114731 114732 114733 114734 114735 114736 114737 114738 114739 114740 114741 114742 114743 114744 114745 114746 114747 114748 114749 114750 114751 114752 114753 114754 114755 114756 114757 114758 114759 114760 114761 114762 114763 114764 114765 114766 114767 114768 114769 114770 114771 114772 114773 114774 114775 114776 114777 114778 114779 114780 114781 114782 114783 114784 114785 114786 114787 114788 114789 114790 114791 114792 114793 114794 114795 114796 114797 114798 114799 114800 114801 114802 114803 114804 114805 114806 114807 114808 114809 114810 114811 114812 114813 114814 114815 114816 114817 114818 114819 114820 114821 114822 114823 114824 114825 114826 114827 114828 114829 114830 114831 114832 114833 114834 114835 114836 114837 114838 114839 114840 114841 114842 114843 114844 114845 114846 114847 114848 114849 114850 114851 114852 114853 114854 114855 114856 114857 114858 114859 114860 114861 114862 114863 114864 114865 114866 114867 114868 114869 114870 114871 114872 114873 114874 114875 114876 114877 114878 114879 114880 114881 114882 114883 114884 114885 114886 114887 114888 114889 114890 114891 114892 114893 114894 114895 114896 114897 114898 114899 114900 114901 114902 114903 114904 114905 114906 114907 114908 114909 114910 114911 114912 114913 114914 114915 114916 114917 114918 114919 114920 114921 114922 114923 114924 114925 114926 114927 114928 114929 114930 | return sqlite3Fts3Init(db); } #endif #endif /************** End of fts3.c ************************************************/ /************** Begin file fts3_aux.c ****************************************/ /* ** 2011 Jan 27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) typedef struct Fts3auxTable Fts3auxTable; typedef struct Fts3auxCursor Fts3auxCursor; struct Fts3auxTable { sqlite3_vtab base; /* Base class used by SQLite core */ Fts3Table *pFts3Tab; }; struct Fts3auxCursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ Fts3SegReaderCursor csr; /* Must be right after "base" */ Fts3SegFilter filter; char *zStop; int nStop; /* Byte-length of string zStop */ int isEof; /* True if cursor is at EOF */ sqlite3_int64 iRowid; /* Current rowid */ int iCol; /* Current value of 'col' column */ int nStat; /* Size of aStat[] array */ struct Fts3auxColstats { sqlite3_int64 nDoc; /* 'documents' values for current csr row */ sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */ } *aStat; }; /* ** Schema of the terms table. */ #define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, col, documents, occurrences)" /* ** This function does all the work for both the xConnect and xCreate methods. ** These tables have no persistent representation of their own, so xConnect ** and xCreate are identical operations. */ static int fts3auxConnectMethod( sqlite3 *db, /* Database connection */ void *pUnused, /* Unused */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ char const *zDb; /* Name of database (e.g. "main") */ char const *zFts3; /* Name of fts3 table */ int nDb; /* Result of strlen(zDb) */ int nFts3; /* Result of strlen(zFts3) */ int nByte; /* Bytes of space to allocate here */ int rc; /* value returned by declare_vtab() */ Fts3auxTable *p; /* Virtual table object to return */ UNUSED_PARAMETER(pUnused); /* The user should specify a single argument - the name of an fts3 table. */ if( argc!=4 ){ *pzErr = sqlite3_mprintf( "wrong number of arguments to fts4aux constructor" ); return SQLITE_ERROR; } zDb = argv[1]; nDb = strlen(zDb); zFts3 = argv[3]; nFts3 = strlen(zFts3); rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA); if( rc!=SQLITE_OK ) return rc; nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2; p = (Fts3auxTable *)sqlite3_malloc(nByte); if( !p ) return SQLITE_NOMEM; memset(p, 0, nByte); p->pFts3Tab = (Fts3Table *)&p[1]; p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1]; p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1]; p->pFts3Tab->db = db; memcpy((char *)p->pFts3Tab->zDb, zDb, nDb); memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3); sqlite3Fts3Dequote((char *)p->pFts3Tab->zName); *ppVtab = (sqlite3_vtab *)p; return SQLITE_OK; } /* ** This function does the work for both the xDisconnect and xDestroy methods. ** These tables have no persistent representation of their own, so xDisconnect ** and xDestroy are identical operations. */ static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){ Fts3auxTable *p = (Fts3auxTable *)pVtab; Fts3Table *pFts3 = p->pFts3Tab; int i; /* Free any prepared statements held */ for(i=0; i<SizeofArray(pFts3->aStmt); i++){ sqlite3_finalize(pFts3->aStmt[i]); } sqlite3_free(pFts3->zSegmentsTbl); sqlite3_free(p); return SQLITE_OK; } #define FTS4AUX_EQ_CONSTRAINT 1 #define FTS4AUX_GE_CONSTRAINT 2 #define FTS4AUX_LE_CONSTRAINT 4 /* ** xBestIndex - Analyze a WHERE and ORDER BY clause. */ static int fts3auxBestIndexMethod( sqlite3_vtab *pVTab, sqlite3_index_info *pInfo ){ int i; int iEq = -1; int iGe = -1; int iLe = -1; UNUSED_PARAMETER(pVTab); /* This vtab delivers always results in "ORDER BY term ASC" order. */ if( pInfo->nOrderBy==1 && pInfo->aOrderBy[0].iColumn==0 && pInfo->aOrderBy[0].desc==0 ){ pInfo->orderByConsumed = 1; } /* Search for equality and range constraints on the "term" column. */ for(i=0; i<pInfo->nConstraint; i++){ if( pInfo->aConstraint[i].usable && pInfo->aConstraint[i].iColumn==0 ){ int op = pInfo->aConstraint[i].op; if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i; if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i; if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i; if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i; if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i; } } if( iEq>=0 ){ pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT; pInfo->aConstraintUsage[iEq].argvIndex = 1; pInfo->estimatedCost = 5; }else{ pInfo->idxNum = 0; pInfo->estimatedCost = 20000; if( iGe>=0 ){ pInfo->idxNum += FTS4AUX_GE_CONSTRAINT; pInfo->aConstraintUsage[iGe].argvIndex = 1; pInfo->estimatedCost /= 2; } if( iLe>=0 ){ pInfo->idxNum += FTS4AUX_LE_CONSTRAINT; pInfo->aConstraintUsage[iLe].argvIndex = 1 + (iGe>=0); pInfo->estimatedCost /= 2; } } return SQLITE_OK; } /* ** xOpen - Open a cursor. */ static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ Fts3auxCursor *pCsr; /* Pointer to cursor object to return */ UNUSED_PARAMETER(pVTab); pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor)); if( !pCsr ) return SQLITE_NOMEM; memset(pCsr, 0, sizeof(Fts3auxCursor)); *ppCsr = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** xClose - Close a cursor. */ static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; sqlite3Fts3SegmentsClose(pFts3); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free((void *)pCsr->filter.zTerm); sqlite3_free(pCsr->zStop); sqlite3_free(pCsr->aStat); sqlite3_free(pCsr); return SQLITE_OK; } static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){ if( nSize>pCsr->nStat ){ struct Fts3auxColstats *aNew; aNew = (struct Fts3auxColstats *)sqlite3_realloc(pCsr->aStat, sizeof(struct Fts3auxColstats) * nSize ); if( aNew==0 ) return SQLITE_NOMEM; memset(&aNew[pCsr->nStat], 0, sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat) ); pCsr->aStat = aNew; pCsr->nStat = nSize; } return SQLITE_OK; } /* ** xNext - Advance the cursor to the next row, if any. */ static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; int rc; /* Increment our pretend rowid value. */ pCsr->iRowid++; for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){ if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK; } rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr); if( rc==SQLITE_ROW ){ int i = 0; int nDoclist = pCsr->csr.nDoclist; char *aDoclist = pCsr->csr.aDoclist; int iCol; int eState = 0; if( pCsr->zStop ){ int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm; int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n); if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){ pCsr->isEof = 1; return SQLITE_OK; } } if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM; memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat); iCol = 0; while( i<nDoclist ){ sqlite3_int64 v = 0; i += sqlite3Fts3GetVarint(&aDoclist[i], &v); switch( eState ){ /* State 0. In this state the integer just read was a docid. */ case 0: pCsr->aStat[0].nDoc++; eState = 1; iCol = 0; break; /* State 1. In this state we are expecting either a 1, indicating ** that the following integer will be a column number, or the ** start of a position list for column 0. ** ** The only difference between state 1 and state 2 is that if the ** integer encountered in state 1 is not 0 or 1, then we need to ** increment the column 0 "nDoc" count for this term. */ case 1: assert( iCol==0 ); if( v>1 ){ pCsr->aStat[1].nDoc++; } eState = 2; /* fall through */ case 2: if( v==0 ){ /* 0x00. Next integer will be a docid. */ eState = 0; }else if( v==1 ){ /* 0x01. Next integer will be a column number. */ eState = 3; }else{ /* 2 or greater. A position. */ pCsr->aStat[iCol+1].nOcc++; pCsr->aStat[0].nOcc++; } break; /* State 3. The integer just read is a column number. */ default: assert( eState==3 ); iCol = (int)v; if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM; pCsr->aStat[iCol+1].nDoc++; eState = 2; break; } } pCsr->iCol = 0; rc = SQLITE_OK; }else{ pCsr->isEof = 1; } return rc; } /* ** xFilter - Initialize a cursor to point at the start of its data. */ static int fts3auxFilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; int rc; int isScan; UNUSED_PARAMETER(nVal); assert( idxStr==0 ); assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0 || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ); isScan = (idxNum!=FTS4AUX_EQ_CONSTRAINT); /* In case this cursor is being reused, close and zero it. */ testcase(pCsr->filter.zTerm); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free((void *)pCsr->filter.zTerm); sqlite3_free(pCsr->aStat); memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr); pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN; if( idxNum&(FTS4AUX_EQ_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ){ const unsigned char *zStr = sqlite3_value_text(apVal[0]); if( zStr ){ pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr); pCsr->filter.nTerm = sqlite3_value_bytes(apVal[0]); if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM; } } if( idxNum&FTS4AUX_LE_CONSTRAINT ){ int iIdx = (idxNum&FTS4AUX_GE_CONSTRAINT) ? 1 : 0; pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iIdx])); pCsr->nStop = sqlite3_value_bytes(apVal[iIdx]); if( pCsr->zStop==0 ) return SQLITE_NOMEM; } rc = sqlite3Fts3SegReaderCursor(pFts3, FTS3_SEGCURSOR_ALL, pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter); } if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor); return rc; } /* ** xEof - Return true if the cursor is at EOF, or false otherwise. */ static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; return pCsr->isEof; } /* ** xColumn - Return a column value. */ static int fts3auxColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ Fts3auxCursor *p = (Fts3auxCursor *)pCursor; assert( p->isEof==0 ); if( iCol==0 ){ /* Column "term" */ sqlite3_result_text(pContext, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT); }else if( iCol==1 ){ /* Column "col" */ if( p->iCol ){ sqlite3_result_int(pContext, p->iCol-1); }else{ sqlite3_result_text(pContext, "*", -1, SQLITE_STATIC); } }else if( iCol==2 ){ /* Column "documents" */ sqlite3_result_int64(pContext, p->aStat[p->iCol].nDoc); }else{ /* Column "occurrences" */ sqlite3_result_int64(pContext, p->aStat[p->iCol].nOcc); } return SQLITE_OK; } /* ** xRowid - Return the current rowid for the cursor. */ static int fts3auxRowidMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite_int64 *pRowid /* OUT: Rowid value */ ){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; *pRowid = pCsr->iRowid; return SQLITE_OK; } /* ** Register the fts3aux module with database connection db. Return SQLITE_OK ** if successful or an error code if sqlite3_create_module() fails. */ SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){ static const sqlite3_module fts3aux_module = { 0, /* iVersion */ fts3auxConnectMethod, /* xCreate */ fts3auxConnectMethod, /* xConnect */ fts3auxBestIndexMethod, /* xBestIndex */ fts3auxDisconnectMethod, /* xDisconnect */ fts3auxDisconnectMethod, /* xDestroy */ fts3auxOpenMethod, /* xOpen */ fts3auxCloseMethod, /* xClose */ fts3auxFilterMethod, /* xFilter */ fts3auxNextMethod, /* xNext */ fts3auxEofMethod, /* xEof */ fts3auxColumnMethod, /* xColumn */ fts3auxRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0 /* xRename */ }; int rc; /* Return code */ rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0); return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_aux.c ********************************************/ /************** Begin file fts3_expr.c ***************************************/ /* ** 2008 Nov 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** |
︙ | ︙ | |||
114975 114976 114977 114978 114979 114980 114981 | /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", /* 2 */ "DELETE FROM %Q.'%q_content'", /* 3 */ "DELETE FROM %Q.'%q_segments'", /* 4 */ "DELETE FROM %Q.'%q_segdir'", /* 5 */ "DELETE FROM %Q.'%q_docsize'", /* 6 */ "DELETE FROM %Q.'%q_stat'", | | | < < | | < < < < < < < < < | | 117810 117811 117812 117813 117814 117815 117816 117817 117818 117819 117820 117821 117822 117823 117824 117825 117826 117827 117828 117829 117830 117831 117832 117833 117834 117835 117836 117837 117838 117839 117840 117841 117842 117843 117844 117845 117846 117847 117848 117849 117850 117851 117852 117853 117854 117855 117856 117857 117858 117859 117860 | /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", /* 2 */ "DELETE FROM %Q.'%q_content'", /* 3 */ "DELETE FROM %Q.'%q_segments'", /* 4 */ "DELETE FROM %Q.'%q_segdir'", /* 5 */ "DELETE FROM %Q.'%q_docsize'", /* 6 */ "DELETE FROM %Q.'%q_stat'", /* 7 */ "SELECT %s FROM %Q.'%q_content' AS x WHERE rowid=?", /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", /* 9 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", /* 11 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", /* Return segments in order from oldest to newest.*/ /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC", /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", /* 15 */ "SELECT count(*), max(level) FROM %Q.'%q_segdir'", /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=0", /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(0,?)", }; int rc = SQLITE_OK; sqlite3_stmt *pStmt; assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); pStmt = p->aStmt[eStmt]; if( !pStmt ){ char *zSql; if( eStmt==SQL_CONTENT_INSERT ){ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist, p->zDb, p->zName); }else{ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); } if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL); |
︙ | ︙ | |||
115063 115064 115065 115066 115067 115068 115069 | rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0); if( rc==SQLITE_OK ){ if( eStmt==SQL_SELECT_DOCSIZE ){ sqlite3_bind_int64(pStmt, 1, iDocid); } rc = sqlite3_step(pStmt); | | | 117887 117888 117889 117890 117891 117892 117893 117894 117895 117896 117897 117898 117899 117900 117901 | rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0); if( rc==SQLITE_OK ){ if( eStmt==SQL_SELECT_DOCSIZE ){ sqlite3_bind_int64(pStmt, 1, iDocid); } rc = sqlite3_step(pStmt); if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ rc = sqlite3_reset(pStmt); if( rc==SQLITE_OK ) rc = SQLITE_CORRUPT; pStmt = 0; }else{ rc = SQLITE_OK; } } |
︙ | ︙ | |||
115164 115165 115166 115167 115168 115169 115170 | ** ** 0: idx ** 1: start_block ** 2: leaves_end_block ** 3: end_block ** 4: root */ | | > > > | > > > > > > | 117988 117989 117990 117991 117992 117993 117994 117995 117996 117997 117998 117999 118000 118001 118002 118003 118004 118005 118006 118007 118008 118009 118010 118011 118012 | ** ** 0: idx ** 1: start_block ** 2: leaves_end_block ** 3: end_block ** 4: root */ SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table *p, int iLevel, sqlite3_stmt **ppStmt){ int rc; sqlite3_stmt *pStmt = 0; if( iLevel<0 ){ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, &pStmt, 0); }else{ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ) sqlite3_bind_int(pStmt, 1, iLevel); } *ppStmt = pStmt; return rc; } /* ** Append a single varint to a PendingList buffer. SQLITE_OK is returned ** if successful, or an SQLite error code otherwise. ** |
︙ | ︙ | |||
115867 115868 115869 115870 115871 115872 115873 115874 115875 | ** the table. The following nCol varints contain the total amount of ** data stored in all rows of each column of the table, from left ** to right. */ sqlite3_stmt *pStmt; sqlite3_int64 nDoc = 0; sqlite3_int64 nByte = 0; const char *a; rc = sqlite3Fts3SelectDoctotal(p, &pStmt); | > > | | > | | | | < | 118700 118701 118702 118703 118704 118705 118706 118707 118708 118709 118710 118711 118712 118713 118714 118715 118716 118717 118718 118719 118720 118721 118722 118723 118724 118725 | ** the table. The following nCol varints contain the total amount of ** data stored in all rows of each column of the table, from left ** to right. */ sqlite3_stmt *pStmt; sqlite3_int64 nDoc = 0; sqlite3_int64 nByte = 0; const char *pEnd; const char *a; rc = sqlite3Fts3SelectDoctotal(p, &pStmt); if( rc!=SQLITE_OK ) return rc; a = sqlite3_column_blob(pStmt, 0); assert( a ); pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; a += sqlite3Fts3GetVarint(a, &nDoc); while( a<pEnd ){ a += sqlite3Fts3GetVarint(a, &nByte); } if( nDoc==0 || nByte==0 ){ sqlite3_reset(pStmt); return SQLITE_CORRUPT; } pCsr->nRowAvg = (int)(((nByte / nDoc) + pgsz) / pgsz); |
︙ | ︙ | |||
116066 116067 116068 116069 116070 116071 116072 | if( isPrefix ){ sqlite3_free(aElem); } *ppReader = pReader; return rc; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 118901 118902 118903 118904 118905 118906 118907 118908 118909 118910 118911 118912 118913 118914 | if( isPrefix ){ sqlite3_free(aElem); } *ppReader = pReader; return rc; } /* ** Compare the entries pointed to by two Fts3SegReader structures. ** Comparison is as follows: ** ** 1) EOF is greater than not EOF. ** ** 2) The current terms (if any) are compared using memcmp(). If one |
︙ | ︙ | |||
116706 116707 116708 116709 116710 116711 116712 | *pisEmpty = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } return rc; } | < < < < < < < < < < < < < < < < < < < | 119505 119506 119507 119508 119509 119510 119511 119512 119513 119514 119515 119516 119517 119518 | *pisEmpty = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } return rc; } /* ** Set *pnSegment to the total number of segments in the database. Set ** *pnMax to the largest segment level in the database (segment levels ** are stored in the 'level' column of the %_segdir table). ** ** Return SQLITE_OK if successful, or an SQLite error code if not. */ |
︙ | ︙ | |||
116783 116784 116785 116786 116787 116788 116789 | rc = sqlite3_reset(pDelete); } } if( rc!=SQLITE_OK ){ return rc; } | > > > > > | < < | 119563 119564 119565 119566 119567 119568 119569 119570 119571 119572 119573 119574 119575 119576 119577 119578 119579 119580 119581 119582 119583 119584 119585 119586 119587 119588 | rc = sqlite3_reset(pDelete); } } if( rc!=SQLITE_OK ){ return rc; } if( iLevel==FTS3_SEGCURSOR_ALL ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); }else if( iLevel==FTS3_SEGCURSOR_PENDING ){ sqlite3Fts3PendingTermsClear(p); }else{ assert( iLevel>=0 ); rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pDelete, 1, iLevel); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } } return rc; } /* ** When this function is called, buffer *ppList (size *pnList bytes) contains |
︙ | ︙ | |||
116840 116841 116842 116843 116844 116845 116846 | p += sqlite3Fts3GetVarint32(p, &iCurrent); } *ppList = pList; *pnList = nList; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | < | < < | < < < < < < < | < < < < > | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | > | | < | | | | | | > | | | | | | | 119623 119624 119625 119626 119627 119628 119629 119630 119631 119632 119633 119634 119635 119636 119637 119638 119639 119640 119641 119642 119643 119644 119645 119646 119647 119648 119649 119650 119651 119652 119653 119654 119655 119656 119657 119658 119659 119660 119661 119662 119663 119664 119665 119666 119667 119668 119669 119670 119671 119672 119673 119674 119675 119676 119677 119678 119679 119680 119681 119682 119683 119684 119685 119686 119687 119688 119689 119690 119691 119692 119693 119694 119695 119696 119697 119698 119699 119700 119701 119702 119703 119704 119705 119706 119707 119708 119709 119710 119711 119712 119713 119714 119715 119716 119717 119718 119719 119720 119721 119722 119723 119724 119725 119726 119727 119728 119729 119730 119731 119732 119733 119734 119735 119736 119737 119738 119739 119740 119741 119742 119743 | p += sqlite3Fts3GetVarint32(p, &iCurrent); } *ppList = pList; *pnList = nList; } SQLITE_PRIVATE int sqlite3Fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3SegReaderCursor *pCsr, /* Cursor object */ Fts3SegFilter *pFilter /* Restrictions on range of iteration */ ){ int i; /* Initialize the cursor object */ pCsr->pFilter = pFilter; /* If the Fts3SegFilter defines a specific term (or term prefix) to search ** for, then advance each segment iterator until it points to a term of ** equal or greater value than the specified term. This prevents many ** unnecessary merge/sort operations for the case where single segment ** b-tree leaf nodes contain more than one term. */ for(i=0; i<pCsr->nSegment; i++){ int nTerm = pFilter->nTerm; const char *zTerm = pFilter->zTerm; Fts3SegReader *pSeg = pCsr->apSegment[i]; do { int rc = fts3SegReaderNext(p, pSeg); if( rc!=SQLITE_OK ) return rc; }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 ); } fts3SegReaderSort( pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp); return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3SegReaderStep( Fts3Table *p, /* Virtual table handle */ Fts3SegReaderCursor *pCsr /* Cursor object */ ){ int rc = SQLITE_OK; int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); Fts3SegReader **apSegment = pCsr->apSegment; int nSegment = pCsr->nSegment; Fts3SegFilter *pFilter = pCsr->pFilter; if( pCsr->nSegment==0 ) return SQLITE_OK; do { int nMerge; int i; /* Advance the first pCsr->nAdvance entries in the apSegment[] array ** forward. Then sort the list in order of current term again. */ for(i=0; i<pCsr->nAdvance; i++){ rc = fts3SegReaderNext(p, apSegment[i]); if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); pCsr->nAdvance = 0; /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ assert( rc==SQLITE_OK ); if( apSegment[0]->aNode==0 ) break; pCsr->nTerm = apSegment[0]->nTerm; pCsr->zTerm = apSegment[0]->zTerm; /* If this is a prefix-search, and if the term that apSegment[0] points ** to does not share a suffix with pFilter->zTerm/nTerm, then all ** required callbacks have been made. In this case exit early. ** ** Similarly, if this is a search for an exact match, and the first term ** of segment apSegment[0] is not a match, exit early. */ if( pFilter->zTerm && !isScan ){ if( pCsr->nTerm<pFilter->nTerm || (!isPrefix && pCsr->nTerm>pFilter->nTerm) || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) ){ break; } } nMerge = 1; while( nMerge<nSegment && apSegment[nMerge]->aNode && apSegment[nMerge]->nTerm==pCsr->nTerm && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) ){ nMerge++; } assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); if( nMerge==1 && !isIgnoreEmpty ){ pCsr->aDoclist = apSegment[0]->aDoclist; pCsr->nDoclist = apSegment[0]->nDoclist; rc = SQLITE_ROW; }else{ int nDoclist = 0; /* Size of doclist */ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ /* The current term of the first nMerge entries in the array ** of Fts3SegReader objects is the same. The doclists must be merged ** and a single term returned with the merged doclist. */ for(i=0; i<nMerge; i++){ fts3SegReaderFirstDocid(apSegment[i]); } fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp); while( apSegment[0]->pOffsetList ){ int j; /* Number of segments that share a docid */ |
︙ | ︙ | |||
117005 117006 117007 117008 117009 117010 117011 | if( isColFilter ){ fts3ColumnFilter(pFilter->iCol, &pList, &nList); } if( !isIgnoreEmpty || nList>0 ){ nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0); | | | | | < | | > > | | < > | | > > < | < < < < | > > > > > | | < | > | > > > | < < < < | < | < < < > > > > | | < < < < < < | | | > > | < < < < > | < | < | < > | < | < < < < < < | < < | | < < < | < < < > < > < < < | < < < < < | < < < < < < < | < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 119757 119758 119759 119760 119761 119762 119763 119764 119765 119766 119767 119768 119769 119770 119771 119772 119773 119774 119775 119776 119777 119778 119779 119780 119781 119782 119783 119784 119785 119786 119787 119788 119789 119790 119791 119792 119793 119794 119795 119796 119797 119798 119799 119800 119801 119802 119803 119804 119805 119806 119807 119808 119809 119810 119811 119812 119813 119814 119815 119816 119817 119818 119819 119820 119821 119822 119823 119824 119825 119826 119827 119828 119829 119830 119831 119832 119833 119834 119835 119836 119837 119838 119839 119840 119841 119842 119843 119844 119845 119846 119847 119848 119849 119850 119851 119852 119853 119854 119855 119856 119857 119858 119859 119860 119861 119862 119863 119864 119865 119866 119867 119868 119869 119870 119871 119872 119873 119874 119875 119876 119877 119878 119879 119880 119881 119882 119883 119884 119885 119886 119887 119888 119889 119890 119891 119892 119893 119894 119895 119896 | if( isColFilter ){ fts3ColumnFilter(pFilter->iCol, &pList, &nList); } if( !isIgnoreEmpty || nList>0 ){ nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0); if( nDoclist+nByte>pCsr->nBuffer ){ char *aNew; pCsr->nBuffer = (nDoclist+nByte)*2; aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); if( !aNew ){ return SQLITE_NOMEM; } pCsr->aBuffer = aNew; } nDoclist += sqlite3Fts3PutVarint( &pCsr->aBuffer[nDoclist], iDocid-iPrev ); iPrev = iDocid; if( isRequirePos ){ memcpy(&pCsr->aBuffer[nDoclist], pList, nList); nDoclist += nList; pCsr->aBuffer[nDoclist++] = '\0'; } } fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp); } if( nDoclist>0 ){ pCsr->aDoclist = pCsr->aBuffer; pCsr->nDoclist = nDoclist; rc = SQLITE_ROW; } } pCsr->nAdvance = nMerge; }while( rc==SQLITE_OK ); return rc; } SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish( Fts3SegReaderCursor *pCsr /* Cursor object */ ){ if( pCsr ){ int i; for(i=0; i<pCsr->nSegment; i++){ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); } sqlite3_free(pCsr->apSegment); sqlite3_free(pCsr->aBuffer); pCsr->nSegment = 0; pCsr->apSegment = 0; pCsr->aBuffer = 0; } } /* ** Merge all level iLevel segments in the database into a single ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a ** single segment with a level equal to the numerically largest level ** currently present in the database. ** ** If this function is called with iLevel<0, but there is only one ** segment in the database, SQLITE_DONE is returned immediately. ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, ** an SQLite error code is returned. */ static int fts3SegmentMerge(Fts3Table *p, int iLevel){ int rc; /* Return code */ int iIdx = 0; /* Index of new segment */ int iNewLevel = 0; /* Level to create new segment at */ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ Fts3SegFilter filter; /* Segment term filter condition */ Fts3SegReaderCursor csr; /* Cursor to iterate through level(s) */ rc = sqlite3Fts3SegReaderCursor(p, iLevel, 0, 0, 1, 0, &csr); if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; if( iLevel==FTS3_SEGCURSOR_ALL ){ /* This call is to merge all segments in the database to a single ** segment. The level of the new segment is equal to the the numerically ** greatest segment level currently present in the database. The index ** of the new segment is always 0. */ int nDummy; /* TODO: Remove this */ if( csr.nSegment==1 ){ rc = SQLITE_DONE; goto finished; } rc = fts3SegmentCountMax(p, &nDummy, &iNewLevel); }else{ /* This call is to merge all segments at level iLevel. Find the next ** available segment index at level iLevel+1. The call to ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to ** a single iLevel+2 segment if necessary. */ iNewLevel = iLevel+1; rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx); } if( rc!=SQLITE_OK ) goto finished; assert( csr.nSegment>0 ); assert( iNewLevel>=0 ); memset(&filter, 0, sizeof(Fts3SegFilter)); filter.flags = FTS3_SEGMENT_REQUIRE_POS; filter.flags |= (iLevel==FTS3_SEGCURSOR_ALL ? FTS3_SEGMENT_IGNORE_EMPTY : 0); rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); while( SQLITE_OK==rc ){ rc = sqlite3Fts3SegReaderStep(p, &csr); if( rc!=SQLITE_ROW ) break; rc = fts3SegWriterAdd(p, &pWriter, 1, csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); } if( rc!=SQLITE_OK ) goto finished; assert( pWriter ); rc = fts3DeleteSegdir(p, iLevel, csr.apSegment, csr.nSegment); if( rc!=SQLITE_OK ) goto finished; rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); finished: fts3SegWriterFree(pWriter); sqlite3Fts3SegReaderFinish(&csr); return rc; } /* ** Flush the contents of pendingTerms to a level 0 segment. */ SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ return fts3SegmentMerge(p, FTS3_SEGCURSOR_PENDING); } /* ** Encode N integers as varints into a blob. */ static void fts3EncodeIntArray( int N, /* The number of integers to encode */ |
︙ | ︙ | |||
117382 117383 117384 117385 117386 117387 117388 | int rc; /* Return Code */ const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ | | | 120049 120050 120051 120052 120053 120054 120055 120056 120057 120058 120059 120060 120061 120062 120063 | int rc; /* Return Code */ const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL); if( rc==SQLITE_DONE ){ rc = SQLITE_OK; }else{ sqlite3Fts3PendingTermsClear(p); } #ifdef SQLITE_TEST }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ |
︙ | ︙ | |||
117640 117641 117642 117643 117644 117645 117646 | ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. */ SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){ int rc; rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); if( rc==SQLITE_OK ){ | | | 120307 120308 120309 120310 120311 120312 120313 120314 120315 120316 120317 120318 120319 120320 120321 | ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. */ SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){ int rc; rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); if( rc==SQLITE_OK ){ rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); if( rc==SQLITE_OK ){ sqlite3Fts3PendingTermsClear(p); } }else{ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); |
︙ | ︙ | |||
118538 118539 118540 118541 118542 118543 118544 118545 118546 118547 | */ static int fts3ExprLocalHitsCb( Fts3Expr *pExpr, /* Phrase expression node */ int iPhrase, /* Phrase number */ void *pCtx /* Pointer to MatchInfo structure */ ){ MatchInfo *p = (MatchInfo *)pCtx; if( pExpr->aDoclist ){ char *pCsr; | > > > > < < < < | 121205 121206 121207 121208 121209 121210 121211 121212 121213 121214 121215 121216 121217 121218 121219 121220 121221 121222 121223 121224 121225 | */ static int fts3ExprLocalHitsCb( Fts3Expr *pExpr, /* Phrase expression node */ int iPhrase, /* Phrase number */ void *pCtx /* Pointer to MatchInfo structure */ ){ MatchInfo *p = (MatchInfo *)pCtx; int iStart = iPhrase * p->nCol * 3; int i; for(i=0; i<p->nCol; i++) p->aMatchinfo[iStart+i*3] = 0; if( pExpr->aDoclist ){ char *pCsr; pCsr = sqlite3Fts3FindPositions(pExpr, p->pCursor->iPrevId, -1); if( pCsr ){ fts3LoadColumnlistCounts(&pCsr, &p->aMatchinfo[iStart], 0); } } |
︙ | ︙ | |||
118618 118619 118620 118621 118622 118623 118624 118625 118626 118627 118628 118629 118630 118631 | if( rc!=SQLITE_OK ) return rc; } pStmt = *ppStmt; assert( sqlite3_data_count(pStmt)==1 ); a = sqlite3_column_blob(pStmt, 0); a += sqlite3Fts3GetVarint(a, &nDoc); *pnDoc = (u32)nDoc; if( paLen ) *paLen = a; return SQLITE_OK; } /* | > | 121285 121286 121287 121288 121289 121290 121291 121292 121293 121294 121295 121296 121297 121298 121299 | if( rc!=SQLITE_OK ) return rc; } pStmt = *ppStmt; assert( sqlite3_data_count(pStmt)==1 ); a = sqlite3_column_blob(pStmt, 0); a += sqlite3Fts3GetVarint(a, &nDoc); if( nDoc==0 ) return SQLITE_CORRUPT; *pnDoc = (u32)nDoc; if( paLen ) *paLen = a; return SQLITE_OK; } /* |
︙ | ︙ | |||
118824 118825 118826 118827 118828 118829 118830 118831 118832 | sqlite3_int64 nDoc; /* Number of rows in table */ const char *a; /* Aggregate column length array */ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a); if( rc==SQLITE_OK ){ int iCol; for(iCol=0; iCol<pInfo->nCol; iCol++){ sqlite3_int64 nToken; a += sqlite3Fts3GetVarint(a, &nToken); | > | > | 121492 121493 121494 121495 121496 121497 121498 121499 121500 121501 121502 121503 121504 121505 121506 121507 121508 121509 121510 | sqlite3_int64 nDoc; /* Number of rows in table */ const char *a; /* Aggregate column length array */ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a); if( rc==SQLITE_OK ){ int iCol; for(iCol=0; iCol<pInfo->nCol; iCol++){ u32 iVal; sqlite3_int64 nToken; a += sqlite3Fts3GetVarint(a, &nToken); iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc); pInfo->aMatchinfo[iCol] = iVal; } } } break; case FTS3_MATCHINFO_LENGTH: { sqlite3_stmt *pSelectDocsize = 0; |
︙ | ︙ | |||
120547 120548 120549 120550 120551 120552 120553 | if( argc>0 ){ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); | | | 123217 123218 123219 123220 123221 123222 123223 123224 123225 123226 123227 123228 123229 123230 123231 | if( argc>0 ){ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 ); for(ii=0; ii<argc; ii++){ RtreeConstraint *p = &pCsr->aConstraint[ii]; p->op = idxStr[ii*2]; p->iCoord = idxStr[ii*2+1]-'a'; if( p->op==RTREE_MATCH ){ /* A MATCH operator. The right-hand-side must be a blob that ** can be cast into an RtreeMatchArg object. One created using |
︙ | ︙ | |||
120632 120633 120634 120635 120636 120637 120638 | ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int rc = SQLITE_OK; | | | | 123302 123303 123304 123305 123306 123307 123308 123309 123310 123311 123312 123313 123314 123315 123316 123317 123318 123319 123320 123321 123322 123323 123324 | ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int rc = SQLITE_OK; int ii; int iIdx = 0; char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; memset(zIdxStr, 0, sizeof(zIdxStr)); UNUSED_PARAMETER(tab); assert( pIdxInfo->idxStr==0 ); for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ /* We have an equality constraint on the rowid. Use strategy 1. */ int jj; for(jj=0; jj<ii; jj++){ pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
︙ | ︙ | |||
120664 120665 120666 120667 120668 120669 120670 | ** sqlite uses an internal cost of 0.0). */ pIdxInfo->estimatedCost = 10.0; return SQLITE_OK; } if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ | < < | < < < < < < < < < < < < < < < < < < < < < < < < < < | | | | < | 123334 123335 123336 123337 123338 123339 123340 123341 123342 123343 123344 123345 123346 123347 123348 123349 123350 123351 123352 123353 123354 123355 123356 123357 123358 123359 123360 123361 123362 123363 | ** sqlite uses an internal cost of 0.0). */ pIdxInfo->estimatedCost = 10.0; return SQLITE_OK; } if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; default: assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); op = RTREE_MATCH; break; } zIdxStr[iIdx++] = op; zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = 1; } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ return SQLITE_NOMEM; |
︙ | ︙ | |||
122412 122413 122414 122415 122416 122417 122418 | for(ii=0; ii<NCELL(&node); ii++){ char zCell[512]; int nCell = 0; RtreeCell cell; int jj; nodeGetCell(&tree, &node, ii, &cell); | | | 125053 125054 125055 125056 125057 125058 125059 125060 125061 125062 125063 125064 125065 125066 125067 | for(ii=0; ii<NCELL(&node); ii++){ char zCell[512]; int nCell = 0; RtreeCell cell; int jj; nodeGetCell(&tree, &node, ii, &cell); sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); nCell = strlen(zCell); for(jj=0; jj<tree.nDim*2; jj++){ sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f); nCell = strlen(zCell); } if( zText ){ |
︙ | ︙ | |||
122792 122793 122794 122795 122796 122797 122798 122799 122800 122801 122802 122803 122804 122805 | ** uregex_close() */ static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ UErrorCode status = U_ZERO_ERROR; URegularExpression *pExpr; UBool res; const UChar *zString = sqlite3_value_text16(apArg[1]); /* If the left hand side of the regexp operator is NULL, ** then the result is also NULL. */ if( !zString ){ return; } | > > | 125433 125434 125435 125436 125437 125438 125439 125440 125441 125442 125443 125444 125445 125446 125447 125448 | ** uregex_close() */ static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ UErrorCode status = U_ZERO_ERROR; URegularExpression *pExpr; UBool res; const UChar *zString = sqlite3_value_text16(apArg[1]); (void)nArg; /* Unused parameter */ /* If the left hand side of the regexp operator is NULL, ** then the result is also NULL. */ if( !zString ){ return; } |
︙ | ︙ | |||
123021 123022 123023 123024 123025 123026 123027 | {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation}, }; int rc = SQLITE_OK; int i; | | | 125664 125665 125666 125667 125668 125669 125670 125671 125672 125673 125674 125675 125676 125677 125678 | {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation}, }; int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){ struct IcuScalar *p = &scalars[i]; rc = sqlite3_create_function( db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0 ); } return rc; |
︙ | ︙ |
Changes to SQLite.Interop/src/core/sqlite3.h.
︙ | ︙ | |||
103 104 105 106 107 108 109 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.6" #define SQLITE_VERSION_NUMBER 3007006 #define SQLITE_SOURCE_ID "2011-04-11 18:35:09 51029d8430d2dbc782f161577d47e3dd11c4e4d7" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
479 480 481 482 483 484 485 486 487 488 489 490 491 492 | #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ /* ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] | > > | 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ /* Reserved: 0x00F00000 */ /* ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] |
︙ | ︙ | |||
726 727 728 729 730 731 732 | ** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by ** SQLite and sent to all VFSes in place of a call to the xSync method ** when the database connection has [PRAGMA synchronous] set to OFF.)^ ** Some specialized VFSes need this signal in order to operate correctly ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this | | | 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | ** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by ** SQLite and sent to all VFSes in place of a call to the xSync method ** when the database connection has [PRAGMA synchronous] set to OFF.)^ ** Some specialized VFSes need this signal in order to operate correctly ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most ** VFSes do not need this signal and should silently ignore this opcode. ** Applications should not call [sqlite3_file_control()] with this ** opcode as doing so may disrupt the operation of the specialized VFSes ** that do require it. */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 |
︙ | ︙ | |||
892 893 894 895 896 897 898 899 900 901 | ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian ** Day Number multipled by 86400000 (the number of milliseconds in ** a 24-hour day). ** ^SQLite will use the xCurrentTimeInt64() method to get the current ** date and time if that method is available (if iVersion is 2 or ** greater and the function pointer is not NULL) and will fall back ** to xCurrentTime() if xCurrentTimeInt64() is unavailable. */ typedef struct sqlite3_vfs sqlite3_vfs; struct sqlite3_vfs { | > > > > > > > > > > > > > | | 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 | ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian ** Day Number multipled by 86400000 (the number of milliseconds in ** a 24-hour day). ** ^SQLite will use the xCurrentTimeInt64() method to get the current ** date and time if that method is available (if iVersion is 2 or ** greater and the function pointer is not NULL) and will fall back ** to xCurrentTime() if xCurrentTimeInt64() is unavailable. ** ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces ** are not used by the SQLite core. These optional interfaces are provided ** by some VFSes to facilitate testing of the VFS code. By overriding ** system calls with functions under its control, a test program can ** simulate faults and error conditions that would otherwise be difficult ** or impossible to induce. The set of system calls that can be overridden ** varies from one VFS to another, and from one version of the same VFS to the ** next. Applications that use these interfaces must be prepared for any ** or all of these interfaces to be NULL or for their behavior to change ** from one release to the next. Applications must not attempt to access ** any of these methods if the iVersion of the VFS is less than 3. */ typedef struct sqlite3_vfs sqlite3_vfs; typedef void (*sqlite3_syscall_ptr)(void); struct sqlite3_vfs { int iVersion; /* Structure version number (currently 3) */ int szOsFile; /* Size of subclassed sqlite3_file */ int mxPathname; /* Maximum file pathname length */ sqlite3_vfs *pNext; /* Next registered VFS */ const char *zName; /* Name of this virtual file system */ void *pAppData; /* Pointer to application-specific data */ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, int flags, int *pOutFlags); |
︙ | ︙ | |||
921 922 923 924 925 926 927 928 929 930 931 932 933 934 | /* ** The methods above are in version 1 of the sqlite_vfs object ** definition. Those that follow are added in version 2 or later */ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); /* ** The methods above are in versions 1 and 2 of the sqlite_vfs object. ** New fields may be appended in figure versions. The iVersion ** value will increment whenever this happens. */ }; /* ** CAPI3REF: Flags for the xAccess VFS method | > > > > > > > | 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | /* ** The methods above are in version 1 of the sqlite_vfs object ** definition. Those that follow are added in version 2 or later */ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); /* ** The methods above are in versions 1 and 2 of the sqlite_vfs object. ** Those below are for version 3 and greater. */ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); /* ** The methods above are in versions 1 through 3 of the sqlite_vfs object. ** New fields may be appended in figure versions. The iVersion ** value will increment whenever this happens. */ }; /* ** CAPI3REF: Flags for the xAccess VFS method |
︙ | ︙ | |||
1105 1106 1107 1108 1109 1110 1111 | /* ** CAPI3REF: Configure database connections ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single | | < < < | | < < | | 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | /* ** CAPI3REF: Configure database connections ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single ** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code ** that indicates what aspect of the [database connection] is being configured. ** Subsequent arguments vary depending on the configuration verb. ** ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if ** the call is considered successful. */ SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...); /* |
︙ | ︙ | |||
1293 1294 1295 1296 1297 1298 1299 | ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. ** </dd> ** ** <dt>SQLITE_CONFIG_SCRATCH</dt> ** <dd> ^This option specifies a static memory buffer that SQLite can use for ** scratch memory. There are three arguments: A pointer an 8-byte | | | 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 | ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. ** </dd> ** ** <dt>SQLITE_CONFIG_SCRATCH</dt> ** <dd> ^This option specifies a static memory buffer that SQLite can use for ** scratch memory. There are three arguments: A pointer an 8-byte ** aligned memory buffer from which the scratch allocations will be ** drawn, the size of each scratch allocation (sz), ** and the maximum number of scratch allocations (N). The sz ** argument must be a multiple of 16. ** The first argument must be a pointer to an 8-byte aligned buffer ** of at least sz*N bytes of memory. ** ^SQLite will use no more than two scratch buffers per thread. So ** N should be set to twice the expected maximum number of threads. |
︙ | ︙ | |||
1340 1341 1342 1343 1344 1345 1346 | ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte | | > > | 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 | ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte ** boundary or subsequent behavior of SQLite will be undefined. ** The minimum allocation size is capped at 2^12. Reasonable values ** for the minimum allocation size are 2^5 through 2^8.</dd> ** ** <dt>SQLITE_CONFIG_MUTEX</dt> ** <dd> ^(This option takes a single argument which is a pointer to an ** instance of the [sqlite3_mutex_methods] structure. The argument specifies ** alternative low-level mutex routines to be used in place ** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the ** content of the [sqlite3_mutex_methods] structure before the call to |
︙ | ︙ | |||
1443 1444 1445 1446 1447 1448 1449 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a | | > > > > > > > > > > > > > > > > > > > > | > > | 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the ** size of each lookaside buffer slot. ^The third argument is the number of ** slots. The size of the buffer in the first argument must be greater than ** or equal to the product of the second and third arguments. The buffer ** must be aligned to an 8-byte boundary. ^If the second argument to ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally ** rounded down to the next smaller multiple of 8. ^(The lookaside memory ** configuration for a database connection can only be changed when that ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^</dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> ** <dd> ^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. </dd> ** ** </dl> */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result |
︙ | ︙ | |||
2065 2066 2067 2068 2069 2070 2071 | ** method. */ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** | | | 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 | ** method. */ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. ** ^The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various ** points during the compilation process, as logic is being created ** to perform various actions, the authorizer callback is invoked to ** see if those actions are allowed. ^The authorizer callback should |
︙ | ︙ | |||
2667 2668 2669 2670 2671 2672 2673 | ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** | | | 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 | ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to ** the content of the database file. ** ** Note that [application-defined SQL functions] or ** [virtual tables] might change the database indirectly as a side effect. ** ^(For example, if an application defines a function "eval()" that ** calls [sqlite3_exec()], then the following SQL statement would |
︙ | ︙ | |||
2711 2712 2713 2714 2715 2716 2717 | ** An sqlite3_value object may be either "protected" or "unprotected". ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies ** whether or not it requires a protected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not | | | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 | ** An sqlite3_value object may be either "protected" or "unprotected". ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies ** whether or not it requires a protected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not ** a mutex is held. An internal mutex is held for a protected ** sqlite3_value object but no mutex is held for an unprotected ** sqlite3_value object. If SQLite is compiled to be single-threaded ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) ** or if SQLite is run in one of reduced mutex modes ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] ** then there is no distinction between protected and unprotected ** sqlite3_value objects and they can be used interchangeably. However, |
︙ | ︙ | |||
2935 2936 2937 2938 2939 2940 2941 | ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the ** column number. ^The leftmost column is number 0. ** ** ^The returned string pointer is valid until either the [prepared statement] | | > > | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 | ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the ** column number. ^The leftmost column is number 0. ** ** ^The returned string pointer is valid until either the [prepared statement] ** is destroyed by [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the next call to ** sqlite3_column_name() or sqlite3_column_name16() on the same column. ** ** ^If sqlite3_malloc() fails during the processing of either routine ** (for example during a conversion from UTF-8 to UTF-16) then a ** NULL pointer is returned. ** ** ^The name of a result column is the value of the "AS" clause for |
︙ | ︙ | |||
2961 2962 2963 2964 2965 2966 2967 | ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** ^The returned string is valid until the [prepared statement] is destroyed | | > > | 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 | ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** ^The returned string is valid until the [prepared statement] is destroyed ** using [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the same information is requested ** again in a different encoding. ** ** ^The names returned are the original un-aliased names of the ** database, table, and column. ** ** ^The first argument to these interfaces is a [prepared statement]. ** ^These functions return information about the Nth result column returned by |
︙ | ︙ | |||
3393 3394 3395 3396 3397 3398 3399 | ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** these routines are the text encoding expected for | | | 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 | ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** these routines are the text encoding expected for ** the second parameter (the name of the function being created) ** and the presence or absence of a destructor callback for ** the application data pointer. ** ** ^The first parameter is the [database connection] to which the SQL ** function is to be added. ^If an application uses more than one database ** connection then application-defined SQL functions must be added ** to each database connection separately. |
︙ | ︙ | |||
3438 3439 3440 3441 3442 3443 3444 | ** ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or ** aggregate. ^A scalar SQL function requires an implementation of the xFunc ** callback only; NULL pointers must be passed as the xStep and xFinal ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing | | | 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 | ** ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or ** aggregate. ^A scalar SQL function requires an implementation of the xFunc ** callback only; NULL pointers must be passed as the xStep and xFinal ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL, ** then it is destructor for the application data pointer. ** The destructor is invoked when the function is deleted, either by being ** overloaded or when the database connection closes.)^ ** ^The destructor is also invoked if the call to |
︙ | ︙ | |||
3872 3873 3874 3875 3876 3877 3878 | ** ^The eTextRep argument determines the encoding of strings passed ** to the collating function callback, xCallback. ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep ** force strings to be UTF16 with native byte order. ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin ** on an even byte address. ** | | | | 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 | ** ^The eTextRep argument determines the encoding of strings passed ** to the collating function callback, xCallback. ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep ** force strings to be UTF16 with native byte order. ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin ** on an even byte address. ** ** ^The fourth argument, pArg, is an application data pointer that is passed ** through as the first argument to the collating function callback. ** ** ^The fifth argument, xCallback, is a pointer to the collating function. ** ^Multiple collating functions can be registered using the same name but ** with different eTextRep parameters and SQLite will use whichever ** function requires the least amount of data transformation. ** ^If the xCallback argument is NULL then the collating function is ** deleted. ^When all collating functions having the same name are deleted, ** that collation is no longer usable. ** ** ^The collating function callback is invoked with a copy of the pArg ** application data pointer and with two strings in the encoding specified ** by the eTextRep argument. The collating function must return an ** integer that is negative, zero, or positive ** if the first string is less than, equal to, or greater than the second, ** respectively. A collating function must always return the same answer ** given the same inputs. If two or more collating functions are registered ** to the same collation name (using different eTextRep values) then all ** must give an equivalent answer when invoked with equivalent strings. ** The collating function must obey the following properties for all ** strings A, B, and C: ** ** <ol> |
︙ | ︙ | |||
4300 4301 4302 4303 4304 4305 4306 | ** if one or more of following conditions are true: ** ** <ul> ** <li> The soft heap limit is set to zero. ** <li> Memory accounting is disabled using a combination of the ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. | | | 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 | ** if one or more of following conditions are true: ** ** <ul> ** <li> The soft heap limit is set to zero. ** <li> Memory accounting is disabled using a combination of the ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. ** <li> An alternative page cache implementation is specified using ** [sqlite3_config]([SQLITE_CONFIG_PCACHE],...). ** <li> The page cache allocates from its own memory pool supplied ** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than ** from the heap. ** </ul>)^ ** ** Beginning with SQLite version 3.7.3, the soft heap limit is enforced |
︙ | ︙ | |||
4521 4522 4523 4524 4525 4526 4527 | typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* ** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} ** | | | 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 | typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* ** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} ** ** This structure, sometimes called a "virtual table module", ** defines the implementation of a [virtual tables]. ** This structure consists mostly of methods for the module. ** ** ^A virtual table module is created by filling in a persistent ** instance of this structure and passing a pointer to that instance ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. ** ^The registration remains valid until it is replaced by a different |
︙ | ︙ | |||
4833 4834 4835 4836 4837 4838 4839 | ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for | | | 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 | ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for ** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. ** ^(Changes written into a BLOB prior to the BLOB expiring are not ** rolled back by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion.)^ ** ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. ^The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a |
︙ | ︙ | |||
5535 5536 5537 5538 5539 5540 5541 | ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd>)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt> ** <dd>This parameter returns the number malloc attempts that were ** satisfied using lookaside memory. Only the high-water value is meaningful; | | < | < | < | 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 | ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd>)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt> ** <dd>This parameter returns the number malloc attempts that were ** satisfied using lookaside memory. Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt> ** <dd>This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to the amount of ** memory requested being larger than the lookaside slot size. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt> ** <dd>This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to all lookaside ** memory already being in use. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt> ** <dd>This parameter returns the approximate number of of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** ** ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt> |
︙ | ︙ | |||
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 | ** connection D. ^If the database connection D is not in ** [WAL | write-ahead log mode] then this interface is a harmless no-op. ** ** ^The [wal_checkpoint pragma] can be used to invoke this interface ** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] can be used to cause this interface to be ** run whenever the WAL reaches a certain size threshold. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 | ** connection D. ^If the database connection D is not in ** [WAL | write-ahead log mode] then this interface is a harmless no-op. ** ** ^The [wal_checkpoint pragma] can be used to invoke this interface ** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] can be used to cause this interface to be ** run whenever the WAL reaches a certain size threshold. ** ** See also: [sqlite3_wal_checkpoint_v2()] */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** ** Run a checkpoint operation on WAL database zDb attached to database ** handle db. The specific operation is determined by the value of the ** eMode parameter: ** ** <dl> ** <dt>SQLITE_CHECKPOINT_PASSIVE<dd> ** Checkpoint as many frames as possible without waiting for any database ** readers or writers to finish. Sync the db file if all frames in the log ** are checkpointed. This mode is the same as calling ** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked. ** ** <dt>SQLITE_CHECKPOINT_FULL<dd> ** This mode blocks (calls the busy-handler callback) until there is no ** database writer and all readers are reading from the most recent database ** snapshot. It then checkpoints all frames in the log file and syncs the ** database file. This call blocks database writers while it is running, ** but not database readers. ** ** <dt>SQLITE_CHECKPOINT_RESTART<dd> ** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after ** checkpointing the log file it blocks (calls the busy-handler callback) ** until all readers are reading from the database file only. This ensures ** that the next client to write to the database file restarts the log file ** from the beginning. This call blocks database writers while it is running, ** but not database readers. ** </dl> ** ** If pnLog is not NULL, then *pnLog is set to the total number of frames in ** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to ** the total number of checkpointed frames (including any that were already ** checkpointed when this function is called). *pnLog and *pnCkpt may be ** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. ** If no values are available because of an error, they are both set to -1 ** before returning to communicate this to the caller. ** ** All calls obtain an exclusive "checkpoint" lock on the database file. If ** any other process is running a checkpoint operation at the same time, the ** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a ** busy-handler configured, it will not be invoked in this case. ** ** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive ** "writer" lock on the database file. If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the writer ** lock retried until either the busy-handler returns 0 or the lock is ** successfully obtained. The busy-handler is also invoked while waiting for ** database readers as described above. If the busy-handler returns 0 before ** the writer lock is obtained or while waiting for database readers, the ** checkpoint operation proceeds from that point in the same way as ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible ** without blocking any further. SQLITE_BUSY is returned in this case. ** ** If parameter zDb is NULL or points to a zero length string, then the ** specified operation is attempted on all WAL databases. In this case the ** values written to output parameters *pnLog and *pnCkpt are undefined. If ** an SQLITE_BUSY error is encountered when processing one or more of the ** attached WAL databases, the operation is still attempted on any remaining ** attached databases and SQLITE_BUSY is returned to the caller. If any other ** error occurs while processing an attached database, processing is abandoned ** and the error code returned to the caller immediately. If no error ** (SQLITE_BUSY or otherwise) is encountered while processing the attached ** databases, SQLITE_OK is returned. ** ** If database zDb is the name of an attached database that is not in WAL ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If ** zDb is not NULL (or a zero length string) and is not the name of any ** attached database, SQLITE_ERROR is returned to the caller. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ); /* ** CAPI3REF: Checkpoint operation parameters ** ** These constants can be used as the 3rd parameter to ** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] ** documentation for additional information about the meaning and use of ** each of these values. */ #define SQLITE_CHECKPOINT_PASSIVE 0 #define SQLITE_CHECKPOINT_FULL 1 #define SQLITE_CHECKPOINT_RESTART 2 /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double |
︙ | ︙ |